Indian J, Phys, 43, 201-204 (1969)

Infrared eigen frequency and characteristic Debye temperature of a few heavier halides.

BY D. C. GUPTA AND M. N. SHARMA

Physics Department, Lucknow University, Lucknow-7 India.

(Received September 26, 1967; Resubmitted February, 13, 1969)

Using the Lennard-Jones (12:6) potential energy function the necessary equation for the force constant and infrared eigen frequency ν_0 have been derived. The calculated values of ν_0 and Debye Φ_D have been compared with the experimental data. The calculated results reveal the appropriateness of the Lennard-Jones potential model for heavier salts.

INTRODUCTION

The interatomic forces play a important role in predicting the various properties of matter. The behaviour of the forces for ionic crystals was studied in the early stage by Mie (1903), Gruneisen (1912, 1926), Born (1923), Born & Mayer (1932), and in the later stage by Cubicciotti (1959, 1951) Sharma & Madan (1961, 1962), Chatterjee (1963), Kachhava & Saxena (1965, 1966), Gohel & Trivedi (1967) and others and has been summarised by Kittel (1956) and by Born & Huang (1954). In an ionic crystal the degree of ionisation of the constituent atoms is often such that the electronic configuration of all ions corresponds to closed electronic shells, as in the case of inert gas atoms, Assuming this, Sharma and Madan (1964a, 1964b) have computed the various properties of alkali and metal halides. In the present paper we have extended the use of the Lennard-Jones (12:6) potential model in calculating some other properties, viz., infrared eigen frequency ν_o and characteristic Debye temperature σ_D of a few heavier halides.

COMPUTATION OF CRYSTAL PROPERTIES

Using the Lennard-Jones (12:6) potential model in conjunction with the Coulomb term, the expression for the energy per unit cell can be written as :

$$\phi(r) = - \frac{\epsilon Z^2 e^2}{r} + \frac{B}{r^{18}} - \frac{C}{r^8} - \frac{D}{r^8} + \epsilon_0 \qquad \dots (1)$$

where \leq is the Madelung constant, Ze is the charge on an ion, r is the interionic distance, B is the repulsive parameter, $\frac{C}{r^8}$ is the dipole dipole

interaction term, $\frac{D}{r^8}$ is the dipole-quadrupole interaction term, and ϵ_c is the zero-point energy.

[201]

4

D. C. Gupta and M. N. Sharma

The experimental values of r, $\phi(r)$ and ϵ_o can be substituted in equation (1) to detemine B if we have a knowledge of C and D from other means. Estimates of C and D obtained from an analysis of optical data were employed to detemine B (Mayer 1933; Mayer & Levy 1933; Bleich 1934). The values of B are given in table 1.

The force constant f is given by

$$f = \frac{1}{3} \left[\frac{2\phi'(r)}{r} + \phi'(r) \right] \qquad \qquad \dots (2)$$

in which $\phi'(r)$ and $\phi''(r)$ are the first and second derivatives, respectively, of the overlap potential between a positive and a negative ion. Substituting for $\phi''(r)$ and $\phi''(r)$ in equation (3) we at once get

$$f = 44. \ \frac{B}{r^{16}} - 10. \ \frac{C}{r^8} - \frac{56}{3} \cdot \frac{D}{r^{10}} \qquad \cdots (3)$$

Using C and D from optical data and B from equation (1) we can compute the force constant which is tabulated in table 1.

(A) Infrared absorption frequency

 ν_o

The characteristic infrared eigen frequency ν_o of the ionic crystals is the frequency of the lattice of positive ions moving as a unit relative to the lattice of negative ions. Taking polarisation into consideration, ν_o can be calculated from

$$= \frac{1}{2\pi} \sqrt{\frac{f}{\mu} \left(\frac{\epsilon_{\rm sc}+2}{\epsilon_{\rm s}+2}\right)} \qquad \dots (4)$$

where μ is the reduced mass of the ions, ϵ_o is the static dielectric constant and ϵ_{∞} is the high frequency dielectric constant.

Substituting for, f, we get

$$\nu_{o} = \frac{1}{2\pi\sqrt{\frac{\left(44.\frac{B}{r^{14}} - 10.\frac{C}{r^{8}} - \frac{56}{3} \cdot \frac{D}{r^{10}}\right)\left(\epsilon_{c} + 2\right)}} \qquad \dots (5)$$

Here C and D can again be taken from optical data of Mayer (1933), Mayer & Levy (1933) and Bleick (1934) and B from equation (1).

The values of ν_0 calculated from equation (5) are presented in table 1. The experimental values of ν_0 for the considered halides are also included in table 1 for comparison. It is interesting to note that ν_0 calculated from force constant compares well with the observed values of ν_0 . Specially in the case of TICl and TIBr, the agreement is very good and this clearly indicates the adequacy of the Lennard-Jones potential model for the heavier ionic crystals,

202

Infrared eigen frequency and Debye temperature etc. 203

	B × 10104	f × 10 ⁻⁴	$\nu_0 \times 10^{-12} (sec^{-1})$			
Substance	(from equation 1)	(from equation 3)	Exp. [Born & Housing (1954)].	Cal. (Using equation 5)		
CuCl	4.660	11.730	5.67	6 037		
CuBr	6.772	8.071	5.27	4.597		
CuI	8.056	-	-	-		
AgCl	45.290	9.610	(3.09)	4.812		
AgBr	59.940	6.998	(2.29)	3.192		
AgI	41.300	-	-	-		
TICI	419.700	7.068	2.58	2.732		
TiBr	604.700	6.522	(1.85)	1.966		

TABLE 1. REPULSIVE PARAMETER B. FORCE CONSTANT f and infrared eigen frequency ν_0 of some heavier halides

Gohel & Trived: (1967) have also calculated the lattice energies of some heavier ions using the Lennard-Jones potential energy function which clearly supports the adequacy of Lennard-Jones (12:6) model for a heavier salts.

Substance		Φ _D Theoretical (Using Eq. 6)	Φ _D refl.* (Infrared)	Ø _D abs * (Infrared)	Ø _D elastic*	Φ _D Black- mann*	Ψ _D Mitra & Joshi*
CuCl		289.80					
CuBr	183	220.70					
AgCl	144	231.10					
AgBr		153.20					
TICI		131.10	157	123	125	100	164
TlBr		94.39	123		114	71	117

Table 2. Calculated and experimental values of Debye \bar{w}_D for some heavier halides

* Mitra & Joshi (1960 b)

** Reddy (1963)

(B) Characteristic Debye temperature $\bar{\psi}_D$

A number of relations have been given connecting the Debye characteristic temperature Ψ_D and the compressibility by Blackman (1942),

D. C. Gupta and M. N. Sharma

Mitra & Joshi (1960a) and by others. Once the value of γ_0 is calculated, Φ_D can be computed from the relation

$$\Phi_D = \frac{n\nu_0}{k} \qquad \dots (6)$$

where h is the Planck's constant and k is the Boltzmann's constant.

The calculated values of Φ_D using equation (6) are given in table 2 for a few heavier halides along with the values determined by various other methods for the sake of comparison. The agreement between the calculated and observed values of φ_D is quite satisfactory considering the approximations involved in the theory.

Authors are indebted to Prof. B. N. Srivastava, F. N. I. for helpful suggestions and going through the manuscript. Authors are also grateful to Prof. B. G. Gokhale, Head of the Physics Depatment, Lucknow University, for the continued interest and encouragement in the problem. One of us (D. C. G.) is grateful to State C. S. I. R., U. P. for financial assistance.

References

Blackmann, M. 1942 Proc. Roy. Soc., 181A 58.

Bleick W. E. 1934 J. Chem. Phys. 2, 160.

Born, M. 1923 Atomtheorie des festen Zustandes, Teubner, Leipzig.

Born, M. & Huang, K. 1954 Dynamical Theory of Crystal Lattices, (Clarendon Press Ltd., Oxford). Born, M. & Mayer, J. E. Zeit. f. Physik. 1, 75.

Chatterjee, S. 1963 Indian J. Phys. 37, 105.

Cubicciotti, D. 1959 J. Chem. Phys. 31, 1646.

1961 J. Chem. Phys. 34, 2189.

Gohel V. B. & Trivedi, M. D. 1967 Indian J. Pure Appl. Phys. 5, 265.

Gruneisen E. 1912 Ann Physik. 39, 257.

1926 Handbuch der Physik, Verlag Julius Springer, Berlin Vol. 10, Part I. Kachhava, C. M. & Saxena, S. C. 1965 Indian J. Physics 39, 145.

1966a, b, c Indian J. Phys. 40, 225, 273, 567.

Kittel C. 1956 Introduction to Solid State Physics, John Wiley & Sons Inc., N. Y.

Mayer J. E., 1933 J. Chem. Phys. 1, 327.

Mayer J. E. & Levy, R. B. 1933 J. Chem. Phys. 1, 647.

Mitra S. S. & Joshi, S. K. 1960a, Physica. 26, 284.

1960b Physica, 26, 825.

Sharma M. N. & Madan, M. P. 1961 Indian J. Phys. 35, 596.

1962 *Ourrent Science*, 31, 54.

1964a, Indian J. Phys. 38, 231. 1964b, Indian J. Phys. 38, 305.

Reddy P. Jayarama 1963 Physica. 29, 63.

204