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ABSTRACT. In this [)a,prr, a. (jua-si-lmaanHaliou Im'hnKpK' is (l('ssrrii)a(l wbifh ^ivos 
iL r loi- aj)|)ioximalrly r<'[)r<‘s(‘iitiii  ̂ «‘i, laemoi'y-typa rionlbii'afity on Iho basis ofan
iiijKit rorjlaiiiiiii  ̂ a siuusnidal signal aiul u (biiissian n(»is(' with va,lut‘ /rro. pum-
mc-tt'!’ Is Ifi'iiird S‘()iii|)l<*\ *Mjui\a,l('nt ^.un’ a,ii(l this is usrd fur iii\ rsl thr rllacts of a
Caiissiuii uoisa OIL 1ht‘ Irvi^unicy rosj)ons(‘ cliavactoristi(‘s of a stable ftnalback coulrol system 
menrpnratm^ (lie jjoiiliueanly. A siin])le seeoudander position (*ntiti‘ol sysli'm witli bafk- 
lasb III the ontjuit eoujiliiur js eonsidiTed a,s an (‘vample and the rt'sulls obtaiiu‘d ar<‘ via’ilierl 
eNpi'nmenlfdly with I be lielp nf jin eliM'ti-oine analo^iu' eomi>iiter.

I X T \{ () 1) I’ V T  I O X

\Vh(‘M llu‘ input ol’ a stal)l(» fo(‘.ll>iU‘k control systun iucorporatinc a mtunorv- 
typc iionliiK-arity is stihjtalial to a sinusoidal signal. tlu‘ rH‘aii<‘nt*v tvsjxmsî  
charao|r‘nsti(*s of 1Ik‘ systiuii can Ih‘ d(‘tcnninc(l apitmxiinalcly l»y tli(‘ use of 
lim‘ansation l(‘cliiii(iu(\s (Sltun and Tliaku' IDoS, Stui, l!Mi4). hi llû  ap|)lication 
of thcS(‘ tcclnii(pn‘s, a (piasi-linctiristHl transfer inindion is uscil to represent tlu' 
uonliiu'ar (‘humuil in t!u‘ system which is called ’complex dt‘scrihinĵ  lunclion .

Blit, wUi'W the in|Hit of tlu‘ noiilinidr systtmi considmvd hcconies contami­
nated with a (iaussian noise tium if is found that all the paranuders of tlic fn*- 
([iien<*y ri'sponst* cliaratttu'istics, namt'Iy, the* liandwidth, rt̂ sonant lj‘(‘(|U(‘n(‘V 
and the luueht of tin* rt‘sonant ]>cak prcvdoiisly ohtainetl lor a jtart iciilar value ot 
tlic im|)r(‘ss(ul sinusoidal amplitude, changt* considtudihly. This is due to tiu* 
fac't that tlu‘ transmission ]>ro[M'r*ly ot th(‘ nonlinearity alters dm* to tin* ]>i(‘S(‘nco 
of tin* noist*. Tn tliis [>ap(‘r, an analytical m(*tliod \Nill he ]>ropos(*d for investi­
gating thest* effects of the tJaussian noisi* on tlie fre(|uency resjumse characteristics 
of a memory-type nonlim*ar system. A\h(*rc tin* nonlinearity considiavd is assumed 
to he amplitmi(>-sensitive alom*. Tlu' im[)ortance of this investigation arises from 
th(̂  fa(‘t that tJie inputs of all firactical control systmns are usually contaminated 

with such external disturhances.
Ill order to carry out tlic above analytical inv(‘stigation. a (|uasi-lim‘arisation 

tochnique Avill b(‘ ado])tc(l in which a -coinplcx ciiuivali-nt gain' (Sen, l!»ri5) will be 
obtained for making an approximate representation of the nonlinearity under
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the assumption that the input is composed of only a sinusoidal signal and a 
Gaussian noise witli mean value zero. An outline of tln̂  proposed quasi-lineari­
sation technique has Ihhui presented in the following section.

T H E  P K O P O S E  D Q U A S I - L I N E A R T S A T 1 O N T E C H N I Q U E

When a linear element is subjected to an input consisting of a sine wave and 
a Gaussian signal of mean value zero it is found that the response of the element 
will also contain only the components of the input signal and the original shape 
of the input wav(̂  will be mai<itaim»d at the output. But, when the element 
becomes nonlim^ar, distortion will app(*ar in the shape of the output wave and it 
will become difficult to make any rigorous analysis of the response of the element 
in this case. Howev^er, it can be seen that, for the assumed input, the response 
of the nonlinearity can be separated into two parts—one representing the cor­
related component tliat exactly reproduces the input s])(K*trum, while the remainder 
is called tiû  ‘distortions’ comprising tlû  harmonics and intermodulation compo­
nents and then a quasi-lim^arisation t(u-lini(jue can be adopted to make an approxi­
mate representation of tlû  nonliiK^arity. The use of this linearisation tecdmiquc 
assumes the presence of only the (correlated (component at the output and defines 
a quasi-linearised transf(‘r function for tin', nonlinearity that relates the input 
to the output (correlat(*fI component. For the case of nonlinearities that involve 
memory, ])hasc-shift will bt̂  introdmeed to (ui *h of the» fre(|U(ui(*y (components at 
the output and thendbn^ in su(‘li cases, the (piasi-Iinearistcd transfer function 
obtairned for the nonliin'arity ivecomes a (‘omplex quantity and juay be (called 
V.omplex equivalent gain’ . The magnitude of this complex equivakmt gain is 
given by the ratio of the r.m.s. value of th(‘ output correlated comj)onent to that 
of the input, while the phase is assumed to be frccquency-independent. The 
above definition of a (̂complex equivalent gain’ has been made for a memory 
typo nonlinearity under tiu' assumption that the (components of the signal 
assumed at the input of thee nonlim^arity lie within a narrowband frequency 
spectrum.

In order to determine the phase function attributed to the quasi-linearised 
model of the nonlinearity, tlu? simple yuxxcedure as outlined belo\v is to be adopted. 
Consider a nonlinear (dement (Fig. 1), the input of which is impressed upon by a 
signal z comprising a sine wavtc sin and a Gaussian noise ẑ  having
mean value zero and variance If the component of the Gaussian noise is

00
expressed in the form — 2 sin where describes the power

«=o
spectrum of the noise and is randomly distributed with a uniform probability 
distribution from 0 to 27t, then, neglecting the harmonics and intermodulation 
components, the approximate output of the nonlinearity can be written as :

: I H((t) 1 [A;, sin {o^«+0((7)}4-S sin
n»>0 (1)
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where [ H{(t) \ is the magnitude and 6((t) the phase of the eomjJex ccpiivalent 
gain defined for the nonlinearity. Tn order to attribute the proper sign to the phase 
function 0{(t). it should ho rcuuemhcnirl that ^̂ (cr) is negative for those nonlineari­
ties that introduce a lagging phast>-shift to the output frequemiv eoniponents for 
a sinusoidal input, while it is positive for those iiitrodueing a lewling phase-shift.

Now, the difference hetweeii the approximate output and the input multi­
plied hy tlie magnitude of the- complex equivalent gain is given hy 

e -  y - \  H(<t) I s :

.^21//(<r)|sin [-4, cos I

-I cos I M„1 1 t I j

or, tho rnis value of tlio (quantity r is givt'n by

(Tf 21 //((t) 10-2 sin

(2)

(2)

whence 0{(t) — 2 sin“ (4)2 1 H((t ) I (T̂
where cr̂  represents tlie rms value of the total signal at the nonlinearity input.

In practice, however, as the luagiiitude f)f the complex c(pn’valent gain defined 
for th(̂  nonlinearity, cannot be easily determined, an a])proximate measure of the 
parameter can be obtained by taking the ratio of the rms value of the actual 
output to that of the in])ut of the nonlim^arity. Evidcmtly. this im^asimunent will 
give a somewhat increased value of the parameter \H(rr)\ due to the presence 
of tho distortion components at tlie output of tlu' nonlinearity.

Thus, the procedure for having an a])j)roximat<' measure of the eoini)lex equi­
valent gain of a memory-type nonlinearity for the assumed injmt can be summarised 
as follows :

(1) The rms values of the input and the output of the nonlinearity are first 
measured and then the parameter | H(or) j is compntiMl for different rms values of 
the input.

(2) The rms values of the quantity e are measured for different values of the 
input by arranging the set-up as shown in Fig. 1, each time using proper value 
of the quantity li/(cr)| obtained from tho procedure in step (1).

/^col

Fig, 1. Set-up for meastû ing the phase of complex equivalent gain.
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(3) Finally, eqn. (4) is used to compute the paraim^ter f)((T) of the complex 
equivalent gain.

For different values of the quantities Aj.lS and (tJS the comphix equivalent 
gain of a simple backlasli as measured by the above method is presented in Fig. 
2, where S represents tbî  backlash half-width.

|«r I

s %

----

Fig. 2. Tho complex e^juivnlout gain o f a Himj)lo backlash,

A P P L I C A T I O N  Oh'  T H E  P H O P O S E D Q U A S T- 
L I N  E A H I 8 A T I O N T E C H N I Q U E

Tn the preceding section, a quasi-linearisation technique has be(*n (h‘V(‘h)])cul 
which yields a ‘complex equivalent gain’ as a parameter for approximately r*qjre- 
senting a memory-type nonlinearity with an input function comprising a sinu­
soidal signal and a Gaussian noise with mean value z(U'o. Wlien tliĉ  nonlin(‘ar 
element considered occurs as a part of a fecMlbacik system A\ hicli is also subjected 
to a similar input, the appli(;ation of the quasi-linearisation teclinicjue is facili­
tated by replacing the nonlinearity with the ludp of tlû  quasi-linearised gain and 
tlien the analysis is carried out by obtaining two separate linearised versions for 
the over-all nonlinear system—one for the sinusoidal i)ortion and the other for 
the Gaussian component of the impressed signal (Sawaragi and Sugai, 19»59). 
The justification in using the two separate linearised systems for the analysis can 
be seen from the fact that, in eitlior case, the effect of the r(unaining signal simul­
taneously present in the system is included in tho quasi-linearised gain obtahuMl 
for the nonlinearity. Though the presences of the nonlinearity will destroy the 
nature of the signals impressed upon the system, but it will b(* assumed thcat the 
signal fedback to the input of the nonlinearity will contain only a sinusoidal and 
a Gaussian component, and, possibly, this assumption will be justified in practice 
because of the narrow-band characteristic of the feedback system.

A p O kS i t i o n  c o n t r o l  s y s t e m  w i t h  b a c k l a s h

Consider a position control system as shown in Fig. 3, incorporating backlash 
in the output coupling and is subjected to a sinusoidal and a Gaussian signal at
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the point in the loop as indicated in the figure. Assuming the signal at the input 
of the nonlinearity to contain only the components of tlie impressed wave, the

r - 1  ^  160<̂  --- 1_£«.

Fig. 3. A position control system with biWiklash.

application of the quasi-linearisation technique  ̂yields the two linearised versions 
of the nonlinear system as presented in Figs. 4(a) and 4(b).

Fig. 4(h). T)io linnuriKtMl v{3r>!i(3u o f t]i(3 position control system for sinusoidal 
portion o f  t ho itnprosseci input.

Fig. 4(b). The linearised version o f  t-ho position control system for 
(brnssittn component o f th(' impressed input.

(\mfining our attention to tho evaluatioTi of the frequency response oharacter- 
istics of the nonlinear system at tho point 'Z' alone, wo get from Fig. 4(a),

RGljw)
1 VH{cr)G(jw)

while Fig. 4(b) gives

irz,{s) ^

(r>)

(6)

where ijfz.,(s) represents the comph‘x frequency spectrum of the Gaussian noise 
assumed at the point s, w'hich is the input of the nonlinearity and is the
i:omplex frequency spectrum of the imprt'ssed noisi\ Of the above tw'o equations, 
it can be readily seen that the first equation gives the required frequency response 
characteristics of the nonlinear system for different assumed values of the ampli­
tudes of tho sine wave and also the Gaussian noise at tlic input of the nonlinearity, 
while, with the help of the second equation, the rnis values of the impressed noise 
are computed in terms of tho rms noise present at tho input point \Z' of the 
nonlinearity.
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T H E  U S E  O F  N I C H O L S ’ C H A R T

When tiui tratisfer funetions for the linear and the nonlinear part of the system
considon'd are giv(Mi as plots on tln̂  eonventional magnitude-phase plane (shown 
in Fig. 5), tlu‘ii tli<‘ frefjuoncy resj)onse characteristics of the closed-loop system

Fig. 5. magnitude-pluiso pliuio plots o f tho transfor functions for the linear and the 
nonlinear parts o f the position control system.

as given hy cqu. (5) can bo easily determined by the use of Nichols’ chart. Two 
difftuvnt approaches can be followed in using the chart as outlined below ;

(a) In one approach, tlie given loci on the magnitude-phase plane are first 
utilised to obtain different families of eurves for the combined transference H((r) 
G(joi) of tlû  litiear and tlie nonlinear components of tlie system, eacli family cor- 
respoiifling to a particular value of the rms noise at the input of the nonlinearity. 
The procedure for obtaining these families of curves for the combined transfer 
function can bo explained as follows :

Tf the magnitude of the quantity H{cr) O(ju )̂ be expressed in decibels and its 
j)hase in degrees, then denoting the respective quantities as and 0̂ ^̂ , wo
have

M n.=\H{<T)\^\a(jw)\

1 + 1 I (7)
and

\H(cr)\

Quo> ^-IH {(r)-\-IG (jw )\

=  - - [  > 8 0 ° + . . .  (8)

Since the values of the quantities are directly ob­
tainable from the loci o f  j ~  f f { a )  magnitude-phase plane and



are known for the values of the parameters AJS aiul crJS marked on these loei, 
substitution of those values in the above equations gives thĉ  values (d* both 
the magnitude and phase of tlie combined transfereiu'e for diilerent values of 
the frequency, and thus, the required familiesof curves arc ol)taiii(‘d at different 
selected values of a n d e a c h  curve being graduated with different values 
vof the frequency.

For a particular selected value of the rms^ioise and with different values 
of as a parameter, the family of curves obtained for tiie (ombined trans­
ference are now superimposed on the contour System of a Nicliols’ (!hart and the 
points of intersection of those curves with th4 contours on the Nic liois' eliart are 
noted which give the frequency response charfcKderistics for the traiuder fum tion
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A H{(t) G(3w) .
B l +  H(cr) Gijw) '

at the selected value of cr̂ JS and for the different choscui vahu's of Â jS.
The same procedure as outlined above is then followc'd for diffcTcuit selected 

values of
Knowing the frequency response characteristics for the transf(T fumdion 

AfB  with the help of the Nicdiols’ chart, the frecjuem y n'S])ons(‘ charactiu’istics 
of the system given by eqn. (5) can now be (easily coiuput<'d aiul this ( an he done 
by determining the valiu'S of the paranu't(w H(<r) from Fig, 5 at. tlie diff(*reut 
selected values of (t„/S and Ay/S and by substituting those vahu's in tlu' ndation :

R
A
B

I
//(rr) ( 10)

(b) Tn the other approach, on the other hand, as suggesU'd by Shun and 
Thaler (1958), the (jontour system of the Nic'hol’s chart is superimposed on the 
given plots of the transfer function of the system, locating its origin on the si'lectel

1values of or̂ lS and A as marked on the
H { ct) ]■

lo(!i and the same results

as represented in eqn. (9) are obtained by observing tlm points of interse.dion 
between the chart-contour and the locus of the given linear transfcTeiuie G(jiv) 
of the system considered. It should be noted, however, tliat tliough this latter 
approach will be useful only when the Nichols’ eliart is available a.s (tontours 
drawn on a transparent template, hut it will he more convenient because of the 
fact that the laborious computation of the families of curves for the combined 
transference if(tr) Q{jw) will not be required in this cast'.

AN E X A M P L E  OF A S E C O N D - O K D E B
B A C K L A S H

S Y S T EM W I T H

If the position control system considered in the preceding section be of second 
order with its linear part having the transfer function G(jw) =  K„ljw(jw-\ 1), 
then the family of curves for the combined transfer function H{<r) G(jw) obtained



596 A  aim K , Sen

at a selected value of crjd and superimposed on the Niehols’ chart will be as shown 
in Fig. 6. Taking the value of the velocity error constant ~  0.5, the amplitude

/  -/«/ -/V -ao' -tto’ ~toi> -$p -go’
— i v _lj— Lu..i„i \ I ■ \ I n  \ \ \ L-,60* -140“ -i?0* -i00“

PM S£ JM DESHEtS

- t o '

Fig. 6. Tlie loci o f the combined transfer function for ih(̂  linear aivl nonlinear comnononts 
o f a wec'oud-orfler Hystem stiporimposed on the contour sy.Mtein o f a Ni(‘hol8’ chart.

and the phase response characteristics of the systcMii havt>! Ihhui evaluat(^d for 
different chosen values of (rjd  and AJS and the particular characteristi(*s obtained 
for (Tnl̂  — 0.5 and for a sid of sel(H‘ted valm ŝ of A;.jS are presented in Figs. 7 
and 8, n^spo( t̂iv(dy, wIuuĥ A ĵAf  ̂ n^pn ŝerits tlû  amplitude responses and the 
phase r(5sponse of the system at the point Z, With the help of thes(* (diara(d;eristies 
ev^aluated at different constant values of A ĵS, tlie frequemy response charac­
teristics of the system can be easily determinetl for different constant values of 
the amplitude AjJS of the sinusoidal signal iinpressiMl upon the systeju and this 
can be done by first (h^signating at each position of the amplitude response charae- 
toristics ohtainefl above with the proper value of AjJ^ and then drawing the locus

Fig. 7. The amplitude response characteristics of the second-order system for aniB =* 0.6 
and for Azid == 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5. (The dotted curve shows the corres­
ponding amplitude response characteristics for .4jj/3 = 0 .5 ).
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of c o n s t a n t o n  these characteristics. This is illustrated, in Fig* 7* Knowing 
from the figure the values of w and AJd at different positions on the constant

Fig. 8. The phase response charactoristk;s of the second-ordor system for aJS — 0.6 and 
for Azia -  0.9, J.O, 1.1, 1.2, 1.3, 1,4, X.5.

Fig. 9. Tho amplituflo responso oharacteristics of the second-order system for AjtlS =» 0.6 
and for a«/8 =  0, 0.5 and 1.0.

-  analytical values
Ooxperimental values.

u »  JiADtjum/sec.----►
Fig. 10. The phase response characteristics of the second-order system for AjilS ^  0.5 and 

for cr̂ /5 =  0, 0.6 and 1.0.
-  analytical values.
(̂ experimental values.
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AjilS locus, the corresponding phase response characteristics of the system is then 
determined with the help of Fig. 8. Thus the amplitude and the phase response 
characteristics of the system are determined for different constant values of Aj ĵd 
and the characteristics evaluated at Aĵ /S =  0.5 and for a set of selected values 
of orjd are presented in Figs. 9 and 10, respectively.

Since, in the present system considered, the noise impressed upon the system 
occurs at the output point (7, the rms values of the impressed noise corresponding 
to the different selected values of the rms noise at the point Z are to be deter­
mined and this will be done by the use of eqn. (6). Substituting the expression 
for 0{jw)y eqn. (6) can be written as

Therefore, for a particular input spectrum given by

titan
J<i)+a>0 — jw-fcoo

. . .  (11)

(1 2 )

where s =  jw  and is the half-power frequency and n the low frequency ampli­
tude of the noise spectrum, the normalised values of the impressed rms noise in 
terms of the rms noise at the point z are obtained from the relation :

S
I HjtT) I

K a  I Wo+l
ff(o-)} ... (13)

Since the parameter H((r) in the above equation is determined by the values 
of both (tJ8  and AgfS, a set of curves are drawn for the particular system consi­
dered by plotting the different values of as abscissa and the corresponding 
values of <rJS as ordinate and taking the values of AgjS as a parameter. This is 
shown in Fig. 11. With the help of these curves, it will be possible to obtain the 
values of (Tu/S corresponding to the selected values of (r^S and AgjS in the above

Fig. 11. The plots of vs. cr̂ /5 with different values as a parameter.



analysis or, conversely, for a given value of (tJS, the values of crjd and Â /Sc an 
also be selected with the help of these curves.

C O M P U T E R  S T U D Y

In order to have an experimental chodji: on the results obtained analytically, 
the nonlinear system considered in the eXiiample, is simulated on an electronic 
analogue computer and the arrangements aishown in Fig. 12, is made for measur-
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Fig. 12. The oxporimontal arrangoment for moasuring the amplitude and phase response 

characteristics of tho second-order system with noise injected at the nonlinearity 
input.

ing both the amplitude and the phase response characteristics of the system for 
different values of the rms noise present at the point Zi in the system loop.

In the arrangement, the block A is the simulated system, under invcstiga- 
tion, whore the output terminal represents tho point Z in tho system loop at 
which the frequency response characteristics are proposed to be evaluated. The 
block B represents a feedback filter unit having a very narrow pass-band around 
a centre frequency equal to and the centre frequency is ganged to the fre­
quency of the oscillator supplying tho sinusoidal signal impressed upon the input 
of the simulated system. The filter unit will bo used in conjunction with an 
oscilloscope for detection of the condition of balance of the fundamental 
component of the impressed sine wave present at the output ofthesimu-
lated system.

The procedure adopted for the measurement can be outlined as follows : 
First of all, the amplitude of the sine wave of a particular frequency and also 
the rms value of noise impressed upon the system is set at the selected values 
and then the fundamental component appearing at the output of the simulated 
system due to the impressed sine wave is balanced oUt by the addition of suitable 
fractions of the in-phase and quadrature -components of the same siiiusoidal signal 
and the balance is detected with tho help of the oscilloscope. As the output
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point of the simulated system will be contaminated with noise, the point of exact 
balance will not correspond to zero output of the filter unit, but, instead, a low 
frequency noise component will appear on the oscilloscope duo to the finite band­
width of the filter. However, the adjustments could be made such that the 
departure from the point of balance could readily be detected for a few millivolts 
change in the fundamental balancing signal from the value at which the balance 
is obtained. Finally, the amplitude values of the in-phase and the quadrature 
components of the fundamental balancing signal corresponding to the point of 
balance are noted and these are used for computing the required amplitude 
and phase response of the system at the particular value of the frequency 
of the impressed sine wave.

The above procedures are then repeated for different frequencies and at 
different selected rms values of the impressed noise and the r(\sults obtained 
are presented and are indicated as circles on Figs. 9 and 10.

C O N C L U S I O N

The quasi-linearisation technique described in the first part of this paper 
has boon found to be useful for investigating the effect of a Gaussian noise on 
the frequency response characteristics of a feedback control system incorporating 
a memory-type nonlinearity. As a graphical aid to the evaluation of the closed- 
loop equation for obtaining the frequency response characteristics of the system, 
Nichols’ chart has been used and the two possible ways of using the chart have 
been outlined. It has been observed that, by assuming the Gaussian noise to be 
impressed at the input of the nonlinearity, th(i effect of the rms noise is to decrease 
both the amplitude and the phase response characteristics of the system at the 
lower frequencies, while increasing them towards the high frequency end of the 
characteristics. The experimental results ol)tained from a conqmter study of the 
system are found to corroborate the above observations.
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