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ABSTRACT. 1In this paper, o quast-hnearisation technigque s desseribed which gives
w parametor for approxmtely representig o memory-type nonlinearity on tho basis ol an
mput contanung o snusoidal signal and o Gaussian noise with mean value zero. The para-
meter s termed ‘complex equuvalent gam’ and this is used for investigating the effects of a
Gatssinit noise on the frequeney response charactaristios of a stable feedbaek control systemn
meorporating the nonlincarty, A\ simple second-order position control system with back-
Lwsh i the output coupling 1s considered as anexample and the results obtained are verfied

eapernnentally with the help of an cleetrome analogue computer.
INTRODUCTION

When the input of a stable feeidback control system incorporating a memory-
type nonlinearity is subjected to a sinusoidal signal. the  freaneney response
charactorstios of the system can be determined approximately by the nse of
lincarsation techniques (Stein and Thaler 1958, Sen. 1964). In the application
of these techniques, a quasi-linearised transfer function is uxed to represent the
nonlinear element in the system which is called “complex deseribing funetion’,

But. when the input of the nonlinear svstem considered hecomes vontami-
nated  with a Gaussian noise then it is found that all the parameters of the fre-
queney  response characteristies. namely. the handwidth. resonant frequency
and the height of the resonant peak previously obtained for a particular value of
the impressed sinnsoidal amplitude, change considerably.  This is due to the
fact thal {he transmission property of the nonfinearity alters duc to the presence
of the noise.  Tn this paper, an analytical method will he proposed for investi-
gating these offeets of the Gaussian noise on the frequency response characteristics
of 2 memory-type nonlinear system. where the nonlinearity considered is assumed
to be amplitude-sensitive alone.  The importance of this investigation arises from
the fact that the inputs of all practical control systems are usually contaminated
with such external disturbances.

In order to carry out the above analytical investigation. a quasi-lincarisation
technique will be adopted in which a ‘complex equivalent gain® (Sen, 1955) will be

obtained for making an approximate representation of the nonlinearity under
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the assumption that the input is composed of only a sinusoidal signal and a
Gaussian noise with mean value zero.  An outline of the proposed quasi-lineari-

sation technique has been presented in the following section.
THE PROPOSED QUASI-LINEARTSATION TECHNIQUE

When a linear element is subjected to an input consisting of a sine wave and
a Gaussian signal of mean value zero it is found that the response of the element
will also contain only the components of the input signal and the original shape
of the input wave will be maintained at the output. But, when the clement
becomes nonlincar, distortion will appear in the shape of the output wave and it
will become difficult to make any rigorous analysis of the response of the element
in this case. However. it can be scen that. for the assumed input. the response
of the nonlinearity can be scparated into two parts—one representing the cor-
related component that exactly reproduces the input spectrum, while the remainder
is called the ‘distortions’ comprising the harmonics and intermodulation ¢compo-
nents and then a quasi-linearisation technique can be adopted to make an approxi-
mate representation of the nonlinearity.  The use of this linearisation technique
assumes the presence of only the correlated component at the output and defines
a quasi-linearised transfer function for the nonlinearity that relates the input
to the output correlated component.  For the case of nonlinearities that involve
memory, phase-shift will be introduced to each of the frequeney components at
the output and therefore, in such cases, the quasi-linearised transfer function
obtained for the nonlincarity becomes a complex quantity and may be called
‘eomplex equivalent gain’. The magnitude of this complex equivalent gain is
given by the ratio of the ran.s. value of the output correlated component to that
of the input, while the phase is assumed to be frequency-independent. The
above definition of a ‘complex equivalent gain’ has been made for a memory
type nonlinearity under the assumption that the components of the signal
assumed at the input of the nonlincarity lie within a narrowband frequency
spectrum.

In order to determine the phase function attributed to the quasi-linearised
model of the nonlinearity, the simple procedure as outlined below is to be adopted.
Consider a nonlinear element (Fig. 1), the input of which is impressed upon by a
signal z comprising a sine wave 2, = 4, sin o and a Gaussian noise z, having
mean value zero and variance 0,2 If the component of the Gaussian noise is

w
expressed in the form 2z, = ¥ a, sin (w,t+¢,) where a, describes the power
n=0
spectrum of the noise and ¢, is randomly distributed with a uniform probability
distribution from 0 to 27, then, neglecting the harmonics and intermodulation
components, the approximate output of the nonlinearity can be written as :

y =| H(o)|[4, sin {m¢t+o(a)}+ni:o a, sin {ot4+ ¢, 00} o (1)
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where |H(o)| is the magnitude and 6(c) the phase of the complex cquivalent
gain defined for the nonlinearity. Tn order to attribute the proper sign to the phase
function 0(¢). it should be remembered that (o) is negative for those nonlineari-
ties that introduce a lagging phase-shift to the output frequency components for
a sinusoidal input, while it is positive for those introducing a leading phasc-shift.

Now, the difference between the appréximate output and the input multi-
plied by the magnitude of the complex ecguivalent gain is given by
e— y—|Ho)|2 :
= 2| H(o)|sin ") {Az('us { ol ”‘L)_}

5
-

-f § Iy COS { o, | ¢w i ”F)(r) }] R (2)

n-=0

or, the rms value of the quantity e is given by

o, = 2| (o) |0, sin ”)(”) v (3)
9 qin-l T
whenco o) — 2 sin-! | H(o)| o e (4)
“ 2z

whero o, represents the rms value of the total signal at the nonlinearity input.

In practice, however, as the magnitude of the complex equivalent gain defined
for the nonlinearity, cannot be easily determined, an approximate measure of the
parameter can be obtained by taking the ratio of the rms value of the actual
output to that of the input of the nonlincarity. Evidently. this measurement will
give a somewhat increased value of the parameter | H(r)| due to the prosence
of tho distortion components at the output of the nonlinecarity.

Thus, the procedure for having an approximate measure of the complex equi-
valent gain of a memory-type nonlinearity for the assumed input can be summarised
as follows :

(1) The rms values of the input and the output of the nonlinecarity are first
measured and then the parameter | H(o) | is computed for different rms values of
the input.

(2) The rms values of the quantity e arc measurcd for different values of the
input by arranging the set-up as shown in Fig. 1, each time using proper value
of the quantity |H(c)| obtained from the procedure in step (1).

MEMORY-TVI # %
HOWLINEAR) -

e

Fig. 1. Set-up for measuring the phase of complex equivalent gain.
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(3) Finally, eqn. (4) is used to compute the parameter f(o) of the complex
equivalent gain.

For different values of the quantities 4,/8 and ¢,/ the complex equivalent
gain of a simple backlash as measured by the above method is presented in Fig.
2, where & represents the backlash half-width.
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Fig. 2. The complex equivalont gain of a simple backlash.

APPLICATION OKF THE TPROPOSED QUAST.
LINEARISATION TECIHUNIQURE

Tn the preceding section, a quasi-linearisation technique has been developed
which yiclds a ‘complex equivalent gain’ as a parameter for approximately repre-
senting a memory-type nonlinearity with an input function comprising a sinu-
soidal signal and a Gaussian noise with mean value zero.  When the nonlinear
element considered occurs as a part of a feedback system which is also subjected
to a similar input, the application of the quasi-lincarisation technique is facili-
tated by replacing the nonlinearity with the help of the quasi-linearised gain and
then the analysis is carried out by obtaining two separate linearised versions for
the over-all nonlinear system—one for the sinusoidal portion and the other for
the Gaussian component of the impressed signal (Sawaragi and Sugai, 1959).
The justification in using the two scparate linearised systems for the analysis can
be seen from the fact that, in either case, the effect of the remaining signal simul-
tancously present in the system is included in the quasi-linearised gain obtained
for the nonlinearity. Though the presence of the nonlinearity will destroy the
nature of the signals impressed upon the system, but it will be assumod that the
signal fedback to the input of the nonlinearity will contain only a sinusoidal and
a Gaussian component, and, possibly, this assumption will be justified in practico
because of the narrow-band characteristic of the feedback systom.

A POSITION CONTROL SYSTEM WITH BACKLASH

Consider a position control system as shown in Fig. 3. incorporating backlash
in the output coupling and is subjected to a sinusoidal and a Gaussian signal at
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the point in the loop as indicated in the figure. Assuming the signal at the input
of the nonlinearity to contain only the components of the impressed wave, the

v
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- #

Fig. 3. A position control system with backlash.

4
application of the quasi-lincarisation technique yields the two lincarised versions

of the nonlinear system as presented in Figs. 4(a) and 4(b).
3
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Fig. 4(n). Tho linearisod vorsion of the position control system for sinusoidal

portion of tho improessed input.
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Kig. 4(b). Tho lincarised version of the position control system for
Gaussian component of the impressed input.

Yonfining our attention to the evaluation of the frequency response character-
istics of the nonlinear system at the point ‘2’ alone, we get from Fig. 4(a),

gy e ROGW) (5)
1 | Ho)G(jw)
while Fig. 4(b) gives
oY () G(s)
Yrza(s) == Yryls) I H(o) G(s) (6)

where iz,(s) represents the complex frequency spectrum of the Gaussian noise
assumed at the point z, which is the input of the nonlinearity and yry(s) is the
complex frequency spectrum of the impressed noise. Of the above two equations,
it can be readily seen that the first equation gives the required frequency response
charactoristics of the nonlinear system for different assumed values of the ampli-
tudos of the sine wave and also the Gaussian noise at the input of the nonlinearity,
while, with the help of the second equation, the rms values of the impressed noise
are computed in terms of the rms noise present at the input point ‘Z’ of the

nonlinearity.
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THE USE OF NICHOLS' CHART

When the transfer functions for the linear and the nonlinear part of the system
considered are given as plots on the conventional magnitude-phase planc (shown
in Fig. 5). then the frequency response characteristies of the closed-loop system
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Fig. 5. The magnitude-phase plane plots of the transfor functions for the linear and the
nonlinear parts of the position control system.

as given by eqn. (5) can be ecasily determined by the use of Nichols’ chart. Two
different approaches can be followed in using the chart as outlined below :

(a) In one approach, the given loci on the magnitude-phase plane are first
utilised to obtain different families of carves for the combined transference H(o)
G(jo) of the linear and the nonlinear components of the system, each family cor-
responding to a particular value of the rms noise at the input of the nonlinearity.
The procedure for obtaining these families of curves for the combined transfer
function can bhe explained as follows :

Tf the magnitude of the quantity H(o) G(jw) be expressed in decibels and its
phase in degrees, thon denoting the respective quantities as My, and Og,, wo
have

My, =|H(@)| + | G(jw)|

1

Ty %! (1)

and

Quo =/[H(0) +/G(jw) |
0 1 .
- [ 180° 4 [ o) ] +/6(jw) . (8)
. " 1 1 .
Since the values of the quantities THO)] and/ THg) o directly ob-

1
tainable from the loci of / ~ o) ™ the magnitude-phase plane and
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are known for the values of the paramecters A4,/8 and o,/6 marked on these loc,
substitution of thesc values in the above equations gives the values of both
the magnitude and phase of the combined transference for different values of
the froquency, and thus, the required families of curves are obtained at different
selected values of 4,/ and o, /8, each curve baing graduated with different values
of the frequency. ‘

For a particular sclected value of the rms moise o, /8 and with different values
of 4,/ as a parameter, the family of curves ’o%btain(\d for the combined trans-
ference are now superimposed on the contour ‘"tystem of a Nichols’ Chart and the
points of intersection of these curves with the? contours on the Nichols' chart are
noted which give the frequency response (ehmimctoristics for the transfer function

A4 H(o) (1'(31(:) , )
B 1+H(o) GGw)* ‘
at the selocted value of o,/8 and for the different chosen values of 4./8.

The same procedure as outlined above is then followed for different selected

values of o,/d.

Knowing the frequency response characteristics for the transfer funetion
A/[B with the help of the Nichols’ chart. the frequency response characteristics
of the system given by eqn. (5) can now be casily computed and this can be done
by determining the values of the paramcter H(o) from Fig. 5 at the ditferent
selected values of o, /8 and A,/8 and by substituting those values in the relation :

Zy A 1 (10)
R B i)

(b) Tn tho other approach, on the other hand. as suggested by Stein and
Thaler (1958), the contour system of the Nichol's chart is superimposed on the

given plots of the transfor function of the system. locating its origin on the sclected

values of 0,/8 and 4,/8 as marked on the {— ] sloci and the same results

1
H(o)
as represented in eqn. (9) are obtained by observing the points of intersection
betweon the chart-contour and the locus of the given linear transference G(juw)
of the system considered. It should be noted, however, that though this latter
approach will be useful only when the Nichols’ chart is available as contours
drawn on a transparent template, but it will be more convenient because of the
fact that the laborious computation of the families of curves for the combined
transference H(o) G(jw) will not be required in this casc.

AN EXAMPLE OF A SECOND-ORDER SYSTEM WITH
BACKLASH
If the position control system considered in the preceding section be of second

order with its linear part having the transfer function G(jw) = Is: oljw(jw+ 1),
then the family of curves for the combined transfer function H(c') G(jw) obtained
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at a selected value of o, /8 and superimposed on the Nichols’ chart will be as shown
in Fig. 6. Taking the valuc of the velocity error constant K, = 0.5, the amplitude

PHASE IN DEGREES

Fig. 6. 'The loci of the combined transfer function for the linear and nonlinear compononts

of a socond-order system superimposed on tho contour systom of a Nichols’ chart.
and the phase response characteristics of the system have been evaluated for
different chosen values of o, /8 and A,/8 and the particular characteristics obtained
for o,/ = 0.5 and for a set of sclected values of A4./8 are presented in Figs, 7
and 8, respectively, where A4,/A, represents the amplitude response and ¢, the
phaso response of the system at the point Z. With the help of these characteristies
evaluated at different constant values of 4./, the frequency response charac-
teristics of the system can be easily determined for different constant values of
the amplitude 4p/d of the sinusoidal signal impressed upon the system and this
can be done by first designating at each position of the amplitude response charac-
teristics obtained above with the proper value of 4,/ and then drawing the locus

O;/J 205

1 J

o8

& W RIDANS[SeC i

Fig. 7. The amplitude response characteristics of the second-order systom for ¢,/§ = 0.5
and for 4;/§ = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5. (The dotted curve shows the corres-
ponding amplitude response characteristics for 4 /8 = 0.5).
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of constant-4,/8 on these characteristics. This is illustrated in Fig. 7. Knowing
from the figure the values of w and A4,/8 at different positions on the constant

ao'r &= 08
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Fig. 8. The phaso response charactoristics of the second-ordor system for o,/§ = 0.5 and
for A4,/8 = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5.
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Fig. 9. The amplitude responso characteristics of tho second-order system for 4 p/§ = 0.5
and for o,/8§ = 0, 0.5 and 1.0.
- analytical values

experimental valuos.
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Fig. 10. The phase response characteristics of the second-order system for A /8 = 0.5 and

for 0y,/8 = 0, 0.6 and 1.0.
- analytical values.

(experimental values.
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Ap/é locus, the corresponding phase response characteristics of the system is then
determined with the help of Fig. 8. Thus the amplitude and the phase response
characteristics of the system are determined for different constant values of 4g/0
and the characteristics evaluated at 4,/0 = 0.5 and for a set of selected values
of o,,/d are presented in Figs. 9 and 10, respectively.

Since, in the present system considered, the noise impressed upon the system
ocours at the output point C, the rms values of the impressed noise corresponding
to the different selected values of the rms noise at the point Z are to be deter-
mined and this will be done by the use of eqn. (6). Substituting the expresgion
for G(jw), eqn. (6) can be written as

= . K,
'/fz2(3) = Yyl8) 8(8+I)T{—-_K;H(0') (11)
Therefore, for a particular input spectrum given by
Yylw) = 20 .ol . (12)

Jofo, —jo+too

where 8 = jw and w, is the half-power frequency and »n the low frequency ampli-
tude of the noise spectrum, the normalised values of the impressed rms noise in
terms of the rms noise at the point z are obtained from the relation :

=7 ‘/’ ”){ o+l H(a-)}' . (13)

Since the parameter H(c) in the above equation is determined by the values
of both o,/¢ and 4,/d, a set of curves are drawn for the particular system consi-
dered by plotting the different values of 0,/ as abscissa and the corresponding
values of o,,/8 as ordinate and taking the values of 4,/8 as a parameter. This is
shown in Fig. 11. With the help of thesc curves, it will be possible to obtain the
values of o;/6 corresponding to the selected values of o,/8 and 4,/ in the above
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Fig. 11. The plots of 0y;/8 vs. 0,,/8 with different values 4,/8 as a parameter.
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analysis or, conversely, for a given value of 7,/8, the values of 0,/ and 4,/0c an
also be selected with the help of these curves.

COMPUTER STUDY

In order to have an experimental chcoi on the results obtained analytically,
the nonlinear system considered in the example, is simulated on an electronic
analoguo computer and the arrangements agshown in Fig. 12, is made for measur-
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Fig. 12. The oxporimental arrangement for moasuring the amplitude and phase response
characteristics of tho socond-order system with noise injected at the nonlinearity
input.

ing both the amplitude and the phase rosponse characteristics of the system for
different values of the rms noise present at the point Z in the system loop.

In the arrangement, the block A is the simulated system, under investiga-
tion, where the output terminal represents tho point Z in the system loop at
which the frequency response characteristics are proposed to be evaluated. The
block B represents a feedback filter unit having a very narrow pass-band around
a centre frequency equal to w, and the centre frequency is ganged to the fre-
quency of the oscillator supplying the sinusoidal signal impressed upon the input
of the simulated system. The filter unit will be used in conjunction with an
oscilloscope for detection of the condition of balance of the fundamental
component of the impressed sine wave present at the output of the simu.
lated system.

The procedure adopted for the measurement can be outlined as follows :
First of all, the amplitude of the sine wave of a particular frequency and also
the rms value of noise impressed upon the system is set at the selected values
and then the fundamental component appearing at the output of the simulated
system due to the impressed sine wave is balanced out by the addijoion (?f suii‘;able
fractions of the in-phase and quadrature -components of the same sinusoidal signal
and the balance is detected with the help of the oscilloscope. As the output
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point of the simulated system will be contaminated with noise, the point of exact
balance will not correspond to zero output of the filter unit, but, instead, a low
frequency noise component will appear on the oscilloscope duo to the finite band-
width of the filter. However, the adjustments could be made such that the
departure from the point of balance could readily be detected for a few millivolts
change in the fundamental balancing signal from the value at which the balance
is obtained. Finally, the amplitude values of the in-phase and the quadrature
components of the fundamental balancing signal corresponding to the point of
balance are noted and these are used for computing the required amplitude
and phase response of the system at the particular valuc of the frequency
of the impressed sine wave.

The above procedures are then repeated for different frequencies and at
different selected rms values of the impressed noise and the results obtained
are presented and are indicated as circles on Figs. 9 and 10.

CONCLUSION

The quasi-linearisation technique described in the first part of this paper
has been found to be uscful for investigating the effect of a Gaussian noise on
the frequency response characteristics of a feedback control system incorporating
a memory-type nonlinearity. As a graphical aid to the evaluation of the closed-
loop equation for obtaining tho frequency response characteristics of the system,
Nichols’ chart has been used and the two possible ways of using the chart have
been outlined. It has been observed that, by assuming the Gaussian noise to he
impressed at the input of the nonlincarity, the effect of the rms noise is to decrease
both the amplitude and the phase response characteristics of the system at the
lower frequencies, while increasing them towards the high frequency end of the

characteristics. The experimental results obtained from a computer study of the
system are found to corroborate the above obscrvations.
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