Letters to the Editor

The Board of Editors does not hold itself responsible for opinions expressed in the letters published in thees section. The notes containing short reports of original investigations commnicated to this section should not contain many figures and should not exceed 500 words in length. The contributions reaching the Secretary by the 15 th of any month may be expected to appear in the issue for the next month. No proof will be sent to the author.

17

MATRIX RELATIONS BETWEEN DIRECTION COSINES AND MILLERIAN INDICES

J. K. GHOSE
Department of Physics, st John's College, Agra.
(Received May 15, 1965)

For magnetic measurements in triclinic crystals, directions are usually specifood by the Millerian indices of one or two planes, while for many calculations, the direction cosines with reference to some orthogonal axes x, y, z, are necessary. As an example, suppose the z axis coincides with the crystallographic c axis and the x axis lies in the $a-c$ plane close to the a axis. The cosines of the angles between the various axes are as follows.

	a	b	0
x	$\sin \beta$	$(\cos \gamma-\cos \alpha \cos \beta) / \sin \beta$	0
y	0	$M / \sin \beta$	0
z	$\cos \beta$	$\cos \alpha$	1

where $M=\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma-2 \cos \alpha \cos \beta \cos \gamma\right)^{\frac{1}{2}}$ and is positive. The matrix $\lceil J]$ of transformation from x, y, z to a, b, c, is the matrix formed by tho trigonometrical quantities as arranged in the above table (Gloss, 1964). These coordinates x, y, z, have a slight advantage compared to those discussed by U.S. Gosh and Mitra (1965), because the determinant of $[J]$ is positive. The values of $[J]$ and $[J]^{-}$need be calculated only once for a particular variety of crystal. It may be verified that

$$
[J]^{-1}=\left[\begin{array}{cccc}
1 & \cos \alpha \cos \beta-\cos \gamma & 0 & \\
\sin \beta & M \sin \beta & \\
0 & \frac{\sin \beta}{M} & 0 \\
-\cos \beta & \cos \beta \cos \gamma-\cos \alpha & 1
\end{array}\right]
$$

As shown by Ghose (1964), a unit vector $[\xi \eta \xi]$ in x, y, z coorrinates, transforms to a unit cevariant vector [V_{p}] and a unit contravariant veetor [V^{p}] in a, b, c eoordinates surch that

$$
\begin{equation*}
[\xi \eta \zeta]=\left|V_{a} V_{b} V_{c}\right|\left[\left.J\right|^{-1}=\left[J| | V^{a} V^{b} V^{c}\right]^{\prime}\right. \tag{l}
\end{equation*}
$$

It may be noterd that V_{a}, V_{b}, V_{c} are cosiness of the angles made by the unit vector with a, b, c axos while ξ, η, ζ are those made with the orthognal x, y, z axes.

If $a: b: c$ bo the axial length ratio and (hkl) be the Miucrian indices of a plane, thon any contravariant vector lying in this plane, is given by

$$
\left[I^{a} I^{b} I^{c}\right\rfloor=\left[(m+n)_{h}^{a \prime}-\frac{m b}{-}-\frac{n c}{T}\right]
$$

where m and n are any two numbers. For a covariant unit veetor $\left[V_{p}\right]$ normal to this plane, $\left[V_{p}\right]\left[J^{p}\right]$ is zero for all values of m and n. Hence we get

$$
\left[\begin{array}{lll}
V_{a} & V_{b} & V_{c}
\end{array}\right]=Q\left[\begin{array}{lll}
h & k & l \tag{2}\\
a & b & c
\end{array}\right]
$$

where Q is a suitable multiplier to make the magnitude of the vector equal to unity.
Again if two planes ($h k l$) and ($h^{\prime} k^{\prime} l^{\prime}$) are buth kept perpendicular to the plane of medsuroment, then the normal to the lattor lies in both ($h k l$) and $\left(h^{\prime} k^{\prime} l^{\prime}\right)$ planes and is given by the contravariant vector

$$
\begin{equation*}
\left[V^{\prime \prime} V^{b} V^{c}\right]^{\prime}-Q_{1}\left[a\left(k l^{\prime}-h^{\prime} l\right) b\left(h^{\prime}-l^{\prime} h\right) c\left(h k^{\prime}-h^{\prime} k\right) l^{\prime}\right. \tag{3}
\end{equation*}
$$

where Q_{1} is a suitable multiplier.
Values of ξ, η, ζ may be found lyy combining either ey. (2) or oq. (3) with eq.(1). If $\xi_{1}, \eta_{1}, \zeta_{1}$ are the values oftainod when Q or Q_{1} is arbitrarily taken as 1 , then the actual value of Q or Q_{1} is $\left(\xi_{1}^{2}+\eta_{1}^{2}+\zeta_{1}^{2}\right)^{-\frac{1}{2}}$. When only the ratis of two direction cosinos is recfurexd, Q neeed not be calculatend.

Thes matrix method of caleulating the direction cosines seems to be simpler and quicker than other methosls.

REFERENCES

Ghose, J. K., 1964, Ind. Jour. pure appl. Phys., 2, 94.
(啇hosh, U. S. and Mitra, S., 1964, Ind. J. Phys., 38, 19.

