THE VISIBLE EMISSION SPECTRUM OF BiF

K. MADHUSUDHANA RAO and P. TIRUVENGANNA RAO
Spectroscopic Labolatories, Andhra University, Waltair.

(Reccived July 16, 1964; resubmitted August 9, 1965)

Plate V

Abstract

The visible band system of BiF has been roinvostigated both under low and high ydispersion. The vibrational analysis of the systom has been considerably oxtended to include about 65 bands in the region (λ 5000-5700 \AA). From a rotational analysis of tour bands $(2,0),(1,4),(2,5)$, and $(3,3)$ the constents of the uppor $v^{\prime}=2$ and 3 and lower $v^{\prime \prime}=4$ and 5 lovels have beon nowly determined.

INTRODUCTION

Recently T. A. P. Rao and P. T. Rao (1962) studiod the emission spectrum of BiF excited in high frequency discharge in the visible and ultraviolet regions. The well known visiblo system in the region ($\lambda 3600-\lambda 5200 \AA$) was designad as $A-X_{1}$. In the ultraviolet region ($\lambda 2250-\lambda 3200 \AA$), system (${ }^{\prime}$ reported by Rochester (1937) was observed and analysed into three systems designated as $C_{1}-X_{2}, C_{2}-X_{3}$ and $C_{3}-X_{1}$. The levels X_{1}, X_{2} and X_{3} were identifiod with ${ }^{3} \mathbf{\Sigma}^{-},{ }^{1} \Delta,{ }^{1} \Sigma^{+}$of the ground state electron configuration

$$
(z \sigma)^{2}(y \sigma)^{2}(x \sigma)^{2}(w \pi)^{4}(v \pi)^{2} \ldots{ }^{3} \Sigma^{-},{ }^{1} \Delta,{ }^{1} \Sigma^{+}
$$

The first excited state A was attributed to ${ }^{3} \Sigma$ - of the first excited electron configuration

$$
(z \sigma)^{2}(y \sigma)^{2}(x \sigma)^{2}(\psi \pi)^{3},(v \pi)^{3} \ldots{ }^{3} \Sigma^{-}
$$

From the results of a rotational analysis of five hands (1,0), (0,0) (0,1), $(0,2)$ and $(0,3)$, it was shown by Rao and Rao (1962), that this system arises from a $0^{+}-0^{+}$transition which is a case (c) equivalent of ${ }^{3} \Sigma^{-}-{ }^{3} \Sigma^{-}$. The rotational constants of the upper state A have been carried out only for the vibrational levels $v^{\prime}=0$ and 1 . The rotational structure of four bands $(2,0),(1,4),(2,5)$ and $(3,3)$ has now been examined in the second order of a 21 ft . grating spectrograph (dispersion $1.25 \AA / \mathrm{mm}$). From a detailed rotational analysis of these bands reported below the rotational constants of $v^{\prime}=2$ and 3 of the upper state and $v^{\prime \prime}=4$ and 5 of the lower state have been newly determined.

The vibrational analysis of the $A-X_{1}$ system in the region ($\lambda 3600-5900 \AA$) has been considerably extended te include about 65 bands newly obtained in the present investigation.
Indian Journal of Physics. Vol. XXXIX. No. 12
PLATE

σ

EXPERIMENTAL

The $A-X_{1}$ system of BiF was easily excited in a high frequency discharge from a 500 Watt oscillator working at a frequency of $\mathbf{3 0 . 4 0} \mathrm{Mc} / \mathrm{sec}$ using specpure sample of BiF_{3} taken in a conventional type of quartz discharge tube. When a characteristic bluish discharge was maintained by continuous external heating of the substance, in the visible system, new bands in the region ($\lambda 5000-5700 \AA$) were observed and photographed on a Hilger three prism glass Littrow Spectrograph. About 65 bands havo been measured on a Hilger comparator using iron arc standards.

Some of the bands of the $A-X_{1}$ system were also photographed in the 2 nd order of a 21 ft . concave grating spectrograph using Agfa Isopan super cpecial plates. The rotational structure of the four bends $(2,0),(1,4),(2,5)$ and $(3,3)$ was found to be free from overlapping of the neighbouring bands. The rotational lines of these bands were measured using iron are wavelength standards. The relative accuracy in the measurement of rotational lines is about $0.07 \mathrm{~cm}^{-1}$.

(a) Vibrational analysis

The $A-X_{1}$ system of BiF was reported by provious workers (Howell and Rochester, 1939 and Morgan, 1936) to consist of only about 40 bands in the region ($\lambda 4150-\lambda 5100 \AA$). In the prosent experiments about 65 new bands have been obtained in the region $(\lambda 5000-\lambda 5700 \AA$) and reproduced in plate $1(a)$. According to Howell the band heads of the $A-X_{1}$ system could be represented by the Quantum formula

$$
\begin{gathered}
v=22959.7+381.0\left(v^{\prime}+1 / 2\right)-3.00\left(v^{\prime}+1 / 2\right)^{2}+010\left(v^{\prime}+1 / 2\right)^{3} \\
-510.7\left(v^{\prime \prime}+1 / 2\right)+2.05\left(v^{\prime \prime}+1 / 2\right)^{2}
\end{gathered}
$$

A vibrational analysis of the new hands has shown that they constitute an extension of the $A-X_{1}$ system. The wavenumbers, classification and other data of the bands are given in Table I. About 60 bands could be classified and represented by the above quantum formula. The agreement between the observed and calculated values for most of the bands is within $4 \mathrm{~cm}^{-1}$ as can be seen from Table I.

(b) Rotational analysis

From considerations of electron configurations and electronic states in BiF, the $A-X_{1}$ visible system was assigned as ${ }^{3} \Sigma-{ }^{3} \mathbf{\Sigma}$ - . Since the rotational structure of each of the bands $(1,0),(0,0),(0,1),(0,2)$ and $(0,3)$ reveals only the existance of only two branches P and R, the bands were assumed to arise from a $0^{+}-0^{+}$transition which is a case (c) equivalent of ${ }^{3} \Sigma^{-}-{ }^{3} \Sigma^{-}$. The rotational structure of each of the four bands examined in the present work also reveals the presence of the two branches P and R thus confirming the above transition. The J numbering is fixed for the $(2,0)$ and $(2,5)$ bands by a comparison of the upper state combination differences. The J numbering in the $(1,4)$ band is fixed by

TABLE I

Assignment	Intensity	ν Obs	ν Cal	$\nu \mathrm{Obs}-\mathrm{val}^{\text {Cal }}$
$v^{\prime} v^{\prime \prime}$				
04	7	20894.7	20893.0	$+1.7$
68	6	20787.4	20788.2	-0.8
1 \%	6	20781.5	20780.3	$+1.2$
69	6	20670.5	20670.3	+0.2
26	6	20665.4	20664.6	$+0.8$
710	4	20555.4	20554.3	+1.1
37	6	20548.0	205458	$+2.2$
811	4	20435.3	20440.9	-5.6
59	6	20315.3	20313.1	+2.2
16	4	20295.5	202922	+3.3
610	6	20203.9	20200.6	+3.3
27	5	20185.0	20179.7	$+5.3$
	5	20095.6	20088.7	$+6.9$
38	5	20071.8	20067.9	+3.9
812	5	19982.9	19979.4	$+3.5$
49	5	199603	19955.9	+44
913	3	19874.4	19873.3	+1.1
510	5	19850 \%	19844.7	$+4.8$
1014	3	19774.6	197710	$+3.6$
611	5	19739.4	19734.9	+4.5
28	2	19707.7	19702.2	--5.5
1720	5	19638.9	19636.4	$+2.5$
1922	5	19534.1	19536.9	-2.8
2023	4	19497.9	19501.6	-3.6
07	3	194303	194345	--4.2
511	3	193760	10379.1	-3.1
18	4	19335.8	19331.9	+3.9
612	4	19278.6	19273.4	$+5.1$
1721	4	19216.8	19211.8	$+5.0$
310	2	19124.5	19124.4	+0.1
2024	4	19088.3	19089.2	-0.9
1318	3	190596	19050.1	+3.5
411	2	19025.5	19020.6	- 4.9
1419	3	18982.2	18979.1	+3.1
915	2	18968.5	18970.8	-2.3
08	2	18959.5	18956.6	+2.9
512	2	18918.6	18917.6	+1.0
1520	4	18909.2	18908.9	$+0.3$
613	2	18817.1	18816.0	+1.1
1117	2	18790.4	18787.0	+3.4

The Visible Emission Spectrum of BiF
TABLE I (contd.)

Assignment				
	Intensity	$\nu \mathrm{Obs}$	ν (al	\checkmark Oba-v Cal
714	3	18720.0	187164	+3.6
2126	2	18064.9	18664.2	+07
412	3	18558.1	18559.1	-10
1420	2	185462	18.500.4	-4.2
513	3	181654	18460.2	+5.2
614	2	18366.9	183027	-142
1118	2	18348.8	18350.1	-1.3
1824	1	18330.7	183329	-2.2
211	3	18295.0	18293.1	$+1.0$
1421	2	18125.9	181258	+0.1
514	2	18009.7	180069	-28
1724	2	17906. $]$	17962.7	124
111	1	17920.0	17922.8	-2.8
615	1	17910.6	179135	-2.9
2027	1	178814	17876 !	14.5
2128	1	17867.9	17868.3	-0.4
212	0	17832.3	17831 \%	+-08
1321	1	17772.1	177700	$+2.1$
1422	1	17709.1	17705 3	$+38$
515	0	17550 2	1755.7.7	+05
2028	0	174818	17481.0	-108

TABLE II

Vacuum wave numbers and rotational assignments for 2-0, 1-4, 2-5 and 3-3
bands

J	2-0		1-4		2-5		3-3	
	$\boldsymbol{R}(J)$	$P(J)$	$R(J)$	$P(J)$	$R(J)$	$\boldsymbol{P}(J)$	$\boldsymbol{R}(J)$	$\boldsymbol{P}(J)$
1								
2				2126397				22490.18
3		23637.09		6349				89.62
4		36.52		6292				88.97
5		35.88		62.33				88.31
6		35.16		6174				87.49
7		34.47		61.08				86.86
8		33.71		60.44				86.06
9		32.86		59.78				85.25
10		32.00		6900				84.35

TABLE II (contd.)

J	2-0		1-4		2--5		3-3	
	$R(J)$	$P(J)$	$\boldsymbol{R}(J)$	$P(J)$	$\boldsymbol{R}(J)$	$P(J)$	$\boldsymbol{R}(\boldsymbol{J})$	$P(J)$
11		31.17		58.31				83.64
12		30.22		57.54		2113791		82.76
13		29.28		56.75		37.10		81.80
14		28.16		55.91		36.21		80.81
15		27.16		55.02		35.48		79.82
16		26.02		54.08		34.57		78.70
17		2362489		21253.10		21133.73		22477.61
18		23.90		5217		32.80		76.65
19		22.90		51.13		31.82		75.44
20		21.63		60.15		30.83		74.15
21		2037		49.30		29.84		73.00
22		19.01		47.94		28.77		71.78
23	23637.09	17.63		47.03		27.75	22490.70	70.57
24	36.52	16.12		46.04		26.55	90.18	69.14
25	35.88	1467		44.87		25.45	89.62	6779
26	3516	13.19		43.74		24.59	8897	66.40
27	34.47	11.69		42.57		23.43	88.31	64.99
28	33.71	1000		41.24		22.26	87.49	63.47
29	32.86	08.35		39.96		21.08	86.86	61.91
30	32.00	06.57	21263.97	3867		19.69	86.06	60.71
31	31.17	04.90	63.49	37.29		18.53	85.25	59.24
32	30.22	03.13	62.92	3595		17.25	84.35	57.63
33	23629.28	23601.39	21262.33	21234.62		21115.88	22483.64	22455.90
34	28.18	23599 54	61.74	33.18		14.63	82.76	54.28
35	27.16	97.60	61.08	31.61		13.21	81.80	62.66
36	2002	95.72	60.44	30.23		11.83	80.81	50.89
37	24.89	93.62	59.78	28.73		10.47	79.82	49.14
38	23.60	91.65	6900	27.17		08.86	78.70	47.28
39	22.39	89.69	58.31	25.69		07.43	77.61	45.39
40	21.03	87.52	57.64	24.00		05.88	76.65	
41	19.77	85.33	56.75	22.35		04.30	75.44	
42	18.35	83.17	55.91	20.69	21137.91	02.66	74.15	
43	16.91	80.96	55.02	18.92	37.10	01.05	73.00	
44	15.42	78.70	54.08	17.16	36.21	$21099 . \% 0$	71.78	
45	13.91	76.39	53.10	15.42	35.48	97.82	70.57	
46	12.36	73.96	52.17	13.58	34.57	96.11	69.14	
47	10.72	71.47	51.13	11.66	33.73	94.37	67.79	
48	09.14	68.91	50.15	10.01	32.80	92.85	66.40	
49	23607.47	23566.43	21249.30	21208.06	21131.82	21090.83	22464.99	
50	05.63	63.85	47.94	06.17	30.83	89.02	63.47	

TABLE II—(contd).

J	2-0		$1-4$				3-3	
	$R(J)$	$P(J)$	$R(J)$	$P(J)$	$R(J)$	$P(J)$	$\boldsymbol{R}(\boldsymbol{J})$	$\boldsymbol{P}(J)$
51	03.79	61.20	46.90	0424	29.84	87.15		
52	0210	58.49	4564	022	28.77	85.23		
53	0020	5584	4449	00.20	27.75	83.37		
54	23598.28	53.21	4319	21198.11	26.55	8154		
55	98.29	00.44	4191	960.4	25.45	79.55		
56	94.28	4766	4063	93.84	24.24	7755		
57	92.24	44.73	3930	9183	22.96	75.59		
58	90.09	41.80	3793	8962	21.66	73.45		
59	8800	3888	36.7	8740	20.48	7131		
60	85.69	3588	3512	$8: 3.21$	19.08	69.18		
61	8352	3290	33.71	8286	17.92	67.11		
62	8096	2975	32.17	80 -5	16.36	64.94		
63	78.70	26.60	30.66	78.30	14.92	62.76		
64	7638	2335	2911	7596	18.55	60.45		
65	7396	20.08	27.62	73.50	11.83	5818		
66	23.77147	2351683	21225 69	*-	2111047	2105595		
67	68.91	13.52	2400	*	08.86	53.56		
68	6643	10) 13	2385	*	07.43	5119		
69	63.85	06.76	2069	2116347	05.88	48.73		
70	61 20	0324	1892	60.93	04.30	46.34		
71	5849		17.16	5835	02.66	43.92		
72	55.84		1542	55) 65	01.05	41.41		
73	52.85		1358	5298	21099.21	38.95		
74	49.95		11.66	50) 27	97.48	36.33		
75	47.08		0968		9551	33.65		
76	44.08		$07{ }^{(67}$		93.81	30.97		
77	41.08		0561		91.93	2852		
78	37.95		03.62		89.99			
79	34.94		01.48		88.08			
80	31.75		21199.32		86.08			
81	2854		97.21		84.07			
82	2530		94.99		82.03			
83	21.96		9280		80.00			
84	23518.65		21190.41		21077.96			
85	15.16		88.18		75.59			
86	11.68		85.84		73.44			
87	08.18		83.60		71.31			
88	04.58		81.04		6918			
89			78.66		66.92			
90			75.96		64.39			
91			73.50		6206			
92			*..		5976			
93			*-		57.29			
94			*-..		54.74			
95			63.09		52.27			
96			60.31		4967			
97			57.65		47.14			
98			54.81		44.56			
99					41.81			

[^0]
TABLE III

$v^{\prime} v^{\prime \prime}$	Band Origin	$\begin{aligned} & B_{v}^{\prime} \\ & { }^{\prime} \mathrm{m}^{-1} \end{aligned}$	$\begin{aligned} & B^{\prime \prime} v \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\begin{gathered} D_{v}^{\prime} \quad 10^{-6} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{gathered} D^{\prime \prime} v 0^{-6} \\ \mathrm{~cm}^{-1} \end{gathered}$
2,0	23639.20	02082	0.2307	0.35	0.43
1,0	23269.41	02090	02307	0.35	0.43
0,0	22892.65	0.2097	0) 2307	0.35	0.43
0,1	22384.67	0.2097	0.2289	0.35	0.34
0,2	21880 75	0.2097	02273	0.35	0.31
0,3	21382.12	0.2097	0 2262	035	0.23
1,4	2126545	02090	0 22:44	0.35	0.23
2.5	2114528	0) 2082	0)2:27	035	0.23
3,3	2249143	02073	02262	0.35	0.23

comparison of the upper state combination differenses of $(1,0)$ band while in the $(3,3)$ band the numbering is fixed by a comparison of the lower state combination differencos of (0,3) band analysed by Rao and Rao (1962). The rotational constants of the four bands $(2,0),(1,4),(2,5)$ and $(3,3)$ were determined from the oquation (Herzberg page 182)

$$
\frac{\Delta_{v} F(J)}{J+1 / 2}=4 B_{v}-8 D_{V}(J+1 / 2)^{3}
$$

in which the combination differencos of the upper and lowerstates are obtained from

$$
\begin{aligned}
& \Delta_{2} F^{\prime}(J)=R(J)-P^{\prime}(J) \\
& \Delta_{2} F^{\prime \prime}(J)=R(J-1)-P(J+1)
\end{aligned}
$$

by following the usual graphical procedure. The vacuum wavenumbers and the rotational assignments for the four bands are given in Table II. The J numbering of the P and R branches of 1,4 band is shown in Plate $1(b)$. In determining the rotational constant of the upper state $v^{\prime}=2$, the average values of the upper state combination differences $\Delta_{2} F^{\prime}(J)$ for the $(2,0)$ and $(2,5)$ bands were used. The band origins, B_{V} and D_{∇} values of the various upper and lower levels are collected in Table III. The values of B_{e} and α_{e} on the basis of the present work agree very well with the values reported carlier by Rao and Rao. The variation of D_{∇} with v is too small and hence the same value of D_{∇} is given for the levels $v^{\prime \prime}=4$ and 5 .

The Visible Emission Spectrum of BiF

ACKNOWLEDGMENTS

The authors wish to express their thanks to Prof. K. R. Rao for his interest in the work. One of the authors (K. M. Rav) is thankful, to Dr. T. A. Prasada Rao for his help in bringing out this paper, and to the C.S.l.R. (Now Delhi) for the financial assistance.

REFERENCES

Herzberg, G., 1950, Spectra of Diatomic Molecules, D. Van Nostrand Co., Inc., Now
York.
Howell, H. (G., 1936, Proc. Roy. Soc. (Lond.)., 15\$, 141.
Howell, H. G. and Rochester, (I. D., 1939, Proc. Phys. Sor. (London), 51, 329.
Morgan, F., 1936, Phys. Rev., 49, 41.
Prasadu Kao, T. A. and Tiruvenganna Rao, P., 1902, Ind. J. Phys., 36, 85.
Rochester, G. D., 1937, Plyy. Rev., 51, 486.

[^0]: * Masked by an atomic lino.

