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ABSTRACT. Various formulae for the isotopic {hermnl diffusion factor have been
reviewed and a new formula has been derived. Numoricil caleulations have been performed
for the particular case of Hes--Het in a region where quéltum effects are negligible. These
caloulations cstablish the rolative adequacy of a compagatively simpler formula advanced
by us and will be useful to interpret tho rocent experimdntal results of Saxena, Kelloy and
Watson on the thermal diffusion factor as a function of iemperaturo.

I.INTRODUCTION

Knowledge of the thermal diffusion factor for helium isotopes is important,
for thermal diffusion has heen used hy MeInteer, Aldrich and Nier (1948) and
Schuette, Zucker and Watson (1950) to enrich He® despite its extremely low
abundance (1.3x10-%9() in natural helium and still lower abundance for well
helium. Mecasurements of the isotopic thermal diffusion factor, ap, as a function
of temperature are also important to investigate the intermolecular forces. Moran
and Watson (1958) measured the thermal diffusion factor for He3-He! in the tem-
perature range 233°K to 571°K by using an elegant apparatus ‘“‘Trennschaukel”
introduced by Clusius and Huber (1955). Recently Saxena, Kelley and Watson
(1960) have extended these measurements to still lower temperatures. These
measurements show a much steeper temperature dependence for ap than given
by the existing theoretical expressions. Approximate quantum mechanical
calculations of & by Saxena (1960) reveal that the quantum corrections are negli-
gible even at the lowest temperature (233°K). Thermal diffusion factor like
other transport properties, emerges from the theory as the ratio of infinite
determinants, Chapman-Cowling (1953). There are two alternative procedures
developed separately by Chapman and Cowling (1953) and by Kihara (1949)
to expand these infinite determinants into infinite convergent series, The use
of varying number of terms of these series lead to the various approximations on
the two schemes. As Moran and Watson (1958) compared their experimental
results only with an approximate formula, valid more rigorously for a mixture
of heavy isotopes, it would be interesting to ¢xplore the possihility of this anomaly
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in the use of an inadequate theoretical expression. The purpose of the present
paper is to evaluate oy for He®-He? according to the expressions derived on the
two approximation schemes. This will establish the relative usefulness and
limitations of the various formulae. A new formula has been derived on the
Kihara approximation scheme, taking into consideration terms containing upto
the second power of the reduced mass.

2, GENERAL FORMULAE FOR THE ISOTOPIC THERMAL
DIFFUSION FACTOR

The Chapman-Enskog kinetic theory of gases expresses the m-th Chap-
man-Cowling approximation for ap as follows:

5 . M +M, \: M,4-M, \?
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Here X, and X, are the mole fractions of the two components of molecular weights
M, and M, respoctively. The quantity A(™ represents a determinant of (2m-1)
order, the general term of which is a;; where ¢ and j range from --m to--m including
zero. The minor of 4™ obtained by deleting the row and column containing
aij, is denoted by the symbol 4™, To the first approximation, Eq.(1) can be
written into the following convenient form:
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The expressions for 8, and @, are obtained from those of 8, and @, by an inter-
change of the subscripts for the molecular masses. Here the functions p®m*
are the reduced Chapman-Cowling collision integrals and the functions 4* RB*
and C* are ratios of @®™* and have been tabulated by Hirschfelder, Cu’rtiss
and Bird (1954) as a function of the reduced temperature. Second and higher
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approximations are conveniently left in the determinant form of Eq. (1) for com-
putational purposes.
For the case of heavy isotopes where the reduced m‘a.sa, M‘—M’, is small,
A+ M,

Eq. (1) can be expanded in the powers of the reduced mass. Retaining terms
only up to the first power of the reduced mass, ong obtains;
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where [a),, is dimensionless thermal diffusion facté and has been given by Mason
(1954, 1957a) for m — 1,2 and 3. For m = 1, aﬂiis given by

[ _ 15(80% — 5)24* 4 5)}

Sl = A6 A* —128* 55)} (4)

Expressions for m equal to 2 and 3 are rather lengthy and will not be repeated here.

Eq. (2) transforms into the following form for the case of heavy isotopes
when one retains terms up to the second power of the reduced mass, M,
(Chapman, 1941):

[ag)y" = o[l — yM(X, — Xy)), e (D)
where
35— A% 2(12B* 4- 5)

25 - 24%)  (164* — 12B* 4 55)°
It is interesting to note that [«,]’, is now dependent on the relative proportions of
the two isotopes unlike Eq. (4).

Kihara (1949) developed an alternative scheme to expand these infinite
determinants into convergent infinite series. This procedure is mathematically
less straightforward than that of Chapman-Cowling but it has a more physice»lm
basis and gives simpler expressions at least in the earlier approximations. Recently,
Mason (1957a)has elaborated and extended this procedure and has given the
expression upto the second approximation for the thermal diffusion factor. The
general formula for the m-th approximation to the thermal diffusion factor on
Kihara scheme remains the same as given by Eq. (1) except that now ay; have
different meaning. The first approximation [ay], is again given by Eq. (2) except
that the @’s are now defined as follows:

) !
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and

(M Ma | EIMAY B My ]
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Using the extended Kihara scheme, Mason (1957a) gave the following formula for

the second approximation to ag:

(@', = lagh(1 + K%) + Koy — e

where

K" = hohg -+ heh_ + h_gh_g+ k_shg , .. (8)
and
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In Eq. (7), [ap], is given by Eq.(2) and the various kg are similar to those given
by Mason (1957a) except that the subscripts characterising the molecular species
are all the same.

For the case heavy isotopoes, &’y can again be put in the form of Eq. (3),
where [ay’]; is now given by the following simpler form:

5(6(% —
fao']1= 10(61(614*5) " (10)

The second approximation |ey'], can be written in the following form:
[ag']g = [otg]i(1 -+ Ky'). .. (11)

Here [}, is given hy the Eq. (4) and K,’ is a correction factor given by Mason
(1957a).

Using Kihara's scheme for approximating transport coefficients, we have
worked out the following first approximation to the thermal diffusion factor for
& mixture of heavy isotopes in which terms containing upto the second power
of the reduced mass have been retained:

(5—34%)

[“o']l' = [“’0]1 { 1— *m—i

M(X1~X2)}. .. (12)

This formula is slightly simpler than the one given by Eq. (6) and as shown in the
next section, is very useful for the accurate evaluation of ay, of isotopic mixtures
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where M is not quite small. Such isotopic mixtures are the mixtures of helium
and hydrogen isotopes.

3. CALCULATION OF THE THERMAL DIFFUSION
[FACTOR FOR HELIUM
Detailoed calculations for the thermal diffusion factor of helium have been
performed on both the approximation schemes, accorﬁing to the various formulae
discussed in the previous section. The results of thfs calculation are tabulated
in Table I and refer to the following L—J(12—6) la\:zor intermolecular force:

wor=se [ ()" ()]
r 7 §

Here E(r) is the potential energy of the two molecis at a separation distance
r and o is the molecular separation for which the inforaction energy is zero. ¢
is the value of the maximum negative potential en&gy. The various collision
integrals required for these calculations are tabulated by Hirschfelder, Curtiss
and Bird (1954).* In those calculations of Table I where the system has been
treated as a binary mixture of He® and He?, we have chosen arbitrarily the con-
centration of He® as 5%, a value close to the one used in the work of Moran and
Watson (1958). Further, these calculations were performed on a desk calculator
and have been subjected to only spot-checking.

TABLE I
Calculated values of the isotopic thermal diffusion factor for Helium

Chapman.-Cowling approximation scheme Kihara approximation scheme

T [aph™® [ap) i [ap)1# [ep]m® [ap ™ ap ]t [ap] o [ap]a™Z [aq’]g$°

b 0.0671 0.0695 0.0677 0.0690 0.0702 0.0718 0.0707 0.0694 0.0716
0.0724 0.0751 0.0732 0.0747 0.0742 0.0759 0.0747 0.0765 0.0779

3

9 0.0744 0.0788 0.0753 0.0760 0.0779 0.0797 0.0785 0.0778 0.0803
20 0.0767 0.0794 0.0774 0.0803 0.0802 0.0820 0.0808 0.0809 0.0832
40 0.0768 0.0794 0.0774 0.0801 0.0802 0.0820 0.0808 0.0808 0.0832
60 0.0764 0.0791 0.0771 0.0799 0.0799 0.0816 0.0805 0.0804 0.0827
80 0.0763 0.0789 0.0768 0.0796 0.0707 0.0814 0.0803 0.0805 0.0826

100 0.0761 0.0787 0.0767 0.0794 0.0795 0.0812 0.0800 0.0800 0.0829
200 0.767 0.0781 0.0762 0.0784 0.0790 0.0806 0.0798 0.0797 —_

*It may be pointed out that there is & misprinb. in the value of the collision’ intey .01
QU L for T* = 100. It ghould read as 0.5170 instead 0.5130.
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In columns 2, 3, 4 and 5 of Table I are recorded the values of the different
approximations to ap as a function of the reduced temperattfre (T* = kT[e)
according to Chapman-Cowling scheme; while the columns 6. 7, 8, 9 and 10 report
the results on Kihara scheme. Values of ap listed in columns 2 and 3 of Table
I have been obtained according to the Egs. (2) and (4) respectively. 'The two sets
of values differ appreciably and revcal the fact that for Helium, terms involving
only first power of the reduced mass are not enough ; a result previously pointed
out by Winter (1950). It is, therefore, interesting to consider terms involving
still higher powers of M. Chapman (1941) derived an expression, Eq. (6), which
takes into account the terms upto the second power of M. Calculated values
according to this formula are given in column 4 of Table 1. Tt will be seen that
these values are appreciably different (== 2.4%,) from |az},*° but are in good
agreement with the [ap],™% values (==0.9%,). Values of |ag], computed according
to Eq. (1) with m - 2 are shown in column 5. These values are approximately
49, higher than the [a;],™® values, establishing therehy that the convergence
of the series is fast enough and the error involved, because of the neglect of the
third and higher approximations, is small. This inference is very welcoming in
view of the fact that the higher approximations will involve evaluation of seven
and higher order determinants and can be safely avoided till we considerably
improve the precision and accuracy of the measurements. It is also very inter-
esting to note that [ap]’,* values are in better agreement with the [op],™®
values than the |ap],™* values. The authors therefore feel that the simple
formula for ap as given by Eq. (5) is preferable to the complicated form of
Eq. (2) and still more compli- cated form as given by Eq. (1).

Results obtained using similar approximations, but on Kihara scheme are
listed in columms 6, 7, 8 and 9, and are scen to follow the same qualitative trend.
In column 10 are tabulated for comparison the results obtained from a formula
which considers terms upto the second approximation but retains only the first
power of reduced mass, Saxena and Mason (1958). These values of [ap]¥° are
systematically higher than the [a’,]"® values. As the convergence for the Kihara
approximation scheme js still faster than that of Chapman-Cowling, we are of the
opinion that the neglect of the second power of the reduced mass is much more
serious. A critical examination of all the values obtained on Kihara approxi-
mation scheme again leads to the same conclusion that the values obtained by
'using the simpler formula, Eq. (12), which considers terms upto the second power
of reduced mass, is preferable to the rest of all, both for accuracy and simplicity.

A critical examination of the various approximations for apon the two approxi-
n.lation schemes for realistic intermolecular potentials and for a few mathematically
simple systems, was done by Mason (1957a and 1967b). Mason (1957b) considered
?bree types of mixtures viz. (1) Lorentzian, (2) Quasi-Lorentzian and (3) Heavy
isotopic mixtures. -Unfortunately our system is not identical to any of these
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but resembles to (3) in as much as all the interactions are identical but the two
masses differ considerably. Our numerical calculations of Table I reveal that
Kihara approximation scheme is preferable to Chapman-Cowling and is in con-
formity with the conclusions of Mason (1957b) for mixtures of heavy isotopes.

4. CONCLUSIONS

Our numerical calculations for ap of helium isgtopes establish that Kihara
approximation procedure is better than that of Chgpman and Cowling. With
He?® present in trace, a simplo formula derived, treatfng the mixture of He® and
He# as a heavy isotopic mixture but retaining terms gpto the second power of the
reduced mass, will yield results within the range of experimental error. This
formula is also preferable in view of comparative sidplicity and accuracy.

The aunthors aro thankful to Dr. J. Shankar for
available to us all the facilities.
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