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ABSTRACT. Various formulae for the isotopic genual diffusion factor have been 
reviewed and a new formula has been derived. Numoric|il calculations liave been performed 
for the particular case of HeS-He  ̂in a region where quotum effects are negligible. These 
calculations establish the relative adequacy of a comparatively simpler formula advanced 
by us and will be useful to interpret the recent experimAital rtjsults of Saxena, Kelley and 
Watson on the thermal diffusion factor as a function of jjemperaturo.

1. I N T R O D U C T I O N

Knowledge of the thennal diffusion factor for holiiiin isotopes is important, 
for thermal diffusion has f)oen used by Meintcer, Aldrich and Nier (1948) and 
Schuette, Zucker and Watson (1950) to enrich despite its extremely low 
abundance (1.3 x l 0~'^%) in natural helium and still lower abundance for well 
helium. Measurements of the isotopic thermal diffusion factor, â r, as a function 
o f temperature are also important to investigate the intermolecular forces. Moran 
and Watson (1958) measured the thermal diffusion factor for in the tem
perature range 233‘̂ K to 57 T'K by using an elegant apparatus “ Trennschauker^ 
introduced by Clusius and Huber (1955). Kecently Saxena, Kelley and Watson 
(1960) have extended thes(i measurements to still lower temperatures. These 
measurements show a mucli steeper temperature dependence for â t than given 
by the existing theoretical expressions. Approximate quantum mechanical 
calculations o f by Saxena (1960) reveal tliat the quantum corrections are negli
gible even at the lowest temperature (233^K). Thennal diffusion factor like 
othw transport properties, emerges from the theory as the ratio of infinite 
determinants, Chapman-Cowling (1953). There are two alternative procedures 
developed separately by Chapman and Cowling (1953) and by Kihara (1949) 
to expand these infinite determinants into infinite convergent series. The use 
of varying number o f terms of these series lead to the various approximations on 
the two schemes. As Moran and Watson (1958) compared their experimental 
results only with an approximate formula, valid more rigorously for. a mixture 
of heavy isotopes, it would be interesting to explore the possibility o f this anomaly
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in the use of an inadequate theoretical expression. The purpose of the present 
paper is to evaluate ccji for He®—He  ̂ according to the expressions derived on the 
two approximation schemes. This will establish the relative usefulness and 
limitations of the various formulae. A new formula has been derived on the 
Kihara approximation scheme, taking into consideration terms containing upto 
the second power of the reduced mass.

2. G E N E R A L  F O R M U L A E  F O R  T H E  I S O T O P I C  T H E R M A L
D I F F U S I O N  F A C T O R

The Chapman-Enskog kinetic theory of gases expresses tlie m-th Chap
man-Cowling approximation for â r as follows:

5'.
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Here X j and are the mole fractions of the two coxTipoiieiii-s of jiiolecuJar weights 
Ml and respectively. The quantity represents a detenninaut of (2m4-1) 
order, the general term of which is aij where i and j  range from -rn toH-m including 
zero. The minor of obtained by deleting the row and column containing 
aijy is denoted by the symbol To the first a])proximation, Eq.(l) can be
written into the following convenient form:
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The expresaioiis for 6’,  and are obtained from those of and Q̂  by an inter
change of the subscripts for the molecular masses. Here the functions 
are the reduced Chapman-Cowling collision integrals and the functions A*, B* 
and C* arc ratios of Q**."'* and have been tabulated by Hirschfelder, Curtiss 
and Bird (1954) as a function of the reduced temperature. Second and higher



approximations are conveniently left in the determinant form of Eq. (1) for com- 
putational i^urposos.

For the case of heavy isotopes where the reduced mass, is small,

Eq. (1) can be expanded in the powers of the reducefl mass. Retaining terms 
only up to the first power of the reduced mass, oiip obtains;
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. . .  (3)

where is diineusionk%ss thermal diffusion fact^  and has been given by Mason 
(1954, 1957a) for m — 1, 2 and 3. For m — 1, ao|is given by

1
, _  1 5 (6 0 » -5 ) (2 ^ *  +  r>)| • ...

Expressions for m equal to 2 and 3 are rather k^ngtliy and will not be repeated here.
Eq. (2) tra}isforms into the following form for the case of heavy isotopes 

when one retains terms up to the seeojid powenr of the reduced mass, M, 
(Chapman, 1941);

-  K Jifi -  yM(X, -  x^)i (5)

whore

^  3(5 -  A*) _  2(12Z?* +  5)
^ 2{S^+ ~M*) (16^1* -  1 2 « * -! 55)*

It is interesting to note i hat [oco]', is now dependent on the relative proportions of 
the two isotopes unlike Eq. (4).

Kihara (1949) developed an alternative scheme to expand these infinite 
determinants into convergent infinite series. This procedure is mathematically 
less straightforward than that of Chapman-Cowling but it has a more physical 
basis and gives simpler expressions at least in the earlier approximations. Recently, 
Mason {1957a)has elaborated and extended this procedure and has given the 
expression up to the second approximation for the thermal diffusion factor. The 
general formula for the wi-th approximation to the thermal diffusion factor on 
Kihara scheme remains the same as given by Eq. (1) except that now have 
different meaning. The first approximation [a^ i is again given by Eq. (2) except 
that the Q's are now defined as follows:

h
Q i'=  [

I
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Using the extended Kihara scdieine. Mason (1957a) gave the following formula for 
the second approximation to

[aVl2

where

and

A “i“ 3̂ ~̂5 » (8)

(«)

In Eq. (7), fâ rJi is given by Eq. (2) and the various hĵ  arc similar to those given 
by Mason (1957a) exce])t that the subscripts characterising the molecular species 
are all the same.

For the case heavy isotopes, a' ,̂ can again be put in the form of Eq. (3), 
where [oto'Jx is now given by the following simpler form:

r^n ^  l5(66’* - 5 ) ... (10)

The second approximation (!an be written in the following form:

[ao'l  ̂ -  M , ( l  +  AV). ... (11)

Here is given !>y the Eq. (4) and Kq' is a correction factor given by Mason 
(1957a).

Using Kihara's scheme for approximating transport coefficients, we have 
worked out the following first approximation to the thermal diffusion factor for 
a mixture of heavy isotopes in which terms containing upto the second power 
o f the reduced mass have been retained:

K 'V  -  M .  {  i - ... (12)

This formula is slightly siujipler than the one given by Eq. (5) and as shown in the 
next section, is very useful for the accurate evaluation o f aj, o f isotopic mixtures
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where M  is not quite small. Such isotopic mixtures are the mixtures of helium 
and hydrogen isotopes.

3. C A L C U L A T I O N  OF T H E  T H E B M A L  D I F F U S I O N  
^ F A C T O R  F O R  H E L I U M

Betailod calculations for the thermal diffusion factor of helium have been 
performed on both the approximation schemes, aceor^ng to the various formulae 
discussed in the previous section. The results of t l^  calculation are tabulated 
in Table I and refer to the following L—1/ ( 12—6) law!|for intermolecular force;

(13)

Here E(r) is the potential energy of the two moleci4es at a separation distance 
r and cr is the molecular separation for which the ir|»raction energy is zero, e 
is the value of the maximum negative potential en#gy. The various collision 
integrals required for these calculations are tabulated by Hirschfelder, Curtiss 
and Bird (1954).* In those calculations of Table I where the system has been 
treated as a binary mixture of He* and He*, we have chosen arbitrarily the con
centration of He® as 5%, a value close to the one used in the work of Moran and 
Watson (1958). Further, these calculations were performed on a desk calculator 
and have been subjected to only spot-checking.

TABLE I
Calculated values of the isotopic thermal diifusion factor for Helium

Chapman-Cowling approximation scheme Kihara approximation scheme

T * [ cctY i ^ o [<XTh^^

6 0.0671 0.0690 0.0677 0.0690 0.0702 0.0718 0.0707 0.0694 0.0716

7 0.0724 0.0761 0.0732 0.0747 0.0742 0.0769 0.0747 0.0765 0.0779

0 0.0744 0.0788 0.0753 0.0760 0.0779 0.0797 0.0785 0.0778 0.0803

20 0.0767 0.0794 0.0774 0.0803 0.0802 0.0820 0.0808 0.0809 0.0832

40 0.0768 0.0794 0.0774 0.0801 0.0802 0.0820 0.0808 0.0808 0.0832

60 0.0764 0.0791 0.0771 0.0799 0.0799 0.0816 0.0805 0.0804 0.0827

80 0.0763 0.0789 0.0769 0.0796 0.0797 0.0814 0.0803 0.0805 0.0826

100 0.0761 0.0767 0.0767 0.0794 0.0795 0.0812 0.0800 0.0800 0.0829

200 0.757 0.0781 0.0762 0.0784 0.0790 0.0806 0.07S6 0,0797 —

• It m ay b e poin ted  out that there is a  m isprint in  the value o f  the co llis io n  in teg  al 
q (1 D * fo r  T* 100. I t  should read as 0,5170 instead 0.6130.
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In columns 2, 3, 4 and 5 of Table I are recorded the values of* the different 
approximations to as a function of the reduced temperature (T* =  kTfe) 
according to Chapman-Cowling scheme; while the (jolumns 6, 7, 8, 9 and 10 report 
the results on Kihara scheme. Values of â r listed in columns 2 and 3 of Table 
I have been obtained acjcording to the Eqs. (2) and (4) respectively. The two sets 
of values differ appreciably and reveal the fact that for Helium, terms involving 
only first power of the reduced mass are not enough ; a result previously pointed 
out by Winter (1950). It is, therefore, interesting to consider terms involving 
still higher powers of M. Chapman (1941) derived an expression, Eq. (6), which 
takes into acjcoiuit the terms upto the second power of M. Calculated values 
according to this formula are given in column 4 of Table I. It will be seen that 
these values are appreciably different («=s 2.4%) from but are in good
agreement with the values (~0 .9% ). Values of \cXfp\2, computed according
to Eq. (1) with m -- 2 are shown in column »5. These values are approximately 
4% higher than the values, establishing thereby that the convergence
of the series is fast enough and the error involve^d, because of the neglect of the 
third and higher approximations, is small. This inference is very welcoming in 
view of the fact that the higher approximations will involve evaluation of seven 
and higher order determinants and can be safely avoided till we considerably 
improve the precision and accuracy of the measurements. It is also very inter
esting to note that values are in better agreement with the
values than the values. The authors therefore feel that the simple
formula for as given by Eq. (5) is preferable to th(̂  complicated form of 
Eq. (2) and still more cornpli- rated fonn as given by Eq. (1).

Results obtained using similar approximations, but on Kihara scheme are 
listed in coluiuTis 6, 7, S and 9, and are seen to follow the same qualitative trend. 
In column 10 are tabulated for comparison the results obtained from a formula 
which consideTs terms upto the second approximation but retains only the first 
power of reduced mass, Saxena and Mason (1958). These values of are
systematically higher than the values. As the convergence for the Kihara
approximation scheme is still faster than that of Chapman-Cowling, we are of the 
opinion that the neglect of the second power of the reduced mass is much more 
serious. A critical examination of all the values obtained on Kihara approxi
mation schenie again leads to the same conclusion that the values obtained by 
using the simpler formula, Eq. (12), which considers terms upto the second power 
o f reduced mass, is preferable to the rest of all, both for accuracy and simplicity.

A critical examination of the various approximations for on the two approxi
mation schemes for realistic intermolecular potentials and for a few mathematically 
simple systems, was done by Mason (1957a and 1957b). Mason (1957b) considered 
three t3rpes of mixtures viz. (1) Lorentzian, (2) Quasi-Lorentzian and (3) Heavy 
isotopic mixtures* Unfortunately our system is not identical to any o f these
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but resembles to (3) in as much as all the interactions are identical but the two 

masses differ considerably. Our numerical calculations of Table I reveal that 
Kihara approximation scheme is preferable to Chapman-Cowling and is in con

formity with the conclusions of Mason (1957b) for mixtures of heavy isotopes.

4. C O N C L U S I O N S  ‘

Our numerical calculations for of helium is^p es establish that Kiliara 
approximation procedure is better than that <»f Ch^man and Cowling. With 

He® present in trace, a simple formula derived, treating the mixture of He® and 
He* as a heavy isotopic mixture but retaining terms i|̂ to the second power of the 
reduced mass, will yield results within the range of experimental error. This 

formula is also preferable in view of comparative sii^plicity and accuracy,
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