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ABSTRACT. A thoorotical study of tlio indiroi|t oxchango intcraci<ion for tho spin 
coupling in spinel type magnetic compoumls is mad(i oA the basis of a mechanism suggested 
by us rooontly. Detailed calculations are carried out forihe elementary, four-cionlre (A~0-B2 ; 
A and B represent tho cations and O denotes tho an»n) and five-olectron system. This 
furnishos the appropriate model for describing both A-lB and-B-B types of interactions.

The relative energies of the ferromegnetic (Quartet ||) and the two ferrimagnetic (Doublets 
Di and D2) states are assessed for tho above model, l l  is sliown that, within tho framework 
of tho present mechanism, tho ferrimagneticj state D|, which represents antiparalhd spins 
in A-B and parallel in B-B, is the most stable stale. This is in agreement with tho observed 
situation.

1. I N T R O D U C T I O N

Some recent papers (Aiulersop, 1959; Koide, Sinha and Tanabe, 1959) on 
superexchange interaction have Jed to a reappraisal of the types of mechanisms 
responsible for the spin coupling of magnetic ions in certain magnetic compounds 
(see also Kanamori, 1959; Keffcr and Oguclii, 1969), It seems that of the various 
moclianisms proposed some are only apparently distinct and others embrace 
complementary features of the physical situation. However, it remains to 
establish as to which of these play the dominant role.

One of those mechanisms, which is analogous to spin-polarization around 
a nucleus that leads to nuclear indirect exchange was recently suggested by us 
(Koide, Sinha and Tanabe, 1959). It constitutes an important spin dependent 
effect and the contributions due to this mechanism needs to be fully assessed 
for each type o f crystal structure while discussing the magnetic properties of 
such compounds. The previous paper, in addition to dealing with the general 
formulation of the mechanism in terms of semi-localizod orbitals for the anion 
electrons, furnishes a quantitative calculation for the oollinear three centre and 
four electron system applicable to magnetic compounds having rock salt or 
perovskite type structures. In another paper (Sinha and Koide, 1960), we have 
given a theoretical study of this interaction by choosing an elementary luiit
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which is appropriate for zinc-blends type structures. In the present paper we
give ail analysis of the indirect exchange interactions in spinel-like systems, 
using, as in our previous papers, the Heitler-London method with the inclusion 
of the correlation effect which involves spin dependent transitions o f the anion 
electrons.

2. T H E O R E T I C A L  M O D E L

It is appropriate to discuss briefly the relevant features of spinel structure 
before coming to the model chosen for calculation (for a fuller description of 
the structure see Gorter, 1954). The ideal spinel structure can be described as 
a cubic dose packed lattice of anions (e.g., 0 “̂") with metal ions partly filling 
the tetrahedral (half of the Ifl A sites) and the octaliedral (half o f the 32 B sites) 
interstices. There are eight molecules in the cubic unit cell, the molecular 
formula being ABgO^. The immediate environment o f each metal ion is thus 
cubic. The oxide ion, however, has four nearest neighbour metal ions of which 
three are at octahedral (B) sites and the fourth is in a tetrahedral (A) site. The 
three octahedral cations are situated at a distance JB© along throe mutually 
perpendicular directions from the oxide ion. The tetrahdral cation is in the 
< 111>  direction at a distance Ri and away from the oc t̂ant which contains 
the three octahedral cations. The immediate symmetry around the oxide ion 
i.e., o f the unit A -O -B 3 is described by the point group 63,, ; the next nearest 
neighbours of this oxide ion are twelve oxide ions of the face centred cubic lattice.

According to Neel’s (1948) phenonienological theory for flrrospinels, there
are three typos of negative interactions, namely A-A, B-B and A-B, the relative
strengths of which determine the ultimate coupling; assuming, of course, the
presence o f one kind o f magnetic ion (e.g., Fe^”̂ ) only. I f  the AB interaidion

—> <—
is much stronger than A-A and B-B interactions, the spin ordering A [Bg] is 
favoured. This constitutes the fundamental assumption of the two sub-latjbice 
model of Neel. However, when either of A-A and B-B interaction is comparable 
with A-B interaction, further generalizations as envisaged by Yafet and Kittel 
(1952) by dividing A into two sub-lattices A  ̂ and Ag and B into four sub-lattices 
Bj, Bj, Bg and B4, have to be considered. These considerations lead to certain 
triangular arrangements of the spin vectors associated with the sub-lattices.

The strengths o f these interactions would depend on the nature and mecha
nism of the fundamental types o f indirect exchange interactions involving the 
anion lattice as well as the cation-anion-cation angles and cation-cation and 
cation-anion distances. Aside from qualitative discussions (WoUan, 1960), no 
non-empirical analysis o f such indirect exchange interactions in spinel-like 
systems has been made. In what follows, we consider a detailed calculation 
for one of the mechanisms suggested before, on the basis of an appropriate model 
chosen.
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In view o f the large A-A distance and unfavourable angles, we shall dis

regard the study o f the A-A interaction. As is supported by experimental 
results this interaction, in any way, is too feeble  ̂ The problem then is to select 
a model which includes the effect of both A-B and B-B interactions. Although 
we shall always keep the unit A-O-Bg (with symmetry) in mind, we choose 
a still smaller unit, namely, A-O-Bg, which furtxishes the appropriate model for 
describing both ty^es o f  interactions. At times|:while considering the symmetry 
o f orbitals involved in the study, we shall refer Ito the complete unit having 6̂  
symmetry. I f  the ion in the unit A-0-B| Was in the plane of A-Bg, the 
symmetry o f A-O-Bg would have been taken as |?ĝ . Since, 0*~ is slightly below 
this plane, this symmetry is lost. However, we |hall make use of some symmetry 
planes even for this unit in order to classify th^orbitals and to study the nature 
o f wavefunctions. The geometry o f the unit i shown in Fig. 1.

3. T H E  W A V E  F U N C T I O N S  OF T H E  C A T I O N  
E L E C T R O N S

We consider one representative electron each from the three magnetic ions
i.e., one at the tetrahedral, site A, and the other two at the octahedral sites B 
add B .̂ Each electron is assumed to be coupled strongly by intraatomic spin 
dependent interaction while moving in the field of their respective ion cores. 
Only one typo o f magnetic ions are considered for simplicity with #  electronic 
configuration and in •iSg/g state e.g., Fe^+.

We denote the orbital functions o f the electrons of the two octahedral cations 
by Ui and and that o f the tetrahedral cation by v. In the choice of the explicit 
forms o f these orbitals, we shall be guided by their degree o f  overlap with the 
anion orbitals, and the splitting o f the d orbitals in the crystal field. It is well 
known that in the cubic field due to octahedrally situated six surrounding ions 
the 3d level o f the magnetic ion i^lits up into lower triplets (t^) and the upper 
doublets (e )̂, the triplets being d̂ ,̂ dyz ^wo doublets being
dgg»--a:*—y* and d«*— When the cations are tetrahedrally surrounded by 
the anions, the situation is reversed and the tr^lets are higher than the doublets.
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I f  the three cartesian axes are taken to be the lines joining the anion to the three 
octahedral cations, then the obvious choice for and U2 would be one of the 
€g orbitals, in particular, the d-function having axial symmetry with respect 
to the bonds BO and B'O (see Fig. 1). For v one can take the appropriate 
orbital. Any other choice of axes (e.g., A 0  as the z axis and x parallel to BB' 
and passing through 0 ) would not make any difference in the calculations pre
sented below in that the orbitals can be re-expressed by suitable transformations. 
Thus we assume the following behaviour of and v under reflection in the 
plane AM  normal to the flgure (Fig. 1).

and

where denotes the corresponding operation. Switching over to the condi
tion =  —V would not bring about any difference in the physical arguments 
involved in the calculations.

Including the spin functions, we shall have eight Slater determinants for 
the three cation electron system. We shall choose such linear combinations 
of these which are eigenstates of the operator. We have one quartet and 
two doublet states. These are given below :

I , == 4)>c =  ... (3.1)

1 (i )>0 == {K^zv]+ [n̂ û v]—2{û U2̂ } I
(i)> c  =  {[UiÛ v] - [aiu^v]} I

(3.2)

(3.3)

Here the bracket notation represents the usual Slater determinant multiplied 
hy (i\n)~* (in this case (31)"’*). The orbitals without bar include up spin and 
with bar down spin functions of the electrons in them. The sufiix c outside the 
kets refers it with respect to cation electrons and the suffixes od or ev denote that 
the states are odd or even under the operation Rj^ ,̂

The classifleation of the states with respect to the symmetry operation 
has the following advantage. The quartet of course, would represent
the ferromagnetic state. The ferrimagnetic state | represents the situa
tion where the spins in A and B are antiparallel, while that of BB are parallel. 
In effect, this would represent a dominant negative A-B interaction. The 
state however, represents the reverse situation with antiparallel spins
of BB and parallel spins of AB. This represents the case with stroller B-B 
interaction. The picture remains incomplete unless the effect of anion electrons 
is included.

4. TH E WA V E F U N C T I ON S  OF 
E L E C T R O N S

THE A N I O N

Unlike our previous papers, where for anion electrons semiloQalised orbitals 
aape used  ̂we shall follow a perturbation procedure right through in the present
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formutetion. We consider two anion electrons which play the dominant role 
in our mechanism. The appropriate 2p orbitals o f the anion (e.g., 0*~) are no 
longer degenerate in the crystal field for the unit A-O-Bg with Cg, symmetry. 
For the choice o f axes along the three octahodrri cations, the crystal field FCg, 
gives rise to one non-degenerate orbital,

p M i) = (4.1)

belonging to representation of (7g„ group and degenerate orbitals, belonging 
to E  representations i.e.,

W ^ )= =

P^(^) H^Pz-Px-§v)

(4.2)

If, on the other hand, AO is taken as the z axi$ and ON as the x axis, it can be 
easily shown that pg belongs to A i representation and its energy differs from 
the doubly degenerate orbitals px and py belonging to E representation. It is 
seen for both cases that the orbital belonging to representation has a larger 
overlap with the orbitals of the cation electrons.

We represent the zeroth order ground state for the anion system by con
sidering the representative two electrons with coupled spins in the orbital belong
ing to A ̂  representation. We denote this symbolically by (f>. It may be added 
that for the restricted unit A-O-Bg we shall replace p  ̂ by

Pi =  iPz+Px)IV^  (4.3)

with OB as z axis and OB' as x in that the effect o f py would be negligible. Thus 
our ^ would represent p  ̂ as given by (4*3) or pg depending on the choice o f axes. 
In effecting the actual transformation the vector-like nature of the p  orbitals 
should be taken into account.

The wave functions o f the two anion electrons in the zeroth order ground 
state is expressed as

m

which is even under

We defer the specific choice o f excited orbitals until later sections and con
sider their effect in terms o f some S3unmetry properties. It would suffice to 
consider the configurational interactions in terms of transitions to two types o f 
orbitals, one even under and the other odd. They are respectively denoted 

"by y  and tf. “
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We have the following triplet states for the two anion electrons under con
sideration.

[fy ] J
... (4.6)

m  J
... (4.6)^Xod>a

Singlet states for the two anion electrons involving y or  ̂will have much higher 
energy than those described above and accordingly we omit them.

 ̂ 6. THE W AVE F a N C T I O N S  OF THE T O T A L  SY ST EM

We first consider the zeroth order ground states of the total five electron 
and four centre system. The lowest state of the two anion electrons is |
(cf. Eq. (4.4)] and hence the lowest ferromagnetic and two ferrimagnetic states 
are given by the products of (4.4) with (3.1), (3.2) and (3.3) respectively.

Ground stales :

V ’)«>  =  [ W 0? ]

=  1 (**«<«“ >).( V ) a >

=  VB

-  I V ) . >

... (5.1) 

... (5.2) 

... (6.3)

A large number of excited states for the total system , is possible. These are 
the products of the cation states (3.1), (3.2) and (3.3) and the excited triplet states 
of the anion, namely, (4.5) and (4.6). We shall write down only those states 
which have the appropriate symmetry corresponding to the respective zeroth 
order ferromagnetic and ferrimagnetic states. Others with different symmetry 
are of no consequence in that they do not interact with the corresponding ground 
states described by (5.1) to (6.3). The excited states involving transitions to 

■ y  and ^ type orbitals are given below:

Quartets
Excited States

-3([ttiWjO0y]-f[fti«,»^])}lV3O ... (6.4)'
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= {2[%M,0^]-r-[«iUj,»^y]-![piUjt) ]̂}IV6 ... (6.5)

OotUkta

l/l

== {(Kugt;^f]+[«iQjt)^y]+[f|itjV^7]+[QiWg»^y]‘' “

—2[«iWj50y]—2[MiMgt>̂ |])

+(2[«iy<63/]+2[Q^M4{5A]̂ 4[QiQ*» ]̂) ... (5.6)

+ V i| (« ? '- ‘>|®W")a> ,

= {3KM*»??]-([u»WaV^?]+[at«at> r̂]+[«iQ*»^?] 

+[MiQa»$7]+[«i«a»^7l+K«2»?r] 

+([QiQ2»^y]+[Oi«j»07]+[Mi!igS>^])} I VIS ... (5.7)

■ 1*  ̂J ' ( i ) >  = VlT(*^«.“')/W »’)« > - ^  l(*̂ «<-̂ ')e(*A!«">).>
'I [ [\ 4

= {Kujf)9i7]+Kfi,t;^y]-[Bi«j«^y]-[aiM^^?p'] [ ̂  r,

—2[2*iQ,fî 4y]+2[QiM*t)?!̂ )}/Vll (6j8)

Excited states involving transition to if type orbital.

Qmrteta: . i l l * ' '  "

. . . .  |̂ l̂ p̂d’'‘ (4)>=l(*««r“'W*;̂ «^"»).>

= {[%Qg»0^]-[Q ii^#^]}/v ^ . ■ ■ l ' - — (5.9)

. IkrMela: |

(i)>  = Vll(**«.'‘'W*W”) « > - ^  l(¥4.<-“W V ) .^  % i ^

, : . . .  ' ' . 3 -1
explicit ^orm for (6.10) is the same as (5.^) except that the orbital y is re

placed by ^.' - 1'.

( - )  . ................... ... (6.11)

t ,



' ' ' +V F l(^oa<-*»)A «»‘“ ) ->  ... (6.12)

The explicit forms of (5.11) and (6.12) are r^eotively  obtained by putting the 
orbital Tj in place of y  in (5.6) and (5.7).

6. E V A L U A T I O N  OF THE E N E R G Y  M A T R I X  

The Hamiltonian (in aton îc units e =  H ^  1) is
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< - - . lS v i* + 2 F ( n ) + S - ... (6.1)

where F(f|) is the potential acting on the ith electron due to the four nuclei and 
all other electrons except the five under consideration. The energy matrix of the 
Hamiltonian within the manifold described in the previous section is given below :

Diagonal elementa
Ŝrdund ‘Stalea:

~  [^0 * (̂̂ i â) 2J{UiV)—2J{ii] )̂— ... (6.2)

= t G o -* ^ (« i« * )+ J '(M -2 J (% ^ ) -W )3  ... (6.3)

<*^„|JSrif#^> = [< ? „+ /(« !« , ) - ,  J (« ,»)-2J («i? i)-J (tf^ )] ... (6.4)

Axeited states involving transition to y type orbital.

Quartets :

—i{«^(«x^)+J(%y)}—i{J^(«^)+J(«y)}] ... (6.5)

' IH 1 =  [Qy-J(uyut)+J(u,v)-J(<h)

-f{J (« j^ )+ J (M i7 )}-l{J (»^ )+ J (»y )}]  ... (6.6)

+l{/(«,^)+J(«j7)}-|{J(t>^)+J(«y))] ... (6.7)

>  == [ .̂y—J (̂«jMj)—2J{uiv)—J(4>y) ■■ ^

+ U ^ M )+ ^ i '^ {y )+ A ^ )+ 'f {v y ) } ]  ... (6.8)



=  [ Q . y + —J{U]V)—J(0y)

-  J(«y)}] (6.9)

For transition to ^ type orbital. i i

Quartet:
•i

-J{ w l> )-J(v ii)-J^)\ (6.10)

Doublets I !

1 I >  = as in (6.9) ,with ^  replaced by 7 . (6*H)

j ^  as in (6,7) with o|replaced by 7 . , j (6.12)

I jj  I >  = aa in (6.8) with y replaced by 7 . (6.13)

The symbols occurring in the right hand side of EqnsL (d.2) .to (6.13) 
stand for the following :

Qo == {2 e u -\ -e „+ 2 £ f+ K (U jU i)+ 2 K [U iV )-\ -iK {U i< P )

+2K{v<},)+K(i>4,)}

Qa =  {2eu-{-ep-\-ef-\-en~\-K{uiU2)-\-2K(UiV)-{-2K{Ui^)

+2K[Ujpt)-{-K{v )̂-^K{va)-^Z{' )̂)

K(ab) z2 <o6 |^ j2 |o6> , the coulomb integral 

J{ab) 3- <ab | 16«>. the exchange integral

[see also (6.24) ]

and ' e* = <a  | — lv*+ V a >  the one electron term,
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}

(6.14)

(6.16)

(6.16)

(6.17)

In writing down the final expressions we have made use of the ccmdithms 
,«j«—>«, under Ba u. It is to be noted that the diogonal matrix Elements (6.2) 
to (6.4) for the zeroth order ground states are degenerate if we neglect the rela. 
tively feeble direct exchange integrals such as J{UiÛ ) and J(uiv). I t is essen* 
tial, tiierefore, to study the interaction of these states with the omrreqrand^ 
excited states in order to detwmine the effective ooû ding on the basis of the 
pnasent meohanism. The off-diagtmal matrix elements will be desoribed new.
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Off-diagpnal dements
(i) Involving transition to y.

=  — ^ | { < « x 7 k i 8 l ? J « i >  +  < « a r | y u l M >

J.. ^^<vy\gti\i>v>} .. (6.19)

< Voa IJ? I =  -y j  g{2<Miy | | M >  +2<tta71 \ pu,>

i  , i - < « r l ? u l ^ > }  ' i i • •• ( 6 . 2 0 )

—2<^^y)gflgj^4»>} , ; . . . .  (6.21)

— ^Q<vy\9xt\4»>> •• (®-22)

(ii) For interactions with excited states involving transition to ij like orbital, 
we have one composite expression tor the off-diagonal elements, i.e.,

((}.:. ) ... == == ^ {< « !?? Ifl'i2l M >

— I •••

Vhe notations like [<a619ia I diagonal and off-diagonal element-s re
presents the integral

a«

f  Ja*(»’i)6*(rj)ji^c(ri)d(r8)dri(irg (6.24)

?., S T U D Y , ,  OF I N T B R A C T I O N  BY P E B T U R O B A T I O N .
P B O C B D U B E>*

.If'w« exagtniẑ  the dibgon^ matrix elements of the excited i^tes i/e., Eqns. 
^&)4o'j(6.13)itisBeeniliat the term like Q(a) (explicitly given by (6.16)). is oommofa 

tit»wcpK8BBians for̂ taranaitiOn to ‘a’ type <ni>ital. < Since this contains terms 
I imibe osie riitcteon and the conlomb ih teg i^ iC(«6), i t  is by Jw the dorminant



term as compared to those involving the exchange integrals J{ab), which are 
relatively very neg%ible. We can thus safely use the approximation.
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as Ea (7.1)

where h  represents the mean energy of the elicited states involving orbital. 
Further, we use the notation

where

Ea =  Ea^-^E,

=  Ê̂  =  E,

(7.2)

i.e., the degenerate energy of the zeroth order ground quartet and doublet states.
As shown in our previous papers (Koidel Sinha and Tanabe, 1959; Sinha 

and iCoide, 1960), the spin dependent energ# depressions of the various lower 
states, within the framework of the present fermalism, appears in the second 
order term of the perturbation treatment, ^his is expressed as

dEn -  S <{^\H\n><n\H\Q>l(En-E^)
n

^ {Eâ Î̂  < 0 |ff |n x n ]^ |0 > (7.3)

using (7.1) and (7.2).
It is expedient to consider certain symmetry situations before giving the 

explicit expressions for the energy depressions of the various quartet and doublet 
states based on (7.3).

Under the operation we take, as pointed before, the behaviour
of V either as even or odd function, would not affect the hybrid exchange inte
grals <vb\gi2\(̂ '̂ > occurring in the off-diagonal elements. Further, under 
the operation Bq^ i.e., reflection on the plane ON normal to the Fig. 1., is 
expected to behave as Bqĵ (  ̂ =  —<j> because ^ is either a p* orbital or a com
bination o f p  orbitals by (4.3) depending on the choice of axes. As noted before, 
for Tf we take Rj m̂V =  consider two possibilities.

(a) B^^y =  y  (always)

(b) i) RQ^y =  y  or ii) Rg^y =  - y .

We shall consider the energy depressions of the states with the condition 
RQ^y =  y ; then we have only to show that the lowest available excited orbital 
o f y type has this sjrmmetry.

We now consider the explicit expression for the energy depressions o f the 
zeroth order ground states (5«1), (5.2) and (5.3) due to the second order pertiu*ba- 

3
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tion terms as contained in (7.3), under various conditions. The respective de
pressions wiJl be symbolically denoted by dQy and These are dealt
with casewise.

Case / .  (Perturbation by excited states involving transition to y type orbital). 
It is convenient to introduce the following abreviations

^  etc. (7.4)

W© also note that =: \̂Jŷ  because of the symmetry under
and that Ropf̂ Jy,p — — Thus making us© of these conditions in the
appropriate off-diagonal elements, the depressions of the various states are 
expressed below :

 ̂1 - V v ,) p +  i  I (2t^iJ^,+2V^,) I )̂!Ey ... (7.5)

: { i l ( 4 « i 1 *+ I I ( 2 « i J ^ , + 2 V v , ) -  (7-6)

sn , : ... (7.7)

It follows, therefore, that

SQ—6D̂  =  0 j t/<yy I I Y. I l^y • • • (7.8)

SQ-SD, =  {-i\u,J^,\^+2\u.Jy,\\^Jy,\}IMy ... (7.9)

=  {4 « iJ'y,|*+41«iJ y,1 1V^,|}/A\ -  (7.10)

It is easily seen from the above equations that the depression of the Dj is maxi
mum and it is the lowest o f the three states for transition to the y type orbital. 
X>, will probably lie above Q.
Case II. (Involving transition to rj type orbital). Noting, 
the depressions of the various states are ;

==

SQ : 2\uxJ,,\^IE, ... (7.11)

$D, : ... (7.12)

42), : {2 | « .J ,,| * + 4 | «« /„  ^}IE, ... (7.13)

Hence SQ-dDi =  0 ... (7.14)

and 8Q-SD^^i\uiJ^^\^IE^ ... (7.15)

In this case, Z), is the lowest state and Q and Di lie above and are degenerate. 
Of the two cases discussed above the fact as to which will dominate would depend 
on the magnitude of Ey and Eff as well as the hydrid exchange integrals 
involved. However, it is more appropriate to discuss the case when they are
o f the same magnitude.



0<m III. (The energies of y and ? are equal. We can use the approximation
Ey =s= E.) Then we have

\ ”Jy^\IE (7.16)

5^-52)* =  {4|»a„|*-4|«.Jv ,P +2|«a.vJ\'>Jy,\)IE

x2\thJy^\\*Jy^\IE ; ... (7.17)

SD -̂SD, =  {4|»:Jv,P-4l»iJ„|a4|lju,j^,| \'’Jy,\)IE
'*1

4̂:\UiJyp\\^Jy,\IE I ... (7.18)

assuming that ‘ |

If this was the case, then would be the loirest state, i>2 and Q representing 
the higher states in respective orders. It may be mentioned *again that the 
ferrimagnetic state D̂ , represents the situatioli where negative A-B coupling 
dominates over B-B ; represents the revorsi situation. The above analysis 
shows that the ferro-magnetic state Q is least lively, in agreement with observed 
cases.

We shall, however, proceed further and investigate deeper into the specific 
nature of the excited orbitals y and tj available in actual crystals of magnetic 
spinels and the like systems. After assessing the relative energies of the avail
able excited orbitals, and the magnitude of the hybrid exchange integrals (®Ĵ ), 
a semi-quantitative discussion of the effective coupling in these systems will 
be given and compared with results.

8. A P P L I C A T I O N  TO THE REAL SYSTEMS

In order to have a semiquantitative discussion of the model and ideas deve
loped in the preceeding sections as related to spinel-like systems, we shall select 
a typical representative. Simple examples are Mn[Fe2]04 or y-Fe^Os, in which 
all the cations have configuration and can be aesumed to exist in state.

The first problem is the identification of y and y type excited orbitals among 
the lowest available orbitals in the actual crystals. We classify these and 
ascertain their relative energies with respect to the full unit— Â-O-Bg—shaving

symmetry. In discussing the excited orbitals permissible for this point 
symmetry group, we shall be guided, as before, (Koide, Sinha and Tanabe, 1959), 
by two models. First we consider the “excitation model”  which involves the 
transition of an electron to the lowest excited orbitals of the anion under the in
fluence of the crystal field of the appropriate symmetry. Second is the charge 
“ transfer model” and describes transitions to such linear combinations of the 
empty cation orbitals which form base functions of the irreducible representations 
of the point symmetry group. The lowest lying among these are, of course,
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most effective in the transition process (virtual in the present case) being con
sidered here. It may be added that from group theoretical point o f view both 
models represent the same orbitals expressed in slightly different ways o f appro
ximations. They should better be termed as localized crystal orbitals.

The excited orbitals of that may be considered on the basis of the 
“ excitation model”  are 3̂ , 3p and 3d, In order to have a rough estimate o f the 
relative energy scale for these, we consider the effect of the four cations in the 
unit A-O-B3 (point symmetry treated as point charges, as well as the twelve 
oxygen ion neighbours (treated not as point charges but ions with a distribution 
of charge).

The calculation is carried out by the usual method of crystal field theory 
(Bethe, 1929; Moffit and Ballhausen, 1956) where the potential is expanded in 
a series of spherical harmonics, the presence or absence of the terms being governed 
by the point symmetry group and certain group theoretical ideas. The matrix 
elements of the potential, thus expressed, were calculated by using the equivalent 
operator method (Bleaney and Stevens, 1953). The splittings of the orbital 
levels are proportional to < r 2> /i? 2, <r^>/iJ* etc., depending on whether the 
orbital is p-t5q>e or rf-type. Here V* is the orbital radius and R is the distance 
of the neighbour in question.

A knowledge of the radial part of the respective wave-functions is needed; 
however, it is very hard to determine this non-empirically. One can, at best, 
make a plausible approximation. From the work on excitons for certain systems 
(Knox and Inchauspe, 1959), it is known that, in the excitation model (Dexter, 
1951; 1957) the majority of the charge is confined within the equivalent sphere 
with its centre at the anion and the surface extending upto the cation centres. 
Keeping this fact in mind we choose the radial part o f the wave-function by 
the following tentative method.

For example for the 3d orbital, we assume that the maximum of the wave- 
function lies midway between the anion and the cation i.e., for the present case 
approximately at 2 a.u. distance from the oxygen centre.

In view of the approximations used, it would serve no purpose to give here 
the details of the calculation. We only enumerate the nough results. Thus, with 
AO as the z axis and ON as the x axis, we get the following energy sequence ;

3dz2<3dxz =  3dyz^3pz<3s<3px == 3py <  3d{x2 ŷi) =  3day

The energy of the 3dẑ  is lowered by about 6 e.v. with respect to the continuum. 
It would therefore lie below the conduction band. Howvever, one cannot place 
too much reliance on the above figure. The important thing is the derived 
energy sequence and that on the excitation model, a proper choice for y  would 
be 3dz* orbital and for if 3dxz» (A different choice o f axes will not alter the essen-
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fcial features; the orbitals will then be the appropriate linear combinations 
which preserve the symmetry and the sequence). It may be noted, in passing, 
that Sdzi as y  and Sdxz as rj satisfy the requisite requirements taken into account 
in section 7.

We now turn to the charge transfer model in which y or ff are to be constituted 
out o f a linear combination of empty cation o rb its . For the cations considered, 
we take the 4s or orbital or an sp hydried of t^e 4s and 4p orbitals of the res
pective action having maximum charge density |pointing towards the anion and 
having axial symmetry. We denote them (foi| the unit A-O-B3) by cr̂ , 0*1, (Tj 
and (T3 respectively. They form base functions |of a reducible representation of 
dimension 4 for the group. This can be dicomposed into the various irre
ducible representations (for the group theorepcal nomenclatures see Landau 
and Lifshitz, 1958). Thus : I

X {r m  =
Accordingly, we have the following combinati^s ;

+ 0-2+ cTg)}/(Normalization) 

{atcrt—a{a^+ a ‘2+ ^ 3)}/(N^ormalization) JirM i) =

^i{E) =  (o-i+<Tij-2<r3)/V6 }

. . .  (8.1)

. . .  (8.2)

... (8.3)

Among these some are o f no physical interest for the unit A-O-Bg (Cf. Fig. 1) 
and we consider only three in the following approximate forms.

fa  ^  [^«+(o^i+cTa)]/V5

fb  =  [^t-(<ri+<r2)]IV3  

f c  =

(8.4)

(8.6)

(8.6)

Now f c  orthogonal to however, and are not orthogonal to it. It 
can be easily seen that the overlap integral o f with <f> is much higher than 
that o f fa  with Thus, the energy of is pushed higher up due to mixing 
with f  and the hydried exchange integral involving it would also be negligible. 
We can, therefore, safely disregard the effect of f t -  Finally, wo select and 
}jra for y  and y respectively. Since the non-orthogonality of fa, with 56 is negli
gible, the orbital energies of fa  and f^  are expected to be nearly equal. Further, 
the hydrid exchange integrals involving ^a fa  differ much. This
situation leads to the case III  dealt with in the Section 7.

It may be emphasised that it is difficult to determine as to which o f the 
two models described above furnish the lowest lying excited orbitals. Since
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group-theoretically they ftre so akin, we shall adopt that model for a semi* 
quantitative estimate which appeals to our chemical intuition. Accordingly, 
we choose the charge transfer model and identify y  with and ^ with

The arguments of case III, Section 7 shows that the doublet state Dj, which 
represents the state with antiparallel spins in A-B and parallel in B-B lies lowest. 
Dj, representing the reverse situation, lies between the quartet Q and I f  
we consider the energy level in such a manner that Q represents the zero level, 
then (7.16) gives the position of Dj. In the following we give the estimate for 
the difference in terms of and i.e., equations (8.4) and (8.6). Thus
we have =  6{] <Uifa\gi2\^^l> I 1 <vfa\gi2\<i>v> \}jE

si2{\<Ui(Ty\g^\^u{>\\<va-t\git\^>\)lE ... (8.7)

The hydrid exchange1Further, we use for namely (i>«+Jo«)
V  2

integrals o f the type <Uypr | | pz'^i> have been evaluated in the previous paper
(Koide, Sinha and Tanabe, 1959) for similar cations and anions. These are of 
the order of 0*01 a.u. or 0*27 e.v. for the separations involved in spinels. For 
determining E ^(E a—Eo), the ionization potential and electron affinity data 
for the cation and anions were respectively used. The order is of about 1 a.u. 
However, for the present purpose, we shall use the range 0.5 to 1.5, a.u., Using 
these values the difference ^  is set out in Table 1.

TABLE I

E
a.u.

a.u.

0 .f> 4 X 10'4 125
1.0 2x10-4 62.5
1.5 1.33x10-4 42

A reasonable estimate for {Q--D^) pertaining to the systems such as Mn Fc204 
would be around 50°K, The above is for a single representative electron from 
each cation. No attempt is made to relate this difference with the Curie tem
perature o f the ferrites.

9. B I S C U S S T O N

The purposo o f the analysis presented in the foregoing sections has been 
to explore the nature o f indirect exchange interaction for ferrospinels on the 
basis o f the mechanism proposed. The stability o f the ferromagnetic and the



two ferrimagnetic states have been studied. It emeiges from these considera
tions that the ferrimagnetic state, sympolized, by is most stable. In con
trast, the ferromagnetic state is least stable. This conclusion is in agreement 
with Neel’s assumption and also the observed situation in most ferrospinels 
where the negative A-B interaction is the most dfloninant effect (Gorter, 1964).

It may be pointed, however, that the stat^ symboUsed by D j {i.e., where 
B-B are antiparallel and A-B parallel), may Income important under certain 
conditions. I f  the situation as discussed in Ca|B III of Section 7, prevails, D j 
is more stable compared to the ferromagnetic Jtate Q. However, to ascertain 
as to when it dominates over Dj also, a precise feowledge of the excited orbitals 
is needed. It seems probable that may becm e most stable when the cation 
at the tetrahedral site is in a low spin state as iompared to both the cations at 
the octahedral sites. |

This paper does not assess the importancelof this mechanism as compared 
to others. The greatest difficulty for all mech{|lisms lies in getting an accurate 
idea o f the wave functions of electrons in orywals. Non-empirical calculations 
are obviously formidable. It is hoped that experiments may eventuaUy resolve 
some o f these difficulties.
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