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ABSTRACT  Inclusion and inhomogenerty problems n mfimtesmal clastieity have
been studied by various authors, but such problems in finite elasticity have no thoen attempted
so far, The presont paper is concernod with spherical mhomogeneitics when the elastic
deformution is large. Tho shells considered wre isotropic and meompressible. Tho problem
has been solvod for two shells and later generalised for n shells embedded withmn oach other.
Further, tho outermost and the mnor-most houndaries of the systom have beon subjected
to wniform normul pressures. It will he observed that the final eyuation determining the
patumeter giving the oquilibriuin boundary has weational roots and could be solved numerically
or graphically. Becauso of the complete symmotry with respoct to », the elastic field would
ho tunction of r only  1f W' he the elustic potential donsity at 7, U the complete clastic poten-
tl 7. and 7' the stross components then
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Equation (1) 18 & vory mportant relation between houndary prossuros, boundary displace-
meonts and the predetermmed strain-cnergy of the body  Equation (2) gives the stross fiold
overywhere  For dorvation of these equations ote., please refer to [3].

SPHERICAL INCLUSION

Two shells case

Let a homogencous, isotropic spherical shell made of incompressible material
with its outer and inner radii a,(146).¢ being finite, and a, respectively be
embedded into another similar shell of a different incompressiblo material with
outer and inner radii «, and a, rospectively. The former shell will be called
‘inclusion’ and the latter ‘matrix’.  Further, let the outer boundary of the matrix
be subjected to a uniform normal pressure py and the inner boundary of the
inclusion be subjected to a similar pressure p; in the equilibrium position. It i
further assumed that no rolative slipping takes place hetween the two shells.
Due to misfit hoth the shells will be stressod. Lot 7 bo the inner radius of tho
inclugion and R the outer radivs of matrix in the strained state, similarly
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let @,(1+¢). € finite, be the radius of the common intorface. Let p be the
pressure at the equilibrium boundary Let W,. U, respectively be the elastic
potential per unit volume and the total clastic potential of the inclusion in the
undeformed state and W, . 77, the corresponding, quantities in the case of
the matrix.

From (1), for the inclusion we have
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The incompressibility condition gives
rd—ad — a4 ) (1+-8)3) e (4)
Hence trom cquations (3) and (4)
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The right hand side of the above equation i a known  guanfity say 1.
where

U= 2 0T b agWor)- a(L- 8P W fay(1-1 o).
4
Hone
a3 (L4 P~ (140 p, p)- 1 e (D)

For the matrix in the deformed state the inner boundary is a4(1 | ¢) and the ontor
houndary is B As in the case of inclusion wo shall have

a1 Ley Vp -pg) = M (6)

whore

M- 43,"'" La 3W g1+ o))~ a3 W (R)

Elinunating p from (5) and (6)
; 1 M
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Fla¥(@i—po)+ Mi(14 8T = 0 (7)
This will give tho value of ¢ in terms of known quantitios
8, pypo, I, M

The equilibrium pressure p can also he determined from (5) and (6)
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where ¢ s given by (7).
HOOP STRESS ON THE EQUILIBRIUM BOUNDARY
For the inclusion. at the eyuilibrium boundary, let

EEE
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The Hoop stress a2 - R for inclusion is given by
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Stmilarly, for the matrix @ - | hen ¢
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The pump in hoop stress at the equilibrium boundary is given by
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The ratio of hoop-stress at the equilibrium boundary
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Npecial cases of solid incompressible and rigid inchlusions can bo dodueed trom
() and (6). In both these cases 1t may easily be shown that the cquilibrian
boundary will coincide with the outer boundary of the inclusion, ie. ¢ =4,
which is obvious on physical grounds.  When the matrix is rigid the equilibrium
boundary will again coincide with the inner boundary of the matrix. ic. ¢ = —§6
and the equilibrium pressure s given by (8).  Assuming tho strain energy form
to be that given by lincar clasticity, and assuming the infinitesimal displacements,
it can be casily veritied that ¢ and p as deduced from cquations (7) and (R) are

the same as obtained in [1], [2], [3].

It may be observed that the solutions given above require the knowledge of
nature of the clastic potentials of the materials used for hoth the inclusion and
the matrix.  Mooney [1940} has empirically formulatcd the expression for some
materials like rubber. I is

W o= (I, —8)-|-CI,~3).
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where ¢y and €'y are known constants of the material and 7, (¢ 1.2) are the
strain invariants,

Henee for Mooney materials it may be veritied that
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In tho present, problem for such melusion materials we have
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For the matrix we have
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since
T S S
@ = {31 Fe)P—ap+a N3 @ A, D46’
Finally we have
P Po — Rilly) + km(Ry) e (18)

Substituting for k(R,) Kpu(R;) and simplifving we got
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which gives e and the equilibrium houndary is determined. Further. the equi-
librium pressure is given by

2p — pg= p +Kp (Ry)— Ki(R,) e (18)

n Shells’ ('use

The problem can be «xtended to the caso of # clastic shells embedded within
cach other. Let an isotropic. incompressible, spherical shell 4; with outer and
inner radii «,, a, respectively have another similar shell A, of different material
and outer and inner radii a,(146;), a, respestively embeddoed within it.  Further
let a third shell A, with outer and inner radii «,(14-48,), a; respectively be embedded
in A,. Like this, let the shell 4,,; with outer and inner radii a,(1+4,), ay.y, be
embedded in A4, whose outer and inner radii are @, (14 ,_,), a, respectively
Finally, let the outer and inner radii of 4, be a,_,(1+6,_;), a, respectively it is
assumed that §, are tinite. Lot the outer boundary of 4, be subjected to uniform
compressive prossure p, and the inner boundary of 4, be subjectod to a similar
prossure p;. It is assumed that all the shells aro homogeneous isotropic and made
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of different incompressible materials. Duc to misfits strains will develop in the
system. Let the outer radius of 4, in the deformed state be R and the inner one
of 4, in tho same stato be r, also Jet the equilibirum boundaries of 4, and 4,,,
be a.(14-€,), ¢, being finite and 7 -~ 1T 2, ..., n— 1. Lot the oquilibrium pressures
on the interfaces be p(r - 1,2... . n- 1). The problem gives rise to 2n unknown
quantities, viz., ¢,, pp (r — 1,2, ..., 0 - 1) r and R Which are determined by
the equations connecting the boundary pressures and the strain energy of the «
shells 4, alongwith another st of » cquations giving the incompressibility con-
ditions as shown below

For A, we have from (11)

3 (14-64)? iy (R —a®)py ;; Uit-adWila,(14-6)}--a* W (R)

Qy (ray) (1)
The incompressibility condition gives o, a®  R¥- a3 (116, (1)
Similarly for 4, we have
aP{(+e)f =1y a®{(14 6,)* (1 +6,Pp, 2y {2)
and
(148 P —a2 - a® (1) a¥(] Fep) (2')
For A4,
{1462 = pe- -a%_{(1 +-601)*--(14+-8, 1 PPhppy — Q, e (1)
and from incompressibility condition
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where  Q, --- 4':’ U7, a*Wda (L4~ adp Wdar (L4 €, _4)}

Finally for 4, wo have
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where Q= i;rU,, J-a3, W o (r)- ady W da, ((1-4c, 4)i.

This sot ot 2n equations completely determines the 2n unknowns e, py
(r=1,2....n-1), r and R,
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