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ABSTRACT. In this papor tlin problem of n olaatio spherical and tubular shells mis
fitting in oacli other is consiilrreil. Linear simulta-noous equations doterrnininK the equili- 
li r im n boundarios have been formulated, the solution of wliicli gives the values of the para
meters di^tormining not only the equilibrium configuration but also the stress-strain field and 
the related problems in the stmeture. Results for a particular problem, when the shells are 
3 in numbm*, are given for the case of spherical sholls.

I N T R O D U C T I O N

Oonsidor a spherical shell of outer radius and inner radius r/j, in which a 
eonctuitric shell of outer radius a d l  +  <̂ j) and inner radius is embedded. In  
this la tte r shell another one of outer radius 1 d ^2 ) inner radius is embedded. 
In  this way let a shell of outer radius and inner radius be embedded
into the sluOl of outer radius U f_i(J+^r-i) inner radius This is schem ati
cally sliown in th e  adjoining figure. Eatdi of the are supposed to bti witliin tlie 
elastic lim its. F u rther we sujipose th a t'[n o  relative slipping takes placio and 
(iontinuity of the m aterial is m aintained throughout.

64

Duo to the misfits in the sizes of the sholls stresses develop w ithin the structure. 
D eterm ination of the elastic field and the  equilibrium position form the subject 
m atte r of the paper.

* Christ Church CoUdge> Kanpur, India.
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Such problem s have been studied by M ott and N abarro  (1940), F rankel 
(1946), Jasw on and B hargava (1961), B liargava and K adhakrishna (communi
cated) bu t in each case there was one single solid m aterial inside. In a nH'ent 
paper B hargava and Pande (1963), have considered hollow inclusions. This paper 
generalises the  above case in as mucli as tlie inner m aterials are hollow and are 
more in num ber. This problem is technically im portan t as i t  is useful when 
th e  boundaries are reinforced. The problem has been solved by Energy M ethod 
suggested by one of the  au thors Bhargava (1963). This consists in taking an 
a rb itra ry , physically consistent equilibrium position and finding the  energy in 
the  m aterial. T h a t position will give the tuue equilibrium boundary which 
minimises the  energy.

F o r ease of exposition we nanu^ the shells a i follows : Tlu*. sliell vliosi* outer 
and inner radii are -i) respectively be nam ed A^. J t  may be
noted th a t  f<jr the outerm ost shell the outer radius is i.e. — 0.

On physical grounds th e  interfa(H> both  in the (jase of sj>herical as well as 
tubu lar shells will be concentric spherical or tubular. Wo th u s tak(? tin* common 
boundary o f -4,. and Aj.^  ̂ to  be 1 Cj), We find tlu ' energy in the nuuUum con
sisting of all the  shells. W(  ̂ first give briefly the  case for spherical shells.

{Spherical shells : Each shell will bo under uniform  lum nal pressure dm^ to 
the shells above and below it. I t  is known th a t  for such a case, the normal, hoop 
and  shear stresses p̂ j,, pgg and p^g are respectively of the form

= ^ - - 2 ^ 3 + ^ ’ ( 1 )

The radial and transverse displacements are

■ ^ roHpe(;tively. (2)

The radial, hoop and shear strains will respectively be

r , l >  C D
4:/ir̂  *ik

and — 0 (3)

jii and  K  being the shear and bulk moduli of th e  m aterial. Lot pr-i  ^ r - i  bo 
the  shear and bulk moduli for Af ,

As the transverse displacem ents are zero throughout we w rite Uf for the 
radial displacem ent. Lot the  radial displacem ents for the outer and inncT 
boundaries of respectively be

Uq ^  e,._j) and w, =  a/Sf.



On substituting these values in (2) and solving for C  and D  we get 

for the shell Af .

The to tal meeliauieal encTgy of the shell A f  is given by

^  i  J ^{PrT^rr+2p„eJ^nr^dr-  J J J F ^ v -  U f d c r  
iif V  n

wluTo the tlm;c^ term s of the rigiit member of th is e(|uation give energy due to 
elastic for(*es. body fon?es and th(» forces on the  boundary. B u t tliore btjing no 
body or surface forces, th e  last two term s will contribute nothing. H ence on 
substituting for p̂ ,̂ aiul and integrating we get tlie energy for as
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Wr -- '2n{< 1- f . 3 \

I t  m ay be noted th a t  for A^ and Â  ̂ the  expressions for energy would not be 
symmetrica] to  A^, They would actually  be

247r/y„fco«i»(uo‘̂ -a i3 )  ̂  ̂ i r   ̂ v»

n
The energy for the  whole*, systcun would be If  — S  If y.

r-a

The true  values of are those whicli minimise the value of If . By the  known 
theorem  the  extrem e values of If  are obtained by solving d W ^  0 (r == 1 ,2 , 
... a —1). On simplifying wo obtain the  following set of equations for determ ining
Cf.

{ B . + a ^ W y : ^ - ( B ,  -|- cl/ B , + B . , +  a ^ ^ B ,) f :,+  (B ^ -{

(i^3-[ (B ^ -f~ -1 • B ^  (t^ B ^ e.j -̂)■-

=  (Bg -f-

(Bgr-a4 “̂ ( B 2 r - 3 “1“^ ^ A' Ĵ 2i -1 ”1" ̂ r̂ B2r)f r̂

... (3b)



Mastic Mi^Uing 8%dts 6 9 5

(•®Jn-5 «-4)®n-J i^2n-S  'f'®n-l*-®an-4 4" -®n^)®n-l

~  (■®2n-6"l"®n-**®n-l*-®jn-4)*^n-2—^n'^n—1

where J5' =  B ■
«r*-«er+i* ’

« r* -« r+ i*  ’ " •

Note th a t all are constants.

These equations can be mon'. systematically p i t  in the matrix form

he. =- M S

where e is a column vector {ê , e:̂ ......... ^n-i}? ^  »  a symmetric matrix of order
(n—1)X(W”~1).

— > 0 0 ... 0 0

(5i+ai®«2®^2) —(B^+n2^B2+BQ+n2^B^)(B^+a^^aj^^B^) 0 0 ... 0 0

0 (i^3+a2W ^4) ~(JB3+«3®^4 +  -S6 +  «8®-®e) (-£̂ 6+«3®«4®-̂ e)— Q

0 0 0 0 — (i^2« -7 +  ̂ n-2^^2n-e4- •^2ti-6 +  ̂ n-2®-^2n-4)

(^2«-6+«n-2^an-l®-San>4)

0 0 0 0 ... (^2«-64-^*n-2*®n-l^-^2n-4) (■®2n-6"f‘̂ *«-i®-̂ 2»i-4“l"'®« )

The determinant of the above matrix is called the continuant m atrix .lt is compara
tively easy to find a recurring inversion formula for such a matrix.

M  is the m atrix of order (n—1)(ti—1)

^(B^+a^^B^) 0 0

(J5i+ai®aa®i^2) -{B^+a^^B^)  0

0 -(B^+^s^Bf^) ...

0

0

0

0

0

0 0 0 (~S2«-6"l"^*n-2^*n-i-B2«-4) — _

d is the column vector <̂ a...
6
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The value of e will be

where is the inverse m atrix  of L ,

This gives the values of in term s of known quantities.

H aving known Pff,  Pr  ̂ can be found from equation  (1), after finding 
the  values of 6V, Dr from equations (3a). I t  is difficult, in  th e  general case to  
prove the continuity of the norm al stress Prr a t th e  equilibrium  interface. This 
can, however, bo seen indirectly from  the following argum ent. A t the  interface 
of A f  and A f+ i P rr be continuous, we m ust have

a A + X ?

to  th e  first order of approxim ation.

This equation is identical with the sim ultaneous equations obtained above when 
approxim ate values of D n Dr^i are substitu ted . In  fact, the  equation
is the  equation (3b).

Tubular Shells ; For the  tubu lar shells we use th e  same notation  as for the 
spherical shells. In  th is case also each shell would be under uniform norm al 
pressure due to  sim ilar shells above an<l below it. The norm al, hoop and  shear 
stresses in th is case will be

=  -ft =  f> . . .  (1)

radial and  transverse displacem ents udll be

(2)

and, radial, hoop and shear strains will b(̂

V D
2fir 2(A-f //)

C  , D
2//r 2(A-f//)

: — 0

where A and //. are th e  L am e’s constants. For Ar  le t those constants be Xr^v

As th roughout th e  transverse^ displacem ents are zero we w rite for the  radial 
iisp lacem ent for A,.. L et -i) be the  displacem ent a t  the
Diiter boundary and  ui =  UriSr the  ̂ corresponding displacem ent a t  the  inner boun- 
Isry.

S ubstitu ting  these values of Uq, Ui in (2) and solving for CV and Dr we get

r — -------------------s------q"' CTjin ^^r — ----- «" n --------- -----
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For th« outerm ost and  th e  innerm ost shells these constants are evaluated from 
the equations obtained by equating  to  zero the  norm al preasuro a t the outer 
boundary in the  first case and  inner boundary  in the second case and equating the 
displacem ents to  ajej, a t  the  inner and a t the  outer boundary.

Thus th e  elastic stra in  energy for A f  will be 

1
=  » /  {Pn err+lW w )^” r dr =  »r(a,_j*-o,*)

^ Of

r I ;_____ ___
L 2S|Ar-i +  +/A

Also elastic stra in  energy for and A „  will be

V  =  27T/̂ o(Ao^/^o)ai^(gQ^ Oi )̂  ̂ 2 !
*f Ao)̂ 'o*

A *  ___  1
r-i) J

and V _  2 w/<„_i(A„_i+/X„_,)o„_i*(«Vi - 0  . .. \t
~  — u---- a--------------- -Tu---- WT------ '  ■

The to ta l elastic stra in  energy of the system , therefore, will be

V = ^ i V r

W e know th a t  the  to ta l m echanical energy for th e  system

W = ^ V -
V Q

where the second and th ird  integrals signify the energy due to body forces 
and the  boundary forces f f  of th e  system . In  th is case since both Ff, and /^  are 
zero we have, therefore.

F

The tru e  values of €f as in the  spherical shell case will minimise W.

Thus equating dWjde^ =  0 and simplifying we get the  following set of equa
tions.

{B\ —(B\-^€i,^B\-\"B'2' - \ - d ^ B * 4)63
= (B\ -|- a-jl̂ a^B' —(B*
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— (-® 2r-3^r^-®  2f - 2H“ - ® 2 f ) ^ V  
— 2>'-2‘4“ r̂***® 2#-l)^f

(•®̂ 2n-5“f"^^n-2^^n-l-® 2n-4)^n-2 (-® 2n-5^”®̂ *«-X■® 211-4H"-® n)^w-l

(*® 2n-6"H®*n-2^^n~l^ 2or-4)*̂ n-2 n^w-1

2(Ay^i+/^f-i) ,
” /^„_iO*n-.i+(A„_i+//„_i)a*

Wo give below the results for the particular case when there are only 3 shells in 
tho spherical case.

Those equations giving tho values of e, and are the following :

(•Bi'l"®i*<*2®J82)e2—(5^+02* JB2+5s')c2 =  

where

D /} _  12/tofe2ĝ ®(a2® ô ®) , j n  _  .

4/toai»+3*oao* ’  ̂ a ^ —a ^

B  =  ^^1
* Oj*—«2* * 4/tga2*4-3fcga8®

Solving these equations and substituting the values of B ’s wo have 

f  /  « i® (4 /“ i« a ® + 3 f c i« i * )  / a i» ( 4 / t i« 2 ® + 3 A ; i« i* )  , \

L\ (ai®—<*2®)* ' tti®—«a* 4/<2a2*+3i:208® /

__®i®a2®(4/^j “| - 3 Ajj) ^ \  f t ___  ^s®) ^  1

(<h®—®8®)* ■'  ̂ 4/*g02®+3A:2a8® .®J

~  r  f 4 /to *„ a g *(a o ® — « i® ) 4  ̂ a i ' ’(4 /t ,« g *4 -3 A :ia x ® H  { a ^ { 4 t i i - i a ^ + % k i d ^ )  ^  

l \  4 / t o O i » + 3 W  ■ O i S - V  J l  O g » - a 2 »  ^

4 . /̂*afcaag*K*—«3®) \  _. 1
4/tja,*+3*ga,» /  ‘ J '



r I —Oî ) , <̂ ^̂ (4/f̂ ftĝ -|-3Â â *)) »
L 4/<jaj*+3i:jOs® V Oi®—flu® i *
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_  4/tofcflgi®(g(,®-ai®) I <h®ttg®(4/t,+3fc,) 1 . ]
4/to«i®+3fco*'o® ' ■ i

e* =
r f 4 M A ^ ® 3 0 i5  4 . ai®(4/tia2®-f3^ i< ] | f  < ( 4/(,«2®+3 fc,tfi®) ,
Ll 4/f„ai®+3io« ai®-flg® J1  ai®-«a®

+
4y«2^a®(flU^3®)| _«iV(4/ti+^^-i)®’
4/«2az®-H3ijjfl.3» i (ai®«2®)® J’
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