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ELASTIC MISFITTING SHELLS
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ABSTRACT. 1n this paper the problem of n olastic spherical and tubular shells mis-
fittmg m each othor is considered.  Linear simultanocous equations determining the equili-
brium houndaries have heen formulated, the solution of which gives the values of the para-
metors determining not only the equilibrium configuration but also the stress-strain field and
tho reluted problems in the structure. Results for a particular problem, when the shells are
3 1in numbor, are given for tho caso of sphericul shells,

INTRODUCTION

Congider a spherical shell of outer radius a, and inner radius «,, in which a
concentric sholl of outer radius «,(1-+4,) and inner radius a, is embedded. In
this Iatter shell another one of outer radius a,(1--8,) and inner radius a, is embedded.
In this way let a shell of outer radius ¢,(1+4,) and inner radius «,,, be embedded
into the shell of outer radius a,_;(1+4,_,) and inner radius @,. This is schemati-
cally shown in the adjoining figure. Each of the &’s are supposed to be within the
olastic limits. Further we suppose that[no relative slipping takes place and
continuity of the material is maintained throughout.

Fig. 1

Due to the misfits in the sizes of the shells strosses develop within the structure.
Determination of the elastic field and the equilibrium position form the subject
matter of the paper.
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Such problems have been studied by Mott and Nabarro (1940), Frankel
(1946), Jaswon and Bhargava (1961), Bhargava and Radhakrishna (communi-
cated) but in each case there was one single solid material inside. In a recent
paper Bhargava and Pande (1963), have considered hollow inclusions. This paper
generalises the above case in as much as the inner materials are hollow and aro
moro in number. This problem is technically important as it is useful when
the boundaries are reinforced. The problem has been solved by Energy Method
suggested by one of the authors Bhargava (1963). This consists in tuking an
arbitrary, physically consistent equilibrium pesition and finding tho energy in
the material. That position will give the true equilibrium boundary which
minimises the energy.

For case of exposition we name the shells ag follows :  The shell whose outer
and inner radii arc a,_y(1-{-& .;) and «, respectively be named 4,. It may be
noted that for the outermost shell the outer radius is e, i.o. Jy = 0.

On physical grounds tho interfuco both in the case of spherical as well as
tubular shells will be concentric spherical or tubular. We thus take the common
houndary of A, and A,,, to be a1l | ¢;). We find the energy in the medium con-
sisting of all the shells. We first give briefly the case for spherical shells.

Spherical shells :  Each shell will be under uniform normal pressure due to
the shells above and below it. Tt is known that for such a case, the normal, hoop
and shear stressos p,,, p,, and p,, are respoctively of tho form

Py = fi-{—D; Pog = —»753 +D, Py == 0. e (1)

The radial and transverse displacements are

c D
T aprt +7¥ K

Uy = 7 Uy =0 respectively. e (2)

The radial, hoop and shear strains will respectively be

¢ D 4

g P S
BT R iy v

A and ey — 0 eee ()

Crr
1 and K being the shear and bulk moduli of the material. Let p,_; and K,_; ho

the shear and bulk moduli for 4,.

As the transverse displacements are zcro throughout we write u, for tho
radial displacemont. Let the radial displacements for the outer and inner
boundaries of 4, respectively be

Uy = —lpy(Bpy—€py) Bnd Uy = arfy.
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On substituting these values in (2) and solving for ¢/ and D we get

& - R L R D, = 3k, it a% (0, —6_n)} (3a)

a®,_ 1 al as,_,—a3,
for the shell 4,.

The total mechanical energy of the shell 4, is given by

Wy = b T (Dt 2.0, Amrdr— [ Fo— 11 Jdo

a,
where the three terms of the right member of this (Aquabmn give energy due to
clastic forees. body forees and the forees on the boundary. But there being no
body or surface forces, the last two terms will contribute nothing. Hence on
substituting for p.. p,,, ¢ and ¢, and integrating wo get the energy for A4, as

2 D2
W, - 2mi{a3, |- d? Cr .._._'__.]
r Wy - [. Ypp_y0®e 0% Sk,

It may be noted that for 4, and 4, the expressions for energy would not be
symmetrical to 4,. They would actually be

W, — 2dmp ey, Hag® - a®) W 2T, ik, 4112:,(0 a1 %)
! Qg3+ 3kt 3 ff W 44,43, 1 Bk, a3,

( 1;—1—67:—1)2'

The energy for the whole system would be W = T W "
7.1

The true values of ¢, are those which minimise the value of W. By the known
theorem the oxtreme values of 7 are obtained by solving 0W/de, — 0 (r =1, 2,
..n—1). Onsimplifying we obtain the following set of equations for determining
Cp
(B'o+By+a,By), — Bi+a*ag?B,)ey = (By-+u,°By)d,
(By-+aPag®)e; —( By a .’ By By+ 8B )e,+ (By+ a3a 2B, )ey
= (ByH @24 ®By)0, —(By-+ 4, B,)d,
(B3 a,%ag®By)e,—(By+ay®By-| By +ay8By)ey-- (By+ay’a* By ey
= (By-+ugba®B,)0,—(Bg+u,*Bg)dy

(Bar—3+dy_1a>Byr_s)€p 1 — (Byr—s +"r°Bsr—2 + By _1+a,5B,,)e,
+(Bgr_y+a,%a; 3Bur)er 1= (Byr_st+a, 13,3 Byr_3)0r_ ) —(Bgr_1-+0y4,°Byy)0,

.. (3b)
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(Ban-s+an—laau-ia'82n—l)cn-a—(an-s +au—1°Bnn-t+Bn')en-1

= (.Bz,,_s+a,,_33a,,_1’Bg,,_‘)6‘,,,2-B,,' n-1

s 12pgkgaagd—ar®) dday,
where By =70 o "N . B, , = .
Speg,3 43k o ad—a,,,3 '
' 3r, v 120 k18 (0,2 —a,3)
B. — t__ ;. B, = -FnafaTnr G " —0y7)
T et e’ 4ftn_yyr+3kn_1a,°

Note that all B, are constants.

These equations can be more systematically plit in the matrix form

Le = Mo
where ¢ is a column vector {¢,, €,, ...... €,_;}, L i a symmetric matrix of ordor
(n—1)X(n—1). :
—(By'+By+a,°B,) (B +a,’a,’B,) . 00 .. 00

(By+a,2a3B,) —(B,+a,2B,+By+a,B,)(Bs-agda?B,) 0 0 ... 0 0
0 (Bs+a5%a4®B,)  —(By+as’By+By+ay®Bg)  (Bs+as’alBg)... 0 0,-

0 0 0 0 —(Ban-1+n-3Bgn_¢+ Boys+y_1*Byn_y)
(Byn-g+n—3°2n1"Bgn_s)

0 0 0 0 ... (Bans+@n2ty1’Byn_g)—(Bon-s+0n°Byno+By')

The determinant of the above matrix is called the continuant matrix.It is compara-
tively casy to find & recurring inversion formula for such a matrix.

M is the matrix of order (n—1)(n—1)

—(By+a,°B,) 0 0 0
(Bl-‘l"alaa’aBg) “-‘(.B3+a26B4) U vee O 0

0 (By+azta,2B,) —(By+as®By) ... 0 0

0 0 0 (Bgn-st+0Pa_g0®a1Ban-e) —Bly _

4 is the column vector {6, &3 ... 641}
(¢
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The value of € will be
€ == L'IM 3

whero L1 is the inverse matrix of L.

This gives the values of ¢, in terms of known quantities.

Having known €, Dyy, Pgq, Prg 081 be found from equation (1), after finding
the values of C,, D, from equations (3a). It is difficult, in the general case to
prove the continuity of the normal stress p,, at the equilibrium interface. This
can, however, be seen indirectly from the following argument. At the interface
of A, and A,,, if p,, is to be continuous, we must have

() C .
&;3(1:: &)3 +Dr = ;:ﬁf_%:;jf%-Dﬂ v e C—CUpy = Dy —Dy),
to the first order of approximation.

This equation is identical with the simultaneous equations obtained above when
approximate values of (', Cs,,, D,, D,,, are substituted. In fact, the equation
is the equation (3b).

Tubular Shells : For the tubular shells we use the same notation as for the
spherical shells. In this case also each shell would be under uniform normal
pressure due to similar shells above and below it. The normal. hoop and shear

stresses in this case will be

o o _Cop
pﬂ"'ﬁ"" H pﬂﬂ"—'ﬁ"{‘ ’ Pro =0 £ (1)

radial and transverse displacements will be

v D s
Ny = — 271; + Q(Ii—F_;t) r; ug=0 e (2)
and, radial, hoop and shear strains will be
¢, D ¢ D
T o F 2w T T T Ay T 0

where A and g are the Lame’s constants. For 4, let those constants be A,_,,

fyy-

As throughout the transversc displacements are zero we write for the radial
displacement u, for A,. Let uy = —ay_y(6,_,—¢, ;) be the displacement at the
nater boundary and #; = «,6, the corresponding displacement at the inner boun-

lary.
Substituting these values of u,, u; in (2) and solving for ¢, and D, we get

24y Uy 20Oy —Ep11-6) — _2Ary - py_g {0 e tay_ ¥(By_16,.4)}
and 1), = 1
a2~ af ’ Ap_yd—ag?

[, =
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For the outermost and the innermost shells these constants are evaluated from
the equations obtained by equating to zero the normal pressure at the outer
boundary in the first case and inner boundary in the second case and equating the
displacements to a,¢,, at the inner and —a,_,(d,_,—¢,_,) at the outer boundary.

Thus the elastic strain energy for 4, will be

Ay
V= é I (Pren+pogeoe)2nr dr = m(a,_,*—a,®)
ar

[ C'z + ¢ D f' ]
2y 1@p_1%ag® A+ ptr_y)

Also elastic strain energy for 4, and A4, will be

= 2mpue(Ao + )8, %(2% — %)

)
fo0:+(Ag+po)at e

V., = 271 (AnrF fn-1)0n1 %0201 —34")

and (Bpy—€p_q)’.
" Un10na®t An_yt flg_1)as? n-1=€n-1)

The total clastic strain energy of the system, therefore, will be
”
V=ZV,
=1

We know that the total mechanical energy for the system
W=V—[[]Fdv—|]fdo
14 Q

where the second and third integrals signify the energy due to body forces F,
and the boundary forces f, of the system. In this case since both F, and f, are
zero we have, therefore.
W=V
The truo values of ¢, as in the spherical shell case will minimise W.
Thus equating W /d¢, = 0 and simplifying we get the following set of equa-
tions.
(B"o+B'1+a,4B' )6, — (B’ +a,%a5*B')e, = (B'y+a,'B'y)d,
(B'y +a,%a,* B *)e, —(B'y 4644 B’y + B’y +ay* B' )6y + (B's+ag’ag’ B' Je,
=(B'1+ a,%as*B';)8,—(B's+0a4'B's)d,
(B's+ay%ay"B' J6g—(B'y+ay'B' -+ B's 1+, B'g)es +(B's+a5’a;' BgJe,
= (B'y+a.’as*B',)8,—(B' ;1044 B';)8,)



598 R. D. Bhargawa and D. Pande

(B greg 01038y _g)ery —(B'grs0,* B'gy_y+ B'ye_y +t,* B g )y
+(B'groy+0,20%., B 3 )6y = (B'yr_3+0%.10,°B "ar—2)0r1
—(B'yr_3+a,5B’y,_,)8,

(B'gn—s+ uzn—zazn—lB '2n—4)€n—2"‘ (B'an—s a"ﬂ—lB'E'n—i +B"p)eny
= (B'gnst a’aﬂ—2a2n-lB’2nr—d).6 =B

B, = _ Hon 8y 1%(30 2""a'l‘z) : Blzr ) __éﬂrarzu“r—1
Hoty*+ (Aot o)as? - at—a®,_,
By = 2Aprtpra), ; B, = 102 _y(0P,_—a%,).
a?,_,—at, 1@ 1+ (Ap_y+ /"n—1)“z,n

We give below the resuits for the particular case when there-are only 3 shells in
the spherical case.

These equations giving the values of €, and ¢, are the following :
(By'+ By +0,°By)e, — (B, +4,°a5’ B,)e, = (By+a,°B,),

(B1+axsaszz)ez"(Bl+a'2°Bz+Bs')€s = (Bl+“13023B2)31 —B,'d,

where

By = 120ken’(a’—a?) . p _ 4males’

om dpa®+3kag ! a—ag® ’
By= —3h_ py = 12mbosdas’—ad)
! a)—ag® ? 4p4058+ 3k,

Solving theso equations and substituting the valuos of B’s wo have

[{ala(4ﬂlaa’+3k1“13) (“18(4/‘1%8‘*‘3"1“13) + 4poka003(agd—asd) )
(a,*—ag®)? a,°—ay’ dp1y0y> -+ 3oy

a1°a4°(4/1,1 +3k1) } & — 4pkq05%(ag® —ag®) ) ]
(@P—ag®)?® J ' aung34 3k’ F

T [{ N I @1’£4ﬂaaa?i3klals)} {a‘s(4ﬂ1'lz’+3k1"1’)
4pug,®+ 3lega® a,°—ay? o’ —ag’

4p,kq0,3 (a2 —ay®) } _ “16%'(4/‘14'3"71)”] )
dpad+3kat | @f—af? ]’
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4/“8’%“2?_(9_2?_‘:1‘33){ ko, (0’ —a,") + uy A+ 3"1“18)} 8y—
4,033kt 4o, 3+ 3k a8—a3 :

_ kg (ay’ ') {ax’a;mmsrcl) } o]
4p10.%+ Bkt a’—ay® '

" =‘{ ok’ —ar’) | a;3<4ma23+3k,af‘>"}’{ o’ 3kar) |
10,3+ 3k A oy’ —ay®

i

4!‘2"2“3(&8‘“%8) _ ‘{1(_@2,6(4,“1 ‘f‘ik 1)
“dp,0,343k,a,% } (a,3a,8) ]
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