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PART Il. SIZE OF THE SCATTERERS

(. S. SANYAL anp G. B. MITRA

INpiaN INsTITeTE 0F TECHNOLOGY,, IKHARAGPU I

(Received Mareh 8, 1061)

ABSTRACT. The variation with the azimuthal angle of seatterig of nmplitude of
olectromagnotic waves seattored by conductimg spheres of sizes (n) comparable and (h) negligr-
blo with respeet to the wave-length has hoen studied. A workable theoretienl exprossion
has been obtained and evaluated by corrving out aumerteal computations  The theoret jen!
exprossions to - he computed contain high order Hankel funetions, Logendre polynonnals
and thewr derivatives numerieal values of which are not given in ordinanily  avmilable tables,
Theso values have been caleulated and used in the numerieal computations.  The resultant
curves show that the conducting sphere with 2 ra/x= 2, where *«’ 15 the radius of the sphore
and ) the wavelength of the cum. waves is the nearest approximation to several atoms as

fur ay seattering bohay jour townrds X-rays 1 concernod,
I INTRODUCTION

Recently. Allen (1955) and Mitra and Sanyal (1960) have studied the seat-
tering of electromagnetic waves in the microwave region by three dimensional
arrays of metallic scatterers.  While Allen (1955) worked with metallic dises as
scatterers, Mitra and Sanyal (1960) used small evlinders for the purpose. Such
seatterers, however, can hardly be used 1o build a true anatogue in the microwave
region for the diffraction of X-rays by crystals.  The scatterers which are meant
to simulate the atoms in the ervstal lattices lack the spherical or near spherieal
symmetry possessed by atoms,  Moreover, the variation of amplitude of elec-
tromagnetic waves scattered hy these scatterers with the azimuthal angle of
scattering should be similar to the atomic seattering factor graphs to make the
analogue serve any useful purpose, It appears obvious that a solid sphere of
dielectric or conducting material and of a proper size should serve the purpose,
more or less, adequately. Hence, it has heen decided to investigate theoretically
the scattering patterns of conducting spheres to find out the proper size whose
scattering pattern will approximate to the atomic seaftering factor graphs.  Sinee
ionic radii of atoms are of the order of X-ray wavelengths, it has been intuitively
felt that the proper size of the diffracting sphere would probably be comparable
to the wavelength used. The case of vanishing sphere-size has also been studied
to investigate the effect of diminishing the sphere-size.

Although the problem of diffraction of electromagnetic waves by spheres and
spheroids has been studied by various authors [Mie. (1908), Blumer (1925, 19264,
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1926b and 1926¢)] investigations of the type envisaged by us have not been
carried out so far. Hence it has been decided to plot the graphs of the ampli-
tude of microwaves scattered by spheres against the azimuthal angle of scattering
for conducting spheres of sizes given by p = 6, p == 2 and p—0 where p = 2na/A,
‘a’ being the radius of the sphere and A the wavelength used. Only conducting
spheres have been considered to render the already formidable numerical
computations somewhat less complicated.

Il. THEORETICAL CONSIDERATIONS

Let a plane electromagnetic wave, propagating in free-space along the z-axis
and polarised linearly along the r-axis, be incident on a perfectly conducting
sphere of radius ‘a’ located at the origin of a spherical co-ordinate system 7, ¢, ¢
as shown in Fig. 1. The scattering process will be such that the resultant electro-
magnetic field satisfies the boundary conditions on the surface of the sphere and
also reduces to a plane wave at a large distance r. The expressions for the scattered
electromagnetic fields have been given by Stratton (1941). Thus for an incident
plane electromagnetic wave expressed as

E; = 1.E, cxpi(fiz - ol)

Hi = 1 (Ey[+/pole) exp i(fz— o),

Z

+

Fig. 1. Conducting sphere of radius ‘a’ located ut the origin of a spherical coordinate system.
1;, 1g, 1, are mutually orthogonal unit vectors at the point P.
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the scattered electric field vector at any point P(r, 0, @) outside the sphere is
o . al 2n+1 - -

Eg = E,exp (—“-)t)Z n W ¥ T) [@Sa ditgn — & b8, ngm] ... (1)

where, E, is the amplitude of the incident electric field

A, the phase constant of the plane wave in free-space — wy/ Joto = 2m[A,,
A, being the free-space wavelength

Mg, the permeability of free-space = 1.257:<10 ¢ H/metre

€g, the permittivity of free-space = 8.854~ 10-12 F/metre

o = 2af, f being the frequency of the incident wave

My, a1 odd vector function

=] Lo p1 (o .
=14 [51—0 RO (fr)PL,, (cos 0) cos ¢ .{

= w P, (cos 0y . ]
T, [b #(f7r) o sin @

Nem AN even veetor function

= 1y [ ’!'4(%;»1) R, (pr)PY, (cos ) cos ¢ ]

T, [ 1 BB} 0P (eos 0)
41, [/?r T o) Y (ns¢]

- 1 HprhaV(Bn)y py . .
—Ts [/1'7‘ Gnd " opn) P, (cos 0) sin ¢ ]

a’, = —jn(p)/h(nn (n

=] 4, ()L, v )]

gnlp) = V@[20)  Juiy(P)

p = 2malA
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S and [, are respeetively Bessel and first kind Hankel functions

each of order n-1

P, (cos 0) is an associated Legendre polynomial.

The theoretical scattering pattern at o very large distance away from the
conducting sphere may now be caleulated from Kq.(1). The form given by Morse
and Feshbach (1953) requires 1o be further simplified for direct computation and
will not be used in this article. Tt is enough for our purpose to consider the varia-
tion of the clectrie field vector aloune. since at a large distance the scattered field
reduces 1o a uniform plane wave.  The simplified asymptotic form of Eq. (1) valid
at a large distance ice. fr _-2= L and v .- - ¢ may be arrived at by noting that

Lingys <1 1, "(fir)—> (---2)21 exp (#fr)

1
Vis

Uoaipr,V(pry 1 (—i)" exp (ifr).

Limpy-sy pr d(fr) pr

Substitution of the limiting values of the above two expressions in Kq.(1) vields
the components of the scattered electric field vector at a large distance as

E.S’r Y

B 'E‘;;"."H(’b exp  ((pr—aol) |

& 2n- 1 \- e P, (cos 0) 4 h,S dP,' (cos 0)]
Lo om(np1) L sin 0 ! do

By, = illy sin ¢ exp I(fir— ot) >

fr
J
2n-+1 ¢ AP, (cos 0) . Pyl (cos 6) 1
- . by ST e (2
Z w(n |-1) '. e At BRI <)

The rate of convergence of the above expressions for the ¢ and ¢ components
of the scattered field depends largely upon the convergence of «,* and b,% for suc-
cessively increasing values of n.  For values of p large compared to unity, both
the terms inside the square brackets of Eq.(2) converge very slowly and the
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summation has to be carried out over a large value of #. In the special case
when p is finite but very much less than unity, a,% and 6,5 can be expanded in
powers of p giving to the first order of approximation

b, S = — 3 ip? for n—=l1
= 0 for nw>1
8 L.s
apt ==y for =1
3
~ 0 for 7 >1

Substitution of these values of @, and b,% in Eq. (2) yields the scattered fields in

the far zone due to a finite but very small conducting sphere as

. 1 E, cos . .
Eg= ,"" ;Jf;‘ ? 301 2cos 0) exp i(fir-- o)
D2 o8
—— ]{Z\“z:.“s P a1 2co8 0) exp i(fr—ot)
By, = 1) #, ;;;1 ¢ PP(2—cos 0) exp i(fir—ot)
22l g
_ =7 11‘/{’2;:[" ¢ a3(2—cos ) exp i(fir— ot) 3)

M. NUMERICAL COMPUTATION

To study the nature of the variation of the scattered field with the polar
angle 0, the summation in Eq. (2) has to be performed over a sufficiently large
value of n.  In this article » has been so chosen that the numerical result may be
correct to, at least, the third decimal place. Numerical computation for only
Eg, and that too for three values of p, (i) p <2< 71 ie, a <2< A, (i) p = 2ie.,
a = AJm and (iii) p — 6 i.c., @ ~ A has been carried out, since these results are
singificant enough to indicate the general nature of variation of the scattered
fields with ¢ and also to show the effect of the radius of the sphere on the
scattoring pattern. The first case e.g. p < -1 has been calculated using Kq. (3)
and the other two cases by using Kqg. (2).

Calculation of the coefficients @, and 5,% in Eq.(2) requires tables of j, and
h,V functions and their derivatives.  Since these tables are not available the

coofficients were obtained as follows :

anS = —- Jn(p) _'_In-u((’)
n ’l’n(l)(p Hﬂ *.*(1)([))
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= g ey ] || & P10 ]

e IO AT milP) = Tininai(p)]
Hn 1 ;m(p)‘}‘PlH(u— 14 lm(P)—H(ﬂHH im(/’)]
The Hankel function H,(V itself was computed from the formuls
HW () = [J_y(2)—J (x) exp (—vmi)]/[i sin var]
and the tables for J, and J_, as given by Watson (1922),
Again the numerical computation of Eq.(2) requires the use of the tables of
P, (cos ) and its derivate for different values of n. Sinee these tables also are
not available for large u, their values were computed and tabulated for the value
of the order # up to 10 hy using the recurrence relations :
Pyyy! (cos 0) = (20 1) cos 6 P! (cos 0) =(n-+1)Py_! (cos 0)]/n
d [d6) P2 (cow 0)] = [nPy" (cos 0)--(n+1) cos 0 P, (cos (6)]/sin O
from the lower order polynomials given by Jahnke and Emde (1943).
94.(2) can now be evaluated term by term for successively increasing

values of n and the summation obtained.
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Fig. 2, Scattering patterns of conducting spheres of several sizes (Curve 1, p = 2.0, Curve
2, P = 6.0 and Curve 3, P very small).
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IV. DISCUSSIONS

The theoretical scattering patterns for conducting spheres as computed for
the three cases mentioned before are plotted graphiocally in Fig. 2. Since for
cach case the relative variation of the scattered field amplitude is of interest, the
maximum value of the amplitude has been taken to be equal to 1.00. The
scattering patterns show that for the cases when the radius of the sphere is com-
parable to A the amplitude gradually decreases with the scattering angle 6. For
p = 6, the curve rapidly decreases from a maximum at # = 0” to a minimum
at 0 == 35° after which the curve becomes oscillating. Tor p = 2, the amplitude
falls from a maximum at ¢ = 0° almost exponentially till ¥ — 135" when there
is & tendency to rise rather slowly . The curve for p—0 shows that the scattered
amplitude gradually increases with 6. Thus, the sphere with p — 2 is found to
behave, of the three cases considered, in a way nearest to that of atoms as far
as the scattering curve is concerned. Fig. 3 shows the variations of amplitude of
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X-rays scattered hy atoms of copper, aluminium and carbon (James and Brinedly,
1931) and for e.m. waves for a conducting sphere with p = 2. It is observed
that the nature of all these curves agree to a large extent. Prehaps better agree-
ment can be achieved with values of p which are near to but not exactly equal
to 2 or perhaps spheres with different dielectric constants will give hetter
agreement. These cases have not heen investigated by us as yet. However, we
may safely conclude that with conducting spheres, p must have a value very
nearly equal to 2 so that the atoms are adequately simulated as far as scattering

hehaviour is concerned.
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