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ABSTRACT. Dynamics of an clastic-plastic string struck by an inelastic transverso
load, has been worked out mn this paper following the woll known operational method due
to Heaviside. The mmportance of this paper 18 that unliko the case of an ordinary flexiblo
string the volocities of the transverse wave motion at different points on both sides of tho
struck-point of tho olastic-plastic string, depend mamly on the strains at the corresponding
ponts 1n the two portions of the string. Tho study of the dmplacements and prosrure at
the struck point due to elastic-plastic wave generation in tho string 18 the mamm feature
of the problem, published 1 two dmtmet casos 1 and 11,

In case I, tho displacement and prossure have been obtamoed when the string is
struck at the middle point and in case IL the general expression for displacemont of the
string 18 found whoen it I8 struck near one end.

TNTRODUCTION

The Dynamice of vibration of string excited by transverse impact have been
workod out by & number of workers. The new idea included in the theory of the
pregent topic is that, uniike the care of an ordinary flexible string. the velocities
due to transverse wave propagation at different point~ on beth sides of the struck
point of the string depend oa unknown functions of straine at the corresponding
points. A second important assumption, in this paper, ie that the tension of the
string is known non-linear function of strain but does not depend upon the strain
rate. The useful contributions of these assumptions are mainly, the strains, the
veleeities of transvarse waves and their gradients are different from point to
point on both sides of the struck peint of the string. In fact, the changes in the
velocity-gradients at pomnts being assumed to be different unknown functions of
strains, being in the idea of elastic-plastic wave generation in the string
vibrating under transverse inpact.

Tho planc motion of the struck-string (Ghosh, 1938) is studied by mcans of
the equation of motion,

d? d (T dy
g AL - o
The complete dynamics of the present problem have heen rtudied using the power-
ful operational method due to Heaviside, and the results obtained after suit-
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able approximation, agrce well with those derived in the case f an ordinary
flexible string.

EXPLANATION OF THE

l = Length of the string = a | b
@ = Shorter segment of the string.
b =: Longer segment of the string.

s = Variable measured along length of the string fixed at s = 0 and s = [
t =- Variable time.

SYMBOLS UBSED

# = Displacement of any point at any #me /.

¥, = Displacement of any point, in 0 < # < «.

yy — Displacement «f any point. in @ <e < I.

¥a = Displacement of the struck point, # = «.

p — Linear density of the string. ‘

m = Mass of the hammer.

T = Tension of the string, a known function of strain,
€ == Variable Strain at any point of the string.

¢,(€) = Velocity of transverse wave motion of the string in the portion
08 <.
¢.(€) = Velocity of transverso wave motion of the Btring in the portion,
a<s<l
ra(€) = Velocity of transverse wave motion at § = a
6, = 2ajc,
79 —= Veloeity of impact.
t, = t—nl,. Where n —1, 2 3, 4cte.
J = mr,
P = Pressure exerted by the hammer.
D — Operator d/dt.

SOLUTION OF THE PROBLEM

The equation of motion of the Elastic-Plastic string can bea pproximately
written as,

5t -5 (e

iTe y (1.1
Equation (1.1) in the oporational notation is,
g 2 D,
dst (pcty) = c? (pc*y) - (L2)
where,
c? T

= Jise e (13)



582 8. K. Ghosh, Sunil Kumar Banerjee
The solution of (1.2) is,
pcly =4 cosh.c-D &+ B sinh GD 8. o (14)
A, B being constants.
Here the string is clamped and the terminal conditions are, at,
s§=10 y=20
} 2.0)

§ =0y Y = Ya = Cq

The hammer strikes the string at s = a if y be the displacement of the struck
point wo get from (1.4) and (2.0),

sinh~1(~_)- 8
Y= ?Ia(:ﬂ ) (V< s <a) .. (3.0)

17 ginh~=g
(51

, Sinh —? (I—s)

yg=ya(99.) @<s<l) o 31)

°’ sinh= b
Cy
The string which is straight initially, is supposcd to hehave like a loaded
string attached to s = @, excited by an impulse J. The subsequent equation
for the load is given by,

n (e ) (), e

whero the right hand side of (4.0) is the change in the value of (pe?dy/ds) in crossing
the point (8 = a) in the positive direction,

The corresponding pressurc exerted by the hammer is given by the equation,

P= m.‘f;ga o (41)

Now equations (4.0}, (3.0) and (3.1), together with boundary conditions give,

e <o (2] (% ).

s=a ]
~YapPCeD [ coth % +coth%’ ] +DJ ... (5.0)
a

Since the string is elastic-plastic in nature, (de,/ds)sq—(dc,/ds),.., can be taken
as any function of strain say, ¥ (e).
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Equation (5.0) then becomes,

MDY, = —2q pea Y(6)—vapea D[ coth 24 4 ooth L 4Dy 61)
a a
whence we have, Yo = Db, (6.0)
K ﬁ’(l)) 0
whore, F(D) = D*+4 = p { coth P 4 coth 2P 4. 20C a,'f(f.)} e (6.1)
m Cq Ca m
STRING SEMI.INFINITE: HAMMER STRIKES AT
MIDDLE POINT
In this case we put b = «, and equation (6,1) becomes,
Da
F(D) = ?*+qD coth P +r e (7.0)
where qg— 2pca and r = qif(e) .. (1.1)

m

On substituting the exponential values of hyperbolic cotangent in  equation
(7.0) and writing I); - D+oa amd D, -- D -4 the final form of F(D) is,

F(D) =_ _.. D'])'-L__... ‘ _l--!.]:).:-a)(p—.ﬂ)_ (5xp(_- ?,]_)_rf) .]
. - DD, Ca (R.0)
[] - exp (~ZD(I )J J
ca
where, DD, = (D-+a)(D--f) = D*+gD+r .. (8.1)
and —a - f1 are the roots of D2{-qD4-r = 0 e (8.2)
given by, la, B1 = ¥{gt(4*—4r)t} e (83)

The displacement y, of the struck point can now be obtained by the equations
(6.0) and (8.0),

Y = D—,:g; { l——exp(—z—i?-) } []——(B_m%);(il));:é) exp (~ %?a) ]vo e (9.0)
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Expanding multinomially, the right hand side, eqn. (9.0) becomes,

[ _ D _ 2«tpD? -
Ya _‘{ "1'5‘11) Dsz XP( Dea)

[ $at+p)PD? _ 2Aatp)D? -
+ DEDF T DD } exp (200,

_Sla +BPD" _ 8(x | f20° 4 2etpDr }
D,*D,¢, ‘ D18D23< DDy}

oxp (—3D0 )+... ]vo . (9.1)

now writing,

filt) = m)— . (10.1)

filt :(_QI_JE&?'% . (102)
otc.,

fn(t)v(“JrIf:Dl?"i Y .. (10.3)

and remembering that, t, = t—nf, we get,

Yo = S (£, 20 lts) -4 4 5(12) = 2F s(ts),— 8 4(t) S B ()2 slty)A o e (11.0)

Now f',(2). f's(t) cte., can be obtained as follows :

f’l(t)r(&”i‘%) [e-at- gAY e (12.0)

£t = (g*f;)rm——at)e~°‘-(A+ﬂt)e~ﬂ‘] . (121)
v v AST[ 1,34 1 MY,
rot= g [{=g +5 g G et 5 et

+{3 31 4~ 1)ﬂt—ﬂ”"' Jeee ] . (12.2)

and 8o on, where 4 = %j:_%, o and £ being given by (8.3).
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Thus the displacements of the struck point at different intervals of time are,
as follows :

during, 0 <t <O,

roA
Ata

during, O, <t <20,

Yo = f1(t) = le-ot—e-B!] . (13.0)

2eo4?
(@ 14)

similarly during, 2, <t <30,

o= 90 < ¢ < 00)— 2oLyt atyoan—(A pprepn] . (13)

Ya = Ya (g -1 < 20,)

ogd3 Tf 1 342 1 .. |
tarpl{=s % ) @Dt G e

1341 w2
+{y =5y - e ]

(jﬂ‘i‘;j [(A—aty)e=tts— (A + fty)e-Bte] - (13.2)

and so on.

Equations (13.0), (13.1), (13.2) ote. are the oxpressions of the displaccments
of the struck point at differont intervals of time.  These equations together with
equations (3.0) and (3.1) will enable us to dotermino the general displacement of
any point of the elastic-plastic string.

1t is interesting to note in this connoction that if y7(e) = 0 we have from (8.3),
B =0 and the expressions for the displacements of the struck-point at different
intervals of time takes up the following forme :

During, 0<t<b,,
Ya= 7:;(1.4—«') e (14.0)
During, 0, <t < 20,,
Vo= Yal0 <t < 00— 0 [1—(+gt)e-th . (141)
During, 20, <t < 30,,
201,

Yo =Yalls <t <20+ 7, [1—(E-+gly-+gty?)eat) oo (14:2)

Equations (14.0), (14.1) and (14.2) arc the exprossions for the displacements of
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the struck point at different epoch with the above approximations. These are
exactly the same as those derived by Ghose (1938) in the case of an ordinary

floxiblo string.
The pressure at different cpochs exerted by the hammer on the string can be

obtained by means of equations (£.1) and (11.0) as follows :

During, 0 <t <0,
P, = (g:iviir)a [o2e-ot — f2e=Bt | ... (16.0)
During, Oy < t < 20,,
Py P, :’["'jtil, (224 d—atye” o pe—d-prye ™ L (s
During, 2o <t <7 30,

4oyt | . 1 34z 1. a2.2) —al;
Pam Bt e JJJJ‘Z’rI)W'2 [a“ { C oty @At att T }e

, —alz

20 { ;(3A—1-l)a—~oc2!2} e_m-l—a*e

'+'ﬂ2 { :.l-) . _:_'EA‘Z (3/’. 1 [),w éfz } —Bty

<)
-

- Bt — Bty
2pEA—Dp e e ]
MU e A—atde ™ pR—A— pt)e P 15.2
+ (gt —dr)! o324 A—aty)e + 22— A—fty)e 1 ... (15.2)
Here also if we take yr(¢) = 0 the plastic behaviour disappears from the string
and tho different expressions for pressure as stated in (15.0), (15.1) and 15.2)
become quite similar to thore obtained by (3hose (1938) for a floxble string.
STRING SEMI-INFINITE: HAMMER STRIKES NEAR
ONE END
If hammer strikes the olastic-plastic string at s = « which is too small com-

pared to b, and as lim Coth (Db/c;) = 1 (6.0) becomes,
b=

F(D) = D*. | ‘ Pa_ (c th P* 1y ) e . (16.0)
0

Expanding coth(Dufc,) in o power series of Da/c, and retaining torms containing
afc, only, it is found,

F) -:.D‘*( £ ) +#e Dy (’% +r) e (16.1)
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From (6.0) and (16.1) we have,

Ya

where

given by,

whence,

and,

m - D m v,
e e Vg = e -0 (et — P
my (D—g)D—p) " ° " myg—p (e =e")

Mo — 14 PO
m -+ i and ¢, p are the roots of,

2
D Plapy ™ (pgg_“ -{-r) =0
m, my

p=—p—iy
¢ = —ptiv
— _Pla
I’ =
2my

v = [(e'fg*+’f; r) _eicj]‘
my My, 4m?

Thus from (17.0) and (18.0), (18.1) we have,

m v,
my

ar,
Yg — sin vé

v (17.0)

(17.1)

(18.0)
(18.1)

(19)

(19.1)

e (20.0)

Equation (20.0) shows that the dispiacement curve is of the damped oscillatory
nature. Clearly the damping is introduced due to the plastic naturo of the string.
Also the frepuency is affected by tho strain at the corresponding struck-point.
Thus unlike the case of an ordinary flexible string, the frequency of vibration of

the elastic-plastic string is found to increase by an amount % r = 2759 ¥ (€) as
(1} 0

in the frequency equation (19.1) when the string is struck near one end.

In the case of flexible string y(¢) = 0 and the corresponding frequency equa-
equation reduces to that derived by Ghosh (loc. cit).
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