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DISPERSION RELATIONS FOR ELECTRON PLASMA
IN AN EXTERNAL MAGNETIC FIELD
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ABSTRACT. The Boltzmann-Vlasov equation 18 solved by mtograting 1t over tho
charactoristic trajectory of the olectrons. The disporsion laws for parallel and porpondicular
wave propagution are obtained in terms of a function which bolongs to tho fumily of Bossol's
function. Explient expressions for this function has been obtamed for low temporature plusma.

INTRODUCTION

The theory of wave propagation in a plasma placed in an external magnetic
field has heen developed by many authorse.g., by Gross (1951). Sitenks and Stepanov
(1957) Bernstein (1958) Allis et al. (1962) and others  Most of these investigations
are concerned with solving the Boltzmann-Viasov kmnetic oquation coupled with
Maxwell's e, field equations.  From the condition of the existence of the 8 nu-
tion of these equations. one obtains the dispersion rolation of the plasma. The
dieloctric coefficient for a magnetic plasma turns out. to ho a tensor whose nine
clements have oxtremely complicated form.  Only in the case of low tomperature
plasma, these elements can he simplifiod to a certain extent.  Howaver, it is pos-
sible to oxpress all the oloments in torms of a single function which makes the
mathematical tasks less involved. This will be done in the presont paper and in
the paper that will be published subsequently.

In this papor wo start by solving the Boltzmann-Vlasov  Kinotic
equation, by integrating it over the characteristic trajectory of the electron.
The plasma will be assumed *eollisionless™ and 10on motions will be noglected.  Wo
shall caleulate the dispersion law for waves propagating (a) parallel. and (b) per-
pendicular, to the magnetic field. In the next paper, we oxtond the calceulation

for an arbitrary dircction of wave propagation.

CHARACTERISTIC INTEGRATION OF BOLTZMANN.
VLASOV EQUATION

The linearised Boltzmann-Vlasov equation for the plasma eloctrons is

W o e Ot g % . (1
(?tln tv (_)!1‘ o (vxHp) - ol (b

where f; is & small perturbation mn the distribution function of the clectrons over
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the steady state distribution f,. E is the electric field in the plasma created due to
f1, and Hy is the externally applied stoady magnetic field. Other quantities
have their usual meaning.

The charactoristic trajectory of the electrons is given by

L v e . d
dT-—-(E—— m——-c-—(vao) &;. e (2)

Lot v,(1), ry7) denote the characteristic velocity and position of the electrons as
a function of the characteristic time 7. and these obey cygns. (2). Replacing r by
r+1,(7), ¢ by vo(7) and ¢ by t-}-7 in eqn. (1), it reduces to the following form :

d ’ ) o
PR @), vr), ) — DB, ) e @)

We choose the initial conditions such that at time ¢ (i.e., 7 = 0), £, (0) — 0 and
v(0) = v, and at ¢t =0, f, = 0. With thesc conditions, we integrate (3) over
7 from 7 == —t to 7 —= 0 and obtain .

e f vien . o
Silr.wv. b o _LE(r-i r(-—71) [—71) PRI dr.

From this equation, by taking Fourier space-transform and Laplace time-transform
of the form

Silk, v, ©) = j’dt [ dkfi(r. v, t)pi(w' “kr) ,
o
we obtain

Lk, v, ©) = Ek, »). ok v, o). .. (4)

= el =m)tint M gr. v (B)
0

where a(k, v, w) S

DISPERSION RELATION
Let us assume that a test particle of charge g, mass M, and moving with a

-
velocity V(f), disturbe the plasma from the steady state. The two Maxwell’s
equations in that caso, are given by :
1 H

vXErt)= — -

¢ at '’ (6a)

o T e [ file, v, t)v dv+ B(r-—rl)V,,(t) ... (6b)

In (Bb), the potition r, of the test particle is exactly given by the Dirac’s §-function.

_1 JE 47're
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We take Fourier-Laplace transform of eqns. (6) ax before. Then eliminating
the two quantities H and f,, from the resulting equations and egn. (4), we obtain
an equation for the eloctric field in the plasma :

( k2— w? Ek k-E . 4meo)
) Ek o)—tk - E) ki “met J AVVE (K o)k, v, )

—
) t‘j 4mql’, 7)

g

where T .?0 Vylt)eteritowt gy (8)
[\}

It we define a matrix

< i
A, - ( B O ) Siy— kil 2 FTEC [y 0, (k. v, o),

me*

where tho subscripts ¢, — x, y,z and
0,y =0, for 7 :4j
=1, for i —j.
then eqn. (7) becomes

AyE; =i Z’ 4nq 1,. (10)

The condition for vanishing of the determinent of the matrix 4;; gives the dispor-
gion relation

det[A4;] = 0. e (I1)
Wo take the magnotic ticld H,, along the positive z-direction of cylindrical co-
ordinates, and write

k =k, {k,

v = V-V, o (12)
where the subscripts z and p denote components along and at right angles to the
magnotic field. Then solving eqns. (2) we get an expression for the characteristic
path of the electrons in plasma;

re(7)
= e afsin (0 ,7)—sin O)]— e alcos (By-+ er)—cor O] +-e,0,7. ... (13)
Here, the e’s are three unit vectors along the coordinato axos, 6, is the azimuthal

angle of v, and

a="
We

w0, = o . (14)
me
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are respectively the Larmor radius and cyclotron frequency of electrons.
DISPERSION LAW FOR PARALLEL PROPAGATION
For propagation parallel to H,, woe set k, = 0. Using (13), wo get
k:r(—7) = ~-k,0,rt. ... (18)

The steady state distribution function f is taken to be Maxwellian :

fo = nmp2nTprexp (= 2 (o103 ). e (16)

whore n, is the number of electrons per c.c., and the plasma temperature 7' is in
orgs.
- . 4re? ey
Writing I, =1 B §dve, Q; .. {17
me

and noticing that the characteristic velocity is given by

V(T) = €., cOR(0y-+ weT)+ eyt rin(fy+ w,T)-|-e,n,. ... (18a)
while the random thermal velocity is

v = e, cos y-+e, v, sin Oy+e, v,. ... (18b)

we can evaluate the various integrals I,; given by (17) in a quite straight forward
manner, using eqns. (5), (15), (16) and (18). The result is

Tpp== Iy =1y, = 1y == 0. e (19)
2 +o ] ]
I = oy — 1 e — (01! &_) d IVY N [ R - —_—— ]
" w ! 2c2 f_m " 0(12) szz" (m"' (’)c) ! kzvz_‘(m‘{‘ mc) ’
(20)
2oy [ 1 1
Iy« —I,—=I~i 9% [ d.F [________*_ ___]
i vr 2 n .[ - v:Fo(0) b, (0—w,) by, —{(0 o)
(21)
and
+
I — I = — Wy m "wdvzvfﬁ",(v;) 29
== ¢ T ky-w . (22)

In theso equations the quantity F(v,) is given by
Fy(v;) = (m[2nT) exp (—mv?/2T), o (23)
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and w, is the plasma froquency
oy = (4me2nyfm):, e (24)

Using eqn. (9) and eqns.. (19) to (22) the dispersion law (11) gives rise to the foilow-
ing rclations for the three uncoupled waves .

w? . ’

o k=0 ... (25)

for longitudinal plasma waves. and

k2 — 2;0;“ 1 4il, =0 .. (268)
, w? . :
k?— & FI,—il, =0, .. (26b)

for transverse circularly polarised e.m  waves,

The path of integration in the o, -plane of the integrals in (20) to (22) can bo
proscribed by giving a small imaginary part to o and then doforming the contour
arround the pole (See for ex., Stix 1962). Tt ix then possible Lo wirte the following
expression for I;+4J, valid for all

Feo
Tepiy= p [ Faltdde 7 (emee ) . (27)

o) — )
—P 4 ¢
v, .

The principal value part, denoted by P can be casily evaluated and one obtained
from egn. (26a),

k2 — o —- -

Ao - ) 1, 3/2:- (- 03)? )
AR v T 202PogAl)

] D — 0y
+ ;c" woptFy ( © i ) =0 . (28)
In (28), 5 = ck,/w is the plasma refractive index. Ap = (T'/m)w, is the Debye
length, and ¢ is confluent hypergeometric function, Erdelyi (1953). Writing
© = w,+im; With ©, << o, in eqn. (28), and separating the real and imaginary
parts we obtain

21 _ __c""((-r—_(gc) /9. 7762(2:*_0{5)3_ , .. (29
R UL L= v ) !
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and

e A oL ). e (30)

Egns. (29) and (30) give the dispersion law and damping decrement for the cir-
cularly polarised mode (26a). Thoese relations were carlier obtained by Pradhan
(1957) by a different method  For low temperature plasma, Ay is small, so that
one can use the asymptotic expansion of ¢ in (29). If we keep terms only up

to first order in Ax? (ie. first order in T'), we ohtain the following expression for
the refractive index of the mode (26a).

e [1— @’ ] [[1 oplApe ] ... (81
v [ o(w—0g) + (o - we)? @)
The two other modes, (25) and (26b) can he similarly troated.

DISPERSION LAW FOR PERPENDICULAR PROPAGATION

In this case wo set k, = 0. and without any loss of generality we can assume
that %, = 0. 8o that k =k, == k,. Using eqn. (13) the quantity k-r{—7) is
then given by,

k- 1(—7) = —2ak, sin (’;J cos (ﬁ(,— ©cT ) o (32)

[y
P 2

Using (32) and (18), the three components of Q of equ. (5) can be written down in
the following form :

Qz = 20, [ o(1?) j“;iwr—-iA cos (Do—?—‘;— >ms (Ay— e d)dl, e (33a)
o

Q, = 20,1 (v?) F,,}'W—M con (00—- 7(.:2(1 ) sin (7y— w,)dt, cr (33D)
o

Q, = 20,1, (v?) feiwi—iA coR (99— -“;;l )df, eee (330)
0

where prime denotee differentiation w.r.t. argument, and

A=2 ko, sin o
¢ o

Eqns. (33) together with eqn. (17) will give us the various integrals I;; needed to
evaluate the elements 4;;. We shall briefly indicate how this can be done for the
case of I,,. The remaining integrals can be evaluated in the samo manner,
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From oquns. (17) and (33a), the integral T, can be written down as fullows :

I n ( m ) m+Jg° P 21;, v,2 fd s — 27;, w2
ez TN |- e V¥, e
207/ T 2w 2 27
2 o el )
C 9, —
[dOycos 0, [dte twt—id cos {To™ 2 s (B,— ).
0 0

The integral over », is straightforward. We integrate over 0, first and then over

vp. These are standard integrals and by quite straight forward manner one
obtains :

R © Vi T B a0 } .
A z[ ot otz 5 | S6) .. (34)
where

on
8,(z) — [ eivi+zcost g, . (35)

0
V_—._._i) A ]f.’.'i?, soe (36)

s M2

The expression (34) for I, can be further simplified in the following way : Writing

the function Sv(z) transfornys into the form

2T
Sv(z) - (1-} e2arvi ;4?41”'54‘ ) J‘ evt+z cos 1 df.

At all points in the complex v-plane, except where v = intogers the infinite series
on the r.h.s. can be replaced by 1/(1—c¢27r1), so that 8,(z) bocomes

8,z) = T M,(2), . (3)
sin vor
where
M, (z) = 1 fre' 2 CORt aon g df ... (38)
T 0

The function M,(z) reduces to I,(—z), i.e. modified Bessol’s function of the first
kind, whenever v = integers. Otherwise, it is a distinct function and bears the
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same relation to /,( 2), as Anger functions do to ordinary Bessel functions
(Watson 1952).  The function M (z) has the following recurrence relations :

M_,(z) — M (2).
M, \(2)+M,_y(z) = —2M'(2).

2 . 2
=~ e sinmy--=2¥ M. (2). ... {(39)
z 2

M, y(2)— M ,44(2)

Expressimg the functions S,(z) in terms of M (z), and using eqn. (39), one can reduce
I, to the following simple form .

Lo = 92 Y l1tives 8,2)]. e (40)
¢ z

In a similar manner we deduce

2
Iy — L+i “% (2w) ? 28,2), e (41)
¢ az

I . —-i (v)I,2 ((:-Zq (4.)
2z 2 -—{'2—» v K ,,(z)). “ee .4)
L, « Ty = — 9 0 (282 . (43)

ki e o2 9z (AL

and

lo=1,=1,=1,=0. .. (44)

We thus notice that if expressed in terms of the function e-% S,(z), the formidable
looking integrals [, roduce to particularly simple expression. The dispersion
relation (11) in this case has the following form :

2
{"’ :‘,"} +I.r.z [xy 0 \
1 k-9 41 0 =0
yr ] c? w .
. r
0 0 k22— o -+ IzzJ

We shall conclude the calculation in this paper by giving the explicit expres-
sion of I, etc. for low temperature plasma. When 7' is small, the quantity 2
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given by eqn. (36) can be taken as less than unity. Honce, to a first approxi-
mation we can expand the.quantity ¢—2 8¢ which occurs in thoe oxpression for M,
(2) in powers of z and integrate term by term to obtam an expression for 3 (z) and
hence that of 8,(z). We also expand. e=% = 11—z, Using these result is eqn.
(40) [r in (34) along with eqn. (39)], and keeping only terms upto the firet power
of z (i.c. first order in 7'), we obtain

- 4

] ”m,,‘l[ 1 RYY
=g 7 Q- (1—p2)

¥

where f— I = e
v [ .

In a similar manner we deduce

_mp? [ 8 14872
T ="0 [ I—p2 +=h (144501 — ) 1

2

. (o)],“! 73/2)2
e =& [ T+ 1—p2 ]

c2

g wp? ; [ (I 6232 ] '
1,y s Tt P e ey apy

It may be noted that these relations for I,)’s reduce to the usual expression for
zero magnetic field for g4 0 I higher tomperatuwre correction s desired  one
must keep terms upto second order in 2 in the expansion of M (z).

CONCLUSIONS

From the calculation given in the last section we may notice one interesting
powmt. Incase of perpendicular propagation, the problem of tinding the dispersive
hehaviour of magnetic plasma, reduces to discussions of the properties of the fune-
tion M,(z), or 8,(z). This function, as given m (35) or (37) mcludes the plasma
temperature (z) and the ratio of wave frequency to cyclotron frequency (v) as para-
meters.  In comparison to ordinary Bessel functions. we may refer to v and z as
the order and argument respectively of the function S,(z). If we can find suitable
expression for S,(z) for different combinations of small and large v and z, wo shall
be able to solve the problem completely.
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