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ABSTRACT. The laitice encrgies and obher properties of ionic crystals have been
studied on the basis of a Lonnard-Jones (12 : 6) potential form and tho necessary equations
derived. Experimental dats for the interionic distances and lattice enorgies for such erystil
have been used to give tho values of the repulsive forco parameter B and the van der Waals
Paramoter C, which in turn have been utilised to obtain lattice energies, compressibilities
and the coofficient of linear expansion. Satisfactory agreement is found between the oxperi-
mental values and those calculated theoretically.

INTRODUCTION

The treatment of lattice energy and other properties of ionic crystals was
initially given by Born and later developed by Born and Mayer (1932) and others
and has been summarised by Born and Huang (1954). The interaction energy
of an ionic crystal, in addition to Coulomb energy, consists of an attractive and a
repulsive term. The most widely used forms for the repulsive potential have
been either the exponential variation of repulsion interaction with distance or
simply an inverse power variation. Although the results obtained by considering
the Born theory were consistent. there always seemed to be the uncertainty in
tho magnitude of the force index in the inverse form or the exponent in the
exponential form.

In an ionic crystal, the degree of ionization of the constituent atoms is often
such that the electronic configuration of all ions correspond to closed electronic
shells, as in the case of inert gas atoms. The inert gas atoms have closed shells
and the charge distributions are spherically symmetric. We may also expeet
that the charge distribution on cach ion in an ionic erystal may have approxi-
mately spherical symmetry and that they interact according to central force law.
Thus, it seems reasonable to assume that ions of an ionic crystal are of the same
electronic structure as an inert gas, possess overlap energy (and van der Waals
energy), following a law with the same interionic distance variation as for two-
inert gas atoms, that is, with the same force indices but with different potential
parameters.

Many of the properties of gases and liquids have been calculated and explained
in terms of a commonly used interaction energy function, such as Lennard-Jones

*A preliminary note on the subject has appeared in Ind. J. Phys. 1961, 86, 596.
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(12 : 6) potential. This potential is strictly true for the interaction of spherically
symmictric atoms and molecules. It is therefore possible to deseribe a number
of properties of ionic erystals on a common basis with the help of this potential
in conjunction with the term for Coulomb energy. This, thus affords a unified
approach for evaluating and interpreting the properties of ionic crystals as well
as the knowledge about the interaction forces and it is reasonable to assume
that such an analysis will achieve considerable success. In the present paper, we
have used the Lennard-Jones (12 : 6) form representing the van der Waals cnergy
and the overlap energy. The inclusion of van der Waals cnergy makes the law
applicable more satisfactorily for heavier compounds.

The interionic energies in salt crystals of heavier elements may be assumed to
be of the form

¢(r) = A(r)+B(r) e (1)
in which
A(r) = attractive potential
B(r) = repulsive potential
[f we take Lennard-Jones (12 : 6) form in conjunction with the electrostatic

energy term, we get the value of A(r) and B(r) as

] (%
Ar)=— o€ 0 2)

B

B(r)

o~

(3)

where a is Madelung's constant (1.7476 for NaCl type, and 1.7626 for the CsCl
type) which is characteristic of the type of crystal structure and is independent
of the dimensions of the lattice, e is the electronic charge (¢ == 4.803 x 10-10 e.s.u.),
7 is the interionic distance, (! is the van der Waals constant and B is the repulsive
parameter which is caleulable.

We have taken no account of the overlap potentials between other than

nearest neighbours. Born and Huang (1954) have shown that the theoretical
cstimates are altered on this account by well under 1 per cent.

Cohesive energies for the ionic crystals are between a hundred and thousand
times higher than the rare gas crystals and so the zero point energy is compara-
tively very unimportant for the ionic crystals, still one might take this into account.

If €, is the zero point vibrational cnergy then the energy per cell in an ionic
crystal may be represented as

b =— 18 Coq o )
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In this equation we have not considered the dipole-quadrupole van der Waals
term Dr—8. However for a check we caloulated the effect of this term on lattice
energy and the compressibility and found that forlighter alkali halides, contribution
due to this term is negligibly small. For higher alkali halides, the deviation is
noticeable only in the expression for compressibility, but still is in neighbourhood
of 1—2 percent.  Therefore estimates of 'various properties based on (4) should be
quite accurate. Equation (4) and the associated cxpressions can now be used to
compute the interionic distances, the lattice energies, the repulsive force cons-
tant, the linear cxpansions and the compressibilities and compare them with

experimental determinations as well as with those derived theoretically from
other methods. '

CALCULATION OF POTENTIAL PARAMETERS

The constants in potentials could be assigned values 8o as to give the best
fit for various erystal properties of all the alkali halide lattices in static equilibrium.
But. as these quantities for the static lattices are not directly observable, we can
assume that at finite temperatures the energy of a lattice consists of two parts,
(Hildebrand 1931) one dependent on its volume and the other only on temperature
and cxpress the first and second derivatives of the interaction cnergy in terms
of the directly observable quantities. Thus, at equilibrium at zero pressure and
at the absolute temperature 7', Huggins (1937),

dg(r) _ 3oT 1V ~

o B (V oT )p )
and

*¢(r) _ 9 %

o = o T - )
where

et ()0 2 (H)00), 455 (50,

a1 ) is thermal expansion coefficient and
r

el .
v is the volume of the lattice cell. If » is the molar volume, then v == N~ K3

where S is compressibility, ( }/) (

in which K is a constant that is characteristic of the type of the lattice.

(a) Repulsive parameter B
The potential parameters can be evaluated by using the experimental data
for different crystal properties. Using equations (4) and (5). we get

s-rl(fr LRGN o
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and also from equation (4)

From an analysis of the cxperimental crystal structure data accurate values for
the lattice constant are available, from which using the appropriate structure
relationships for cubic lattices, nearest ncighbour distance r can be obtained.
These observed values of » (Huggins 1937) can be substituted in equation (7) to
determine the constant B, if we have a knowledge of C' from other means. The
second term in the square bracket is only in the nature of a corresponding term in
which experimental values may be used for any selected temperature.  If the ex-
perimental data for another crystal property, viz, the lattice energy is used in con-
junction with the data for », B could also be computed from equation (8). The
values of B 8o obtained from both the methods are tabulated in Table I. Mayer’s

TABLE I

Values of the repulsive parameter B

B x 10t04 B x 10104
Crystal (From eqn. 7) (From cqn. 8)
CsF 72.74 —_
CsCl 510.70 531.6
CsBr 817.70 864.6
CxI 1628.00 1496.0
RbCl 184.10 147.8
RbBr 309.20 275.4
RbI 643.60 627.2
KBr 189.90 141.5
KI 404.60 342.7
Nal 163.50 130.6

(1933) estimates of (' obtained from an analysis of optical data were employed
while using equation (7). For the sake of comparison few crystals of lighter alkali
halides have also been included. It is seen that there is a good agreement in the
values of tho parameter B, obtained by using the value of C from optical data and
that obtained by using the experimental values of the lattice energies.

(b) The van der Waals atiraction parameter C

Values of the lattice energy in conjunction with the experimental values of
r, may be used to determine the attractive parameter C in a similar manner. The
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van der Waal cnergy increases with the size of the ions and is quite appreciable
for crystals of heavier elements. Equations (4) and (5) yield

L i ()% )P ~& |- O

The caleulated €' values from this equation arc given in Table II, where they

TABLE II

Values of the van der Waals parameter C

C x 1080 C % 1060
Crystal (From optical data)*  (From equ. 9)
CsF 495 —_—
CsCl 1590 1766.00
CsBr 2070 2410.00
Csl 2970 2279.00
RbCl 691 97.74
RbBr 898 485.90
RbI 1330 1201.00
KBr 605 —_
KI 924 287.90
Nal 482 159.20

*Mayer (1933)

have been compared with the values estimated by Mayer (1933) from a careful
analysis of optical data. The table shows that there is a fair agreement between
the two values and can be termed satisfactory, especially as the values of the lat-
tice encrgies arc subject to the possible experimental errors of the order of a few
per cent. However, as expected, it may be noticed that the‘deviation are larger
than those in the case of repulsive parameter B. These deviations are due to the
relatively smaller contribution of van der Waals term to the total energy. The
experimental lattice energies are tabulated in Table IIIL
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TABLE III

(lalculated and observed values of crystal cnergies

‘ohesive Energy K in K Cal/mole.
Caleulated Calculated Calculated Calculated

Crystal Experimentul (Prosent Work) (Fowler, 1955)  (Cubicciotti, (Huggins,
1959) 1937)
sk — k2.4 1769 119.2 175.7
CsCl 157.8 156.8 157.3 155.9 153.1
CsBr 152.3 151.6 153.5 151.1 149.6
Csl 145.4 142.9 147.7 143.6 142.5
(141.5)8
RbCl 163.6 167.0 165.7 164.3 162.0
RbBr 158.0 162.6 160.6 157.6 156.1
Rbl 149.7 150.1 153.5 149.1 148.0
KBr 161.2 165.6 166.3 162.7 161.3
KI 152.8 165.1 158.8 153.4 152.4
Nal 166.3 166.8 170.8 165.9 164.3

(H) Huggins (1937)

Thus, both the potential parameters, repulsive constant B and the attractive
constant (! can be estimated purely from the experimental data and can be used
to compute other properties. If we also wish to calculate » theorctically, this
can be done casily from equations (4) and (5) using the values of the potential

parameters and solving the equations for 7 by any convenient method of successive
approximation.

CALCULATION OF CRYSTAL PROPERTIES
(a) Lattice energies :

Evaluation of the potential parameters from thoe selected crystal properties,
affords a means of calculating other properties of the crystals. As both the distance
r and the cnergy ¢(r) have been used to obtain B and C, it would be preferable
to calculate other properties than these to check the suitability of equation
(1). Fortunately, as mentionod earlier, ' can also be obtained separately from the
optical data. Therefore, we can determine theoretically, if we use B as obtained
from equation (7), and the experimental values of the constant C' as obtained from
the optical data. In Table IV , we have given values of the calculated cohesive
energy B where £ =—N¢(r) along with the experimental values. In the table
are also given valucs calculated by Fowler (1955) using an inverse ninth poiver
term for the repulsive energy and by Huggins (1937) using an energy function
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taking into consideration an ¢xponential expression for the repulsive term along
with an additional term for the dipole-quadrupole interaction term. It will bo

TABLE IV

“alculated and observed values of crystal compressibilities

B X108  (har)

Crystal Experimental * Caleulatod Caleulated
(Present work) {Present Work)
(a) - (b) ()
Csl 4.25 (4.25) 3.97 —_
CsCl 5.95 (5.55) 5.53 5.43
CsBr 7.06 (6.28) 6.39 6.16
CsI 8.567 (7.83) 7.44 8.08
Rb(l 6.65 (6.16) 5.45 6.15
RbBr 7.94 (7.38) 6.60 7.05
RbI 9.57 (9.00) 8.57 7.39
KBbr 6.70 (6.45) 5.45 —
KIL 8.54 (8.07) 7.13 7.82
NaI 7.07 (6.21) 4.68 5.49

(a) Cubicciottr (1959).
(b) Using B from equation (7).
(¢) Using B and C from equations (8) and (9) respectively.

seen that the results obtained by us differ very slightly from those obtained by
Huggins (1937) and in some cases are even better. Thus, the estimates of
the cohesive energy based on equation (1) should be quite adequate.

(b) Crystal compressibilities

From the knowledge of B and ', we can derive erystal compressibilities which
can be compared with observed values. Equation (6) can be written as

/i _ 9”FT,IJ
Qa2 B . C <. (10)
( 211218 K- 6T, )

The term F . is of the order of a small correcting term which vanishes at 0°K,
Using experimental values for this term equation (10) enable to be computed uti-
lizing B and C from equation (8) and (9) and also B from (7) and ' from optical
data. In equation (1), the slope of the repulsive term Br—" (n = 12), increases
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rapidly as  diminishes. The effect of this distortion can be corrected, if we replace

d*(r)

in o the expression n(n+1) by n* to conform better with the realistic

overlap cnergy (Fowler 1955). The values of £ thus obtained are given in
Table IV, where they have compared with experimentally observed values of
the crystal compressibilitics. The agreement is satisfactory.

TABLE V

Calenlated and observed values of Coefficient of thermal expansion of crystals

al X 108
Calculated Calculated
Cryastal Experimental (Presont Work) (Born Model)
Nal 48.3 47.99 42.87
KBr 40.0 37.44 43.08
Rb(l 36.0 31.52 41.05
RbBr 38.0 42.61 41.90
(’sCl1 56.0 55.27 56.18

OTHER PROPERTTES OF CRYSTAL

Besides the propertics diseussed in preceding section, many other crystalline
properties can be investigated on the basis of the intcraction energy form of
equation (1), and their caleulated values compared with observation. However,
we consider here only the coefficient of linear expansion.

The thermal expansion of solids can be qualitatively explained as the result
of displacement of the equilibrium positions of the ions due to increase of the ampli-
tude of vibration (Hummel 1950). In view of the influence of the ionic vibration
on thermal expansion of solids attempts werc made by several workers to correlate
this property with vibration characteristics of the ions. An approximate thermo-
dynamic equation for thermal expansion of ionic erystals can be derived and the
calculated values of thermal expansion can be compared with the experimental
results,

The potential energy at a distance r can be written as
B(r) = do(r)-+alr—ry)? v (11)

where @(r) is the energy at the equilibrium distance r,, and

@ = 3 [dzgg) ] . (12)
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Now if ! be the thermal expansion, C, be the specific heat at constant volume,
and v be the frequency of vibration then it can be shown that (Kumar 1959)

1 Co f1ldv
* =" o é v dr) - (13)
‘%
We know that the frequency of vibrat§on of a simple harmonic oscillator is
expressed as ﬂ
a*P(r)/&r®
v=( i ) (14)
where m is the reduced mass of the uscillating ions.
At equilibrium position, r = r,, dg(') = 0 and
r
dv_ 11 (& &9(r) 5
&r = omm 2 (5 ),Mo (%2 )mro (19)

We immediately find out, using ¢ and its derivatives obtained from eqn. (4) in (13),
that

0; ( 176 % 1756 g_,)

ar=fo o N7, e (16)
To ae? C \?2
(u vy 36 ;_8)

Equation (16), thus derived is nevertheless, subject to certain simplifying
assumptions (Kumar 1959). Further, the effect of the polarization of ions has
not been considered. Certain empirical changes can be made to account for this
effect. Increase in thermal expansion due to polarizability of the ion can be parti-
ally accounted for by replacing C, with C,. Also, on account of polarization,
there is an arrangement of charge distributions, and there is some sort of distortion
which accompanies the charge. Empirically the effect of this distortion can be
taken care of if we rewrite our equation (16) as

2
(176 % +756 )
= o g () ()

T (1 4G

17
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the correction factor § is taken to be proportional to polarization P such that
8 = (fxP)

where P is related to the atomic polarizabilities of positive and negative ions in
the usual way. fis given value 0.033 for NaCl type crystals and 0.0456 for CsCl
type crystals. The results are given in Table V, where they have also been com-
pared with the experimental values. A fair agreement is seen between the two

values.

The results of the calculation described above show that the use of the Lennard-
Jones (12 : 6) potential form for the ionic crystals is not in conflict with the find-
ings from the use of the original Born equations or its later modifications and des-
cribes the crystal propertics to practically same degree as the latter, and there is
very slight discrepancy between the results from different determinations. The
discrepancies bhecome more pronounced as we proceed towards lighter alkali
halides. And hence as, for the inert gases and simple near-spherical molecules,
different properties can be explained in terms of a single potential in inverse
powers of the distance (i.e. L-J 12: 6 potential), it is possible to describe the various
properties of ionic crystals, particularly of heavier compounds (high polarizabi-
lity) by the use of the same simplified potential, even though the absolute com-
putations of properties cannot be termed as better than the previous determina-
tions. The deviation is further reduced if we also consider the dipole-quadrupole
term D'-8, for these crystals of heavier compounds.
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