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ABSTRACT. Tho offeet of rotution on the radinl pulsations of coxnuenl Aud  nussos
with spocial ralerence to sphorical mugs (magnotic varimblos) and evimdrical mass (spieal arm,
solar-ton stroant) has hoon investygatod whon the flurds are Tuwing volume olecivie ourronts.
Pwo morols of currents system are vonsidored for eylimdvical mass, vz, aroulur carrents and
Line curronts. 14 s found that for radimd pulssuons, rotation m genoral, helps m tho dynwmical
stality of the cosmienl hodies.

I, INTRODUCTLON

Talwar and Tandon (1956) have carlier obtained an exprossion for the
trequency of radial pulsations of sphorical masses in the presence of megnetic
field (magnetic variable stars), The maguotic field was ansstmed to be axially
symmetric and derivable from volume currents flowing in the interior of the
star. They also obtained sn upper it for the magnetic field above w hich the
star will become dvnamically unstable provided I' - 4/3 where 1 1s the ratio
of the two specific heats  Similar problem for radwsl pulsations of the mfinitoly
long cylinder (spiral arm solar-lon stroams ete.) having volume currenix has also
heen investigated by Tandon and Talwar (1957). Two special cases, (1) cireular
currents snd (2) line currents are mvestigated It i found that the cylinder
remains dynamically stable for both the modelx

Tn this paper wo have investigated the effect of rotation on the frequency
of pulsations of the cosmical mussos having volume currents. §2 deals with the
radial pulsations of rotating spherical mass and 14 of great sigmficance for
magnetic variables. Ledoux (1945) has treated the simtlar problems for non-
magnetic stars and has obtained the cxpression for frequency of radial pulsa-
tions, Our expression iy similar to one obtnined by Ledoux except that an
additional term [r . (J < H) dr along with gravitationsl energy term @ has heen
obtamed Tt ix also shown that rotation helps in the dynamical stability of the
star provided § < 1 < 5. In §3 we have considered the effects of the rotation
on the radial pulsations of cylindrical flmud masses. The two specsl casos of
the volume currents, viz., circulsr and [me currenfs have been re-investigated.
1t 1¢ found that rotation helps in the dynamical stability of the cylinder also.
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2 PULSBATIONS OF ROTATING SPHERE WITH VOLUME
CURRENTS
The equation of motion of a uniformly rotating fluid mass having an
mnternal magnetic field arising fromn the volume currents can be written as

du 1 I
@« =3 grad p — grad V- » (JxH)

dw
M x r) (Y

—w X (WX r)—2(wXu)— <
where p denotes the fluid density, V the gravitational potential, p the pressure
and w the angular velocity at any point. The magnetic field H and the f
density j satisfy the following relation inside

surrent

curl H =4=J

divH =0

and the field outside is continuous at the boundary.

Assuming axial symmetry, u the fluid velocity vector will be in the meridian
plane and the last two terms on the right hand side of eqn (1) are the only
vector in this equation which are normal to this plane*. Thus we should have

3 dw _
2(wXu)+ ('JL’ Xr ) =0 e
and
du I 1 .
7= o grad p—grad V4 VI-’ (JxH)—wX (wXr) .. (B

We multiply equation (5) scalarly on a vector r and integrate over the ontire
mass of the configuration. The left hand side of the equation becomes

M

¥ o uoo 1 @ M
ol 7 = _r. = __“ 2dm— 2 e 3
j- T dm Ir. i dm 9 @ [ ridm— j | | *dm .. (6)

where dm = pdr( = pday dr, day)

and the integration is effected ovor the entire mass, M, of the configuration.

* It muy bo notod here that wo are restricting curselves L0 a vase when the eleciro-
magnetie forco j X H also lios only in the moridian plune.
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Letting

M
I — [ 12dm

and

o

T= f,‘ j Juld

denote the movement of mertia and kietic energy of mass motion respectively,
we have

o
2
_I-, ‘{t”{ =27 =— ] r . grad pdr-- I /]' r(§ <H)dm
v
M M
— Ir . (grad V)dm - Ir Aw(wXr)hdm . (7

The third mtegral on the rght hand side of tlus equation represents the gravita-
tional potential energy Q of the configuration. Now

I r.grad pdr = I px.dS-- I]l dwrdr = ——3[ pdr .. (8)
4 5 v r

since the gas pressure vashes at the boundary of the surface.  Thus we should
have '

j r.grad pdr =—3(0"—1)U o ()
v
where U is the internal enorgy of the system, Now, since r. w - U, the last
miegral on the right hand side ol cquation (8) can he written as

a n .
I r.{wxX(wxr)dm =-— I w2y )dm.
m
- I wdmn. .. (10)
—— wl¥

where TV is the total angular momentum  Further, putting

M
[ ll’r.(jxl-l)dmz-_E .an

the electromagnetic energy of the flud, and substituimg the values of various
integrals in equation (8) we find

1@ _

L Gn =2 ~1)ut Q-E--wh (12)
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This is the Virial theorem for a system of rotating fluid subjecled to electromag-
netic field. We shall now apply this equation to the adiabatic pulsations of a
rotating fluid m which there are hody currents. In analysing this problem we
shall adopt the Lagrangian mode of description and follow each element of mass,
dm, as 1. moves.

Considering periodic oscillations with angular frequency we shall let
dret" denote the displacement of an clement of mass dm, from 1ts oquilibrium
position r,  Similarly, wo shall denote by opci™, dpei™, sHe!, 8jer®t and Swei!
the corresponding changes in the other physical vanables ag we follow the element.
dm, during its motion. The assumption that oscillations take place adiabatically
requires that the changes in pressure and density, as we follow the motion, should
satisfy the relation

ap = 1%, (13)
fl

where 1" 15 the ratio of the specific heats (assumed to be constant in space and time)
while the equation of continuity

g{' pdiva=0

requares that

o
p

div dr (14)

Returning to cquation (4) and assumung Z-axis as the axis of rotation we
can write 1t in eylindrical coordinate system (o, 0,2) as follows

2 'Z:P ¢ ‘?7‘: =0 )
Upon mitegration this leads to the relation
wo? = constant . (10)
which can also be expressed in cartesians as follows
w(?- ¥*) = coustant e (17)
Equation (4) simply eapresses the conservation of angulur momentum w.

Letting 8/e*, §Qet®!, duei™, de™ and SwW)e"t denote the changes in
I, 0 U, E and wW respectively we can write equation (12) as

- 30?81 = 3(I'—1)u-|-0Q+4-0E S(wh). . (18)
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Since to the first order in the displacement, the terms mvolved i 7' do not. make

any significant contribution.

Now
M
o = 2 [r drdm (19)
M
- e =3 fr?(p//t)dm
{rop o
(. p
3 [ ( p ot ) dan
M
-3 [ »op dm
py
-3 [7) div or dr
v
- 3} l[ pr ds ItYr giad pdr]
|
s v
(20)

=3 --1) § o gread pdr
"
made use of the equations (13) and

In obtaining cquation (20) we have
vanishes on the bhounding surface

(14) and of the fact that the flmd pressure
Further {or the equilibrium configuration equation (5) gives

wad p - cpgeand Vo(J-H) -pw - (w-p) (21)
Theretore

I -NSU =31 1) I dr mad pdr
v
M
30 1) [ Ih‘r.grml 1" dm

L ] dr (J » Hydr (22)
4
M
- 5 Or . [w < (W« r)}dm]
Further we have
M
(29

sQ —— [ e . grad 1 dm

M
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But,
M
1= 1 I xHyim
p

QG B

-r {(ijH)+(JxaH)}] dm

- j [{dr+(chv dr) . r}(J ¥ H) (24)

L r A(B) <H) | (J4 SH)}dr
and since the total ungular momentum is preserved during pulsations, we have
SwW) —= Wéw (25) "
Substituting oquations (19) to (25) in equation (18) we get.

M M
]' r.ordm = —(31"—4) I or . grad dm

FBI—2) j or . (Jv Hydr
;

T f (v 8x)r.(J - Hydr (26)

¥

| [ r . [(0J > H)+-(j x 0H)Jdr
v

M
—3(r—1) I Sr . {wx(wxr)dn
+ W bu

This is the vequired integral formula for o2 The change &H following the
motion is given by (Chandrasekhar and Fermi, 1953)

0H = curl (drxXH)+4(dr . grad) H
while 8§ will be evaluated by substituting the value of this in equation (2) re-

membering that the independent variable is ry and not » while following the motion
To ohtam the approximate relation for the froquency of pulsations we put,

or = §r .. (28)
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where £ 18 constant m space. Thus 1t can readily be secn that

0H =—2¢H
8§ =—3¢j ~(29)
ow =—2fw

and
M
I or {wX(wxr)ldm= §w )

Substituting equations (28) and (29) in equation (27) we obtain atter some reduction
M
o* f r2dm—= —(37 —4)[ B+ Q)+ (5—3T)yw W

o1

ot =—(31'—4) E_",'“ +(5-131) ""Iw e (30)

1t 18 evident from equation (30) that rotation like gravitation helps in the dynam-
cal stability of the sphere provided § - I' & Also there exists an upper limit

tor the magnetic field set. by the followmg equation, viz .

3r—5

B=191- 35 4

wW 1))

3 RADIAL PULSATIONS OF A ROTATING CYLINDER
WITH VOLUME CURRENTS
Let us now consider an mfinitely long cylinder, rotating with a constant
angular velocity w in which the currents arve flowmg. The equation of motion
for the radial pulsation of such a configuration assuming axial symmetry can
be written as follows*

duy 1 Op _ 26m(e) | 14
@ pow S + b (3 X H)padiar
—{wW X (WX 0) byadiar .. (32
and
dw .
2 - : =0 o (3
(wXu)+ ( dt X ) (33)

Here m(w) 15 the mass of the unit length of the cylinder interior to »  Equation
(33) with Z-axis of the cylindrical coordinate system (o, 6.2) as the axix of the
rotation can be written in the form (after integration)

ww? == constant o (34)

« Hero wo sssume that jxH has only radial component,
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This equation simply expresses the conservation of angular momentum, Mult-
plywng equation (32) by o and integrating over the entire mass of unit cylinder
and proceeding exactly as in § 2, we find

M; M
d’”w _ 1 [liz 2 Y 2r
I-w =S ae I widm — 27 ... (35)

where M iy the mass of the unit eylinder and 7' s the kinetie energy of the mass
motion.  Also

M
[ o P o - _2[ pdr=— —3(P— 1)U . (36)
p 0w y

. . . I
smee dive o - 2, for a 2 cimensional case and U the internal energy per unjt
leugth of the comtiguration  For a homogencous fHuid mass we further have

3]
I o . 26m dm — (IM? . (37)
)
M
[ /l w . (J¥H)dm = K Lo (38)
’ 4
and
M w
Im 1w (W< o)tdm 4] wdW N - (39)

whore dW = wo® and m is the angular momentum per unit length of the eylmder
Hence the Virial theorem for the study of rachal pulsations of an rotating mfinite
cyhnder having volume cuwrrents will he

M
]’ odm 2T 120 OU- GME | B+ wW . H0)

Id?

2 d*

To study the radial pulsations we adopt as before Lagrangian mode of description,
Now consider periodic pulsations with the frequency o and let doe™ denote the
displacement of an element of mass, dm. from 1ts equilibrium configuration. o,
Similarly, denote the corresponding changes in other physical varables by dpet™
etc.  Further. the change in the pressure dp {or adiabatic-pulsations and the
equation of contimuty are represented by equations (13) and (14) respectively.
Lotting duet®. dme*™ and 8w W)e'™ denote the changes in quantities U, E

and wW we have from the Virial theorom

M

nﬂj odadm — 21 - 1)8U-8E 1 3(wW) .. (al)



Oscillations of Rotating Cosmical Bodies, etc. 1156

Since GM? is constant and to the st order m the displacement. the terms
7 will not make any contribution. Further,

HT— )3T =T —1 )[ s 2 dr
: 20}

since the pressure vamshes wt the hounding surface  Now for the cquihbrium

configuration

ap 200m
0(,‘) = (:) p' (J VH)gdaw MW (W s ONrdiat

Multiplying this equation by do and puttng
do = £o (42)

we {ind

o1 - )T =21 1) — [ £ dm

w

N0 B9 - R +3)
Turther
SF = [{g + dvEea)Ho . (J - Hdr
[o105 <1+ q - oHlir (+4)
and
S(oW) = W duw (45)

since the angular momentum is constant  Now from equation (34) we pet
Sw = W

Therefore

SweW) — - 2k W
Hence equation (41) with the help of equations (43) to (46) reduces to

M

N I.foﬁd'm = -2 I)[ rf‘.’(.'nulm -- Iém (J - H)dr
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w

— [ weam | + [ 1 + divigolo . (J x B
| 4

+ ] ©.[(0f ¥ H) + (J x H)dr—2twW ... (47)
v

This is the required integral formala for the trequency of radial pulsations of
rotating infinitely long cylinder fo1 all currents distributaion having axial symmetry
The changes SH in the magnetic field and 8§ in the current density can ocasily
be evaluated with the help of equations (27) and (2).

Let us now obtain the approximate expression for the frequency of pal-
sation for two special cases of maguetic fields, viz. polowdal and toroidal
Auluck and Kothari (1957) have discussed these two systems of fields in detai
Let us make use of the usual assumption made in the theory of mlinb&ti&-
pulsations of stars, viz.,

£ = constant in space. .. (48) '

Cuse (1) The magnetie lield s poloidal

Tlus poloidal magnetie field s derived (rom cireular carrents of the {form

R ko }
=10, —=Z 0 49
i { T G (49)
such that
H- { 0.0, g(mz—ﬁz)} ... (BO)

where k is constant and R s the radius of the eylinder.  For such a configuration,
1t was shown earlier by Tandon and Talwar (1957) that

0H = — 2(H
and

0§ = -- 3£§ ... (61)
The equation for the frequency of radial pulsations will then be

M
o [ wdm = 2T — 1)GM* — (I — 2) [ o, (J x Hydr
- 20— 2wW .. (52)
or using the abbreviation

= [ H g .. (53
E Ivsﬂd-r (53)
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we get
M

o [mzdm =21 — )M 4 22 - DV2E + wW| .. (54)

Thus, in the case of rotation the (erm 2B’ of cquation (25) of Tandon and Talwar

has been replaced by 28'+wW. Ths clearly mdicates that the rotation is
similar to magnetic fiold and helps in the dynamical stubility of the cylmder for

rachial pulsations m the presence of creular currents.
Case (1i)—'The magnetic field is toroidal

For this case we consider a system in which there are lme currents of
constant  value such that

. ko
i— (n, 05 . (5h)
and hence
H = (0, ko, 0) .. (56)

where k15 a constant The change m the magnetac field 8H and the change in
the current density 8§ will then be given by

oH =—--£H
and .. (PT)

The equation for the frequency of pulsations thus becomes
m
az[ widm - 2(r-.1)(.'Mw--->(1‘—1)]m.(JxH)dr 212l L (BR)
"

Further using the abbreviation represented by cquation (53) we obtan
M
ot f otdm = 2T WM )E  +22 1wl ... (69)

This equation clearly indicates that the cylinder is stable for the rachal pulsations
m the prosence of line enrrents as well,
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