OSCILLATIONS OF ROTATING COSMICAL BODIES IN THE PRESENCE OF MAGNETIC FIELD

\author{

1. N. T'ANDON
 Dfleit
 (hiferimed, l'ebrturl!! is, 1966)
}

Abstract

The offert of rotation on the radial palsations of rowinteal litul numsos stablity of the cosmical bodies.

1.] N'IROUIC「ION

'Talwar and 'Tandon (1956) have carlier obtained an exprossion for the frequency of radial pulsations of spherical masses in the presence of megnetic field (magnetic variable stars). The magnetic field was assumed to be axially symmetric and derivable from volume currents thowing in the interior of the star. They also ubtained an upper lumit for the magnetic field above which the star will become drummeally unstable jrovided $\Gamma \cdot 4 / 3$ where 1 is the ratio of the two specific heats Similar problem for radal pulsations of the mfinitely long cylnder (spiral arm solar-ion streams etce.) having volume currents has also been investigated by 'Tundon and Talwar (1957). Two special cases, (1) circular carrents and (2) line currents are mestigated $[1$ is found that the cylinder remains dynamically stable for both the models

In this paper we have inventigated the effect of rotation on the frequency of pulsations of the cosmical mussos having volume currents. §2 deals with the radial pulsations of rotating spherical mase and it of great signticance for magnetic variables. Ledoux (1945) has treated the similar problems for nonmagnetic stars and has obtained the oxpression for frequency of radial pulsations. Our exprossion is similar to one obtained by Ledoux except that an additional term $\int \mathbf{r} \cdot(\mathbf{J} \times \mathbf{H}) d \tau$ along with gravitational energy term Ω has been obtamed It is also shown that rotation helps in the dynamical stability of the star provided $\frac{1}{5}<\mathrm{T}<5$. In $\$ 3$ ue have considerod the effects of the rotation on the radial pulsations of cylindrical Hud masses. The two nperital casen of the volume currents, vaz, (ircular and lime uurrents have been re-investigaied. It is found that rotation helps in the dynamicul stablity of the cylinder also.

2 PULSATIONS OF ROTATING NPHERE WITH VOLUME CURRENTS

The equation of motion of a uniformly rotating fluid mass having an internal magnetic field arising from the volume currents can be written as

$$
\begin{align*}
\frac{d \mathbf{u}}{d t}=-\frac{1}{\rho} \operatorname{grad} p-\operatorname{grad} V+ & \frac{1}{\rho}(\mathbf{J} \times \mathbf{H}) \\
& -\mathbf{w} \times(\mathbf{w} \times \mathbf{r})-2(\mathbf{w} \times \mathbf{u})-\left(\begin{array}{c}
d \mathbf{w} \\
d t
\end{array} \times \mathbf{r}\right) \ldots \tag{1}
\end{align*}
$$

where ρ denotes the fluid density, V the gravitational potential, p the pressure and \mathbf{w} the angular velocity at any point. The magnetic field \mathbf{H} and the current density \mathbf{j} satisfy the following relation inside

$$
\begin{align*}
\operatorname{curl} \mathbf{H} & =4 \pi \mathbf{J} \tag{2}\\
\operatorname{div} \mathbf{H} & =0 \tag{3}
\end{align*}
$$

and the field outside is continuous at the boundary.
Assuming axial symmetry, \mathbf{u} the fluid velocity vector will be in the meridian plane und the last two terms on the right hand side of eqn (1) are the only vector in this equation which are normal to this plane*. Thus we should have

$$
\begin{equation*}
2(\mathbf{w} \times \mathbf{u})+\left(\frac{d \mathbf{w}}{-\bar{d} t} \times \mathbf{r}\right)=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \mathbf{u}}{d t}=-\frac{1}{\rho} \operatorname{grad} p-\operatorname{grad} V+\frac{1}{\rho}(\mathbf{J} \times \mathbf{H})-\mathbf{w} \times(\mathbf{w} \times \mathbf{r}) \tag{5}
\end{equation*}
$$

We multiply equation (5) scalarly on a vector \mathbf{r} and integrate over the ontire mass of the configuration. The left hand side of the equation becomes

$$
\int^{M} \mathbf{r} \frac{d \mathbf{u}}{\bar{d} t} d m=\int^{M} \mathbf{r} \cdot \frac{d^{2} r}{d t^{2}} d m=\begin{align*}
& \mathbf{1} \tag{6}\\
& 2
\end{align*} d^{2} \bar{d}^{2} \int^{M} r^{2} d m-\int^{M}|u|^{2} d m
$$

where $d m=\rho d \tau\left(\equiv \rho d x_{1} d x_{2} d x_{13}\right)$
and the integration is effected ovor the entire mass, M, of the configuration.

[^0]Lettung

$$
1-\int^{M} I^{2} d m
$$

and

$$
T=\frac{1}{2} \int_{2}^{\Delta I}|u|^{2} d
$$

denote the movement of mertia and knetn" energy of mass motion resperdively, we have

$$
\begin{align*}
& \text { I } \begin{aligned}
& d^{2} I \\
& \geq d t^{2}-2 T=
\end{aligned}-\int_{V} \mathbf{r} \cdot \operatorname{grad} p d \tau+\int_{\rho}^{M} 1 \\
& r \cdot(\mathbf{j}<\mathbf{H}) d m \tag{7}\\
&-\int_{M}^{M} \mathbf{r} \cdot(\operatorname{grad} V) d m-\int^{M} \mathbf{r} \cdot\{\mathbf{w} \times(\mathbf{w} \times \mathbf{r})\} d m
\end{align*}
$$

The third megral on the right hand sude of thas equation represients the gravitational potential energy Ω of the configuration. Now

$$
\begin{equation*}
\int_{\nabla} \mathbf{r} \cdot \operatorname{grad} p d \tau=\int_{S} p \mathbf{r} \cdot d \mathbf{S}-\int_{V} p d v \mathbf{r} d \tau=-3 \int_{V^{*}} p d \tau \tag{8}
\end{equation*}
$$

since the gas pressure vamshes at the boundary of the surfine. 'Thus we should have

$$
\begin{equation*}
\int_{\boldsymbol{V}} \mathbf{r} \cdot \operatorname{grad} \jmath^{\prime} d \tau=-3(1--1) U \tag{9}
\end{equation*}
$$

Where U is the internal enorgy of the system. Now, since \mathbf{r}. $\mathbf{w}-0$, the last megral on the right hand side of equatuon (X) can he writhen as

$$
\begin{align*}
\int^{M} \mathbf{r} \cdot\{\mathbf{w} \times(\mathbf{w} \times \mathbf{r})\} d m & =-\int^{n I} w^{2}\left(x^{2}+\cdot y^{2}\right) d m \\
& --\int^{m} w d m \tag{10}
\end{align*}
$$

$$
=-w \mathrm{WV}^{\prime}
$$

where W is the total angular momentum Further, puting

$$
\begin{equation*}
\int_{\rho}^{I} \mathbf{r} \cdot(\mathbf{j} \times \mathbf{H}) d m=\boldsymbol{E} \tag{II}
\end{equation*}
$$

the electromagnetic enengy of the flud, and substitutng the values of various integrals in equation (8) we find

$$
\begin{array}{ll}
1 & d^{2} I \tag{12}\\
\hdashline & \bar{d}^{2}
\end{array}=2 T+3(\mathrm{I}-1) u+\Omega+E+\ldots W
$$

This is the Virial theorem for a system of rotating fluid subjected to electromagnetic field. We shall now apply this equation to the adiabatic pulsations of a rotating fluid in which there are body currents. In analysing this problem we shall adopt the Lagrangian mode of description and follow each element of mass, dm, as $\mathbf{1}^{1,}$ moves.

Considering periodic oscillations with angular frequency we shall let $\delta \mathbf{r} f^{i v t}$ denote the displacement of an element of mass $d m$, from its equilibrium position r_{0} Similarly, wo shall denote by $\delta p e^{i n t}, \delta \rho e^{i v t}, \delta \mathbf{H} e^{i v t}, \delta j^{\imath \sigma t}$ and $\delta \mathbf{w} e^{i o t}$ the rorresponding changes in the other physical variables as we follow the element. $d m$, cluring its motion. The assumption that oscillations take place adiabatically requires that the changes in prensure and density, as we follow the motion, should satiefy the relation

$$
\begin{equation*}
\stackrel{d}{p}=\Gamma \stackrel{i \rho}{\rho} p \tag{13}
\end{equation*}
$$

where I^{\prime} is the rato of the njecific heats (assumed to be constant in space and time) while the equation of contmuty

$$
\frac{\partial \rho}{\partial t} \quad \rho \text { div } \mathbf{u}=0
$$

regures that

$$
\begin{equation*}
\stackrel{\delta \rho}{\rho} \quad \text { div } \delta \mathbf{r} \tag{14}
\end{equation*}
$$

Returning to equatson (4) and assumng Z-bass as the axis of rotation we ran write it in eylindrical eoordinate nystem (ω, θ, z) as follows

$$
2 w, \quad \begin{array}{lll}
\partial \omega & F \cdot \omega & \partial \omega \tag{15}\\
\partial \bar{t} & \frac{\partial}{t}
\end{array}=0
$$

Upon mitegration this leads to the relation

$$
\begin{equation*}
w \omega^{2}=\text { coustant } \tag{16}
\end{equation*}
$$

which can ulso be expressed in cartesians as follows

$$
\begin{equation*}
w\left(x^{2}-\mid y^{2}\right)=\text { coustunt } \tag{17}
\end{equation*}
$$

Equation (4) smply expresses the conservation of angular momentum w.
Letting $\delta / e^{2 n t}, \delta \delta 2 r^{1^{a t}}, \delta u e^{i n t}, \delta L^{i n t} e^{i n t}$ and $\delta(w \mid V) e^{a t}$ denote the changes in $I, \Omega U, E$ and $w W$ respectively we can write equation (I2) as

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} \delta I=3(\Gamma-1) \delta u+\delta \Omega+\delta E-\mid \delta(w W) \tag{18}
\end{equation*}
$$

Since to the first order in the displacement, the terms involved in T do not make any significant contribution.
Now

$$
\begin{align*}
& \delta I=-\int^{M} \mathbf{r} \delta \mathbf{r} d m \tag{19}\\
& 3\left(\Gamma^{`}-1\right) \delta I^{\prime}-3 \int^{M} \delta(p / p) d m
\end{align*}
$$

$$
\begin{align*}
& 311 \\
& \text { 1) } \int^{M} \frac{p}{\rho} \frac{\delta p}{\rho} d m \\
& \text {-3(I } \\
& \text { 1) } \int_{V} p \operatorname{div} d \mathbf{r} d \tau \\
& \cdots\left(\begin{array}{ll}
- & 1
\end{array}\right)\left[\int_{S} \mu \mathbf{r} d \mathbf{s} \quad \int_{F} \delta \mathbf{r} \text { giad } p d \tau\right] \\
& -3(\Gamma-1) \int_{\mathbf{r}} \delta \mathbf{r} \text { graul } p d \tau \tag{20}
\end{align*}
$$

In ohtaining equation (20) we have made use of the edpatoms (13) and (14) and of the faet that the flud pressure vanisher on the bomoding surface Further for the equilibrum configuration ecfuation (5) gives

$$
\begin{equation*}
\text { nail } p-\quad-\mu \underline{\operatorname{lom} l} \boldsymbol{V}+(\mathbf{J} \cdot \mathbf{H})-\mu \mathbf{w} \cdot(\mathbf{w} \cdot \mathbf{r}) \tag{21}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& 3\left(\Gamma^{-}-I\right) \delta L=3\left(\begin{array}{ll}
\text { I } & \text { I) }
\end{array} \int_{V} \delta \mathbf{r} \text { grad } p d \tau\right. \\
& 3\left(\Gamma ^ { - - - 1) } \left[\int^{M} \delta \mathbf{r} . \operatorname{graml} \mathrm{I}^{\prime} d m\right.\right. \\
& +\int_{V} \delta r .(\mathbf{J} \times \mathbf{H}) d \tau \tag{2}\\
& \left.-\int^{\mathbf{M}} \delta \mathbf{r} \cdot\{\mathbf{w}<(\mathbf{w} \times \mathbf{r})\} d m\right\rceil
\end{align*}
$$

Further we have

$$
\begin{equation*}
\delta \Omega--\int^{M} \delta \mathbf{r} \cdot \operatorname{rrad} \upharpoonright d m \tag{2:3}
\end{equation*}
$$

But

$$
\begin{align*}
\eta= & \delta \int^{M} \frac{1}{\rho} \mathbf{r} \cdot(\mathbf{J} \times \mathbf{H}) d m \\
= & \int^{M}\left[\left\{\begin{array}{c}
\delta \mathbf{r} \\
\rho
\end{array}-\frac{\delta \rho}{\rho^{2}} \mathbf{r}\right\}(\mathbf{J} \times \mathbf{H})\right. \\
& =\mathbf{r}\{(\delta \mathbf{j} \times \mathbf{H})+(\mathbf{J} \times \delta \mathbf{H})\}] d m \\
= & \int\left[\left\{\delta \mathbf{r}+\left(\mathrm{d}_{\mathbf{\prime}} \cdot \delta \mathbf{r}\right) \cdot \mathbf{r}\right\}(\mathbf{J} \times \mathbf{H})\right. \tag{ㄴ4}\\
& , \mathbf{r} \cdot\{(\delta \mathbf{J} \times \mathbf{H}) \mid(\mathbf{J}+\delta \mathbf{H})\} \mid d \tau
\end{align*}
$$

and since the total ungular momentum is preserved daring pulsations, we have

$$
\begin{equation*}
\delta(w W)=W^{\top} \delta w \tag{25}
\end{equation*}
$$

Substituting equations (19) to (25) in equation (18) we get

$$
\begin{align*}
\int^{M} \mathbf{r} \cdot \delta \mathbf{r} d m= & -(3 \Gamma-4) \int^{M} \delta \mathbf{r} \cdot \operatorname{Lr} \mathrm{~d} \mathrm{~d} \mathrm{I}^{\prime} d m \\
& +(3 \mathrm{\Gamma}-2) \int_{V} \delta \mathbf{r} \cdot(\mathbf{J} \times \mathbf{H}) d \tau \\
& +\int_{V}(d \mathrm{duv} \delta \mathbf{r}) \mathbf{r} \cdot(\mathbf{J} \cdot \mathbf{H}) d \tau \tag{26}\\
& \mid \int_{V} \mathbf{r} \cdot[(\delta \mathbf{J} \times \mathbf{H}) \nmid(\mathbf{j} \times \delta \mathbf{H})] d \tau \\
& -3(\Gamma-1) \int^{M} \delta \mathbf{r} \cdot\{\mathbf{w} \times(\mathbf{w} \times \mathbf{r})\} d m \\
& +W \delta u .
\end{align*}
$$

This is the required integral formula for σ^{2}. The change δH following the motion is given by (Chandrasekhar and Fermi, 1953)

$$
\delta \mathbf{H}=\operatorname{curl}(\delta \mathbf{r} \times \mathbf{H})+(\delta \mathbf{r} \cdot \operatorname{grad}) \mathbf{H}
$$

while $\delta \mathbf{j}$ will be evaluated by substituting the value of this in equation (2) romembering that the independent variable is r_{0} and not r while following the motion To ohtan the approximate relation for the froquency of pulsations we put,

$$
\begin{equation*}
\delta \mathbf{r}=\xi \mathbf{r} \tag{28}
\end{equation*}
$$

Oscillations of Rotating Cosmical Bodies, etc.

where ξ is constant in space. Thus it can readily be seen that

$$
\begin{align*}
\delta \mathbf{H} & =-2 \xi \mathbf{H} \\
\delta \mathbf{j} & =-3 \xi \mathbf{j} \tag{29}\\
\delta \mathbf{w} & =-2 \xi \mathbf{w}
\end{align*}
$$

and

$$
\int^{M} \delta \mathbf{r} \cdot\{\mathbf{w} \times(\mathbf{w} \times \mathbf{r})\} d m=\xi u \cdot \mathbb{W}^{-}
$$

Substituting equations (28) and (29) in equation (27) we oltain after some reductuon

$$
\sigma^{2} \int^{M} r^{2} d m=-(3 \Gamma-4)[E+\Omega]+(5-3 \Gamma) u, W
$$

or

$$
\begin{equation*}
\sigma^{2}=-(31-4) \frac{E^{\prime}+\Omega}{I}+(5-31){ }_{l}^{u / W} \tag{30}
\end{equation*}
$$

It is evident from equation (30) that rotation like gravitation helpe in the dynamscal stabality of the sphere provided ${\underset{4}{4}}^{\frac{1}{2}} \mathrm{I}^{1} \cdot \frac{f_{8}}{}$ Also there exists an upper limut for the magnetic field set by the following equation, voz .

$$
\begin{equation*}
E=|\Omega| \sim \stackrel{3 \Gamma}{3 \overline{\mathrm{~T}}-4} \mathrm{~F} w W \tag{31}
\end{equation*}
$$

3 RADIAL PULSATIONK OF A IROTATING OYLINDGTR WJTH VO], UME CURRENTS

Let us now consider an mfinitely long eylinder, rotating with a constant angular velocity \mathbf{w} in which the currents are flowng. The equation of motion for the radial pulsation of such a configuration assuming axial symmetry can be written as follows*

$$
\begin{align*}
\frac{d u_{w}}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial \omega}-\frac{2(G m(\omega)}{\omega}+ & \frac{1}{\rho}(\mathbf{j} \times \mathbf{H})_{\text {rudial }} \\
& -\{\mathbf{w} \times(\mathbf{w} \times \omega)\}_{\text {radual }} \tag{32}
\end{align*}
$$

and

$$
2(\mathbf{w} \times \mathbf{u})+\left(\begin{array}{c}
d \mathbf{w} \tag{33}\\
d t
\end{array} \times \omega\right)=0
$$

Here $m(\omega)$ is the mass of the unit length of the cylinder interior to ω Equation (33) with Z-axis of the cylindrical coordinate system (ω, θ, z) as the axis of the rotation can be written in the form (after integration)

$$
\begin{equation*}
w \omega^{2}=\text { constant } \tag{34}
\end{equation*}
$$

* Here we assume that $j \times \mathbf{H}$ has only radial component,
'This equation smply expresses the conservation of angular momentum. Multsplying equation (32) by w and integratmg over the entire mass of unit cylinder and proceeding pxactly as in § 2, we find

$$
\begin{equation*}
\int_{-\omega}^{M} \frac{d u_{\omega}}{d t^{-}}=\frac{1}{-2} \frac{d^{2}}{d t^{2}} \int^{M} \omega^{2} d m-2 I \tag{35}
\end{equation*}
$$

where M is the mass of the unt cylmader and T is the kinetic energy of the mass motion. Alan

$$
\begin{equation*}
\int^{M} \frac{\omega}{\rho} \partial \omega d m=-2 \int_{V} p d \tau=-2(\Gamma-1) U \tag{36}
\end{equation*}
$$

smee div os - 2 , for a 2 dimensional case and U is the intemal energy per unf length of the combiguratom For a homogeneous thuid mass we further have

$$
\begin{align*}
& \int_{1}^{M}(1) \cdot \frac{2\left(\frac{1}{\prime} m\right.}{(1)} d m-\left(M^{2}\right. \tag{37}\\
& \int_{p}^{M} \omega \cdot(\mathbf{J} \times \mathbf{H}) d m=\boldsymbol{K}^{\prime} \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{W}\{\mathbf{w} \times(\mathbf{w} \times \omega)\} d m \quad-\int^{W} m d W \quad \cdot w W \tag{39}
\end{equation*}
$$

where $d W=w^{2}$ and m is the angular momentum pet unt length of the cylader Hence the Vorial theorem for the study of radial pulsations of an rotating mfinite ryhuder having volume courents will be

$$
\begin{array}{llll}
1 & d^{2} \tag{40}\\
- & d t^{2}
\end{array} \int^{\omega}\left(\omega^{2} d m \quad 2 T \mid-2(\Gamma \quad 1) U-\left(M^{2} \mid \omega^{2}+w W\right.\right.
$$

Tostudy the ratial pulsatoms we adopt as betore Lagrangian morle of description. Now comsider periodic pulsations with the frequency σ and let δ ose ${ }^{00 t}$ demote the displacement of an element of mass. dm, from its equilibrium eonfiguration. ω_{0} Similarly, denote the corresponding changes in other physical vartables by δ peior etce. Further, the change in the pressure δp for adiabatic pulsations and the equation of contimuty are represented by equations (13) and (14) respectively.

Letting $\delta u e^{i o t}$, $\delta m e^{2 \sigma t}$ and $\delta\left(u u^{W}\right) e^{i o t}$ deuote the changes in quantitics U, E and $w W$ we have from the Virial theorem

$$
\begin{equation*}
\sigma^{2} \int^{M} \omega \delta \omega d m-2(\Gamma \cdots I) \delta U+\delta E+\delta(\mu W) \tag{41}
\end{equation*}
$$

Since $G M^{2}$ is constant and to the finst order in the dopplacement, the terms 10 T will not make any contribution. Further,

$$
2(\Gamma-1) \delta U=\nu(\Gamma--1) \int_{1} \delta \omega \frac{\partial p}{\partial \omega} d \tau
$$

since the pressure vanshen at the boundug surture Now for the egulabimm configuration

$$
\partial_{0}=-{ }_{(\omega)}^{2(i m} \rho^{\prime}(\mathbf{J} \vee \mathbf{H})_{\text {radial }} \quad \rho_{i}^{\prime} \mathbf{w} \cdot(\mathbf{w} \wedge \omega)_{i r u d i a l}
$$

Moltiplying this efoation h $\delta \omega$ and putting

$$
\begin{equation*}
d_{0}=\xi(1) \tag{}
\end{equation*}
$$

we find

$$
\begin{align*}
& \left.2\left(l^{\top}-1\right) \delta U=2\left(\begin{array}{ll}
l^{\prime} \quad 1
\end{array}\right) \right\rvert\,-\int^{* \prime} \xi(i m d m \\
&\left|\int \xi(1) \cdot(\mathbf{J} \times \mathbf{H}) d \tau+\int^{w^{\prime}} \xi w d W\right| \tag{+3}
\end{align*}
$$

Further

$$
\begin{align*}
\left.\delta E=\int\{\xi+\operatorname{liv}(f(\omega))\} \omega \cdot(\mathbf{J}, \mathbf{H})\right\} d t & \\
& \int \omega \cdot|(\delta \mathbf{j} \vee \mathbf{H})+(\mathbf{J} \times \delta \mathbf{H})| d \tau \tag{+4}
\end{align*}
$$

and

$$
\begin{equation*}
\delta(w W)=W^{\top} \delta w \tag{45}
\end{equation*}
$$

sunce the angular momentum is constant Now from equation (34) we get

$$
\delta(u=\quad 2 \xi W
$$

Therefore

$$
\delta(w W)-\quad-2 \xi w W
$$

Hence equation (41) with the help, of equations (43) to (46) reducer to

$$
\sigma^{2} \int^{M} \xi \omega^{2} d m=-2\left(l^{\top} \quad 1\right)\left[\int ^ { M } \xi 2 \left(i n u l m,-\int_{-} \xi \omega(\mathbf{J} \cdot \mathbf{H}) d \tau\right.\right.
$$

$$
\begin{align*}
& \left.\left.-\int_{\nabla}^{\omega} w \xi d m\right]+\int_{\nabla}[\xi+\operatorname{div}(\xi \omega)] l \omega \cdot(\mathbf{J} \times \mathbf{H})\right] d \tau \\
& +\int_{\nabla} \omega \cdot[(\delta \mathbf{j} \times \mathbf{H})+(\mathbf{J} \times \delta \mathbf{H})] d \tau-2 \xi w W \quad \ldots \tag{47}
\end{align*}
$$

This is the requirerl integral formula for the trequency of radral pulsations of rotating infinitely long eylinder for all currents distribution having axial symmetry The changes $\delta \mathbf{H}$ in the magnetic field and $\delta \mathbf{j}$ in the current density ean easily be evaluated with the help of equations (27) and (2).

Let us now obtain the approximate expression for the frequency of pulsation for two special cases of magnetic fields, vaz polondal and toroidal Auluck and Kothari (1957) have discusserd these two systems of ficlds in detail Let us make use of the usual assumption made in the theory of adiabatid pulsations of stars, viz..

$$
\begin{equation*}
\xi=\text { constant in space. } \tag{48}
\end{equation*}
$$

Case (1) The magnetice lield is poloidal
Thas poloidal magnetice fied is derived trom circular carrents of the form

$$
\begin{equation*}
\mathbf{j}=\left\{0,-\frac{k \omega}{4 \pi}, 0\right\} \tag{49}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathbf{H}=\left\{0.0 \cdot \frac{k}{2}\left(\omega^{2}-R^{2}\right)\right\} \tag{50}
\end{equation*}
$$

where k is constant and R is the radius of the cylunder. For such a configuration, it was shown earlier by Tandon and Talwar (1957) that
and

$$
\delta \mathbf{H}=-2 \xi \mathbf{H}
$$

$$
\begin{equation*}
\delta \mathbf{j}=-3 \xi \mathbf{j} \tag{51}
\end{equation*}
$$

The equation for the frequency of radial pulsations will then be

$$
\begin{gather*}
\sigma^{2} \int^{M} \omega^{2} d m=2(\Gamma-1) G M^{2}-2(\Gamma-2) \int \omega,(\mathbf{J} \times \mathbf{H}) d \tau \\
-2(\Gamma-2) w, W \tag{52}
\end{gather*}
$$

or using the abbreviation

$$
\begin{equation*}
E^{\prime}=\int_{\nabla} \frac{H^{2}}{8 \pi} d \tau \tag{53}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sigma^{2} \int^{M} \omega^{2} d m=2(\Gamma-1)\left(G M^{2}+2(2-\Gamma)\left[2 E^{\prime}+w W\right]\right. \tag{54}
\end{equation*}
$$

Thus, in the case of rotation the term $2 h^{\prime}$ of ergition (20) of Tandon and Tabat has boen replaced by $2 E^{\prime}+u \cdot W$. This eloarly molicates that the rotation is similar to magnetic field and helps in the dyummical stability of the eyluder for radial pulsations in the presence of erredar curvents.

Case (ii)--The magnetuc field is toonoidal
For this rase we consider a svetem in which there are lme rurreuts of conslant ralue such that

$$
\mathbf{j}-\left(0,0, \begin{array}{c}
k \tag{55}\\
2 \pi
\end{array}\right)
$$

and hemee

$$
\begin{equation*}
\mathbf{H}=(0, k \omega, 0) \tag{56}
\end{equation*}
$$

where k is a constant The change in the magnetne field $\delta \mathbf{H}$ and the change in the current density $\delta \mathbf{j}$ will then be given by

$$
\delta \mathbf{H}=\cdots \xi \mathbf{H}
$$

and

$$
d \mathbf{j}=-2 \xi \mathbf{j}
$$

The equation for the trequency of pulsations thus beromes

$$
\begin{equation*}
\sigma^{2} \int^{m} \omega^{2} d m-2(\Gamma-1)\left(\tau M^{2}-2(\Gamma-1) \int_{V} \omega \cdot(\mathbf{J} \times \mathbf{H}) d \tau \quad-2\left(\mathbf{I}^{\prime}-2\right) w W^{\prime}\right. \tag{58}
\end{equation*}
$$

Further using the abbreviation represented by equation (53) we obtam

$$
\sigma^{2} \int^{M} \omega^{2} d m=2\left(\begin{array}{ll}
\Gamma & 1 \tag{59}
\end{array}\right) G M^{2}+8(\Gamma-1) E^{\prime} \quad+2\left(2 \cdots I^{\prime}\right) w W^{\prime}
$$

This equation cloarly indicates that the cylinder is stable for the radial pulsations in the prosence of line eurrents as well.

REFERENCES

Auluok, F. C. and Kothar1, D. S, 1957. Z Astrophyg., 42, 101. Ledoun, P., 1945, Astrophys. J., 102.
Tulwar, S. P. and Tunden, J N., 1956, Ind. J Phys. 30, 561
Tanden .T N. and T'alwar, S. P., 1958. Ind J. Phys., 32, 317.

[^0]: * It muy bo noted here that wo are restricting ourselves to a cease when the electromagnetic forgo $i \times H$ also lies only in the mortian plane.

