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ABSTRACT. T h o  t'H crt o l' r o ta t io n  o n  th e  ra d ia l iiulH ations o f  fos in i(!n l Hunl moHriOs 

\ntli K|»onal n d o io n e i ' to  H|)horicRl iiuiHS (m a ^ n n tie  v-iiruililos) and  c v lm d r ica i m ass (sp ira l a rm . 

,soJar-ion s tr o a in ) h a s b o o n  im  cst iK a to d  w him  ti e flu id s  a re  havm i!: \ oln m n  n l o d n e  oiirroiilH . 

T w o  lu o d o ls  oC o u rro n ts  s / s t o i n  a re  i-on su lori'd  fo r  liy ln idr ioa l m ass, v iz ., e irou la r  i’ UI'it u Ik a n d  

lin o  n iiT o n ts . I t  is fo u n d  th a t  lo r  ra d ia l p iilsa H ou s, r o ta t io n  m t^oiioial, 1‘o lp s  m  tho d y n a m im l 

s ta b ility  o l  tlii^ (-nsin ica l b o d ie s .

I. ] M T IU> I) r r T i O N

TaltMtr and Tamloii (Iflofl) have earlier obtaiiuMl an expression lor tho 
liequeiiey oi radial pulsations of sphoncal masHOK in tho preseiieo ol inoKiietii 
held (inagnetie variable stars), The magiiotic held was assumed to bo axially 
symmetric and derivable from volume currents tlowing in the interior ol the 
star. They also obtained an iiiDper limit for the magnetic field above \s hich the 
star will become dvnamn-ally unstable jirovided V ■ -f/fl where r  is the ratio 
of Ihe ttvo specific heats Similar jiroblem for radial pulsations of the nilimtoly 
long cylinder (spiral arm solar-ion streams etc.) having volume currents has also 
been invcstigaled by 'raudon and Talwar (11157). Two speeial eases, (I) eirenlar 
e.nrreuts and (2) line euiTents are investigated It is loiind that the cylinder 
remains dynamically stable for both the models

In this paper wo have investigated the efreet of rotation on the frequency
of pulsations of the eosmieal masses having volume c urrents. deals AVith the
radial pulsations of rotating spherical mas«̂  and is of groat sigiiiheance lor 
magnetic variables. Ledoux ( 1 9 4 5 )  has treated the s i m i l a r  problems for non- 
magnetic stars and has obtained the expression for frecj[ueney of radial pulsa 
tions, Oiir expression is similar to one obtained by Ledoux except that an 
additional term Jr . ( Jx H)  dr along with gravitational enei-gy tĉ rm il has k'en 
obtained It is also shown that, rotation helps in ihe dynamical stabilit}  ̂of Uic 
star provided • <  r <  ^ In l̂ ^̂ e considered the clTeels of the rotation
on the radial pulsations of cylindrical thud masses. The two special cases oi 
the volume currents, viz., circnilar and ime cuiTents have been i(.-investigate 
It IS found that rotation helps in the dynamical stability of the cylinder also.
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2 P U L S A T I O N S  O F  K O T A T I N G  S P H E K E  W I T H  V O L U M E  
C U li  R E N T S

The equation of motion of a uniformly rotating fluid mass having an 
internal magnetic held arising from the volume currents can be written as

= — i  grad ^ — grad V-\- ' ( JxH)( U p  p

—w x ( w x r ) —2(wXu)~- X r  j ( 1)

where p denotes the fluid density, V the gravitational potential, p the pressure 
and w the angular velocity at any point. The magnetic field H and tlie Current 
density j  satisfy the following relation inside

curl H = 47tJ 

div H — 0
and the field outside is continuous at the boundary.

(2)

(•‘i)

Assuming axial symmetry, u the fluid velocity vector ndll be in the meridian 
plane and the last two terms on the right hand side of oqn (1) are the only 
vector in this equation which are normal to this plane*. Thus we should have

2(wxu)+ ( Xr ) (4 )

and

* grad p —grad K +   ̂ ( J x H ) —w X  ( wXr )  dt p p (r>)

Wo multiply equation (5) scalarly on a vector r and integrate over the entire 
mass of the conflguration. The left hand side of the equation becomes

JU M ^  ^
dm =  \ \ r H m -\  \a\Hm ... (d)

whcr(‘ dm — pdr{ = pd'A\ dx̂  dx̂ )

and the integration is effected over the entire mass, M, of the configuration.

* It nmy l>o nutod liero that wo ai*o restrioting ourselves to a oaao when the olootro- 
magnotic to too J x H also lies only in tlio mondiaii piano.
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/ — J I'hhii

m
T =  i  I \u\H

denote the imivcmciit of inertia and kinetic energy oi' imiss motion n^spectiveh^, 
we have

iiy
2 f 1 /) ' <H)t//n
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— j" r . (grad j* r  .{wX(wXr)}dm ... (7)

The tliird integral on the right Jiaiid side of this equal ion represents i lie gravita­
tional jiotcntial energy O of the eoiitigiiration. Now

I r . grad^) dr — | r . d S —  | p d i o  r dr — —li | p dr ... (8)
V s  V

since the gas pressure vamshes at the bouiidarv of llie surface. Tims we should 
have

I r . grad p dr — —3(1’’—l)t7 . . .  (0)

where U is the internal energy of th(‘ system, Now, since r. w -  0, the last 
integral on the right hand sale ol' eqiialion (S) can lie written as 

JIf
J r . {wX(wXr)}r/w | w'^{x:^~\Y)dm

wdm (JO)

wW

vhere W is the total angular niomcMitum Further, jmtting 
M

1f * r . (j X  H)dm E 
i  P

(JJ)

the eleetromagnetic eneigy of the fluid, and suhstituling the values of vaiious 
integrals in equation (8) we find

df̂
(12)
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This is the Virial theorem for a system of rotating fluid subjected to electromag- 
uetic field. We shall now apply tliis equation to the adiabatic pulsations of a 
rotating fluirl in which there are l)ody currents. In analysing this problem we 
shall ad()])t the Lagi angian mode of descrijition and follow each element of mass, 
dm, as it moves.

Considering periodic oscillations with angular frequency we shall let 
denote the disjjlacemeut of an elemcud of mass dm, from its oquilibrmm 

position /•(, Similarly, wo shall delude by r5pc’■"̂  and
the corresponding changes in thc‘ other physical variables as we follow the element, 
dm, during its motion. The assumjiiion that oscillations take place adiabatically 
roquiies that (be chajigcs in jiressurc and fU'iisity, as vve follow the motion, should 
satisfy tin; |■(;latlon

(ip r  p ( 1 3 )

where T is the ralio of the specific heats (assumed to be constant in spat e and tii^e) 
while the (;quatioii of coiitiiiuily

Op
(It

p (liv u 0

requires that

p̂
P

div (̂ 'r (11)

Returning to cqualjon (4) and assunimg ii/-axis as the axis of rotation we 
can write il in cylindrical lioordiuatc system {cct,0,z) as follo\\s

dco I do)2'w - -  '(i)
df (It

0 ... (lb)

Upon integiatioii this leads to the relation

a;o)“ coustaui ... (10)

whicli can also lie expressed in cartesians as follows

'/<;(,r--l ?/“*) — constaiit ... (17)

Kquatitm (4) simply cx])iesses the conservation of angular momeiitum w.

Letting and S{'wW)p'"̂  denote the changes in
I, 12 U, E  and //;ir respectively v c  can wjite etjiiaiion (12) as

 ̂ 3(r-i)daH-(mH-r!)'^'H d(«df). ... (18)



Since to the fij’st order in the displacement, the terms involved m T  do not make 
any significant conti-ibutioii.
Now

M
S I  2 I r  S r  d m
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m

M
:i(F l)r̂  r  ~ I  S{pjp)d w

^  f  f ) , l m
J \ p  /

M
. :i (T 1) f d m

J p  p

V

lt(l  ̂ [ i  f P<7t ]
s r

- ;J(r 1) j  grad p  d r  . . .  (20)
I

In old Killing ecinalioii (20) we Jmve made use ol the e(|im1ioiis (JIl) and 
(14) and ol the faet Dial the Hind pressure vanislu's on llie hoiimliiig surface 
Pnrllun for tlu ‘ (Hpiilihi-ium ecmfiguratiou e((ualioii (5) gives

giad p  -  - p  gi-ad 1'̂  ' (J  ̂ H ) - p ' w  ' (w  ' r ) (21)

Thereiore

:i(r - \ ) S I J  ^=;i(l' l) |  rUr giad pdT  

V

M
:t (r - 1) J r̂ 'r . grad 1’ 

f  I (Jr . (J  V H W r
V 
M

- I  (Jr . {w  < (w  - r)}«^w I

dm

(22 )

Purtlier we have

S Q — —- j S r  . grad V  d^n m
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'H ^  s I i  r.(JxH )rfm

- r  {((JjxH)+(JX<yH)}] rfm 

I l{«r+ (div « r ) .r } (J v H ) C-Ml

, I (JH »H)}|<iT

iUid sinuu the total auguUir inomeiitum ih juTserved during pulsations, we havi

(25) '

kSubsti til ting oquatiojis (19) to (25) in equation (18) we get

M  M

I r .  iSr dw -  -(IIT—4) J (5r . grad Vdm

H :J]'-2 ) I .(JvH)rfT

-I- (  (div (S r) r . (J ' H)rfr (26)
r

I I r,[(.SJxH )+(jx^H )]dT
V

M

—8( r —1) I r . {w x (w x r )}f///

+  W

This is the required integral Idrnuila for (t̂ , The change SH following tho 
motion is given by (Chaudrasekhaj’ and Fermi, 195U)

m  curl ((5r X H )+(^r . grad) H

while will be evaluated by substituting the value of this in equation (2) re­
membering that the independent variable is r„ and in)t r while following tho motion 

'fo obi am tlu* approximate relation for the frequency of pulsations we put,

... (28)



where  ̂ is constant in apace. Thus it can be seen that

SH

.. (29)
S w  — — 2 ^ v f

and
M

J . {w x (w x  r)}d7«^  ̂ iv U*

Substituting equations (28) and (2!)) in equation (27) wv ol)taiu siter some reduction
M

0-21 (3r~4)[;&+nj4-(r)—3r)M?H"
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0-2 = - ( 3 1 ’ - 4 )  ^ . 9  31’ ) (30)

It IS evident from ecjuation (30) ibai rotation like gravitation helps in the dynami­
cal stability of the sphere provitled T _ Also there exists an upper liiuit 
for tile magnetic! field set by the following equation, viz ,

3r-5
3 F -4 wW (31)

3 B A D I A L P U L S A T I O N S  OF A l i  O  T A T T N  Ci 

W I T H  V O ]. U  M E C U R R E N T S
Y t  r N n E R

l̂ et us now eoiLsider an iiifinilely long cylinder, rotating with a constant 
angular velocity w  in which the eui'icnts are flowing, l^he equation of motion 
for the radial pulsation of such a configuration assuming axial .symnietry can 
be written as follows*

d u ^  ^  1 d p

d t  p  doj
+  i  ( jx H W ,„ ,

and

2 ( w x u ) 4 -  (
dw

d t

^ fw X (w X  t.l)Wi«7

0

(32)

(33)

Here m(co) is the mass of the unit length of the cylinder interior to oi Equation 
(33) with Z-axis of the cylindrical coordinate system (co, d,z) as the axis of the 
rotation can be written in the form (after integration)

wci'̂  — constant (34)

* Here we assume that X H has only radial component,
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'I’hiH equation Kiin|jly expreHses the eoiiservatum of angular iiioment-uin. Multi­
plying equation {32) by w and integrating over the entire mass of unit cylinder 
and proceeding t‘xaclly as in § 2, we find

f C  =:̂  -- ^  f -  2T}- d1 2 d/2 J (3ri)

where M is the mass of tlie unit eyliudei and T is the kinetic tMiergy of the mass 
motion. Also

I “  dm -  - a j  / ) r fT - - 2(]’ - l ) e (3H )

Since (liv oj - 2, for a 2 dimensional case and U the internal energy jier un|t 
length of the eoniKguration Fora homogeneous fluid imtss we further have

f 2<T'tH
r . )  . —

J f.)
dm — f/yif-

I . (J V =  K

and

|w (w  V (o)̂ r/w fvdW a'If (:19)

where dW -- ieco“ and m is tin* angular momentum pei unit length of tlie eyimder 
HeiU'e the Virial theorem lor th(‘ study of radial pulsations ot an rotating mfiniti' 
eyimder Iniving volume enirents will he

.1/
•> l - a  \)V- </M‘ \ K-VmW .. (40)

'To study the radial pulsations we adopt as lietore Lagraiigian mode of deseriptiou. 
Now consider periodic pulsations w ith the freipieiiey rr and let denote the
displacement of an element of mass, dm, from its eiiuilibriuin configuration, w„ 
iSimilarly, denote the eorres])onding changes in other phvsH*al variables by 
etc. Furlh(‘r, the change in the pressiii'c dp for adiabatic pulsations and the 
eipiation of continnity are represented by equations (13) and (14) respectively.

Ud.ting dnie}'̂ * and denote the e.hauges in quantities U, E
and wW we liave from tlie Virial theoroin

M

fT̂ I oidî )dm - 2(F I ^ - 1- . . .  (41)



Since QM~ is coiistaiit and to the tiisl order ui IIk* rlihpla(‘eiiu*ui, tlie terms m 
T will not make eontrihution. Further,

2 { r ~ [ ) S U  thJ <7fi)I
since the pressure vanishes at (he h<»iiudiiitr surhue Now loi (lie e()Uilihrunu 

e0Jifi}i:nrnti(m

p ' /dW ' (w^ '̂̂ )\radwl
doi (')
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M u ltip ly ]th is  (Mjualioii li\ (li'w and piiltiiiy

tll'(') ~  ^Oi

we liiid

m

2(F -  i)(^u - 2 ( r  1)1 -  I Ûrn tini

w
’ f(.) .(J ^H)rfr-! JfwJH'lI

Further

(^ E  J {| -I- . (J - H ) \ d T

and

(•FI)

M H) 4  (J  ̂ m)|rfT (-U)

IF) — ir  fiir (do)
Hiivee the aiignliir monieiitiim is constant No\v from eijuatimi (,I4) \\c ^el2fTF
d’herefoie

ry(/WF) -  2 /̂/dF

Hem e etpiation (41) Avith the helj) of equations (43) to (40) reduees to

M . M0-2 j* ^coVw -  - 2(F I)ĵ  j* - I  -̂oi ( J  ' H)(lr



116 J .  N, Tandon

-  [  w i d m  ] +  f «  +  div(|o))]L« . (J X H)]dT 
F

+  j  Cii. [(iSj X H ) +  (J  X ... (47)
F

T'his is tliF j'equii'Ofl intograJ fovnuiJa lor Uip trequenoy of radial pulsations of 
rotating infinitely long eylinder foi all eurreiits distributjou having axial symniotry 
The (“haiiges dlH in the niagnotie field and t5j in the emTenl density eaii easily 
be evaluated ivith tlie help of equations (27) and (2).

Let us nov  ̂ obtain the approximate expression for the frecjueney of pul­
sation lor two spoeial cases of magnetic fields, viz , poloidal and toroidal 
Auluck and Kothari (1057) have discussed these two systems of fields in detail! 
Let us make use of the msual assumption made in the theory of adiabati^ 
pulsations of stars, viz.,

f — constant in spaee. ... (48)

(Jase (i) The magnetic held is ])oloidal
This poloidal niaguetic field is derived (roni circular currents of the lorm

(49)

such that

H -  I 0. 0 . (fiO)

where h is constant and R is the radius of tlie cylinder. Kor such a configuration, 
it was shov'U earlier by Tandon and Tahvar (1957) that

and
S H  -  -  2|H 

t f j=  - 3fj

The equation for the frequency of radial pulsations will then be
M

0-2 I M m  =  2(r -  l)GilT“ -- 2(r -  2) j" co,(J x  H)afr 

- 2(r -  2)w W

or using the abbreviation

r =  (J Stt
L dr

(51)

(52)

(53)
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we get

ot2 I M m  2(r -  i)cur^ 2(2  ̂ r)[2i?;' -f wW\ (54)

ThuH, in the rase of rotation the (erm 2K' of (Miuatiou (25) of Taiidon and TalAvai 
Jias been replaced by 2£J'-\-irW. This clearly indicates tliat tlie rotation is 
similar to magnetic field and hel])s in the dynamical stability ol the cyhnder for 
radial pulsations in the presence ol (‘,m;uhir eurrents.

Case (li)-'riie  magnetic field is toioidal

For this case we consider a systeiii in which there are line' currents of 
constant value such that

(55)

and hence

H -- (0, /rw, 0) (56)

ivhere k is a constant. The change in the magnei.ic field ib'H and tin* change in 
the current density will then be given by

and
2 | j

rhe equation for the trequemjy of pulsations thus becomes

(57)

0-2 ( co2dm--2(r- i )r ;j i /2 -2 (r - i)I  u.(jxH)rfT -2(i' 2)wir ( , W )

Further using the abbreviation represented by of(uatiou (58) we obtain
M

0-2 I to2rfm =  2(r  l )6'J C + 8( r - l ) £ '  + 2(2 - l > H '  ... (59)

This equation dearly indicates that the cylinder is stable for the railial pulsations 
in the ])rosenee of line currents as well.
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