Indian J. Phys. 43, 324-329 (1969)
A note on the deformation of a rolating inhomogeneous piezoelectric thick disc
By M. Bhattacharya
Lake View High School, Panchunantala Road, Calcutta-19.

(Received 11 April 1969)

The equations of clastccity, the Maxwell's electromechancal equations and the constitutive equations of piezoclectricty have been made use of in solving the problem. The results arrived at essentrally agree with the results known for aeolotropic media and which are free from piczoelectric excilations.

1. Intronuction

In recent years the problems of prezoelectricity have assumed importance in view of their applications in the field of ultrasonics and acoustic. Toupin (1959), Paria (1960), Paul (1961), Snhh (1962, 1963), Giri (1964), Das (1966) and Bakshi (1967) in their papers distinguished the problems of piezoelectrity as analogues of the well-known classical problems of elasticity. The present note is a prezeelectric analogue of the elastic problem concerning the determination of the deformations in a rotating thick disc with inhomogeneous material patameters. The inhomogeneities are supposed to appear due to the impurities of the crystal structure of the material.
2. The phoblems, fundamental equations and boundary conditions,

The problem, as stated above is electromechanical in character and is therefore to be solved by the equations of elasticity and electro magnetic Maxwell's equations. The problem has been considered as that of a plane strain in cylindrical co-ordinates (r, θ, z) with orgin at the lower face and x-axis parallel to its thickness and direction of the electric field along $z \cdot$ axis. The equation of equilibrum is

$$
\begin{equation*}
\frac{\partial T_{r}}{\partial r}+\frac{T_{r}-T_{\theta \theta}}{r}+\rho \omega^{2} r=0 \tag{l}
\end{equation*}
$$

where T_{r}, and $T_{0 \theta}$ are the stress 'components, p the density and ω the unform velocity of the rotating disc. The Maxwell's equations are given by

$$
\begin{equation*}
\operatorname{rot} \vec{E}=0, \quad \operatorname{div} \vec{D}=0 \tag{2}
\end{equation*}
$$

where \vec{E} and \vec{D} are the clectric intensity and electric displacement vectots, respectively.

The constitutive equations of piezoelectricity in Cartesian co-ordinates are given by Sinha (1968)

$$
\begin{align*}
& T_{x x}=C_{11}^{E} S_{x x}+C_{19}^{E} S_{y y}+C_{18}^{R} S_{z z}-e_{31} E_{z} \\
& T_{y y}=C_{12}^{E} S_{x x}+C_{11}^{E} S_{y y}+C_{1 y}^{E} S_{z z}-e_{31} E_{z} \\
& T_{z z}=C_{13}^{E}\left(S_{x x}+S_{y y}\right)+C_{33}^{E} S_{z z}-\iota_{33} E_{z} \\
& T_{z x}=C_{44}^{E} S_{z x}, T_{y z}=C_{44}^{E} S_{y z} \\
& D_{x}=e_{14} S_{y z}+e_{15} S_{z x} \\
& D_{y}=e_{15} S_{y z}+e_{14} S_{z x} \\
& D_{z}=C_{31}\left(S_{x x}+S_{y y}\right)+\epsilon_{33} S_{z z}+c_{33} E_{z} \tag{3}
\end{align*}
$$

where T-stress components, S-strain compoments, D-electric displacements, C-elastic compliances, e-piezoelectric constants, E-dielectric permittivities
In cylindrical co-ordinates the above equations give
$T_{r}=\cos \theta T_{x x}+2 \sin \theta \cos \theta T_{x y}+\sin ^{2} \theta T_{y y}$
$T_{\theta \theta}=\sin ^{2} \theta T_{x \lambda}-2 \sin \theta \cos \theta T_{x y}+\cos ^{2} \theta T_{v y}$
$T_{r_{\theta}}=\sin \theta \cos \theta\left(T_{y y}-T_{x x}\right)+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) T_{x y}$
$T_{1 z}=\cos \theta T_{z x}+\sin \theta T_{y z}$
$T_{\theta z}=-\sin \theta T_{x z}+\cos \theta T_{y z}$
$T_{z z}=T_{z z}$
$D_{r}=D_{r} \cos \theta+D_{v} \sin \theta$
$D_{\theta}=D_{y} \cos \theta-D_{x} \sin \theta$
$D_{z}=D_{z}$.
Again the components of displacements (U, V, W) are given by

$$
\begin{equation*}
U=u \cos \theta, \quad V=v \sin \theta, \quad W=\omega \tag{5}
\end{equation*}
$$

whence $u(r z)$ and $\omega(r z)$ are the radial and axial components which are assumed to be independent of θ. The strain components are given by

$$
\begin{align*}
& S_{x x}=\frac{u}{r}+\frac{x^{2}}{r} \frac{\partial}{\partial r}\left(\frac{u}{r}\right) \\
& S_{y y}=\frac{u}{r}+\frac{y^{2}}{r} \frac{\partial}{\partial r}\left(\frac{u}{r}\right) \\
& S_{z z}=\frac{\partial \omega}{\partial z} \\
& S_{x y}=\frac{2 x y}{r} \frac{\partial}{\partial r}\left(\frac{u}{r}\right) \\
& S_{y z}=\frac{y}{r}\left(\frac{\partial u}{\partial z}+\frac{\partial \omega}{\partial r}\right) \\
& S_{\& x}=\frac{x}{r}\left(\frac{\partial u}{\partial z}+\frac{\partial \omega}{\partial r}\right) \tag{6}
\end{align*}
$$

Thus the simplified form of (4) gives

$$
\begin{align*}
& T_{r r}=C_{11} \frac{\partial u}{\partial r}+C_{18} \frac{u}{r}+C_{13} \frac{\partial \omega}{\partial z}-e_{31} E_{z} \\
& T_{\theta \theta}=C_{12} \frac{\partial u}{\partial r}+C_{11} \frac{u}{r}+C_{13} \frac{\partial \omega}{\partial z}-e_{31} E_{z} \\
& T_{\theta_{z}}=C_{44}\left(\frac{\partial u}{\partial z}+\frac{\partial \omega}{\partial r}\right) \\
& T_{z z}=C_{13}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+C_{33} \frac{\partial \omega}{\partial z}-e_{33} I_{z} \\
& I_{r \theta}=T_{\theta z}=0 \\
& D_{r}=e_{15}\left(\frac{\partial u}{\partial z}+\frac{\partial \omega}{\partial r}\right), \quad D_{\theta}=-e_{14}\left(\frac{\partial u}{\partial z}+\frac{\partial \omega}{\partial r}\right) \\
& D_{z}=C_{31}\left(\frac{\partial u}{\partial r}+{ }_{r}^{u}\right)+e_{3}\left(\frac{\partial \omega}{\partial z}\right)+e_{33} E_{z} . \tag{7}
\end{align*}
$$

The material parameters $C_{11}, C_{12}, C_{13}, e_{33}$ etc. are supposed to vary along the direction of the axis of the disc.

We have to solve (1) and (2) by the help of (7) and also following the boundary conditions.
(i) Electric conditions

$$
\begin{align*}
& E_{z}=b_{1} \quad \text { at } z=l, \quad r=0 \\
& E_{z}=b_{2} \text { at } z=l, \quad r=a \tag{8}\\
& E_{z}=b_{3} \text { at } z=0, \quad r=0 \\
& \left(b_{1}, b_{2}, b_{3} \text { are constants }\right)
\end{align*}
$$

and (ii) mechanical conditions

$$
\begin{equation*}
\int_{0}^{1} T_{r}, \partial z=0 \text { at } r=a \tag{9}
\end{equation*}
$$

where l is the thickness of the disc.
2. Solution of the problem

Since the problem is that of plane stress and so $T_{z \varepsilon}=T_{1 \varepsilon}=0$

$$
\begin{align*}
C_{1 s}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+C_{3 s} \frac{\partial \omega}{\partial z}-e_{3 s} E_{4} & =0 \\
\frac{\partial \omega}{\partial r}+\frac{\partial u}{\partial z} & =0 \tag{10}
\end{align*}
$$

From (10) we have

$$
\begin{equation*}
E_{z}=\frac{1}{e_{33}}-\left[C_{13}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+C_{39}-\frac{\partial \omega}{\partial z}\right] \tag{10a}
\end{equation*}
$$

Then eliminating E_{z}, we have the first three equations of (7) as

$$
\begin{align*}
& T_{r}=C_{1} \frac{\partial u}{\partial}+C_{\mathrm{a}} \frac{u}{r}+C_{3} \frac{\partial \omega}{\partial z} \\
& T_{\theta \theta}=C_{2} \frac{\partial u}{\partial r}+C_{1} \frac{u}{r}+C_{3} \frac{\partial \omega}{\partial z} \\
& D_{\varepsilon}=e_{1}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+e_{3} \frac{\partial \omega}{\partial z} \tag{11}
\end{align*}
$$

Because of our assumption of inhomogeneity of the material parameters, we have $C_{11}=C_{11}{ }^{\circ}(1+\kappa z), C_{12}=C_{12}{ }^{\circ}(1+\kappa z), e_{31}=e_{31}{ }^{\circ}(1+\kappa z)$ etc. So that

$$
\begin{align*}
& C_{1}=\left(C_{11}-\frac{C_{19} e_{31}}{e_{33}}\right)=C_{1}^{\circ}(1+\kappa z) \\
& C_{2}=\left(C_{12}-\frac{C_{18} e_{31}}{e_{32}}\right)=C_{2}^{\circ}(1+\kappa z) \\
& e_{1}=\left(e_{31}+\frac{C_{13} e_{33}}{e_{39}}\right)=e_{1}^{\circ}(1+\kappa z) \tag{12}
\end{align*}
$$

whence $C_{1}{ }^{\circ}, C_{2}{ }^{0}, C_{3}{ }^{0} \ldots e_{1}^{0}, e_{2}{ }^{0}, e_{3}{ }^{0}$ being constants given by

$$
\begin{aligned}
& C_{1}{ }^{\circ}=\left(C_{11}{ }^{\circ}-\frac{C_{13}{ }^{\circ} e_{31}{ }^{\circ}}{e_{33}{ }^{\circ}}\right) \\
& C_{2}{ }^{\circ}=\left(C_{12}{ }^{\circ}-\frac{C_{13}{ }^{\circ} e_{21}{ }^{\circ}}{e_{33}{ }^{\circ}}\right) \\
& \\
& e_{1}{ }^{\circ}=\left(e_{31}{ }^{\circ}+\frac{C_{13}{ }^{\circ} e_{33}{ }^{\circ}}{e_{33}{ }^{\circ}}\right)
\end{aligned}
$$

from (2)

$$
\frac{\partial D_{z}}{\partial z}=0
$$

$$
\begin{equation*}
D z=\text { a function of } r=f(r) \text { say. } \tag{13}
\end{equation*}
$$

Thus the equation (1) gives

$$
\begin{equation*}
C_{1} \frac{\partial}{\partial r}\left(\frac{\partial u}{\partial r}+\stackrel{u}{r}_{r}^{u}\right)+C_{3} \frac{\partial^{2} \omega}{\partial z \partial r}+\rho \omega^{2} r=0 \tag{14}
\end{equation*}
$$

The last equation of (11) reads

$$
\begin{equation*}
e_{1}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+e_{3} \frac{\partial \omega}{\partial z}=f(r) \tag{15}
\end{equation*}
$$

Eliminating u between (15) and (16)

$$
\begin{equation*}
-\frac{\partial^{2} \omega}{\partial z \partial r}=\left(\frac{1+\kappa z}{\kappa_{1}}\right)\left(C_{1}^{\circ} f^{\prime}(r)+e_{1}^{\circ} \rho \omega^{\circ} r\right) \tag{16}
\end{equation*}
$$

where $\left(O_{3} e_{1}-e_{3} O_{1}\right)=\kappa_{1}$
Eliminating ω from (15) and (16) we get

$$
-\frac{\partial}{\partial r}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+\left(\frac{1+\kappa z}{\kappa_{1}}\right)\left(C_{3}^{\circ} f^{\prime}(r)+e_{3}^{\circ} \rho \omega r\right)
$$

Since $\frac{\partial \omega}{\partial r}+\frac{\partial u}{\partial r}=0$,

$$
\frac{\partial^{2} \omega}{\partial r \partial z}=-\frac{\partial^{2} u}{\partial z^{2}} .
$$

Thus, $\quad \frac{\partial^{\mathrm{p}} \omega}{\partial z^{2}}=\left(\frac{1+\kappa z}{\kappa_{1}}\right)\left(C_{1}{ }^{0} f^{\prime}(r)+e_{1}{ }^{\circ} \rho \omega^{\mathrm{l}} r\right)$
Integrating,

$$
\begin{equation*}
u=\left(\frac{z^{8}}{2 \kappa_{1}}+\frac{\kappa z^{3}}{6 \kappa_{1}}\right)\left(C_{1}{ }^{\circ} f^{\prime}(r)+e_{1}{ }^{\circ} \rho \omega r\right)+f_{1}(r) z+f_{\mathrm{g}}(r) \tag{17}
\end{equation*}
$$

where $f_{1}(r)$ and $f_{2}(r)$ are arbittary functions of r.
Putting the value of u in (14) we have

$$
\begin{gather*}
C_{1}^{\circ}(1+\kappa z) \frac{\partial}{\partial r}\left\{\left(\frac{z^{2}}{2 \kappa_{1}}+\frac{\kappa z^{3}}{6 \kappa_{1}}\right)\left(C_{1}{ }^{\circ} f^{\prime}(r)+e_{1}^{\circ} \rho \omega^{0}\right)+f_{1}^{\prime}(r) z+f_{\mathrm{a}}^{\prime}(r)\right. \\
\left.\quad+\left(\begin{array}{c}
z^{2} \\
2 \kappa_{1}
\end{array}+\frac{\kappa z^{3}}{6 \kappa_{1}}\right)\left(C_{1}{ }^{\circ} \frac{f^{\prime}(r)}{r}+e_{1}^{0} \rho \omega^{2}\right)+\frac{f_{1}(r)}{-r} z+\frac{f_{1}(r)}{r}\right\} \\
\left.\quad-C_{\mathrm{g}}^{\circ} \frac{(1+\kappa z)^{2}}{\kappa_{1}} C_{1}{ }^{\circ} f^{\prime}(r)+e_{1}{ }^{\circ} \rho \omega^{2}\right)+\rho \omega^{2} r=0 \tag{18}
\end{gather*}
$$

Collecting the co-efficients of different powers of z and solving for $f(r), f_{1}(r)$ and $f_{2}(r)$ we have

$$
\begin{align*}
f(r) & =A_{1}+A_{2} r^{2} \\
f_{1}(r) & =A_{3^{r}}+\frac{B_{1}}{r} \\
f_{8}(r) & =A_{4} r+\frac{B_{2}}{r}+\frac{A_{5}}{8} \quad \kappa_{8}^{\prime}\left(A_{8}+\kappa_{1}^{\prime} \rho \omega^{\mathbf{8}}\right) r^{\mathbf{3}} \tag{19}
\end{align*}
$$

where $A_{1}, A_{1}, A_{3} \ldots \ldots B_{1}, B_{9} \ldots \ldots$ are constants
and $\kappa_{2}^{\prime}=\frac{4 C_{3}{ }^{\circ} O_{1}{ }^{\circ}}{\kappa_{1}}, \kappa_{1}{ }^{\prime}=\frac{e_{1}{ }^{\circ}}{2 c_{1}{ }^{\circ}}$
Imposing appropriate conditions for the displacement component u we get

$$
\begin{equation*}
u=\frac{A_{8} A_{8^{\prime}} \kappa_{\mathrm{g}}^{\prime}}{8} r^{3}+\frac{C_{1}^{\circ}}{3 \kappa_{1}}\left(3 \kappa^{2}+\kappa z^{8}\right) A_{8}{ }^{\prime} r+A_{\mathrm{g}} r z+A_{4} r \quad \ldots(21) \tag{22}
\end{equation*}
$$

where $A_{8}^{\prime}=\left(A_{2}+\kappa_{i}^{\prime}{ }_{i} \omega^{2}\right)$
$\therefore \frac{\partial u}{\partial r}+\frac{u}{r}=\frac{1}{2} A_{5} A_{2}{ }^{\prime} \kappa_{2}{ }^{\prime} r^{2}+\frac{2}{3} \frac{C_{1}^{0}}{\kappa_{1}}\left(3 z^{2}+\kappa z^{3}\right) A_{\mathrm{a}}{ }^{\prime}+2 A_{32}+2 A_{4}$.
so that from (15)

$$
\begin{align*}
\frac{\partial \omega}{\partial z}=\frac{A_{1}+A_{\mathrm{Q}^{2}}{ }^{2}}{e_{3}^{\circ}(1+\kappa z)}- & \frac{e_{1}^{0}}{e_{3}{ }^{\circ}}\left[\frac{2}{3} \frac{C_{1}{ }^{\circ}}{\kappa_{1}}\left(3 z^{2}+\kappa z^{3}\right) A_{\mathrm{a}}{ }^{\prime}+2 A_{3^{2}} z\right. \\
& \left.+2 A_{4}+\frac{1}{2} A_{5} A_{9}^{\prime} \kappa_{2}^{\prime} r^{2}\right] \tag{23}
\end{align*}
$$

Thus from (10a) we can get the value of E_{z} and then applying the boundary conditions as stated in equations (8) and (9) we can calculate the value of all the constants and finally the values of u and ω. The constants can be expressed in terms of material parameters, radius, and prescribed electric intensity.

The author is thankful to Dr. N. C. Das of Jadavpur University for his guidance in the preparation of this paper.

Refresnces

Bakshi, S. K. 1967 Jour. Sc. Engg. Res. 11, 167.
Das, N. C. 1966 Jour. So. Engg. Ree. 10, 167.
Gir1, R. R. 1965 Appl. Sci. Reo. A. 14, 471,
Paria, G. 1960 Jour. Sc. Engg. Res. 4, 381.
Paul, H. S. 1961 Jour. So. Engg. Res. 5, 233.
Sinha, D. K. 1962 Jour. Acoust. Soc. Amor. 34, 1073. 1968 Bull. De L'academie, Polon. des, Sc. 6, 227.
Toupin, R. A. 1959 Jour, Acoust. Soo, Amer, 31, 315.

