ON THE SCATTERING；OF FAST PARTICLES OF SPIN I BY ATOM NUCLEI

Bッ K．（｀．K．lに

ABSTRACT．The wavestatistial theors of seattering dac to pill pon interact in discused in the perious pape hasheen futher extudedfor upin 1.

In a previous paper（Kar，iohiz）the wave－statistical theory of scatterine of fast particles of spin $\frac{1}{2}$ by atom nuclei was developed and the well－known Mott（1929）formula was derived．The formula derived for electron－electron scattering is，however，different from that of Moller（ro3z）in the general case although at the limating cases for which the velocity is tro low or too high， the two formulie completely agrec．

The object of the present paper is to funther extend the wave－statistical theory to the case of scatteting of fast partic les of spin I ．

It may be seen without diffeulty（Kar，ib．（dt）that on meglecting the spinorbit interaction，we have for the differential upuation satisfied be the finst order scattering function

$$
\begin{equation*}
\Delta\left(\lambda_{1} x_{1}\right)+k^{2}\left(\lambda_{1} x_{1}\right)=\frac{4^{\prime} x^{\prime}}{h_{1}^{2}}{ }_{2}^{2}\left\lceil 2 \mathrm{~K} V+21 V_{1}-V^{2}\right] \tag{I}
\end{equation*}
$$

where V_{1}－is the spm－spin interaction．It is apparent that the contributom of the terms IIV and $-V$ are game an in the previon paper＇Kar，la，，th． The contribution of the remaining term is，however，different as the interaction potential $V_{\text {．}}$ is different in the present case．Let in suppose that the scattering mucleus has ！spin．＇Thus the interacting partick have unequal spins and so the exchange factor 2 ，hould be droped from the spin shin interaction potential．We have then

$$
V_{-}= \pm 心 ふ \stackrel{\%}{\%}{ }_{\gamma}^{2} \quad \text {.. } 1.1
$$

where the upper sign denoten that the coulomb ionce in repulaive
On using the above interaction potential and proceding in the usual manner we have for the finst orden scatterine function．

As in the previons paper (loc.cit.) $\lambda_{1} X_{1}$ should be multiplied by the spin and relativity factors, in order to get the complete scattering function due to spinspin interaction. Now, it has been shown in the paper just referred to that the probability that there is no change in the sign of spin $\frac{1}{2}$, after scattering, is unity and is given by

$$
\mathrm{D}_{s}=\mathrm{P}_{+\frac{1}{2}}^{-\frac{1}{2}}(\theta) \mathrm{P}_{-\frac{1}{2}}^{+\frac{1}{2}}(\theta) e^{-i \frac{1}{2} \phi} e_{e}^{+i \frac{1}{2} \phi}=\mathrm{I} \quad \ldots \quad \text { (4.1) }
$$

whereas, the probability that there is change of sign after scattering, is given by

$$
\left.\mathrm{D}_{s}=\mathrm{P}_{+\frac{1}{2}}^{+\frac{1}{2}}(\theta) \mathrm{P}_{+\frac{1}{2}}^{-\frac{1}{2}}(\theta)\right)_{c}+l \frac{1}{2} \phi_{e}-l \underline{2} \phi=\cos \theta \quad \ldots \quad \text { (4.2) }
$$

where $P_{\frac{1}{2}}^{\frac{1}{2}}(\theta)$,..etc. are Legendre functions for $|m|=\frac{1}{2},|n|=\frac{1}{2}$. The cortesponding probabilities for the observer are obtained by putting $\pi-\theta$ for θ. Hence the total probability for the observer is evidently

$$
\begin{equation*}
\delta_{s}=1-\cos \theta \tag{4}
\end{equation*}
$$

which is the spin factor by which the scattering function (3) should be multiplied in order to get the total scattering.

We have now to decide whether the corresponding spin factors (δ) for spin 1 should involve Legendre functions of the type $\mathrm{P}_{1}^{1}(\theta), \mathrm{P}_{1}^{-1}(\theta), \ldots$ etc. It is evident that these Legendre functions cannot represent spin 1 , because in that case I, egendre functions of the type $P_{1}^{\frac{1}{2}}(\theta)$ cannot be interpreted. The only other course left to us for representing spin I by Legcndre functions would be to represent it by squares of $\frac{1}{2}$ - integral Legendre functions. Thus the Irobability in the present case corresponding to (4.1) should be

$$
\begin{equation*}
\mathrm{D}_{\mathrm{R}}=\left\{\mathrm{P}_{+\frac{1}{2}}^{-\frac{1}{2}}(\theta)\right\}^{2}\left\{\mathrm{P}_{-\frac{1}{2}}^{+\frac{1}{2}}(\theta)\right\}^{2},-i 1 \phi_{t}+i 1 \phi=\mathrm{I} \tag{5.1}
\end{equation*}
$$

while corresponding to (4.2) it should be

$$
\begin{equation*}
\mathrm{D}_{n}=\left\{\mathrm{P}_{+1}^{+\frac{1}{2}}(\theta)\right\}^{2}\left\{\mathrm{P}_{+\frac{1}{2}}^{-\frac{1}{2}}(\theta)\right\}^{2} e^{i 1 \phi}-l i \phi=\cos ^{3} \theta \tag{5.2}
\end{equation*}
$$

The physical sygnificance of taking squates is that the ultimate unit of spin is $\frac{1}{2}$. The spin I is developed due to the simultaneous existence of two component $\frac{1}{2}$ - spins. The probability of this simultaneous happening is obtained by taking squares according to the usual law of probability. Now, in the case of spin $\frac{1}{2}$ we took the spin factor with respect to the observer of the scattered wave (vide Eq. 4) by putting $\pi-\theta$ for θ. In the present case of spin I because we have to take squares we should take the geometric mean

Scattering of Fast Particles of Spin 1 by Atom Nuclei

for the observers situated with the incident and scattered waves facing the scatterer. Consequently (5.2) should be $-\cos ^{2} \theta$ being the product of $\cos (\pi-\theta)$ and $\cos \theta$. It should be noted that if one takes the geometric mean (5.1) remains unaffected. Thus the spin factor becomes

$$
\begin{equation*}
\delta_{\kappa}=\mathrm{I}-\cos ^{2} \theta=\sin ^{2} \theta \tag{6}
\end{equation*}
$$

It should be noted that the 1 esults in (5.1) and (5.2) may also be obtained in the following way :

$$
\begin{equation*}
\mathrm{D}^{\prime}=\left\{\mathrm{P}_{+1}^{-\frac{1}{2}}(\theta) \mathrm{P}_{-\frac{1}{2}}^{+\frac{1}{2}}(\theta)\right\}\left\{\mathrm{P}_{+3}^{-\frac{1}{2}}(\theta) \mathrm{P}_{-\frac{1}{2}}^{+\frac{1}{2}}(\theta)\right\} c^{-i_{1} \phi_{c}}+i_{1} \phi=1 \tag{7.1}
\end{equation*}
$$

corresponding to (51) and

$$
\mathrm{D}_{n}^{\prime}=\left\{\mathrm{P}_{+\frac{1}{2}}^{+\frac{1}{2}}(\theta) \mathrm{P}^{-\frac{1}{2}}(\theta)\right\}\left\{\left.\mathrm{P}^{+\frac{1}{2}}(\theta) \mathrm{P}^{-\frac{1}{2}}(\theta)\right|^{+i_{1} \phi}{ }_{c}^{-i_{1} \phi}=\cos ^{2} \theta \quad \ldots \quad \text { (} 7.2\right)
$$

corresponding to (5.2). Taking into account these two different ways, it is evident that the spin factor should be normalised by dividing by 2 . Accordingly the spin factor should be $\delta=\frac{1}{2} \sin ^{2} \theta$ (vide Eq. (6)).

Next we consider the relativity factor. From its definition already given and remembering that in tahing squares we should take the geometrical mean as in the case of the spin factor.

$$
\begin{equation*}
\delta_{r r}=\frac{1-\beta^{2}-1}{\mathrm{I}} \cdot \underset{\mathrm{I}-\beta^{2}}{1-\left(1-\beta^{2}\right)}=-\underset{1-\beta^{2}}{\beta^{4}} \tag{S}
\end{equation*}
$$

Hence we have for the total scattermg function, neglecting the effect of $-V^{2}$ term in (I).
$\lambda_{1} \chi_{1}=\mp\left(\frac{7 e^{2}}{2 m_{0} v^{2}}\right)\left(1-\beta^{2}\right)^{\frac{1}{2}} \operatorname{coscc}^{2} \frac{1}{2} \theta \mathrm{~A}^{c^{\prime \prime}}, \cos k^{\prime} \prime_{11}\left\{1-\frac{1}{2} S_{1} S_{2} \frac{\beta^{\prime}}{1-\beta^{2}} \sin ^{2} \theta\right\}$
Hence the relative intensity of scattering becomes

$$
\mathrm{I}=\binom{Z e^{2}}{\hdashline 2 m_{11} v^{2}}^{2}\left(\mathrm{I}-\beta^{2}\right) \operatorname{cosec}^{1} 2 \theta \cos ^{2} k^{\prime} r_{11}\left\{\mathrm{I}-\mathrm{S}_{1} \mathrm{~S}_{2} \beta_{\mathrm{I}-\beta^{2}}^{\beta^{1}} \sin -\theta\right\} \quad \ldots \quad(\mathrm{I} \mathrm{O})
$$

Since the weights for anti-parallel to parallel spins ate as $2: 1$ and since $S_{1}=\frac{1}{2}, S_{2}=1$, we have for the total intensity of scattering

$$
\begin{equation*}
\mathrm{I}=\left(\frac{Z e^{2}}{2 m_{0} v^{2}}\right)^{2}\left(1-\beta^{2}\right) \operatorname{cosec}^{4} \frac{1}{2} \theta \cos ^{2} k^{\prime} 1,\left\{1+\frac{1}{6} \frac{\beta^{1}}{1-\beta^{2}} \sin ^{2} \theta\right\} \tag{II}
\end{equation*}
$$

which is the formula obtained first by Massey and Corben (1939) in a difterent way.

It may be mentioned in conclusion that in the above formula we have considered the interaction between spin $\frac{1}{2}$ of the nucleus and spin 1 of the scattered particle．It，however，the nucleus has also spin 1 ，there is the exchange effect．And so the spin－spin interaction potential should be multiplied by the numerical factor 2．But because of the nuclear spin 1 there should be the additional weight factor $\frac{1}{2}$ ，which neutralises the exchange effect of 2 ．Thus it may be easily seen，remembering that $S_{1}=1, S_{2}=1$ ， that the intensity should be［irde Lid．（io）］

$$
I=\binom{Z c^{2}}{2 m_{1} v_{2}^{2}}^{2}\left(1-\beta^{2}\right) \operatorname{cosec}^{4} \frac{1}{2} \theta \cos ^{2} k^{\prime} r_{11}\left\{1+\frac{1}{1-\beta^{2}} \frac{\beta^{4}}{\left.1-\ln ^{2} 6\right\}} \quad \ldots \quad(12)\right.
$$

which is slightly different from Massey and Corben＇s formula（in）in as much as the numerical factor in the second term is ：instead of ${ }_{6}^{!}$．

Physical，Labobatory，
Presidency Combere，
Calcutta

```
RぼいましたNじほふ
Ka1，K．（｀．，1947，Ind．Joul．Plyy，30，f9 Mansey and Corben，1939，Proc．Camb．Phil．Soc．，35，th3． Molle1，1932，1nn．d．Pliys．，14，531． Mott，N．I＇．，Iy29，looc．Roy．Soc．，124， 425.
```

