MULTIPLET SEPARATIONS IN COMPLEX SPECTRA PART III

(Equivalent f Electron Cojnfigurations)
By V. RAMAKRISH A RAO
(Received for Publication, fly 12, 1948)
ABSTRACT. The separation factors have been alculated for multiplet-terms arising

INTRODUCT10N

In two previous papers the authors (hao and Rao, 1948) discussed the applicablity to certain known complex spetra of Goudsmit's expressions for mutliplet separations arising from electron Eonfigurations of the type d^{3}, d^{4}, $d^{3} s$ and $d^{3} p$ etc., and it was shown that the expressions could be used to a certain extent to the prediction of the intervals of the deeper set of terms in a spectrum. Goudsmit (ig28) made the calculation of the separation factors ouly in the case of p^{n} and d^{n} electron systems, the latter forming the basic configurations for elements like vanadium, and chromium. The rare earth elements involve ' f ' type electron-configuration and it would be of interest to derive the expressions for these as well, as they might suggest at least approximate estimates of the magnitudes of the intervals in such spectra, which as yet are not analysed sufficiently.

CALCULATION OFTHESEPARATION FACTORS

The method of deriving the expressions for ' f ' electrons is as follows:-
(a) Systems having one f election, (f) :-Fior a single ' f ' electron $l=3, m_{l}= \pm 3, \pm 2, \pm 1, o$ and $m_{s}= \pm \frac{1}{2}$.

Writing down the possible combinatıons (i4 in all) we have :
Table I

m_{s}	m,	τ / a	M	$m_{\text {s }}$	m,	t/a	M
1	3	3/2	31	$-\frac{1}{2}$	3	$-3 / 2$	21
	2	1.	2.4		2	- 1	12
	1	+	12		1	-	1
	0	0	1		-	-	-1
	- 1	-1	-		-1	t	-12
	-2	-1	- 1 ¢		-2	1	-21
	-3	$-3 / 2$	-23		-3	$3 / 2$	-3t

The second column contains $m_{s} m_{l}=r / a$. In the third column are given $m_{s}+m_{l}=$ M. Another table is drawn from the above as follows:

Table II

	37	$2 \frac{1}{2}$	$1{ }^{1}$	1	- $\frac{1}{8}$	-18	-21	-3t
$\frac{1}{2}$	$3 / 2$	1	$\frac{1}{2}$	0	-	-1	$-3 / 2$	
$-\frac{1}{2}$		$-3 / 2$	-1	- ${ }^{2}$	-	1	\pm	3/2
21	3/2	$-\frac{1}{8}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{1}$	$-\frac{1}{4}$	3/2

which gives the τ sums in a weak field. A similar table is prepared in the case of a strong field as follows: the terms arising out of a single ' f ' electron are ${ }^{2} \mathrm{~F}_{84}$ and ${ }^{2} \mathrm{~F}_{24}$. If we put ${ }^{2} \mathrm{~F}_{9_{3}}=\tau_{1}$ and ${ }^{2} \mathrm{~F}_{93}=\tau_{2}, \tau_{1}$ and τ_{2} being their separations from a hypothetical level, we have in a strong field :

Table III

j^{M}	3t	$2 \frac{1}{2}$	${ }^{13}$	d	- $\frac{1}{2}$	- 1 1	-22	-31
- $3 \frac{1}{1}$	τ_{1}	τ_{1}	τ_{1}	τ_{1}	τ_{1}	τ_{1}	${ }_{1}$	τ_{1}
21		τ_{2}	τ_{2}	${ }_{\text {t }}^{2}$	r_{2}	τ_{8}	${ }^{2}$	
$\Sigma \tau$	τ_{1}	$\tau_{2}+\tau_{1}$	$\tau_{8}+\tau_{1}$	$\tau_{2}+\tau_{1}$	$\tau_{3}+\tau_{1}$	$\tau_{2}+\tau_{1}$	$\tau_{2}+\tau_{1}$	${ }_{1}$

It is easy to see the symmetrical disposition of the Σ_{i} values about a centre. Equating the corresponding $\Sigma \tau$ values i.e., belonging to the same M we have:

$$
\begin{aligned}
& \tau_{1}=3 / 2 \text { and } \tau_{1}+\tau_{2}=-\frac{1}{2} \\
\therefore \quad & \tau_{2}=-2 \text { and } r_{1}-\tau_{2}=\frac{7}{2}
\end{aligned}
$$

$\tau_{1}-\tau_{2}$ gives the total separation in the ${ }^{2} \mathrm{~F}$ multiplet and is equal to $7 / 2 a$.
Applying the Lande interval rule and dividing the separation by the bigher of the J-values, we have the separation factor

$$
A=(7 / 2) a . \quad(2 / 7)=a:
$$

thus for $a^{2} F$ in an ' f ' configuration we have the total separation $=7 / 2 a$ and the separation factor $\mathrm{A}=a$.
(b) ' f^{2} " configuration:-In case of the two ' f ' electrons the broad principles mentioned above hold and certain new features set in. As before we write down the m_{s}, m_{i} values for each electron as follows:

Tabla IV

$m_{1}{ }_{1}$	m_{l}	m:	m_{l}	$\mathrm{M}_{\text {s }}$	M_{L}	M	T_{1} / a	τ_{2} / a	T/a
1	3	1	$3(x)$	1	6	\% 7	$3 / 2$	3/2	3
			2		5	\% 6		1	21
			1		4	+ 5		$\frac{1}{2}$	2
			o		3	4		o	12
			-1		2	3		-1	1
			-2.		1	${ }^{1} 2$		-1	
			-3		\bigcirc	1		$-1 \frac{1}{2}$	0
		$-\frac{1}{2}$	3	o	6	, 6		- 12	0
			2		5	5		1	
			\pm		4	4		$-\frac{1}{2}$	1
			\bigcirc		3	3		-	2
			-1		2	2		$\frac{1}{1}$	2
			-2		1	1		1	22
			-3		\bigcirc	\bigcirc		${ }^{12}$	3

Table IV is only a typical portion of an extensive table, setting out al! the possible combinations. For each of one type of $m_{s_{1}}, m_{l_{1}}$ combination, $m_{s_{2}}$, m_{l}, can have 14 combinations. Among these, however, the combination marked (x) is not allowed by Pauli's exclusion principle, because n, l being the same for the eqvivalent electrons the m_{9}, m_{l} values cannot be both identical. Thus writing for different $m_{1}, 3,2,1,0,-1,-2,-3$, and also for the negative values of $m_{s_{1}}$ i.e. $-\frac{1}{2}$, we will have $14 \times{ }_{13}$ combinations. Of these there will be many combinations which are obtained by mere exchange of places, as in $\frac{1}{2} 2, \frac{1}{\frac{1}{2}} 3 ; \frac{1}{2} 3, \frac{1}{2} 2$, which are not different configurations. In fact we get each combination 2 times. Therefore the net permissible combinations are $\frac{1}{2}(14 \times 13)=91$. The 13 combinations in the above table are among the permissible ones. Column (2) in Table IV contains

$$
\mathrm{M}_{\mathrm{s}}=m_{\mathrm{s}_{1}}+m_{\mathrm{s}_{9}}, \mathrm{M}_{\mathrm{L}}=m_{l i}^{*}+m_{l_{2}} \text { and } \mathrm{M}=\mathrm{M}_{8}+\mathrm{M}_{\mathrm{l}}
$$

and column (3) gives,

$$
\bullet \quad \frac{\tau_{1}}{a}=m \mathrm{~s}_{1} m l_{1} ; \frac{\tau_{2}}{a}=m \mathrm{a}_{\mathrm{y}}, m l_{\mathrm{l}}
$$

and

$$
\frac{r}{a}=\frac{\tau_{1}}{a}+\frac{\tau_{2}}{a}
$$

V. R. Rao

From such a complete table, we form another, similar to Table II, giving sums in strong field. The net result is given below in Table V.

Table V

M	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6
1	$5 / 2$	2	3	2	$3 / 2$	0	$-3 / 2$	-2	-3	-2	$-5 / 2$		
0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1-1$			$-5 / 2$	-2	-3	-2	$-3 / 2$	0	$3 / 2$	2	3	2	$5 / 2$
2τ	$5 / 2$	2	$1 / 2$	0	$-3 / 2$	-2	-3	-2	$-3 / 2$	0	$1 / 2$	2	$5 / 2$

Table VI

Taking by corresponding M's we have,

$$
\begin{aligned}
5 A_{B} & =\frac{5}{2} a \quad \text { or } A_{B}=\frac{1}{2} a \\
3 A_{r}-2 A_{B} & =\frac{1}{2} a \text { or } A_{r}=\frac{1}{2} a \text { and } \\
-2 A_{P}-2 A_{B}+A_{P} & =-\frac{8}{2} a \text { or } A_{P}=\frac{1}{2} a \\
\text { i.e. } A_{B} & =A_{F}=A_{P}=\frac{1}{2} a
\end{aligned}
$$

Preparing the $\Sigma \boldsymbol{r}$ table for strong field we have for different J values of different multiplets different τ^{\prime} s over a bypothetical level and they will be of the general form as in the case of " f "" configuration (of the type of $\Sigma_{\tau_{1}}$ etc.,). Taking these, as before, under corresponding M values and equating, we see that there are more constants to be determined than the available equations. To get over this mathematical difficulty the following simplification is made on the assumption that the Lande-interval rule strictly holds. Illustratively, in the case of ${ }^{3} \mathrm{P}_{2}, 1$, , we have by Lande-interval rule ${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}=2 \mathrm{~A}_{5}$ and ${ }^{3} \mathrm{P}_{1}$ $-{ }^{3} P_{0}=A_{r}$, where A_{P} is the separation factor ayd the separation is proportional to the bigher J value. If we put ${ }^{3} P_{2}$ as hatving a value A_{P} and ${ }^{3} P_{1}$ a value $-A_{P}$ then ${ }^{3} P_{2}-{ }^{3} P_{1}=2 A_{P}$ proportional to 2 and ${ }^{3} P_{0}$ a value $-2 A_{P}$ then ${ }^{3} P_{1}-{ }^{3} P_{0}=A_{p}$ which is again proportional l. Thus suitably choosing numerical coefficients, we can easily see that there is only one constant A_{P} to be determined. Thus we can suitably arratge to get only one constant for each multiplet-term and solve the equation eashy. It would not be difficult to see that the question of separations does no arise in case of singlets as they are single levels and so we can treat them as zero.

RESULTS

From the above, the total separations for ${ }^{3} \mathrm{~F},{ }^{3} \mathrm{P}$ and ${ }^{3} \mathrm{H}$ are follows :-

$$
{ }^{3} \mathrm{~F}=7 / 2 a \quad{ }^{3} \mathrm{P}=3 / 2 a \cdot{ }^{3} \mathrm{H}=1 \mathrm{I} / 2 a
$$

The separation factor for each multiplet is $\frac{1}{2} a$.
The same method may be adopted for the calculation of the factors for f^{3}, f^{1} etc., configurations, only, the table of permissible combinations would be much more extensive.

ACKNOWLEDGMENTS

The author wishes to express his grateful thanks to Dr, K. R. Rao for his interest and guidance.

Andhra Univirsity,
Waltaik
REFERENCES
Rao and Rao, (1948), Ind. Jour. Phy., 22, 4, 173.
Rao and Rao (1948), Ibid 189.
Goudsmit, (1928), Phy. Rev., 31, 946.

We are now manufacturing :

* Soxhlet Extraction sets of 100cc, 250cc and 1000cc capacity
* B. S. S. Pattern Viscometers
* Kipp's Apparatus of 1 litre and $\frac{1}{2}$ litre capacity Petri Dishes of $3^{\prime \prime}$ and $4^{\prime \prime}$ diameter $A N D$
ALL TYPES OF GRADUATED GLASSWARE such as Measuring Flasks, Measuring Cylinders, Burettes, Pipettes, etc., etc.

Manufactured by :
INDUSTRIAL \& ENGINEERING APPARATUS CO., LTD.

CHOTANI ESTATES, PROCTOR ROAD, BOMBAY, 7.

The following special publications of the Indian Association for the Cultivation of Science, 210, Bowbazar Street, Calcutta, are available at the prices shown against each of them :-

Subject Author Price
Rs. A. ${ }^{\text {P. }}$
... Sir E. J. Russell
o 6
060
060
280
I 80
(1) The Royal Botanic Gardens, Kew.
(2) Studies in the Germination ... ," of Seeds.

Interatomic Forces
The Educational Aims and Practices of the California Institute of 'Technology.
Active Nitıogen $\quad .$. Prof. S. K. Mitra 280 A New Theory.

Theory of Valency and the Struc- ... Prof. P. Ray 300 ture of Chemical Compounds.

| Petroleum: Resounces of India | \ldots | D. N. Wadia | 2 | 8 | o |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| The Role of the Flectrical Double | \ldots | J. N. Mukherjee | I | 12 | 0 | layer in the Electro Chemistry of Colloids.

A discount of 25% is allowed to Booksellers and Agents.

RATES OF ADVERTISEMENTS

Third page of cover	\ldots	\ldots	Rs.	32, full page
do. do.	\ldots	\cdots	,	20, half page
do. do.	\cdots	\cdots	"	12, quarter page
Other pages	...	\cdots	"	25, full page
do.	...	\cdots	\ldots	...	"	16, half page
do.	\cdots	"	10, quarter page

15\% Commissions are allowed to bonafide publicity agents securing orders for advertisements.

