APPLICA [ION OF GAMOW'S THEORY OF α-EMISSION TO $(4 n+1)$ RADIOACTIVE SERIES.

By SUKUMAR BISWAS and A. P. PATRO
(Received for publication, \$ept. 15, 1918)

Abstract

Gamow's theory of α-emission is applied to neptunium ($4 \mathrm{n}+\mathrm{r}$) series. The values of the assumed "nuclear radius" r_{0} are fond to vary irregularly as in actinium $(4 \mathrm{n}+3)$ series. A large drop of r_{0} occurs in ${ }_{83} \mathrm{Bi}^{2213}$ similar to C -products of U , Th and Ac series A complete calculation of r_{0} values for all the members of T , Th and Ar series is also included with their extension to transuranic region using late st experimental values. It has been discussed that the existing theories of a-emission with angular momentum are inadequate in explaining these irregular variations of ${ }_{0}$, speciallv in the odd radioactive series. It appenrs that the nuclear charge Z has something to do with the irregularities of r_{0}.

INTRODUCTION

Gamow's theory of leakage of α-particles through a potential barrier has been applied to three radoactive series known so long. 'The relation between the disintegration constant λ and decay energy E contains a term r_{0} which is referred as "nuclear radius" on the assumption of simplified potential field. This denotes the distance from the centre of the nucleus to the point where the inverse square law of repulsion suddenly changes to a force of attraction as assumed by Gamow. In reality, the fall of potential near the nuclear boundary cannot be so abrupt ; but a calculation of r_{0} from the experimentally determined values of λ and E are made to sce whether these are consistent. The values of r_{0} are in general agreement with the liquid drop model of a nucleus ($r_{0}=R$. $A^{\frac{1}{3}}$) for U , and 'Th series and less satisfactory for Ac series. But abnormally low values of r_{0} are obtained for all the C-products. Since Gamow's work r_{0} values have been calculated by Bethe (1937) and by Preston (1946, 1947) for U, Th and Ac series. Recently the missing ($4 \mathrm{n}+\mathrm{r}$) radioactive series has been identified by two groups of investigators (Hagemann ct al, 1947 and English ct ai, 194\%). Further data have been reported by Seaborg (1948). With these values of E and λ it is worthwhile to observe the consistency of r_{0} values for this series. The present work is undertaken with this end in view.

Method of.Calculation

The value of r_{0} is calculated with experimental values of decay constant λ and disintegration energy E. Various forms of the relations used by different

* Communicated by Prof. M. N. Saha.

$$
4-1674 \mathrm{P}-12
$$

investigators have been referred in a previous praper. Rigorous calculation of transparency factor (Saha, 1944) and Late's (1929) semi-classical arguments yield the relation

$$
\begin{equation*}
\lambda=\frac{\tau_{1}^{\prime}}{\tau_{0}} c^{-2 K} \tag{I}
\end{equation*}
$$

where $v=$ velocity of α-particle relative to the product nucleus.
$r_{0}=$ radius of the product nucleus.
$2 k=\frac{16 \pi r^{2}(Z-2)}{l_{2}}\left(u_{0}-\sin u_{0} \cos u_{0}\right)$.
$u_{0}=\cos ^{-1}\left[\begin{array}{l}r_{0} \\ R\end{array}\right]^{\frac{1}{2}}=\cos ^{-1}\left[\begin{array}{c}m v^{2} r_{1 \prime} \\ 4 c^{2}(Z-2)\end{array}\right]^{\frac{1}{2}}$.
Preston (i946, 1947) uses more complex expressions, deduced from complex cigen-function,

$$
\begin{array}{ll}
\lambda=\frac{2 v}{r_{0}} \frac{\mu^{2} \tan u_{0}}{\mu^{2}+\tan ^{2} u_{0}} c^{-2 K} \\
\mu=-\tan u_{0} \tan \left(\mu k r_{0}\right) & \ldots
\end{array}
$$

where $\mu=\left(\mathrm{I}-V / E_{\alpha}\right)^{\frac{1}{2}}$

$$
k=\frac{2 \pi m v}{h}
$$

These equations are very sensitive to the small variation in the cxponential term, so the additional factor $\frac{\mu^{2} \tan u_{0}}{\mu^{2}+\tan ^{2} u_{0}}$ is not of much consequence. The values of r_{0} calculated from relation (I) are given in Tables I and II. Preston (1946) remarks that the additional term in (2a) gives a refinement in the value of r_{0}. The method adopted for solution of $(2 a)$ and $(2 b)$ is, however, not referred. For the comparison of the values of, obtained from the two methods, the latter equations are also used in this work. Solutions of ($2 a$) and ($2 b$) for \dot{r}_{0} and μ are done here graphically by assuming a new variable $y=\mu k r_{0}$. Two explicit relations of y and u_{0} are used to determine their values graphically. These come out as

$$
\begin{aligned}
& y_{1}=\frac{ \pm(k R) \sin u_{0} \cos u_{0}}{\left[\frac{2 v}{\lambda R} \tan u_{0}\left(\mathrm{I}+\tan ^{2} u_{0}\right) c^{-2 K}\right]^{\frac{1}{2}}} \\
& y_{2}=\frac{\mp \mathrm{I}}{\left[\frac{2 v}{\lambda R} \tan u_{11}\left(\mathrm{I}+\tan ^{2} u_{0}\right) e^{-2 K}\right]^{\frac{1}{2}}}
\end{aligned}
$$

From the value of u_{0}, r_{11} is calculated, and from r_{0} and y, μ is calculated which in turn gives the value of U.

Table I

r_{0} values for $(4 \mathrm{n}+1)$ Neptunium radioactive series.

Nuclei	Ea in (Mev)	$\begin{aligned} & v \times 10^{-0} \\ & c \mathrm{~m}^{\prime} / \mathrm{sec} \end{aligned}$	$\begin{gathered} \lambda \\ \sec \end{gathered}$	From relation(r)		From relation (2)	
				$\begin{gathered} r_{0} \times 10^{13} \\ c \mathrm{~cm} . \end{gathered}$	$\begin{gathered} k \times 1_{1}^{13} \\ \mathrm{~cm} . \end{gathered}$	$\underset{\substack{r_{0} \times 0^{13}}}{ }$	$\begin{gathered} R \times 10^{13} \\ \mathrm{~cm} . \end{gathered}$
${ }_{95} \mathrm{~A}_{111}{ }^{241} \longrightarrow{ }_{43} \mathrm{~Np}^{237}$	550	1661	4.40×10^{-11}	893	1.44	9.78	1 5^{8}
${ }_{93} \mathrm{~Np}^{237} \rightarrow{ }_{91} \mathrm{~Pa}^{233}$	173	1.540	9.78×10^{-15}	909	148	9.79	1.59
${ }_{92} \mathrm{U}^{233} \longrightarrow>_{90} \mathrm{Th}^{229}$	4.825	1. 556	1.37×10^{-13}	906	1. 18	9.65	1.58
${ }_{90} \mathrm{OH}^{229} \longrightarrow{ }_{88} \mathrm{Ra}^{425}$	485	1.561	3.18×10^{-12}	903	1.52	9.67	1. 59
${ }_{89} \Lambda \mathrm{c}^{225} \longrightarrow_{87} \mathrm{I}^{2} \mathrm{r}^{21}$	5801	1.708	800×15	8.68	1.14	923	1.53
${ }_{87} \mathrm{Fr}^{221} \rightarrow{ }_{85} \mathrm{At}^{217}$	6.31	1.782	231×10^{-3}	897	I 41	9.37	1. 54
${ }_{85} \mathrm{At}^{217} \rightarrow{ }_{83} \mathrm{Bi} \mathrm{i}^{213}$	7023	1.880	33	891	1.49	9.60	161
${ }_{83} \mathrm{Bi}^{231} \longrightarrow{ }_{81} \mathrm{Tl}^{209}$	586	1.718	315×10^{-6}	713	1.20	743	1.25
${ }_{84} \mathrm{Po}^{213} \longrightarrow{ }_{82} \mathrm{~Pb}^{209}$	8.336	2.849	1.52×10^{-5}	8.40	1.42	910	1. 53

Tamig II
r_{0} values for Th, U and Ac-series.
(4n) Th-series.

Nuclei	Ea in (Mev)	$\begin{gathered} v \times 10^{-9} \\ \mathrm{~cm} / \mathrm{sec} . \end{gathered}$	$\frac{\lambda}{\sec ^{-1}}$	From relation(I)		From relation (2)	
				$\left\lvert\, \begin{gathered} r_{0} \times 10^{13} \\ c \mathrm{~m} . \end{gathered}\right.$	$\begin{gathered} K \times 10^{13} \\ \mathrm{~cm} . \end{gathered}$	$\begin{gathered} r_{0} \times 1 \mathrm{Io}^{13} \\ \mathrm{~cm} . \end{gathered}$	$\begin{gathered} R \times 10^{13} \\ \mathrm{~cm} . \end{gathered}$
${ }_{96} \mathrm{Cm}^{840} \longrightarrow$	-	--	2.68×10^{-7}	-	-	-	-
${ }_{90} \mathrm{Th}^{232} \rightarrow_{88} \mathrm{Ms} \mathrm{Sh}^{\prime}{ }^{229}$	3.92	1.400	1.58×10^{-18}	990	1.62	10.01	1.64
${ }_{90} \mathrm{RdTh}^{229} \rightarrow_{88} \mathrm{ThX}^{224}$	5420	1.656	933×10^{-9} *	903	149	9.33	1.54
${ }_{86} \mathrm{ThX}^{224} \mathrm{C}_{86} \mathrm{Tn}^{220}$	5.68 I	1.690	2.2×10^{-6}	8.87	147	929	1.54
${ }_{86} \mathrm{~T}^{\prime} \mathrm{n}^{22 \mathrm{C}} \rightarrow_{84} \mathrm{Th}^{216}$	6.282	1.778	1.27×10^{-2}	8.91	I 49	9.28	1. 55
$8_{4} \mathrm{Th}^{216} \rightarrow_{82} \mathrm{Th}^{\text {P }}{ }^{212}$	6.774	1.847	439	8.69	1.46	912	1.53
${ }_{88} \mathrm{ThC}^{412} \longrightarrow{ }_{81} \mathrm{ThC}^{\prime 208}$	6.054	1.746	1.75×10^{-5} "	7.07	1.19	$7 \cdot 57$	1.28
${ }_{81} \mathrm{ThC}^{212} \rightarrow \mathrm{Cl}_{82} \mathrm{ThD}{ }^{208}$	8.776	2.102	2.31×10^{6}	8.65	1.46	9.15	1.54

Table II (contd.)
$(4 \mathrm{n}+2)$ U-Series

Nuclei	$E \alpha$ in (Mev)	$\begin{aligned} & v \times 10^{-9} \\ & \mathrm{~cm} / \mathrm{sec} . \end{aligned}$	$\stackrel{\lambda}{\sec ^{-1}}$	l'rom relation (1)		From relation (2)	
				$r_{0} \times 10^{13}$ cm	$\left\{\begin{array}{c} R \times \mathrm{IO}^{13} \\ \mathrm{~cm} . \end{array}\right.$	$\begin{gathered} r_{0} \times 10^{13} \\ \mathrm{~cm} . \end{gathered}$	$\begin{gathered} R \times 10^{13} \\ \mathrm{~cm} . \end{gathered}$
${ }_{94} \mathrm{Pu}^{238} \rightarrow{ }_{92} \mathrm{UII}{ }^{234}$	5496	1 669	4.39×10^{-10}	9.54	1.55	9.69	1.57
${ }_{92} \mathrm{U}^{238} \rightarrow{ }_{90} \mathrm{UX}_{1}{ }^{234}$	4.20	1.452	4.87×10^{-18}	9.27	1.46	$9 \cdot 37$	1.52
${ }_{92} \mathrm{UII}^{234} \longrightarrow{ }_{90} \mathrm{I}_{0}{ }^{230}$	47^{6}	1537	817×10^{-14}	9.38	${ }^{1} 53$	926	1.51
${ }_{90} \mathrm{I}_{0}{ }^{230} \rightarrow{ }_{88} \mathrm{Ra}^{226}$. 46	1530	2.65×10^{-13}	9.20	1.51	9.26	1.52
${ }_{88} \mathrm{Ra}^{228} \rightarrow{ }_{86} \mathrm{Rn}^{222}$	4.791	1. 552	$1.35 \times 10^{-11 *}$	9.03	1.49	9.29	1.53
${ }_{86} \mathrm{Rn}^{222} \longrightarrow{ }_{84} \mathrm{RaA}^{219}$	5.486	1661	210×10^{6}	8.95	149	9.28	1.54
${ }_{84} \mathrm{RaA}^{218} \longrightarrow{ }_{82} \mathrm{RaB}^{214}$	5.998	1.738	3.77×10^{3}	8.80	1 47	914	153
${ }_{83} \mathrm{RaC}^{214} \rightarrow{ }_{81} \mathrm{RaC}^{\prime \prime 210}$	5.502	1.664	$1.06 \times 10^{-7 *}$	7.30	1.27	7.80	1.31
${ }_{84} \mathrm{RaC}^{\prime 284} \rightarrow_{82} \mathrm{RaI}{ }^{210}$	7.680	1.966	4.62×10^{3}	8.74	147	9.34	1.57
${ }_{83} \mathrm{RaI}^{210} \rightarrow{ }_{81} \mathrm{Tl}^{206}$	4.87	1.556	1.60×10^{-13}	6.50	110	6.63	1.12
${ }_{84} \mathrm{RaF}^{210} \rightarrow{ }_{82} \mathrm{RaG}^{206}$	5303	1. 634	5.89×10^{8}	8.04	1.36	8.27	1.40

Thable II (contd.)
$(4 \mathrm{n}+3) \mathrm{Ac}$-serics.

Nuclei	$E \alpha$ in (Mev)	$\begin{aligned} & v \times 10^{-9} \\ & \mathrm{~cm}^{\prime} / \mathrm{sec} . \end{aligned}$	$\frac{\lambda}{\sec ^{-1}}$	Firom relation (I)		lirom relation (2)	
				10×10^{13}	$R \times 10^{13}$	$r_{0} \times 10^{13}$	$K \times 10^{13}$
${ }_{94} \mathrm{Pu}^{239} \rightarrow{ }_{92} \mathrm{U}^{235}$	5.137	1.605	928×10^{-12}	9.52	1.51	1013	1.64
${ }_{92} \mathrm{U}^{235} \rightarrow{ }_{90} \mathrm{UY}^{231}$	4.36	1479	3.19×10^{-17}	8.97	1.46	9.55	1.56
${ }_{91} \mathrm{~Pa}^{231} \longrightarrow{ }_{8 y} \mathrm{Ac}^{227}$	5.01	1.586	$5.59 \times 10^{-13 *}$	8.38	1.36	8.18	1.34
${ }_{80} \mathrm{RdAc}^{227} \rightarrow{ }_{88} \mathrm{AcX}^{223}$	6049	1.743	$1.02 \times 10^{\prime \prime}$	7.78	128	8.56	1.41
${ }_{88} \mathrm{AcX}^{223} \longrightarrow_{86} \mathrm{An}^{219}$	5.719	1.595	2.86×10^{-7} *	8.08	134	8.70	144
${ }_{86} \mathrm{An}^{219} \rightarrow{ }_{84} \mathrm{AcA}^{216}$	6.824	1.854	$0124 *$	8.20	I 37	8.90	: 45
${ }_{84} \mathrm{AcA}^{215} \rightarrow{ }_{32} \mathrm{AcB}^{211}$	7365	I 925	3.79×10^{2}	8.65	145	899	1.51
${ }_{83} \mathrm{AcC}^{211} \rightarrow{ }_{81} \mathrm{AcC} \mathrm{C}^{207}$	6.619	1.825	4.78×10^{-3} *	7.65	1.29	7.90	1.33
${ }_{84} \mathrm{AcC}^{211} \rightarrow_{82} \mathrm{AcD}^{207}$	7434	1.934	1.39×10^{2}	8.20	1.39	885	2.50

*.Values of λa_{0} (partial decay constant for o-group α-particles)

DISCUSSION

A study of the r_{0} values for $(4 \mathrm{n}+1)$ neptunium radio-active series reveals the following features :

Firstly : The values of 1_{0} do not vary in a regular way as required by the rule $r_{0}=R . A^{\frac{1}{3}}$. Such anomaly in r_{0} value is predominant in actinium series. In fact the two odd series $(4 n+1)$ and $(4 n+3)$, behave in an irregular way as regards the r_{0} values. On the other hand, two even series $T h(4 n)$ and U $(4 \mathrm{n}+2)$ show nearly regular variation of r_{0} values with the exception of C-products. Calculation of r_{0} are given by; Preston (1946, 1947) for wellknown members of U, Th and Ac series. Recently these known series are extended to the transuanic region and some of the experimental data have been revised. So a complete calculation of values for all the members of U, Th, and Ac series are also included with the latest experimental data. These are given in Table II. The values for $(1 n+1)$ serics together with those of U , Th and Ac series are given graphically in Fig. i. The r_{0}

Fig. I
valucs of N_{p} series calculated according to both the relations (1) and (2) are plotted on curves. These show that values obtained by relation (2) are higher than the other values by a nearly constant quantity. The plotted values of $U, T h$ and $A c$ series are those calcuiated from relation (1). Ac series shows a sharp regular fall to RdAc^{227} and then a rise in r_{0} up to AcA. But in N_{1}, series the irregularities are not so wide.

Sccondly: The value of r_{1} for ${ }_{83} \mathrm{Bi}^{214} \longrightarrow_{81} \mathrm{Tl}^{2 n 9}$ is abnormally low. Bi^{213} is the corresponding C-product of neptumiun series. It has been observed that in U, Th, and Ac series therc occurs an abrupt fall in the value of r_{0} in $C \rightarrow C^{\prime \prime}$ disintegiations. The value of ${ }_{\prime}$, again assumes normal magnitude in $(\xrightarrow{\prime} \longrightarrow$ D disintegrations. Similar phenomena occur also in the ($4 \mathrm{n}+\mathrm{I}$) radioactive series. It is interesting to note that o. RaE^{211} which has been recently observed to be α-active (Broda and Ficather, 1947) exhibits an abnormally low value of I_{0} in ${ }_{n s} \mathrm{RaF}^{210} \rightarrow{ }_{81} \mathrm{Tl}^{206}$ disintegration. Thus all the α-active isotopes of ${ }_{n} \mathrm{Bi}$ show abnormal value of "nuclear radius."

The drop, in the values of 1 , for the C-poducts and the members of the Ac ser:es have been attributed by Gamow (1937) as due to emission of α-particles with angular momentum different from zero $(l \neq 0)$. The effective radius in such a case, as deduced by Gamow (1937) is supposed to follow the relation :

$$
r_{\mathrm{efI}}=r_{u}-\frac{h^{2}}{4 \pi^{2} m e^{2}(z-2)} l(l+\mathrm{I})
$$

Allotments of l-values to diffenent α-ray lines are rather arbitrarily made to fit the experimental data. No quantitative treatment on the above line has been found to be satisfactory.

Emission of α-particle with angular momentum $l \neq 0$ has been treated by Preston (1947). Calculations are made by him with the complicated relations for a few α-disintegrations having excited states. The method of calculation is very round about and l values are chosen arbitrarnly to give a more or less consistent value of r_{0} for different excited states for $\mathrm{ThC}^{-\mathrm{ThC}}{ }^{\prime \prime}$ and a few others. ()n the whole, the problem of emission of α-particle with $l \neq 0$ is at present far from satisfactory.

As in the Ac series, the irregularities in 7_{0} for the N_{1}, series is probably due to emission of α-particles with angular momentum different from zero. The experimental observations on $(4 n+1)$ series are rather pieliminary. Further investigations are sure to reveal complex a-spectra in many members of ($4 n+1$) radioactive series. A detailed experimental observations are required before any theoretical treatment 1 s attempted. Since the irregular-

- ities in r_{0} are found with the nuclei with odd mass number and in Bi which is the first member in the even series having odd atomic number it is plausible
that the even-odd property of a nucleus affects the α-emission process to a large extenl.

In this connection it may be mentioned that in V and Th series r_{0} varies more or less reqularly. However, the value of $R=1, A^{-h}$ is seen to be not a constant but increases from lightest member to heaviest one in the series to the extent of about 15%. 'The rule $r_{0}=\{A$ cannot be expected to hold accurately over the whole radioactive serics hecause an increase in 7 increases the Coulomb repulsion which tends to decrease the vuclear density, and increase the nuclear radius. The simple mule would hold if the nuclear binding energy contained the only term $E=\alpha \Lambda$. But F is given by the expression

$$
E=\alpha A-\beta \frac{I^{2}}{A}-\gamma A^{2}-\delta \frac{Z^{2}}{A^{\frac{\beta}{3}}}
$$

Hence with increasing $7, R$ the average distance between the nucleons should drift to a higher value. 'This is actually observed in the value of R calculated from r_{0}. Present (I 940) proposed the following formula for nuclear radius after employing the corrections for $N \neq Z$, surface tension aud Coulomb repulsion.

$$
r_{0}=R . \Lambda^{\frac{1}{3}}=R^{*} A^{3}\left[\mathrm{I}+0.8 \frac{\mathrm{I}^{2}}{A^{2}}-0.3 A-\frac{1}{3}+0.0 \mathrm{I} \frac{Z^{2}}{\Lambda^{3}}\right]
$$

In this relation R^{*} in place of R should be constant for all members in the series. For two cxtreme members of U series, R varies from r. 55 to I. 36 from $\mathrm{Pu}^{238} \rightarrow \mathrm{UII}^{2,4}$ to $\mathrm{RaF}^{211} \rightarrow \mathrm{RaCr}^{2 n 6}$. With above relation, R^{*} comes out as I. 48 and 1.35. In case of Th seties R for $\mathrm{Th}^{2{ }^{2 n}} \rightarrow \mathrm{MsThI}^{228}$ is I .62 and for $\mathrm{Th}^{\prime 212} \rightarrow \mathrm{ThD}^{208} \mathrm{I} .46$. The corresponding values of R^{*} are I .55 and I.40. Thus the proposed relation is far from satisfactory. Although from the very definition of 1_{0}, the relation between 1_{1} and actual nuclear radius is rather vague, the above relation cannot account for the variation of R along the radioactive series quantitatively.

^CKNOWITEIOMENTS

The authors express their gratitude to Prof. M. N. Saha, F.R.S., for his keen interest and guidance in the progress of the work. Our thanks are also due to Dr. B. I). Nagchowdhury for helpful discussions. The senior author is grateful to C.S.I.R. for the award of a scholarship which enabled him to carry out the work.

Instituta of Nuclear Phisics, Calcutta.

REFERENCES

Bethe, 1937, Rev. Mod. Phys., 9, 16 r .
Broda and Feather, 1917, Proc. Roy. Soc, Lond., A , 190, 20.
Finglish, Cranshaw, Denners, Haryey, Hincks, Jelley and May, 1947, Phys. Rev, 72, 253,
Gamow, 1937. Structure ot Atomic Nuclei and Nuclear Transformations, (Clarendon Press Oxford), p 104
Hagemann, Katzin, Studier, (Ghiorso, and Seaborg, 1947, Phys. Rcv., 72, 252.
Laue, 1929, Zcit. f. Physik., 52, 726.
Present, 1940, Phys. Rcv., 60, 28.
Preston, 1946, Phys. Rev., 69, 535.
Preston, 1917, Phys. Rev., 71, 855.
Saha, A. K., 1946, Proc. Nat. Inst. Sc. Ind., 10, 373
Seaborg, 1948, Chem. Eng. News., 26, 1902.

