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ABSTRACT. \ ncw cqnation hased on the ideas of hindere:il rotation and preferred
orientation in quasi-crystatline liquids and «olids has heen derived in order to quantitatively
aceount for the dispersion and absorption of polar substances.  The existing relationships
of Debye, Cole and Cole and others have heen critically reviewed.  The new expression

for € the dielectric constant and ¢ the dielectric loss are

(en=ed . . _ fe,—e)or
9.2 S G5
1t wér= 1+ wiT

€ €,

Thd new equations for dispersion and absorption have been extended to binary solutions
of polar components and a general equation has been derived for the dielectric constant
and dielectric loss in terms of the relaxation times of the two components,

INTRODUCTION

The phenomenon by which there occurs a marked decrcase of the
dielectric constant with increasing frequencies of the applied field accompanied
by a strong absorption of elcclric waves is referred to as anomalous disper-
sion. This effect in liquids was first observed expcrimentally by Drude
(1897). Debye (1929) based his explanation for anomalous dispersion on
the idea of the cxistence of polar molecules. At sufficiently low frequencies
when the period of the field is large compared to 7, the time of relaxation of
the polar substance, the molecules can follow the field with case and conse-
quently the material has high static dielectric constant.  When the frequency
of the field is of a magnitude comparable to relaxation time the dielectric
constant falls gradually with increasing frequencies.  Finally at very high
frequencies, i.c., when the period of the field is very small compared to 7
the dipoies 1ecach such a state wherein they do not show any response to the
Thus the polar material here is characterised by a constant

applied field.
I'he extent and the range ol diclectric

high frequency diclectric constant.
dispersion is a function of the internal forces in the substance such as the
viscosity and also depends upon the mnature of the dipoles of which the

molecules of the substance are constituted.
POLAR LIQUI])S AND SOLIDS

Debye (loc. cit.) was the first to derive a quantitative expression to account
for the dispersion and absorption of polar substances. He wrote for the
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molecular polarisation in the dispersion region as follows

P = ..(Et]) _M = 4."}5[(0(!-{- _ﬁi- _r_ ) . (1)
(e+2) d 3 3kt 1+107

The equation of Debye is based on the validity of the Clausius-Mosotli
relationship which has been found to be a failure when applied to concentrated
solutions and pure liquids and has got limited appiication even in the case of
dilute solutions. This failure is inherent in the assumption of a spherical
cavity in evaluating the internal field and the postulate of a dipole having all
possible orientation in space.

It is of interest to note that Debye has derived a formula for the average
electric moment of a molecule in solids assuming that the molecule can point
with its moment only in two defimie directions, the dircetion of F and the
opposite.

The mean moment of a molecule in the dircction of I is

e 1 wWFC 1 p'F
1+i07 kT 1+ior kT

The expression on right hand side can be derived in a very simple manner
as follows. 'The general distribution function in a variable field has been
given by Debye as

=Al1+ -1 HE s o (2)
f <I 1+ tw0r kT €08

where f# is the angle ‘p’ makes with F. Thc Boltzmann's distribution
function gives fo1 =, and =, the number of molccules following the two
possible orientations onc along and the other opposite to the field

pE 1
= + ———
m=A <I ET 1+ iwr’/

F 1
=A== 2" L ;
- (I RT 1+ iw‘r>

obtained by putting cos § = + 1 in Debye’s expression (2)

the mean moment m= u(n,~n_)/(n,+ n,)

” Bl %k v_.}
= jA(/lI/lj’}w) (1+107)
2A
. 213
.. m= ﬂ—r !

L (1 + 1wr)

This expression for m for solids diffcis from that derived carlier for the
case of gases by a factor 1/3 since in the former casc, only the directions
parallel and anti-parallel to the field are considered. Proceeding as before
Debye has obtained the same cxpressions for € and ¢’ as for tlie case of
gases. This is because, firstly he has used the same Clausius-Mosotti
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(e=1)M

relationship (4 a)d to lhold good and secondly the modified expression for

m for solids has becn climinated in the initial stages of the derivation by being

. (¢ -1 . . .
expressed in terms of - % ))1(\;[ and hence becomes ineffective to modify the
o+ 2

expressions for ¢ and «'.
THE NEW EQUATION

it has been found by Jatkar, Iyengar and Sathe, (1946) that the polarisation
of liguids and solids in a static ficld is given by

(e=1)M/d = 4aN(a, -+ p*/LT) instead of the classical expression

(e—=1) M

(e+2) d
‘T'he former equation has been derived using a new internal field based on
the concept of a thin long cylindrical cavity which is in conformity with the
anisotropy of the dipole, and also on tlie consideration of preferred orientation
along and opposite to the direction of the applied field. This equation has
been found applicable to a large number of polar liquids and solids. Extend-
ing the new relationship to the casc of a variable field, the polarisation Py, at
frequency o is given by

(e—1)M pe 1
D —3 - — — e
P d 4N ( %t ET 1+ i07 )

=-f4’;N (@ +u?/3kT).

Defining

/ 2
(e—1)M/d = 4nNea, and (¢,—1)M/d = 4aN (:“u'f -]5’—17)

we have

P = M/d%(fx—l)Jr 1 [(eo--n-(ew—l)]§= (=DM

(1 +riw7') d
whence
€0 — 6,
o= et (0=
I+iwT
— (€(>“€uc) (I—i“’f)
= ept- 2 5
1+ w'T
Gty (€0 = €w) ; (€0+s°°)
€= €it+ s g IO 2.2
1t+twr I Fw'T
Writing ¢=¢—qé¢"
- (€ = 6) OT
o = (€0 f“) +e, and ¢ = 02T
I+ T 1+ w7

Thesc expressions are very similar to the classical expressions but for a
!69_.‘:2)

6

factor which comes associated with or in the latter case. It is note-
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(e, +2) _

1, i.c., when the
(ot 2) !

worthy that the two expressions aic identical when

high frequency diclectric constant does not very much differ from the static
dielectric constant.

Wyman's (1936) and Onsager’s (1936) expressions for the polarization
lcad to the same cquations for «/ and &/’ as given by the application of the new
equation. Tor a modificd form of Onsager’s equation

(e=1) _ (eo—1) _ 5 _
(e+2)  (eg+2) A=

L4 . . .
where "¢’ is an cmpirical constant; (the casc g = 1 correspondmg to

Onsager’s equation). Cole (1938) has shown that

(e ) (e —te) -
=gt 0 X and = U020 7
* 1+7° 1+7°
where
, wT Cp- AN )
7= - [6 being a constant = 3, 47N (4o =g
1—8 ok’l

The application of experimental data has shown that ‘'8’ is indeed small,

(i.e., Z = wr) so that the expressions for ¢/ and e” correspond to the new

equation.

The maximum in ¢ as well as the maximum slope of the ¢/—o curve

occur at a frequency w, the condition for which is given according to (1)
(e + 21

ent 2 (2) Onsager's w.7 = 1, (3) the modified
(’0 2

Debye’s expression as o, 7 =

N w,.7T
Onsager’s equation 1‘ 5 =1 and (4) the new equation o.7 = 1. Thus the

relaxation times obtained from the observed valucs of w, are always smaller

ot 2) . . .
by a factor %—”Jr 2% in Debye’s case as compared with the correct value cal-
0T 2

culated from the new equation,

SOLUTIONS
(a) Nonpolar :

Since the Clausius-Mosotti expression is considered to be valid for dilute
solutions 11 nonpolar solvents, it is expected that Debye’s dispersion equation
derived on the basis of this hypothesis should be applicable to measurements in
dilute solutions of nonpolar solvents. ‘I'he extension of Debye’s dispersion
cquation to a binary system has heen made by Williams (1934) who has con-
sidered a solution in which there ar¢ n, polar molecules/c.c. each having
electronic polarisability «i,0v and noment g, dissolved in n, mols./c.c. of the
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nonpolar solvent each havine electronic polarisability &1, (o0 and zero electric
moment. Thus the polarisation per ¢.c. of the nmxture

2

A

/ -
Py = L) =4

47 n_pu 1
{"1 :+2) 3

' e8] |(0)1]] + CXF‘)(ﬁ)l]__ +
? 3k'T (1 +1w7,)

= (o2, =) 1 ez =11 _ ler2e,) —I))

(eya(, )+ 2) 1iaer, (et 2t (o +2)
€12 .y = high fiequency dielectiic coustant and ¢y — static diclectric constant
of solution and 7, = 1claxation time of the polar <oiute molecules.  Writing

e1: = ¢p' e,/ and scparating the 1eal and nmagimary parts

Ceraon = mr ) g e —eg)

I =
[N T ) )
I4+\" I+

\\1](:1](_‘0 ( ) ( « )
€200 . “l) TTE2
1200y l.;(,n and l“,,_ 12(0) 1205

1 1+

/
\ = w7, ,_S'J-‘(M_:"_VZ)
(‘ 120,) h 2)

These expressions which are very sumilat to those given hy Debyce for
gases  wete dernved on  the basis ot Clausius-Mosottt expiession  for
total polansation. ‘The usage of the correct expiession for  polarisation
(e=1)M/d gives expiessions for ¢ and «” very similar to those derived above

1. T o T o\

(C12g) +2)

except that m the former case the factor does not occur.  In fact

Cpoam b2

m dilute  solutions of monpolar solvents «pn=%¢;5~, so that the factor

b2 . ) . .
(;J"—'»*' fortuitously becomes umty and henee Dobye's expression coincides
12 t2)

with the new cquation.

(b) Potar:

Oncley (1938) has attcmpted to interpiet the dispersion of polar binary
solutions using Wyman's (1936) cmpirical cquation for polansation. No
rigorous theoretical trcatment of the subjcct is availuble n literatwe.  On
the basis of the new equation for molecular polarisation (¢ —1)M, d, the expres-
sion for the moiecuiar polarisation Pia 1 of the solution at o frequency can
be written as,

Py = Pioy i+ Panf.

where Pi.v and Pu ) are the moleculm  polarisations of the two polar

components at o frequency.

_ o= (M fy + Moo _ (= DMify e m 1A

: >
Now I 12(0) d;z dl dz
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Writing for the sake of simplicity in terms of specific polarisations

—T —1) —_
pracy = (b’*d ~1)'=*—(3(—1‘—‘“wn + (%1 1) v, ; o and w,
12 1 -

being weight fractions.
1+d{piy wy+ pa oy}

i.c. €. =

whete bi(w) = (,=1) _ () — 1 I {1 —eiy))
1 d: d' 1+ 0T, dl

& 1

oy = Lm0 =) T e )
2 d, d, 1+ 107, d,

7, and 7. being the relaxation times and ey and ey the static dielectiic
constants of the two polar components. Substituting these values of p,(w)

and p,(w) we get
1) =1) o lexe —1) o,

e =14+d,,;
i2 1 d, 1 d,
+ @ —aw) er (e =) e,
1+ iwr, d, 1+ w7, d,
Since (e1200)= 1) = (o1 = 1) ) 2g) =T
= 1 w,
d: d, 2
and L@ =e2w) |, = (20 =620 _ (0 =aw) |,
2 dys d, !
(8120) — 812( )
€14 = €53 + = -
13 () I+i0T,
+d, (o100 = 1)) ° I I
2 3 e VAT T T, Y
d, (1+iwr,)  (1+iwr,)

Separating ;2 into its real and imaginary parts and comparing with

= J—ip Il
€12 = €12 T 1€y

we ~et
- o (erz@ ~e125))

! —
€40 = e+ .
12 (=) I+ wr,”
{e1(0) — 6x( )) T 1
[N AL 2 dyo0, . -
d, (1+ w?r,?) (1+ w’r,?)
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i —
and e, = 2O )
1+ 0’7yt -

(Gm)) €1(y) wr, wT, )
F o T d e, a_ o T T 9 o f
d, (1 +w'7;%) (1+w’7,?) s
For a nonpolar solvent cig) =< 61(,,) so that the above equations reduce to the
expression derived earlier {or nonpolar solutions.

MOLECULAR RADIUS

Debye considered the rotation of a molecule amidst its surroundings
analogous to a spherc carrying a dipole, rotating in a viscous medium.
According to this analogy it is seen that a torque is necessary to rotate the
molecule against the inner friction of the medium in which it is suspended.
Stokes  has  calculated  that this inner frictional foice is given by
\ = 8mna’ where 3 is the inner friction constant of the surrounding medium
in which the sphere of radius ‘« ' is rotating. From his considerations of
Brownian motion, Debye has deduced that the rclaxation times 7= {/2kT.
Substituting Smya® for { we get

_ 4mpa’

kT

Thus a knowledge of 7 from the ohscrved critical frequency will enable
the calculation of “a’, the radius of the molecule of an assumed spherical

T

shape rotating ina medium of known viscosity 4. It is evident that a
considerable number of molecules do not fall in conformity with the picture
of a rotating sphere. T'he long zig-zag chain type of molecules which are
often met with scoop outa disc-like rather than a spherical cavity when
they rotate. It will be thus interesting to investigatc the frictional forces in
conformity with this picture. In fact, Stokes has dealt with such a
two dimeuvsional 1otation about an axis and has calculated the frictional
torque as 47na*h where ' a’ istheradius of the disc cavity and ‘i ' its thickness.
Here ¢ is equal to 7/ k'T' corresponding to the case of a rotation in one plane,
as has been derived by Debye (1013) in an earlier paper.  ‘I'hus a knowledge
of the thickness ‘ i1 * of a rotating chain enables one to determine ‘ a * the radius
of the disc. ‘'a ' then should correspond to half the length of the molecule or
any unit thereof which is executing rotation.

DISTRIBUTION OF RELAXATION TIME

In the case of compounds involving complex molecuiar structuwe. e.g.,
the high polymers it was found that there was a considerably broader
frequency range of dispersion and absorption together with a smaller maximum
value of ¢’ than predicted by Debye’s equation. This discrepancy was
thought to be doe to the fact, that the polarisation was wrongly assumed to
have a single unique relaxation time. Wagner (1913) assumed a distribution
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of relaxation time about some probable value and proposed the use of a
logarithmic Gaussian distribution  Yager (1036) predicted that e, is

< (0= = by an amount depending upon the density of distribution. Tuoss
o]

and Kitkwood (1041} have also deduced an empirical formula to determine

the distribution function of relaxation tumes.
Cole and Cole ‘1041) gave an expression for the complex dielectric constant

leg —ey)

& = ‘“m+
1+ Gor, )™

by their study of dispersion in the light of the Argand diagiam or the complex

planc locus. If this ¢ 5 resolved into its 1eal and imaginaly component

¢/ = " than
"= (t-u ~-+®)(m7')l" '

(e == tx)
Nt and

=, + ) 9
o 1+(4m’)"’”_" I+(mT)2“—"’

Lven on this basis the condition at critical frequency w, remains the same as

calculated on the basis of the new cquation for a single 7, viz , 0,7 = 1 as

can be casily obtained by finding out the d;(: and cquating it to zero.  In fact,
(

the assumption of any digtribution co-cfficient or parameter docs not change

the position of the ciitical frequency but has the effect of changing the shape

of the «/ and «” cuives.

Cole and Cole (1041) have discussed the representation of dispersion data
on the basis of the Argand diagram o1 complex rlane locus in which ¢” the
imaginary part of the complex diclectiic constant is plotted against ¢ the
real part al various frequencies.  The locus of such a plot, on the basis of a
single relaxation time, has been shown to be a semi-circle with the centre
on the ¢ axis by a consideration of vectors in complex plane. ‘The locus
could as well be deduced m a very simple manner irom the expressions for
« and « by a mere climination of the ficquency factor as follows

—¢) -
o= gt O o (1) and "= o *m,.)\ ...... (2); \ = o7
14\ I+ -
. . . + 2 .
according to the new equation and is mf~f—'i‘3——: according to Dcbye.
ot 2

. "2 leg =€y )? 2

From (2) = v,
ty+\ )
(£ =€, 2, (e = tg) _ ((‘”—t‘)"
(1413 (1+ %) (r+a?)*

Using (1) ’ M = (‘""'*w’ (“:0—‘00) —(ef=ey)?

i.e., ¢ = (¢! =ey) (eg=¢!)
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(Geometrically this condition means that the rectangle contained by two
segments of a diameter equal to (¢/ =« ) and (eg—¢1 cquals the square of a
chord ¢ cutting the diameter perpendicularly.  This means that e/—¢” curve is
a semi-ciicle with centre on the ¢ axis. Cole and Cole, however, found that
experimental data do not justify this semi-circular plot in « number of
cases but could be represented by a circular arc characterised by an angle
ax/2 which is a measure of the deviation irom the semicircle, being equal
to the angle between the o' axis and the radius through €. ‘This circular
arc again has been given a theoretical basis by Cole and Cole using complex
plane loci.  The significance of this angle can be obtained in a very simple
way as follows. Considering the circular arc it is seen from figure 1

”n
€
] I n
| Cm
n ¥
LA r
AN o<fr/: 1 \ €
/ 2 X \
i ™~ X \
H i
\ [
\ /
/
\\ /
/
N\ /
N ’
\\s.._,.-",
Fic. 1
& (e +21) = (eq =¢x)® Sinee 4 = S0 ==l oy *m/2
*m mt - 4 2
2
. , , €0 = € _
et ("O—Ew) tan /2 ¢, — ‘(”'0“ - E) - =0
4
(€ = €0) tan o/ 2 & (€, = €a) SCC A/ 2
o = L0 1 07/ =X Fo__Te/ 308 M=

)

Discarding the negative solution for «,,

"

= {eg—ey) (sec amj2—tan am/2)/2

!/
(=)l 2

‘L’ being a constant characteristic of the substance. ‘Thus the paramcter
‘&’ introduced serves to mcrease the «“ua value which usually falls short of
3—1674P - 10
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as evaluated on the basis of a single relaxation time. Cole

the value(f—“——;f’#)

and Cole have given on the basis of their complex plane locus the equation
for ¢/, as ¢’y = 4 (¢g—ey) tan (1 —&)7/4q
This is identical with the cquation derived above since

7 _ (cosam/q—sinan/4) _ (1—2cosam/4 sinam/g)

tan (1—o) " =-- . bt
‘ 4 cosax /4 +sin ar/4 (cos® &z /4 =~sin® an/4)

(1—sin o/ 2)

= (sec arx/2—tan om/2)
cosar/ 2
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