NEW RESULTS ON KAON DECAYS FROM NA48/2

CRISTINA MORALES MORALES a

Institut für Physik. Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: cmorales@mail.cern.ch

Recent results from the NA48/2 experiment are presented. The $\pi\pi$ scattering lengths a_0^0 and a_0^2 have been extracted from the cusp in the M_{00}^2 distribution of $K^\pm \to \pi^\pm \pi^0 \pi^0$ decays and from the $K^\pm \to \pi^+ \pi^- e^\pm \nu$ phase shift δ . Branching ratios and form factors have been measured for $K^\pm \to \pi^\pm \gamma \gamma$, $K^\pm \to \pi^\pm \gamma$ e^+e^- and $K^\pm \to \pi^\pm e^+e^-$ decays and are also summarized here.

1 Introduction

During 2003 and 2004, the NA48/2 experiment at CERN SPS has collected the world largest amount of charged kaon decays. The main goal of NA48/2 was the search for direct CP violation in K^{\pm} decays into three pions. However, given the high statistics achieved, many other physics topics were also covered including the study of the $\pi\pi$ interaction at low energy, radiative decays, the measurement of V_{us} from semileptonic decays, etc.. In the following sections, recent results on ChPT parameters obtained by the NA48/2 Collaboration will be presented.

2 The NA48/2 experiment

Simultaneous K^+ and K^- beams were produced by 400 GeV protons from the CERN SPS, impinging on a Be target. Kaons were deflected in a front-end achromat to select a momentum band of 60 ± 3 GeV/c and then focused such that they converge about 200 m downstream at the beginning of the detector. A description of the detector can be found in 1 . For the measurements presented here, the most important detector components are the magnet spectrometer, consisting of two drift chambers before and two after a dipole magnet, and the quasi-homogeneous liquid krypton calorimeter. The momentum of the charged particles and the energy of the photons are measured with a relative uncertainty of 1% at 20 GeV. The trigger was mainly designed to select events with three charged tracks (charged trigger) and $K^\pm \to \pi^\pm \pi^0 \pi^0$ events (neutral trigger).

^aOn behalf of the NA48/2 Collaboration.

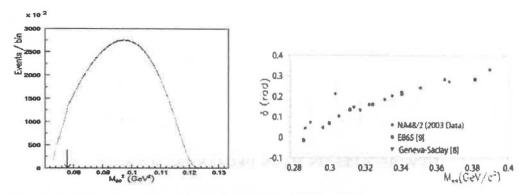


Figure 1: (Left) Invariant $\pi^0\pi^0$ mass squared of $K^{\pm}\to\pi^{\pm}\pi^0\pi^0$ candidates. Note the presence of a cusp for $M_{00}^2=4m_{\pi^+}^2$ (arrow). (Right) Variation of phase shift in $K^{\pm}\to\pi^+\pi^-e^{\pm}\nu$ decays with $\pi^-\pi^-$ invariant mass.

3 Measurement of $\pi\pi$ scattering lengths

The quark condensate $\langle 0|\overline{q}q|0\rangle$ is a fundamental parameter of ChPT. Its value must be determined experimentally, e.g. by measuring the $\pi\pi$ scattering lengths a_0^0 and a_0^2 , which are predicted very precisely within the framework of ChPT².

NA48/2 has reported two new measurements of the $\pi\pi$ scattering lengths using $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$ and $K^{\pm} \to \pi^{-}\pi^{-}e^{\pm}\nu$ decays. A cusp observed in the $M_{\pi^{0}\pi^{0}}$ distribution of $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$ decays at $M_{00}^{2} = 4m_{\pi^{\pm}}^{2}$ (Fig. 1 (left)) can be explained by $\pi^{-}\pi^{-}$ re-scattering terms ^{3,4} and provides a measurement of a_{0}^{0} and a_{0}^{2} from a fit of the M_{00}^{2} distribution around the cusp discontinuity. A sample of about 59.6 × 10⁶ decays from 2003 and 2004 data has been used for this analysis, and the preliminary results from the fit of the Cabibbo-Isidori model ⁵ are:

$$(a_0^0 - a_0^2) m_{\pi^+} = 0.261 \pm 0.006_{stat} \pm 0.003_{syst} \pm 0.001_{ext} \pm 0.013_{theory};$$

$$a_0^2 m_{\pi^+} = -0.037 \pm 0.013_{stat} \pm 0.009_{syst} \pm 0.002_{ext},$$
(1)

where the theoretical uncertainty is due to neglected $O(a_i^3)$ and radiative corrections. Alternative fits are being performed following the approach by ⁶.

In $K^{\pm} \to \pi^+\pi^-e^{\pm}\nu$ decays, the pions are produced close to threshold. The decay amplitude depends on the complex phases δ_0 and δ_1 (the S and P waves $\pi\pi$ phase shifts for isospin I=0). The difference $\delta=\delta_0-\delta_1$ can be measured as a function of the invariant mass of the two pions, $M_{\pi\pi}$. NA48/2 has performed a combined fit to the decay form factors and the phase shift difference as a function of $M_{\pi\pi}$ in a sample of 670000 signal candidates with 0.5% background 7 . The results are shown in Fig. 1 (right) together with two earlier experiments $^{8.9}$. From the phase shift measurements, the $\pi\pi$ scattering lengths can be extracted using dispersion relations 10 . At the center of the Universal Band 11 , a_0^2 is related to a_0^0 . A one parameter fit gives $a_0^0=0.256\pm0.006_{stat}\pm0.002_{syst}^{+0.018}_{-0.017ext}$, which implies $a_0^2=-0.0312\pm0.0011_{stat}\pm0.0004_{syst}^{-0.0122}_{-0.0122ext}$. The external error reflects the width of the Universal Band. From a two parameters fit, the results are:

$$\begin{array}{rcl} a_0^0 m_{\pi^-} & = & 0.233 \pm 0.016_{stat} \pm 0.007_{syst}, \\ a_0^2 m_{\pi^+} & = & -0.047 \pm 0.011_{stat} \pm 0.004_{syst}, \end{array} \tag{2}$$

with $\rho=0.967$. Theoretical work including isospin symmetry breaking effects ¹² suggests that a_0^0 could decrease by ≈ 0.02 for and a_0^2 by ≈ 0.004 , bringing this measurement in agreement with other measurements and ChPT predictions ⁷.

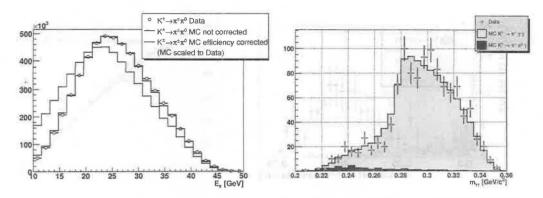


Figure 2: (Left) Pion track energy of $K^{\pm} \to \pi^{\pm}\pi^{0}$ normalization data (black) and MC events (red. blue) without and with trigger efficiency correction, respectively. (Right) $M_{\gamma\gamma}$ invariant mass of $K^{\pm} \to \pi^{\pm}\gamma\gamma$ candidates.

4 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ analysis

The contributions of the chiral lagrangian to this decay 13 appear at $O(p^4)$. At this order, only the $\Delta I=1/2$ invariant amplitudes A(z) and C(z) with $z=M_{\gamma\gamma}^2/M_{K^\pm}^2$ contribute. A(z) contains the $O(p^4)$ loop diagram contributions and the tree level counterterms absorbed in unknown parameter \hat{c} predicted to be positive and of $O(1)^{14}$. The loop leads to a characteristic signature in the invariant mass $M_{\gamma\gamma}$ distribution, which is favoured to be above $2m_{\pi^\pm}$ and exhibits a cusp at $2m_{\pi^\pm}$ threshold. The parameter \hat{c} fixes the value of the branching ratio and the $M_{\gamma\gamma}$ spectrum shape. C(z) contains poles and tadpoles 13,15 effects. $O(p^6)$ studies concluded 16 that unitarity correction effects could increase the BR between 30%-40%, while vector meson exchange contributions would be negligible.

NA48/2 has analyzed about 40% of its data, finding 1164 signal candidates with 3.3% background (40 times more statistics than previous experiments ¹⁷). This decay and its normalization channel $(K^{\pm} \to \pi^{\pm}\pi^{0})$ were collected through the neutral trigger chain intended for the collection of $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$ decays and therefore suffered from a very low trigger efficiency ($\approx 50\%$). Elaborate studies were performed to measure these efficiencies and correct for them (see Fig. 2 (left)). The reconstructed $M_{\gamma\gamma}$ spectrum can be seen in Fig. 2 for selected candidates (crosses), signal MC (yellow) and background (red).

The model dependent branching ratio of $K^{\pm} \to \pi^{\pm} \gamma \gamma$ has been measured, assuming the validity of the $O(p^6)$ ChPT as presented in 16 and taking $\hat{c}=2^a$. The preliminary result is $BR(K^{\pm} \to \pi^{\pm} \gamma \gamma) = (1.07 \pm 0.04_{stat} \pm 0.08_{syst}) \times 10^{-6}$. A model independent BR measurement is in preparation, together with the extraction of \hat{c} from a fit to $M_{\gamma\gamma}$ and BR.

5 $K^{\pm} \rightarrow \pi^{\pm} \gamma \ e^{+} e^{-}$ analysis

This decay is similar to $K^{\pm} \to \pi^{\pm} \gamma \gamma$ with one photon internally converting into a pair of electrons. NA48/2 has reported the first observation of the decay $K^{\pm} \to \pi^{\pm} \gamma \ e^{+} e^{-}$ using the full 2003 and 2004 data sample ¹⁸. 120 candidates with 7.3±1.7 estimated background events have been selected in the accessible region with $M_{\gamma ee} > 0.26 \ {\rm GeV}/c^2$ invariant mass. The candidates are shown in Fig. 3 (left). Using $K^{\pm} \to \pi^{\pm} \pi_D^0$ as normalization channel, the branching ratio has been determined in a model independent way to be BR = $(1.19 \pm 0.12_{stat} \pm 0.04_{syst}) \times 10^{-8}$ for $M_{\gamma ee} > 0.26 \ {\rm GeV}/c^2$. The parameter \hat{c} has also been measured assuming the validity of $O(p^6)^{19}$ and found to be $\hat{c} = 0.90 \pm 0.45$.

^aThis is a realistic assumption based on previous results by ¹⁷ which obtained $\hat{c} = 1.8 \pm 0.6$.

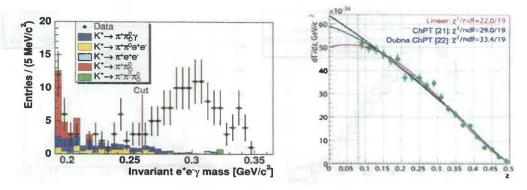


Figure 3: (Left) $M_{\gamma e^+e^-}$ invariant mass of $K^\pm \to \pi^\pm \gamma e^+e^-$ candidates. Crosses are signal and colored histograms background. (Right) $K^\pm \to \pi^\pm e^+e^-$ differential decay rate and different fit results from the considered models.

6 $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ analysis

The FCNC process $K^{\pm} \to \pi^{\pm}e^{-}e^{-}$ can be described in ChPT²⁰. NA48/2 has collected 7146 candidates with 0.6% background. The decay rate has been measured using $K^{\pm} \to \pi^{\pm}\pi_{D}^{0}$ as normalization. A preliminary model independent measurement for $z = M_{e^{+}e^{-}}^{2}/M_{K^{\pm}}^{2} > 0.08$ gave $BR = (2.26 \pm 0.03_{stat} \pm 0.03_{syst} \pm 0.06_{ext}) \times 10^{-7}$. Model dependent fits to the z-spectrum have been performed (Fig. 3 (right)), obtaining the corresponding form factors and BR. The preliminary average BR in the full kinematic range is: $BR = (3.08 \pm 0.04_{stat} \pm 0.08_{ext} \pm 0.07_{model}) \times 10^{-7}$. Comparison of results with previous experiments and theoretical predictions can be found in ²³.

References

- 1. J.R. Batley et al., Phys. Lett. B 634, 474 (2006).
- 2. G. Colangelo, arXiv:0710.3050v1, (2007).
- 3. U.-G. Meissner, G. Müller, and S. Steininger, Phys. Lett. B 406, 154 (1997).
- 4. N. Cabibbo. Phys. Rev. Lett. 93, 12181 (2004).
- 5. N. Cabibbo, G. Isidori, JHEP 0503, 021 (2005).
- 6. G. Colangelo, J. Gasser, B. Kubis, and A. Rusetsky. Phys. Lett. B 638, 187 (2006).
- 7. J.R. Batley et al., Eur. Phys. J. C 54, 411 (2008).
- 8. L. Rosselet et al., Phys. Rev. D 15, 574 (1977).
- 9. S. Pislak et al., Phys. Lett. 87, 221801 (2001).
- 10. S. Roy. Phys. Lett. B 36, 353 (1971).
- 11. B. Ananthanarayan et al., Phys. Rep. 353, 207 (2001).
- 12. J. Gasser, arXiv:0710.3048v1, (2007).
- 13. G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B 303, 665 (1988).
- 14. C. Bruno and J. Pradres, Z. Phys. C 57, 585 (1993).
- 15. J. M. Gerard, C. Smith, and S. Trine, Nucl. Phys. B 730, 1 (2005).
- 16. G. D'Ambrosio and J. Portolés. Phys. Lett. B 386, 403 (1996).
- 17. P. Kitching et al., Phys. Rev. Lett. 79, 4079 (1997).
- 18. J.R. Batley et al., Phys. Lett. B 659, 493 (2008).
- 19. F. Gabbiani. Phys. Rev. D 59, 094022 (1999).
- 20. G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B 291, 692 (1987).
- 21. G. D'Ambrosio et al., JHEP 8, 4 (1998).
- 22. A.Z. Dubničková et al., Phys. Part. Nucl. Lett. 5, vol. 2, 76 (2008).
- 23. E. Goudzovski, arXiv:0803.4475v1, (2008).