VELOCITY OF SOUND IN WATER AS A FUNCTION OF TEMPERATURE AND PRESSURE

ARVIND MOHAN SRIVASTAVA aND Y. P. VARSHNI
Deipahtment of Physice, allahabad Univerbity, Allahabad
(Received, July 9, 1959)

Abstract

It is shown that tho variation of velocity of sound (u) in water with temperature (t) at difforent pressures can be represented by $u-a+b t+c t^{2}$. Using Smith and Lawson's data, maximum velocity temporatures at different prossures have been calculated. Tho maximum velocity temperatures appear io incrouse with the increase in prossure but at very high pressures the data in inconclusive.

INTRODUCTION

Water is known to show an abnormal behaviour in many of its physical properties as shown by Partington (1951). And that is also true for the velocaty of sound in it. $1 t$ is known that all pure liguids show a linear variation of sound velocity with temporature and a negative temperature coefficient Water, on the other hand, displays a maximum velocity (at about $74^{\circ} \mathrm{C}$ at atmosphoric pressure) and the temperature coefficient changes from positive to negative at this tomperature (which for the sake of abbreviation we shall call as 'maximum velocity temperature'). Frequently this anomalous behaviour of water is attributed to association, yet methyl alcohol and several other associative compounds do not have a variation similar to that of water.

In recent years considerable attention has boen paid to the measurement of sound velocity in water. Willard (1947) has shown that the velocity of sound can be represented as

$$
u=1557-0.0245(74-t)^{2}
$$

which gives a maximum velocity at $74^{\circ} \mathrm{C}$. Greenspan, Tschiegg and Breckenridge (1956) found the maximum velocity temperature to be $73.95^{\circ} \mathrm{C}$. On the other hand Salceanu (1957) made measurements of sound velocity at temperatures between $27^{\circ} \mathrm{C}$ and $81^{\circ} \mathrm{C}$ at a frequency of 1315 cycles per second and found that the maximum velocity is at about $62^{\circ} \mathrm{C}$.

Pancholy (1953) has investigated the velocity of sound in heavy water. Lagemann, Gilley and McLeroy (1953) have determined the velocity of ultrasonics in supercooled water and heavy water. Highly accurate measurements (accuracy one part in 30,000) for the sound velocity in water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ have been
recently reportod by Greonspan and Tsehiegg (1957) who represent their results by a fifth dogree polynomial.

Recently determination of sound velocity in water has also been made at high pressures. Holton (1951) has reported measurements on the velocity of sound in water as a function of pressure up to $6000 \mathrm{Kg} / \mathrm{cm}^{2}$ at two different temperatures. Smith and Lawson (1954) using an ultrasonic echo technique have carreed on similar measurements at hydrostatic pressures varymg up to $9600 \mathrm{Kg} / \mathrm{cm}^{2}$. Martin (1957) has deternmed the velocity of high frequency sound waves in distilled water and in standard sea water at $25^{\circ}(\mathrm{C}$ between 0 and 1000 atm . pressures using a pulse technique.

The measurements of Holton and those of Smith and Lawson show in important descrepancy as regards the belaviour of the maximum velocity of sound as a function of temperature as the prossure is mereased. Holton concludes from his measurements that this temporature decreases with incrensing prensure whilo Smith and Lawson finds an opposite behaviour. The latter authors have given graphs (their figure 4) showing that the maximum velocity temperature incroasos gradually with increasmg pressure, though no precise analysis of the data is given.

In this paper we have examined Smith and Lawson's data by analytical nethods to find the exact behaviour of maximum velocity temperature and maximum velocity with increase in pressure.

It was found that the variation of the velocity of sound (u) with temperature at different pressure can be adequately represented by

$$
u=a+b t+c t^{2}
$$

where (t) is the temperature in Centigrade degrees and a, b, c are constants.
Smith and Lawson's values at six different pressures were used to evaluate the constants a, b and c by the method of least squares. The valucs thus determined are produced in Table 1. The calculated and experimentally observed values of u are shown in Tables II to VII. The maxmum velocity temperature is given by $-b / 2 c$. Ils calculated values as well as maximum velocities are recorded in Table VIII.

TABLE I

No	Pressuros $\mathrm{Kg} / \mathrm{cm}^{2}$	a	b	c
1	1	1407.546	4.24063	-.0295928
2	435	1492.542	$3.62(12$	-.0218743
3	1039	1605788	3.21895	-.0181910
4	6544	2262.727	1.49529	-.00785982
5	7370	2484108	0.068427	-.00144287
6	9410	2617.304	1.32011	-.0073539

Velocity of Sound in Water, etc.

TABLE 11
For pressure of $1 \mathrm{Kg} / \mathrm{cm}^{2}$

No.	$t^{\circ} \mathrm{C}$	u, Caloulated	m^{\prime} нос. Observod	$\begin{gathered} \text { Dufferonce } \\ u(\text { eule })-u \text { (obs) } \end{gathered}$
1	0	1407 \%	1493	$+4.5$
2	225	14881	1488	$\cdot 10.1$
3	$24 \geq$	1493.0	1494	-1.0
4	20.6	1499.6	1504	-4 4
5	27.0	1500.0	1505	-44
6	27.6	1502.2	1504	-1.8
7	454	15393	$153!$	$+03$
8	55.1	15517	1547	147
9	65	15587	1555	- 37
10	747	1559.6	1555	12.6
11	83.2	1550.0	1557	-10
12	938	1545.5	1549	-3.5

TABLE III
For pressure of $435 \mathrm{Kg} / \mathrm{em}^{2}$

No.	$t^{\prime} \mathrm{C}$	u, Calculatod	m/sec. Observed	Difforonce $u($ calc $)-u($ obed $)$
1	22.5	15629	1563	-0.1
2	57.6	1628.5	1628	+0.5
3	66.9	1636.8	1637	-0.2
4	77.0	1641.0	1642	-0.4
5	86.7	16420	1642	0.0
6	96.5	1638.2	1638	+0.2

TABLE IV
For pressure of $1039 \mathrm{Kg} / \mathrm{cm}^{2}$

No.	$t^{\circ} \mathrm{O}$	ralculated	m/sec. observed	Difference u (calc) $-u$ (olosd)
1	26.5	1678.3	1677	+1.3
2	44.2	1712.5	1714	-1.5
3	55.4	1728.3	1729	-07
4	63.4	1736.7	1737	-0.3
5	70.5	1742.3	1742	$\cdot+0.3$
6	75.5	1745.1	1745	1-0.1
7	80.4	1747.0	1746	110
8	88.1	1748.2	1748	+0.2
9	964	1747.0	1747	00
10	104.6	1743.5	1744	-0.5

TABLE V
For pressure of $5544 \mathrm{Kg} / \mathrm{cm}^{2}$

No.	$t^{\circ} \mathrm{C}$	u, calculated	m/sec. observed	Difference $u($ calc $)-u($ obsd $)$
1	0.0	2262.7	2264	-1.3
2	22.6	2292.5	2290	+2.5
3	57.4	2322.7	2324	-1.3
4	66.5	2327.4	2327	+0.4
5	76.3	2331.1	2331	+0.1
6	85.9	2333.2	2335	-1.8
7	96.1	2333.8	2333	+0.8
8	103.3	2333.3	2333.3	2332

Velocity of Sound in Water, etc.
TABLE VI
For pressure of $7370 \mathrm{Kg} / \mathrm{cm}^{2}$

No.	$t^{\circ} \mathrm{C}$	u, calculated	m/fec. observed	Differonoe u (calo) $-u$ (obsd)
1	191	2485.9	2485	10.9
2	42.8	2489.7	2492	-2.3
3	61.1	2491.4	2491	+0.4
4	63.4	2494.2	2495	-0.8
5	69.7	2495.9	2495	+09
0	84.0	2500.0	2497	-13.0
7	95.6	2503.8	2506	-2.2

TABLE VII
For pressure of $9410 \mathrm{Kg} / \mathrm{cm}^{2}$

No.	$1^{\prime \prime} 1$	$\begin{gathered} u, \\ \text { culculated } \end{gathered}$	$\mathrm{m} / \mathrm{sec}$. observed	$\begin{gathered} \text { Difference } \\ u \text { (calo) }-u \text { (cale) } \end{gathered}$
1	565	26684	2671	-2.6
\because	624	2671.0	2689	-2.0
3	$70 \geq$	2673.7	2672	-1. 7
4	827	26762	2676	$+02$
5	97.4	26761	2678	-1.9
6	184	26760	2676	00
7	128.9	26653	2664	-113
4	129.0	$2685 \geq$	2666	-0.8

TABLE VIII

No.	Pressure Kg/cm ${ }^{2}$	Maximum Velocity Tomperature	Maximum Velocity
1	1	71.75	1559.9
2	435	82.75	1642.3
3	1039	88.48	1748.2
4	5544	95.12	2333.8
5	7370	\times	\times
6	9410	89.76	2676.5

UISCUSNION

Though Smith and Lawson (1954) have not given the uncertainty in their values it appears that the values differ by $2 \mathrm{~m} / \mathrm{sec}$ from their values given in figure 6. Tables $2-7$ show that the average difference in the calculated and observed values of the sound velocity is $1.4 \mathrm{~m} / \mathrm{sec}$. This is withm the linits of experimental error postulated above

The results for pressure of $7370 \mathrm{Kg} / \mathrm{cm}^{2}$ do not show a maxima because it is found that the constant c in this instance is positive whereas for other pressure e_{p} its valnes are negative. Also the values of a and b for this pressure do not follow the general trend in thur variation with pressures as seen in Table I. It is, therefore, suspectod that the expermental values for this pressure are not sufficiently accurate

The constant a represents the velocity of sound at $0^{\circ} \mathrm{C} \quad$ Its variation with pressure is scen in Table 1 and figure 1. Fortunately, Smith and Lawson have

Fig. 1. Shows vuriation of a with pressure.
experimentally determined the variation of velocity with pressure at $0^{\circ} \mathrm{C}$. Some of their experimental points are shown in figure 1 by open circles. As expected
both the above sets of points lie on a smooth curve. Point corresponding to a pressure of $7370 \mathrm{Kg} / \mathrm{cm}^{2}$ is not considered.

Behaviour of constants b and c is shown in Figure 2. The values of b and c are observed to decrease smoothly with pressure.

Tig. \therefore. Shows varintion of constanta b and c with changes in prossures.
Maximum volocity temperature as determined with the above theoretical expression at a pressure of $1 \mathrm{Kg} / \mathrm{cm}^{2}$ is $71.75^{\circ} \mathrm{C}$. The value determined by Greenspan et al (1956) at atmospheric pressure i.e. $1.03 \mathrm{Kg} / \mathrm{cm}^{2}$ is $73.95^{\circ} \mathrm{C}$. There is thus a difference of $2.2^{\circ} \mathrm{C}$ The discrepancy at other higher pressures is bound to be greator in magnitucle. The maximum velocity temperature increases with pressure up to $5544 \mathrm{Kg} / \mathrm{cm}^{2}$ but the value at $9410 \mathrm{Kg} / \mathrm{cm}^{2}$ is found to be lower than the previous value. It has boen pointed out that the value at 7370 $\mathrm{Kg} / \mathrm{cm}^{2}$ is not sufficiently accurate. The temperature gradient at higher pressures is very small (Table 6, 7) and hence even small error in measurements can seriously vitiate the position of the maxima. The experimental uncertainty of $\pm 2 \mathrm{~m} / \mathrm{sec}$ at higher pressures can be responsible for a variation of about $5^{\circ} \mathrm{C}$ in the value of maximum velocity temporature from the correct value.

The trend of maximum velocity temperature is to increase with pressure, yet we do not consider it safe to draw any precise conclusion from this fact regarding the numerical variation. Perhaps the value at $5544 \mathrm{Kg} / \mathrm{cm}^{2}$ is a bit too largo and that at 9410 a bit too small.

REFERENOES

Groenspan, M., Tschregg, C. E. and Breckenridge, F., 1956, J. Acoust. Soc. Amer., 28, 500.

- (Greenspan, M. and Tychiegg, C. E., 1957, J. Res. Nat. Bur Stand., 59, 249

Holton, G., 1951, J. App. Phys., 22, 1407.
Lagemann, R T., Gilley, L W. and McLeroy. E. G., 1953, J. Chem. Phys., 21, 81 . Martin, A. V. J., 1957, Ann. Geophys., 13, 307.
Pancholy, M., 1953, J Acoust. Soc. Amet , 25, 1003.
Partangton, J. R., 1951, Advaneod Treatiso on Plyyicul Chemistry, vol. II. Properies of Liquids, p 41.
Smith, A. H. and Lawson, A. W., 1954, ,I. Chem. Phys., 22, 351.
Sulceanu, C., 1957, C. I. Acrad. Sci., 245. 1371.
Willard, G. W., 1947, J. Acoust. Soc. Amer, 19, 230.

