THE INFRARED SPECTRA OF ORTHO META AND PARA THIOCRESOLS

R. N. BAPAT

Physics Department, College of Science, Nagpur.

ABSTRACT. The infrared spectra of the *o*-, *m*-, and *p*- theoreosols were taken on the Perkin Elmer infrared spectrophotometer between the region 2 to 15 microns. The S-H stretching frequency is reported to be near about 2580 cm⁻¹. This characteristic frequency was observed to be present in all the three molecules the values being 2577, 2577 and 2571 cm⁻¹ in ortho, meta and para thiocresols respectively. The frequencies arising out of phenyl and mothyl parts have been assigned to their respective modes of vibration.

INTRODUCTION

The ultraviolet vapour absorption of these molecules was undertaken and to assign frequencies to definite modes of vibration, it was thought necessary to take the infrared spectra of these molecules as the data were not available. The samples were supplied by Eastman Kodak Company. The infrared spectra of toluene, thiophenol and cresols are known and a comparative study in a tabular form is carried out to bring out the broad features in the spectra of these molecules with the substitution of SH in theoresols in place of OH in cresols.

EXPERIMENTAL

The infrared spectra of all the three molecules were recorded on the Perkin Elmer infrared spectrophotometer using sodium chloride optics. In case of para thiocresol the substance was dissolved in carbon tetrachloride and then introduced in between the plates of sodium chloride and the thickness was 0.1 mm and kept in the absorption path. The other pair of plates contained only carbon tetrachloride and was kept in the absorption path in front of the second aperture. The light source is divided in two beams and one passes through the solution and In the case of meta and ortho thiocresols the the other through the solvent. substances were introduced directly in between the plates having the film thickness of 0.025 mm and kept in front of one of the apertures. In front of the second aperture only one plate of sodium chloride having the same thickness as the total thickness of these two plates was kept. In case of broad bands, in order to define them further the strength of the solution was made less in case of para thiocresol while in case of meta and ortho thiocresols the film was made thin by introducing a drop between the plates and pressing them together. In figures 1, 2 and 3 the infrared spectra of the three molecules ortho, meta and para thiocresols respectively are given.

RESULTS

All these three molecules show an absorption band near about 2580 cm^{-1} , and another absorption band between 1200 and 1210 cm⁻¹. All the bands observed in the case of the three molecules are given in 'Table 1 together with the infrared absorption bands for tolueno, thiophenol, ortho, meta and para cresols for comparing them with the absorption bands in ortho, meta and para thiocresols with the intensities for the same.

DISCUSSION

Of the three cresols, *p*-thiocresol belongs to the C_{2p} symmetry and the other two to C_s symmetry. Para-thiocresol has 15 A_1 , 3 A_2 , 14 B_1 , and 10 B_2 vibrations whereas ortho and meta thiocresols have 29 A' and 13 A" vibrations. Except for the 3 A_2 vibrations in case of para thiocresol all others are active both in Raman and infrared. The assignment of these vibrations is proposed on the basis of comparison with thiophenol on one hand and toluene on the other. These are also compared with the corresponding cresols.

The phenyl vibrations :

Table II gives the correlation of the phenyl vibrations¹ (Herzfeld *et al*, 1946) with those of thic- cresols. The six C-C stretching vibrations including ring breathing vibration are assigned to the frequencies as indicated in table. The c_g^+ vibration 1596 of benzene gives rise to two bands around 1600 corresponding to a_1 and b_1 m C_{2v} and a' in C_s . It is important to observe that the corresponding bands are rather weak in para thiocresol. In paracresol there are two strong bands at 1600 and 1616. In *p*-thiocresol there is only one strong maximum near 1631 with shoulders at 1575 and 1608. The bands 1631 and 1608 are assigned to these two modes in *p*-thiocresol. Two bands are also expected corresponding to 1485 c_u^4 of benzene. This region is, however, complicated by the fact that there are also bands corresponding to symmetric and asymmetric C-CH₃ bending vibrations in this region. Two bands one near 1480 and other near 1400 are assigned to these. The breathing vibration 992 a_{1g} of benzene drops to between 772 to 789 in theorems.

The C-H stretching region near 3000 cm^{-1} is not well resolved and only a tentative assignment is proposed. The C-H in plane and deformation vibration lying between 1280 and 1600 cm⁻¹ have been assigned. It is observed that the spectrum of the meta compound usually gives rise to a number of strong bands in this region. From the correlation of other benzene derivatives the assignments given in the table are proposed. The out of plane deformation vibrations are assigned by comparison with other disubstituted benzenes.

4

298

R. N. Bapat

Toluene cm ⁻¹ Int.	Thiophenol cm ⁻¹ Int.	o-Cresol cm ⁻¹ Int.	<i>o</i> -Thíocresol cm ⁻¹ Int.	<i>m</i> -Cresol cm ^{×1} Int.	m-Thiocresol cm ⁻⁴ Int.	<i>p</i> -Cresol cm ⁻¹ Int.	p-Thiocreeol cm ⁻¹ Int.
2415 (w)	2451 (sh)	2444 (w)	2415 (vw)	2475 (w)	2410 (vw)	2475 (w(
2364 (sh)				2439 (w)	2381 (vw)		
2336 (w)	2358 (ms)					2347 (w)	
2315 (sh)	2294 (w)						2299 (vw)
2257 (w) 2203 (w)	2273 (w) 2232 (w)			2208 (w)			
2165 (w) 2110 (w)	2183 (w) 2105 (w)	2092 (w)					
2070 (w)	2058 (w)	2053 (سە)		2088 (w)		2079 (w)	
1984 (sh)		1996 (w)	2000 (vw)	2016 (w)		1988 (w)	
1946 (s)	1953 (s)	1934 (m)	1949 (سە)		1942 (w)		
			1908 (w)	(m) 6161			
1859 (s)	1866 (s)	1883 (m)	1838)vw)	1880 (w)	1862 (w)	1869 (mw)	1890 (m)
				1842 (w)			
1802 (s)	1799 (s)		1795 (ريس)	1812 (w)			
1776 (sh)		1769 (m)	1761 (رس)		1770 (w)	1757 (w)	1786 (w)
					1748 (sh)		
1736 (m)	1736 (s)		1745 (v·w) 1520 ()	1733 (w)	1730 (sh)		1730 (v-w)
			1730 (vw) 1712 (vw)		1712 (ريم)		1
1675 (w)	1706 (sh)	1680 (m)	1695 (vw)	1698 (w)	1698 (sh)		
			1684 (٣٣)				

TABLE I (contd.)

										*												
p-Thocresol om ⁻¹ In $$	1658 (sh)		1631 (m)	1608 (vw)	1575 (vw)	1497 (s)		1451 (ms)	1403 (ms)			1379 (m)	1343 (w)		130ā (m)		1271 (sh)		1232 (w)	1211 (m)		1182 (w)
p-Cresol cm ⁻¹ Int.			1616 (s)	1600 (s)		1511 (s)		1456 (s)	1 1 35 (s)			1380 (sh)	1335 (sh)	1351 (s)			1292 (m)		1236 (s)	1214 (s)		1172 (s)
<i>m</i> -Tluocresol cm ⁻¹ Int.	1664 (w)		1603 (s)	1582 (s) 1550 (w)	1522 (sh)	1479 (s)		1462 (sh)	1453 (sh)	1429 (ah)	1401 (sh)	1383 (w)	1330 (vw)		1302 (w)		1282 (vw)	1272 (vw)		1218 (m)	1205 (sh)	
m-Cresol cm ⁻¹ Int.			1616 (s)	1585 (s)		1488 (s)			1 1 33 (ms)			1399 (m) 1364 (m)	1344 (ms)		1324 (ms)	1304 (m)	1279 (s)	1266 (s)	1233 (s)			
o-Thuoresol cm ⁻¹ Int.	1658 (v-w)	1645 (vw)	1595 (m)	1577 (m) 1548 (vw)	1527 (sh)	1484 (sh)	1475 (s)	1462 (s)	1443 (s)	1403 (sh)		1381 (m)	1328 (vw)				1280 (m)		1250 (vw)	1217 (ms)	1209 (sh)	
				(sm)		(sm)		(ms)				(ms)		(sm)	(ms)		(E)		(sm)	(ms)		(sm)
o-Cresol c u ⁻¹ Int.				1592		1490		1461				1375		1344	1321		1295		1256	1219		1207
Thiophenol cm ⁻¹ Int.	1695 (sh)		1639 (sh)	1582 (s)	1522 (sh)	1479 (s)			1415 (s)			1383 (s) 1370 (sh)		1330 (s)	1305 (s)		1276 (m)		1236 (m)	1202 (sh)		1185 (s)
Toluene cm ⁻¹ Int.	1653 (sh)		1603 (s)	1575 (m)	1524 (m)	1495 (s)		1462 (s)				1377 (ms)	1333 (sh)		1315 (m)		1282 (sh)		1247 (m)	1209 (ms)		1178 (s)

TABLE I (contd).

300

R. N. Bapat

cm ⁻¹ Int.	rnophenol cm ⁻¹ Int.	o-Cresol cm ⁻¹ Int.	o-Thiocresol cm ^a 1 Int.	<i>m</i> -Cresol cm ⁻¹ Int.	m-Thocresol cm ⁺¹ Int.	p -Cresol mc^{-1} Int.	<i>p</i> -Thiocresc cm ⁻¹ Int.
1157 (s)	1159 (ms)	1169 (ms)	1159 (w)	1156 (ms)	1168 (ms)		
			1139 (sh)				
1107 (s)	1120 (s)	1106 (ms)	1131 (w)		1109 (ms)	1117 (m)	1115 (ms)
			(مىما الالا				
1081 (s)	1094 (s)		1070 (s)	1088 (m)	1083 (ms)	1106 (s)	1099 (s)
1043 (sh)	1072 (s)	1043 (ms)	1046 (s)	10 1 2 (m)	1041 (m)	1044 (mw)	1041 (m)
1031 (s)	1027 (s)		1035 (ms)				
1001 (sh)	1003 (s)		1016 (vw)	1011 (m)		1016 (mw)	(9) 0101
980 (w)	981 (m)	987 (ms)	988 (т)	1001 (m)	982 (m)	987 (w)	1002 (vw)
967 (sh)	960 (m)			966 (w)	971 (w)	952 (w)	956 (sh)
930 (w)	915 (s)	933 (m)	924 (m)	928 (ms)	919 (m)	927 (w)	913 (m)
896 (s)	898 (s)				891 (w)		
873 (w)	872 (sh)			882 (m)	870 (m)		
843 (m)	833 (ms)	844 (m)	856 (w)	852 (m)	853 (s)	842 (ms)	
		818 (m)			824 (17W)	816 (s)	827 (m)
785 (m)	796 (sh)		797 (m)		803 (sh)	805 (sh)	810 (m)
	786 (sh)		772 (s)	776 (s)	772 (vs)	~	(m) 189
				769 (s)			
728 (s)	735 (s)	751 (ms)	744 (s)	735 (m)		740 (ms)	751 (sh)
093 (E)	(S) 660	710 (ms)	705 (w)			703 (w)	725 (w)
	(s) con			(m) 689	686 (s)		
	668 (s)		676 (w)				

TABLE I (contd.)

Infrared Spectra of Ortho, Meta and Para Thiocresols 301

TABLE II

Vibrations from benzone ring

	Bonzone Doh	p -thiocresol C_{2v}	o -thiocrosol $\mathrm{C}_{ heta}$	m-thiocresol C _s
C-C)	a _{1g} 992	789 a ₁	772 a'	772 a'
stretchingj	b _{2u} 1310	$1232 \ b_1$	1250 a'	1272 a'
	e ₁₄ 1485	1497 a_1	1475 α'	1479 <i>a'</i>
	e ₁₄ 1485	1403 b ₁	1408 a'	1401 a'
	e _{2g} 1596	1631 a ₁	1595 a'	1603 a'
	e _{2g} 1596	1608 b ₁	1577 a'	1582 a'
C-H stretching	e _{2g} 3047	Raman 3136 b ₁	— a'	Raman 3117 <i>a</i> '
	b ₁₁ 3060	Raman 3051 <i>a</i> 1	a'	Raman 3055 <i>a'</i>
	e _{1u} 3080	$- a_1$	3067 a'	3067~a'
	a _{1g} 3062	3030 a ₁	3021 a'	Raman 3176 a'
С.н.	e ₂₀ 1178	$1182 \ a_1$	1159 a'	1168 a'
inplane dolor-}	e _{1u} 1033	1019 a ₁	1035 a'	1019 a'
	b _{2u} 1110	1115 b ₁	1111 a'	1109 a'
	a_{2g} 1326	1271 b ₁	1280 a'	1282 a'
C-H)	e _{1g} 850	810 b ₂	797 a"	803 <i>a</i> "
deformation]	e ₂₁₁ 970	956 a2	988 a"	982 <i>a</i> "
	e ₂₁₆ 970	827 b ₂	856 a"	853 a"
	b ₂ g 985	913 b ₂	924 a"	919 a"
c-c)	b 111 1010	1099 a ₁	1070 a'	1083 a'
inplane bending	e _{2g} 606	639 a_1	661 a'	685 a'
	e _{2g} 606	- b ₁	552 a'	523 a'
C-C	b _{2g} 703	() b ₂	676 <i>u</i> "	676 a"
bending	e ₂₁₁ 404	(—) a ₂	432 <i>a</i> "	
	e _{2u} 404	() b ₂	· 146 a"	147 a"
C-X)	e _{1U} 3080	() b ₁	686 a'	686 a'
stretching J	e ₂₉ 3047	1211 a ₁	1217 a'	1218 a'

	$\substack{ \mathbf{Benzene} \\ \mathbf{D}_{\mathfrak{Gh}} }$	p-thiocresol C _{2v}	o-thiocresol C ₈	<i>m</i> -thiocresol С _s
C-X	e _{1u} 1033	() b ₁	(—) a'	() a'
mpiane beiding)	e _{2g} 1178	() b ₁	(—) a'	() a'
C-X	a216 671	() b ₂	() a"	(—) a"
bending	e _{1g} 850	() a ₂	(—) <i>a</i> "	(—) a"

TABLE II (contd.)

TABLE III

Methyl vibrations in the three cresols, toluene and the three thio cresols

	Toluene		Cresols	1	1	Thiocroso	ls	-
		0-	m-	p -	0-	m-	p -	
Asymmetric Stretching	2920	2933	2907	2915	2941	2941	2924	
Symmotric Strotching	2870	2874	2833	2874	Expected (2870)	Raman (2870)	Expected (2870)	
Symmotrie bonding	1377	1375 or	$1399 \\ 1364$	1380	1381	1383	1379	
Asymmetric bending	1460 1436	1461 1440 Raman	1488 1433	1456 1435	1462 1443	1462 1429	1451 1403?	
Rocking	1081 1041	1043	1042	1044	1046	1041	1041	

The inplane ring vibrations corresponding to e_g^+ 606 of benzene give rise to two bands usually one above 606 cm⁻¹ and other below this value. The assignments of 552 and 553 cm⁻¹ in case of ortho and meta-thiocresols of one of the components is given by the Raman data. Out of plane ring vibrations corresponding to 703 b_{2g} of benzene is assigned to a weak band at 676 cm⁻¹ in ortho and metathiocresols. The others are discussed in Raman effect. The substituent sensitive vibrations from the phenyl part are tabulated. In this stretching vibration one should correspond to C-CH₃ stretching (Pitzer and Scott, 1943) which is usually found near 1210 cm⁻¹ and the other C-S stretching. The latter vibration is known to occur near 680 cm⁻¹ as in other mercaptans (Sheppard, 1950). No definite assignment can however be made. The position of these and the corresponding C-S in-plane and out of plane bending is not satis- factory. Methyl group gives rise to three C-H stretching and three C-H bending and two rocking vibrations. The general trend in these vibrations has been shown by various workers (Shappard, 1953). The assignment of CH_3 modes is shown in table III.

The S-H stretching frequency is observed to be present at 2577, 2577 and 2571 cm⁻¹ in ortho, meta and paratheoresols respectively.

ACKNOWLEDGEMENTS

The author is indebted to Dr. R. K. Asundi and Dr. M R. Padhye for their keen interest in the work.

REFERENCES

Horzfeld, N., Ingold, C. K. and Poolo, H. G., 1946. Jour. Chem Soc., 316,
Pitzor, K. S and Soott, D. W., 1943, Jour. Amer. Chem. Soc., 65, 803
Sheppard, N., 1950, Trans. Farad, Soc., 46, 429.
Sheppard, N., 1953, Quart. Revs., 7, 19.
Trottor, I. F. and Thompson, H. W., 1946, Jour. Chem. Soc., 481.

304