INFLUENCE OF GEOMAGNETIC FIELD ON EXTENSIVE AIR SHOWERS OF COSMIC RADIATION

A. BHASKARA RAO and P S. gith
Dtipartmint of Physics, Musisim Uniferistiy, Allgailh
(Recrived, Februany 10, 1960)

Abstract

ABS'CRACT. (i. Cueconi (19,54) pomtod out thent the deflection of anr shower partheles in the curth's magnetse field should produce some ellipterity of ahower atructure, and hence the lateral distribution of oloctronn momed the shower anss should not bo cre lar, but ellipheal, with the major axis on the least-Wont direction. Thus offeet was invortagated at Gulmarg (ult. $2710 \mathrm{ml} 24^{\prime \prime}-30^{\prime} \mathrm{N}$-geomagnetic lat..) with two G M. counter teleseopos, for three mepmarathons $10 \mathrm{~m}, \geq 5 \mathrm{~m}$, aud 40 m . The results show that there is a significant differener botwown tho shower sales from Eust-Wust and North-South directions. Thas asymmetry in the showor rates is found to merosaso with the soparation, and the zenith anglo of the leleseopoos.

1NTROUUC'ION

G. Coceoni (1954) pointed out that D_{m}, the displacenent of air showes particles due to the earth's magnetic field is not negligible in comparison with D_{a}, the projected lakerad displacement due to mulaple coulombl seattering, and this effect might be large enough to be detected as an asymmetry in the laterial distribution of electrons m air showers. It means the electrons are distributed elliptically, around tho shower axis.

It has been evaluated in the first approximation, that the ratio of the two displacements is given by

$$
D_{m} / D_{s}=0.22 \cos \lambda / P
$$

Where λ is geomagnetic latitude, and I is air pressure in ahmospheres.

The combined displacement is $J_{m+S}=\left[I_{m}{ }^{2}+D_{S^{2}}\right]^{\frac{1}{2}}$: so that

$$
\begin{aligned}
D_{m+S} & =J_{S}\left[1+\binom{02 \cos \lambda}{P}^{2}\right]^{b} \\
& \simeq D_{S}\left[1+\frac{0.024 \cos ^{2} \lambda}{p^{2}}\right]
\end{aligned}
$$

P. Chaloupka (July, 1954) measured this effect on the top of "Lommicky" Stit" (alt. $2634 \mathrm{~m}: 48^{\circ} \mathrm{N}$. geomagnetic latitude) with two G. M. counter teles-

154

copes. The separation of the telescopes was 7 m . The telescopes werc inclined at 45° zenith angle and successively directed towards East, West, South, and North. Fourfold coincidences were taken. He reported nearly 20% more showers arcivmg from the E.W direction than from N-S direction. Due to large statistical errors he did not draw any conclusion. Later Duhinsky, Chaloupka, et al. (1956) continued the investigation (alt. $1778 \mathrm{~m}: 48^{\circ} \mathrm{N}$. geomagnetic lat.) in which they fixed $u \rho$ the position of the shower core, and measured the particle densilies to the West and South of the core, at three distances $15.5 \mathrm{~m}, 30 \mathrm{~m}$, and 50 m . Though they did not find any variation for 15.5 m , thoy observed 40% and 60% greater densitios in the West direction than in tho South for 30 m , and 50 m distances resspectively. Even in this case the statistical errors were large. The present investigation was carried out at Gulmarg (all. 2710 ui : $24^{\circ}-36^{\prime}$ N. geomagnetic lat.) with improved statistics.

EXPERIMENTAL

The exporimental arrangement was similar to that of Chaloupka, and th block dingram is shown in Fig. 1. It consisted of two ($\underset{G}{ }$ M. counter teleseopel T_{1}, T_{2}, with two trays in each. In oach tray there were four counters (size 52×584 mm) filled with Argon and petroleum-ether. The separation of the counter trays in the telescopes was 950 mm . The pulses from the trays were carriod to the cathode-follower and from there to the coincidence cincuit, through a low impedance coaxial cable, type KD-49. Only fourfold coincidences were recorded by the recording unit. The counter trays were mounted on an aluminium frame, which was fixed to a wooden stand in such a way that the telescope can le fixed at any particular zenith angle.

Fig. J.
-The asymmetry in the rate of showers was measured for three distances $10 \mathrm{~m}, 25 \mathrm{~m}$, and 40 m between the telescopes. Tho telessopes were directed towards East, West, South, and North at zenith angles $0^{\circ}, 15^{\circ}, 31^{\circ}, 45^{\circ}$, and 60°
and fourfold coincidences were recorded．Comiers with a minimum phatean of 200 V were used in the experiment，aud they were teated every day before start． ing the apparatus．

RESULTS AND DTSCUHSTON

The results of the experiment are given in Tables I，II，and III，for the three separations $10 \mathrm{~m}, 25 \mathrm{~m}$ ，and 40 m ．In any direction if the total number of counts recorded is M ，churing the total time T hours，then the shower tate in that direction is M / T per hour．The error in the shower rate js taken as $M \mathrm{~J} / T$

The first table represents the shower rates from East，Went，South，and North directions with the corresponding errors．In Table II the avorage showor rate from East－West dirgctions is talsen as x and the average shower rate from North－ South directions as y ．Next，the ratio x / y is calculated for the three separations and all the zenith angles as shown．If the circular symmetry of electrons around the shower axis is to be correst，the ratio x / y should be unity．But it can be seen that in all the cases，without oxception，the ratio is larger than unity and far beyond the statistical errors．This clearly indicates that electrons in extensive air

TABLE 1

Counting rates of showers from Last，West，South，and North directions with rorresponding errors

	Zenith angla Z	Showers per hour from the Еанi， N_{e} 上 $\boldsymbol{\Sigma}_{\rho}$	Showers per hour frome the Weri， $N_{\omega}+\Sigma \Sigma_{\omega}$	Showers por hour from the South $N_{8} \perp \Sigma_{8}$	Showors jer hour from tho North $N_{n} \pm \mathbf{\Sigma}_{n}$
10 m	0°	94．4－2．5		$870 \perp 2.3$	．－－．－－－
	15°	79．4 119	815119	72.1 － 1.7	$72.1+1.7$
	30°	695 ± 1.6	$75.0 \perp 19$	03．0＋1 \％	612 ± 1.6
	45°	60．4才15	$661+1.7$	62.0 ¢ 13	538 8－1．3
	60°	50.9 ± 1.3	58．0」．1．5	$45.6+1.2$	47．4 ± 1.2
25 m	0°	$58.9 \perp 1.9$		$52.5+1.6$	－－
	15°	$495+15$	$54.9+1.7$	40.0 ± 1.3	40.6 ± 12
	30°	45.0 ± 1.0	482 ± 1.5	33.2 ± 1.0	333 ± 1.0
	45^{n}	40.2 ± 12	45．2土1．5	28.2 ± 0.0	28.7 ± 0.0
	60°	350 ± 1.0	37.1 ± 1.2	224 上10．7	23.3 ± 0.7
40 m	0°	38．4土1．5	－－	30.0 ± 1.2	
	15°	32.6 ± 1.2	35.3 d． 3	24．7上1．0	24.0 ± 1.0
	30°	29.7 ± 1.2	32.6 ± 1.3	20.6 ± 0.9	202 ± 0.7
	45°	26．5土 5.0	29.5 上1．2	16．5土0．6	165 ± 0.6
	60°	24.5 .20 .9	25．9上10	13．3土0．6	13．3．20．0

TABLE II
Elliptority and peremitage asymmetry of extensive air showers

	$\begin{gathered} \text { Zonith } \\ \text { anglo } \\ \eta \end{gathered}$	Avorage shower rate from $E-W$ $r_{\perp} \pm \Sigma_{x}$	Avorage showor rato from $\mathrm{N}-\mathrm{S}$ y_{\perp} vev $_{v}$	$\begin{gathered} \text { Ellıpticity } \\ x \pm \Sigma_{x} \\ y \pm \Sigma_{y} \end{gathered}$	Percentage anymmetry $r^{\prime}=\frac{2(x-y)}{(x+y)} \times 100 \%$
10 III	$0^{\text {c }}$	94.4 ± 1.8	870 1－1． 6	$109+029$	$8 \div+2.6$
	15＇	$80.5+1.4$	$721 \sim 1.2$	1.19 ± 027	110 ± 2.4
	30^{n}	$723+1.2$	$6 \pm$ J－L1．1	$1.16-1-028$	152 204
	45°	033 上1 1	$534-10.9$	1 19－5－029	$170+24$
	60°	54，5－1． 0	46.5 ± 0.9	$117 \pm$ ．031	15．8－2 7
25 m	0^{11}	58．9－1． 4	525 土1．1	$1.12 \pm .036$	115 上34
	155^{n}	$52.6 \downarrow$－ 1.1	40）3－t0．9	$1.30-1.040$	25.7 ± 30
	$30^{\prime \prime}$	$466+0.0$	$33.3-50.7$	1．40－． 040	$33.3-1.2 .8$
	45°	4：2－110	2R．5土 0.7	$150+.051$	$311.9-3.3$
	$80^{\prime \prime}$	36.1 ل－0．8	22.90%	1．58－． 049	44.7 ± 30
40 mL	$0^{\prime \prime}$	38．4－1．1	$30.0+0.9$	1．24＋0．33	$24.6-1-41$
	15°	34.0 ± 09	$24.8=7$	$137+0.53$	$313+3.8$
	30° 45°	31.2 ± 09	20.4 ± 00	153 上．063	$4159-1309$
	45°	28.0 ± 0.8	16.5104	1.70 」．084	61 $7 \perp 3:$
	60°	$25.2=10.7$	13 3」0 4	1．89－1．078	$61 \times \perp 37$

TABLE III
Fast－West percentage asymmetry of extensive air showers

Kenith anglo 7	＇East－West asymunctry of oxtensivo air showers			
		$10 \mathrm{~m} \cdot$	25 nL	$40 \mathrm{~m}$
0°				
15°	2	61 ± 384	$10.34 \perp 4.32$	7.95 －上5 38
30°	7	61 ± 332	686438	9） 30 ± 570
45°		$01+3.57$	$11.70+4.4 \pi$	$1071-158$
60°	13	$03+587$	582 上4 31	－1．5n士5 32

showers are distributed elliptically around the shower axis．The percentrge asymmetry between the shower rates from E－W mad N．S divections is given in the last column of Table II．

The errors in the ellipticity and the porcentage asymmetnies are calculated as follows ：－

If (F) is a function of both x and y then the error in F is given by

$$
\left.\Sigma^{\mathbf{2}}=\left[\frac{d(F)}{d x}\right]^{2} \Sigma_{x}^{2} \right\rvert\,\left[\frac{d(F)}{d y}\right]^{2} \Sigma_{y^{2}}
$$

where Σ_{x} and Σ_{y} are errors in (x) and (y) ．and Σ is the crror in the fumetion (F) ．

Then a graph is drawn with the zenith angles along ther abrissa and the percentage asymmetsies along the ordinato for the three separations of the toles. copes. From the grajh it is clear that there is a nystematic increase in the asymmetry with zenith angle. It can also be seen that at any particular zenith angle the asymmetry increases with the separations of the telescopes. Of coutse the same arguments hold good for ellipticity also. The percentage asymmetry and elipticity will increase by about 4 or 5% if the counting 1 ates of showers only from West and South are taken into consideration, because the averuge shower rate from $E-W$ is less than the individual shower rate from West, though the shower rates from North or South aic exactly the same.

Fig. 2. Zonith angle versua percontago anymmetry.
Though the mann aim of the messtigation is to find out the geomagnetic effert on extensive air showers, there is one more interestugg pomit At all zemith anfles from $15^{\circ}-60^{\circ}$ for the three separations $10 \mathrm{~m}, 25 \mathrm{~m}$, and 40 m , the shower rate is slightly more from West than from East durection 'This East-West asymmetry' of extensive air showers is shown in 'Table IIT. In view of the very large statistial crrors, and very poor angular resolution of the telescopes, it is felt better not to draw any definite conclusion. But it ajpears that there ss some East-West asymmetry for extensive air showern also. From Table 111 it ran be seen that for 10 m separation the asymmetry gradually increases from $15^{\prime \prime}$ 10 60° zenith, whereas for 25 m , and 40 m , it reaches a maximum at 45° zenith and then comes down. To arrive at any conclusion regarding this East-West asymmetry of extensive air showers, mone data are needed

CONCLUSION
At moderate latituder and mountain altitudes the geomagnetic firld has a ronsidcrable and well detectable influence on the density distribution of extemsive
air showers. The percentage asymmetry between the shower sates from E-W and N-S increasen not only with the separation of the two telescopes but also with the zenith angle at which the tolescopes are inclined. There appears to be 5 to $\mathbf{1 0 \%}$ East-West asymmetry also for Extensive air showers,

AOKNOWLEDCMENTS

One of the authors (A. B. Rao) wishes to thank 'The Scientific Research Committee, Government of U.P.' for the financial help he received under the scheme "The Study of Extensive Air Showers." He thanks all the staff and the scholars of Gulmarg Ohservatory for their friendly help and suggestions. His thanks are also due to Mr Ajt Singh (Departmont of Physics, Muslim University, Aligarh) for his liberal co-operation while preparing the G. M. counters.

RETERENCES

Chaloupkr, I'.. 1974, Phifs. Rev, 96, 1709 -
Coceoni, G., 1954, Phys Rev., 98, 1;46; Phys, Rev, 94, 796; Phys Rev., 95, 1705 (Errhta)
Dubinaky, J. et al, 1956, Czeohosl. Jourmu. Phys, 6, 1, ©9.

