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ABSTRACT, Equations giving the stable amplitudes of oscillation and tho conditions
of stability of all the possible modes of oscillation of an oscillator with two dogroes of froedom
and stabilised by a non-linearity which can be described by a third degree polynomial are given,

The uso of a differential analyser for tho verifioation of theso eq 18 illustrated. Also
a mothod of graphically representing the transiont osvillutions on the analyser 15 doscribed.
INTRODUCTION

Oscillators described by two simultaneous difforential equations of the
second order have two possible frequencies of oscillation. If the non-linearity
of the circuit 1s noglected, it follows that oscillations will oceur independently
at Loth the frequencies, the amplitude at any one frequency being determined
only by losses at that frequency. However, the non-linearity which is essential
for limiting the amplitudes of oscillation introduces interdependence. Due
to this interdependence thero are two distinct modes of oscillations. In the
one, the oscillator may oscillate at any one of the two frequencies and the ampli-
tude of oscillation is then dotermined by the losses at the oscillation frequency;
in the other it may oscillate at both the frequencies simulianeously and the
amplitudes in that case are determined by the losses at both the frequencies. The
detailed characteristics of such an oscillator way be obtained by solving the
differential equations taking into account the contributions due to non-linearity.
In the present paper, the solutions as obtained by the variation of parameter
method are presented (Van der Pol, 1922; Fontana 1951; Schaffner, 1954).

Experimental verification of the theoretical results were obtained earlier
by actual oscillator circuits, the non-linear terms heing realised by vacuum
{ubes (Fontana, 1951). A closer and more detailed representation of the non-
linear terms is possible with a differential analyser. The author has made use
of a differential analyser with a view to verify the theoretical derivations for
non-linearities expressible by a polynomial of the third dogree. The results
obtained are presented in this paper. “

In visualising the growth of a particular mode of oscillation from the initial
conditions, plots of the transient oscillations are very helpful. Theoretically,
the transient plots are obtained by the method of isoclines and involve consider-
able labour (Schaffner, 1954). A simple method of obtaining graphical repre-
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sentation of the transient oscillations by depicting experimentally the trajectories
in the 4,—A, plane on the analyser is also described.
TYPICAT OSCILLATORS DESCRIBED BY TWO

SIMULTANEOUS SECOND ORDER DIFFERENTIAL
EQUATIONS

In general, oscillators consisting of two separately tuned circuits coupled
together aro described by two simultaneous differential equations of the
second order. The tuned grid tuned plate oscillator is an example. The oqui-
valent circuit of & 7'G'—T'P oscillator is shown in figure 1.
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Tug. 1. Equivalont cireuit of u tunoed grid tuned plate oscillator.

WWWWA-
X
AMAAAL
WWWA
I
It
1F
=

WWW

The differential equations describing the oscillator are given by

&V, ,__1_ ii 41 .- 1 174 v, Cg 42V,
w TaTo, d (Rl ' R,,) T e T ooy TaE

1 AgmV2) .. (la)

T(OH0) da

@y Vo LdVe Ve L Cu @V gy
ar " (Cy+-Cy) Ry dt  Ly(Cy+Cy) — Cp+Cyy  dt?

If R, is very large compared to E,, the non-linearity is introduced by g,
only. g, can be gonerally expressed as a function of V, in the form of a poly-
nomial

Common single tuned circuit oscillators when supplying the output to a
tuned load directly coupled to it are also described by two simultaneous differential

r — .
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equations of the second order. Such coupling is usual in the R.F. extra high
tension supplies. The equivalent circuit for a tuned plate oscillator coupled
to & tuned load by mutual inductance is shown in figure 2.

The differential equations for this circuit are

M, 1 dl M ar,
dt“ s + [(L3+L,) +01R tom T Iye) @ T @ FL)C.R, di

I R\ _ M &, _

+ (Ly+L,)C, (1+ R, ) (Ls+Ly) dt: 0. .. (2a)
R, dl M &I,

=5 L, dtz+ """ L-3 @ =" . (2b)

SOLUTION BY THE VARIATION OF PARAMETER
METHOD

The above differential equation may, in general, be written in the form

d?e, 9 d*x, da; dx, 5

a, Tt K =1 (=0 o ). e ()
da, dx .

ﬂuz ;o od'n K, d—z——Fz (”:'Tf'”v —d?‘), e (3B)

In what follows it is assumed that

d.
F(x,,‘z,x,,d;”)——az . . (48)
d. d. dx
and By z B, a5 ) —a, B — o fw) O e (8D)

Eliminating z, and neglocting terms involving the product a,a,, which is assumed
to be small, one gets

4,
d'z, + (o + ‘-"zz Ke dd::‘

Fy 1 40,20 —K

dz

p d
="”[dd;‘+"“2 a1 o[ Ga o %]

[ ap J@) d" + “’n'f(’;)-d—m—‘] . ()
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When @, = a, = 0, solution of Eqn. 4 is given by

x; = A, co8 (ot + ¢1) + Ag o8 (Wt + B5), v (6)

where

2 0 -l 0 — (0 — ) + 4K, K0 0
Wyo et § _—_2_(1__2 Klej : 1 v (7a)

2 0 + 0 + [(0F — 0gf) + 4K K0y ’0 7
2(1—K,K,)

Wag

(7b)
A,, A,, ¢, and ¢, are constants determined by the initial values of x, and

its derivatives,

When a, and a, ave finite 4,, A,, ¢, and @, are not constant but are functions
of time. In that case we may rewrite Equ. (6) as

@y = Ay(t) cos [ogl 4 $1(8)] 4 Ay(t) cos [yt + Ba(t)], o ()

and substitute this value m Eqn. (5). Since @, and @, are small, though finite,
an approximate solution may be obtained retaimng the first order derivatives
only. Thus

dd, _ __ Fsin (oyf+¢)

it s (Ba)
di ©19(@a0P— ©01o?) :
44, _  Fsin(ont + @) ... (8D)
di Qgo(@g® — @y?)
dgy _ _ 1 Foos (ot +¢) o (80)
di A4, w0y —0y?) -
dgy . 1 Focos(ouf + ¢ e (84)
dt Ay oy’ — o)
where
3 ")
" ’ .
— o Tt Bt o) %], e ®)

Sinco a, and a, are assumed to be small, 4, 4,, ¢, ¢s, Which vary little
over a period of oscillation can be approximately taken to be equal to their average
values over the period.
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Now, if f(x,) is given by a polynomisal, F' can be expanded into a Fourier series
of the two fundamental periods ilu.nd 2 Let Gyos oo, bl.o, byg, be the coeffi-
. @0 Wgo
cients of sin (wyf + @;), 8in (wyt + By), CO8 (@4t + 1), 008 (wygt + ;) respec-
tively in the expansion, then

dji%: - ; wln(mmal— W9 ) (10)
= b egitas, (100)
@ Toge e v 00
d_/ﬁ: = ; 4, mw(f::., —(nm’) (10d)

If 0,y and w,, are not integrally related, the only conditions for equilibrium

aro A, = 0, A, = 0, and the equilibrium values of 4, and 4, may be obtained
therefrom  Also, the equilibrium is stable if the roots of the equation

| 4 a4

"” o4,

1 =0 . (1)
| .04, o4,

| 7 o4, 34,

have their real parts negative for the equilibrium values of 4, and 4,.

If ;9 and w,, are integrally related, i.e., S _ P % being an integral

W1o q
ratio, then for equilibrium in addition to the conditions Al =0, Az =0, it is
required that

¢ = pdi—a¢s = 0. . (12
In this case stable equilibrium will require the roots of the equation

o4, _ o4, _ o4,
= 54, 94, %

_ 04, o4y, 04, | _, 13

aa, T o4, a9 - (13)
L% %, %
04, 04, g’
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to have negative real parts. The derivatives are to be evaluated at the equi-
librium values of 4,, 4, and ¢.

It may be noted that small deviations in the ratio of % from the integral
@10

value may be compensated by ¢. In that case for equilibrium condition (12)
will be replaced by

Am+¢ =0,
where Aw = pug—qog. o (14)

An oscillator, stabilised by a non-linearity characterised by a,f(z,) = cz,® bz,
will now be considered in the light of the above gencral analysis. For such
an oscillator three distinct cases are to be considered; these are discussed below :

Case I: wyof/w,y has a value other than 2/1 or 3/1. In this case,
(1=K Kp)ayy = tyds(0P— 01w g—a1d; (02 —0)d)ey,

+ 4 Ay(og—wo(d 24,9, o (168)

(1 —EK,Ky)ag) = — ;34 5(000° — ;) 0go+ 2, A (009> — 004?)

— 5 Ao’ — 0t (42+24,), ... (16b)

byp = by =0 v (16c)
Putting

2 2 2

Wy —Wy0" _ ) L) —o? =0
3 3 2 ’

Wy =Wy Wgof — @yt

4

by (pag—ay) =—4,%
4

and ¢ (Cay—a,) =—A5?,

Egn. (16a) and (15b) may be written as

(-KKag= 5 (of—od)l—Ay' 412404, .o (168)

(A= K;EJagg == 7 (oge—w)[— Ay’ + 4, +24,714, ... (16b)
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Hence from Equs. (10a) and (10b) |

’ . 2 _ 2
200 —K K4y = ~ 2 5:"—):0,_"‘%}) [~4y*+4,2+24,%4,, ... (17a)

2A1~KK ), ~— ¢ E:’::_:'::’.’_::g [—Ag+A2 424204, .. (1Th)

Conditions of equilibrium are given by
Ay(—A4,02+A4,2+24,2) =0,
Ap(—Ap?+4,2424,%) = 0.

These conditions are satisfied by either of the following three possible combi-
nations of 4, and 4, -

1) 4,=0, A, = Ay, ... (18a)
(@) 4,=0, Ay = Ay, ... (18Db)
@) 4 =2t =’ g 2yl Al e (186)

The eoquilibrium corresponding to the combination 4, =0, A, = A4,

. |
is stable if )

2
::,, >4 and that corresponding to the combination 4, = 0, 4, = A,y

is stable if %‘:;< 2. The third combnation gives unstable equilibrium (Van
Der Pol 1922).

Thus, the oscillator will oscillate at one froquency at a time. Further, if
i< %:-:—: < 2 the oscillator may choose any of the two frequencies, the choice
being determined by the initial values of 4,, 4, and their dervatives,

Case II : Wgg; Wyg=3: 1.

Here,

(1=K, Ky)ayg=—[A1—(4,2+24,%)— 4,4, cos ¢]4£ 0dy(eg? — wyf), ... (19a)

(1=K, K ag = [A (424245 A1 o0 ¢] ° opAyui—wgd), ... (10h)
172 2/%20 20 2 1 3A! 7 4 20 2\%20 2 )

(1=K, Kby = — %mlo(m,’ — wy?)A4,24, 8in @, e (19¢)

(1KoK Yoy = — ol — m,’)—‘% sin 8. . (19d)
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Thus, from Eqns. (10a), (10b), (10c) and (10d) and remembering Eqn. (12),

21— KK 4, = é::o - .“’(::.0 l)[Amz_(zA,,Lg-Alz)—AlA,cos ¢] Ayp,... (208)

20-K K, = (;‘:::’;'__ﬁ [ At — (A4 4, ’)_’i cos ¢] 4, ... (20b)

201—K, K¢ = © [ Bog) = 01)) gy (0p" — 0g?) 4 ] A1 ing. ... (200)

(0g9® — ©210%) m T‘;m‘) 3 4,

Equilibrium conditions are obtained for either of the two possible com-
binations:

) 4,=0, d,=4,, .. (2la)
@) A =242 + A2 + Ad,co8h (sing = 0), ... (21b)
Ap? =242 + AP + QAZE cos ¢ (sin ¢ = 0). . (2lo)

2

Of these the equilibrium given by the first combination will be stable if
Amﬂ < 2. The equilibrium corresponding to the second combination will be
20

stable if-cos p =—1,1.e.¢ = 7 and if 4, and 4,, given by equations (21b) and
(21c) satisfy the condition

(24,2 — 4,4,) ( 24, + ;Ti ) — (44,4, — 4,*)* <.

Writing 4, = nd;, n being a positive real number, the above inequality
reduces to

n’+6n'+-——4'n— >0,

3n
Whence, n < 0.54 .o (22)

i.e. the combination 2 is stable if the ratio between the equilibrium values of 4,
and A, is less than 0.54.

Alo
Ayt

Further from Eqns, (21b) and (21c), it is observed that = is related to
by the relation

2+ 1—m

NS
s 3

1 (23)
2+ n*— n
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When w4, departs from 3 «,, by a small amount Aw, i.c., Wgo = 3wy - Ao ,
2(1-K,K,)
equilibrium conditions are given by

_cf 3o — u?) (099> — g?) 442 ] 4, .
[ m,: = mu;) A2 + (m:: —o):o’) :; ]‘_4_: sin . . (24a)
A2 =242+ A2+ A, A, co8 ¢, .o (24b)
Ag? = 2A'+A”+‘4Toos¢ . (240)

Case III : w4 w,g=2:1.

In this case, it may be seen that

A—K Kl = & E"z — 0w?) [Am — (A2 4245~ ° A,cos¢] Ay, ... (258)

T W)

21—K, KA, = & (0P —wg?) [A,o’—(A 2+24,2)— g_ ﬂ—cos ¢] A, ... (25b)

4 (wgt—wy?) 24,
_ p 2wy —wyo?) (wgp2—wy?) A2 Bm¢
201—K,Kp)p = [ posou) gy (ulmes) 40 ’l ik ... (250)

Equilibrium conditions are given by either of the two possible combinations :

) A =0,  Ay= Ay, .. (268)
@ Ayt = AP 4242+ 2?" Aycosp(bsng=0) .. (26b)
Ay = A2 4242+ 20” 4. Ccosg(sing=0) ... (200

For the first combination the equilibrium is stable when i"’ < 2. For
the second combination, the equilibrium is stable if b cos ¢ is negative and
b 8b 22
G A2+ 5 A2 — 64,3 — TA’ >0, . (27)

where 4, and 4, satisfy the equations (26b) and (260).

It may be noted that Eqns. (26b) and (26c) may be solved directly to obtain
the equilibrium valuos of 4, and 4, Thus, on eliminating 4, the following
equation is obtained.

ap— 2 agil [aw -2 +2( 0)] 4+ Law =0 o)



66 B. R. Nag

For a particular combination of the values of —g , 4,0% and 4,,? there are three

values of 4, which satisfy Eqn. (28), However, only one of them satisfy the
inequality (27).

‘When oy, departs from 2 «,, by a small amount Aw, 1.e., 0y = 20,97 2(1——A;7;)’
Eqn. (26¢c) is replaced by
—_— b (0g? - — W) ) 42 (f‘)j@;maz) A2 sin ¢_ D)
Bo=— [ 2 (g0t —rg?) 4+ (@gof—ty2) 2 ] 4, @

It should be noted that in both Cases II and III oscillation at the lower
frequency alone is not possible. The oscillator may either oscillate at the higher
frequency alone or at both simultaneously.

EXPERIMENTAL VERIFICATION

The theoretical results presented in the above section have been verified
on an electronic differential analyser. In the following paragraphs the appli-
cation of tho analyser for the verification of Eqns. (18a), (18b), (23), (24a) and
(28) has been discussed.

The difforential equations o be set on the computer are

“x ot (—ay b on?) Lk, .m—" .. (30m)

P21 fagorta, %t 1K, ‘fufl =o. .. (30D)
Eqn. (30a) can also be written as

B op[mtt (—amt Dapt $ap) 1K, % 20 . @00)

A got-up of the differential analyser for solving Eqns. (30c) and (30b) is shown in
figure 3. The non-linear function generator for generating the function fy(z,) =

b
2

The solution x,, @, and their derivatives appear at the points marked on the .

figure.

2,2+ ; z,% is of the biased diode type (Burt and Lange, 1956, Meissinger, 1955):.
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Eqns. (18a) and (18b) relate the losses at the two frequencies with the ampli
tudes of oscillations when the oscillations occur singly. TFor verification of these

R
2 b2 CJ:")
| Funcrion| =z %* 5%t
—X; |GENERATOR
¢ R
L R -
R RN =] Ne
Z, 3
i il wti R .Kl
4% b
=, 3
¥ c, e

a 1
;n?*
Sl
x
1
(&
x
n

0
g

~a, %,

Fig. 3.

Set-up of the differential analyser for solving the oquatiors :
By — @y - (bz + oxg)ey + 0% + keatty = 0.

T+ gz - 029 + k@ = 0.

) ! ! L 1

0 oz o4 06 08 10
73
a —

Fig. 4. (a) Plots of A, against as/a1. (b) Plots of As agamst azfa;

Theoretical plot’ for stable osaillations,

— — — —Theoretical plot for unstable oscillation.
o Experimental points. ' ’ .
p=1714 Il—0o= 1. p=1 11T —o = 1.096 P =00y

I—o :0.012.
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equations oscillations at the two frequencies are excited individually and their

amplitudes measured for selecte values of the parameters p, o and 5:; . In

figure 4 experimental plots relating A, and 4, with Z? are shown along with the
1

theoretically calculated curves for three sets of values of p and o for é:’ 1 =1

Eqn. (23) gives the ratio of the amplitudes of simultaneous oscillations at the

2
two frequencics related by the ratio 3 : 1 for different values of :;1—1% . Verification
20

4y

of this equation would require determination of the ratio 4
1

for different settings

A2 oo . A2 Ly A2 .o
of .. Different values of Z1° were set by varying a Values of T , Within
‘1

Ay? Ag? 20

the range () to co were obtained by making 0,2 = 1 and «z2 = 0.8 and values
within the range — co to 0, by making ©,® = 0.8 and »,2 = 1. For determining
the ratio of the amplitudes, oscillations at the two frequencies were first soparated
by combining the outputs at B and C. The output at 4 18 given by

&y = A co8 (019t + 1) - A cos (@t + By)

The outputs at B and C are therefore given by respectively .
Ey=— I %ydt = — A1 gin (030t + ¢1)— A s (@api+¢h,)
W10 Mag
and Bg =—a, = @y 4, 8in (010t + ¢y) + 0g0dy 80 (0150 ¢ + B5)
Hence,
2 ]
wntBo . _ 4 sin (wgt + ¢) .. (31a)
@y
on(1= 25)
Ep+ ;.)E,_v
20 . .
- - — =4, sin (wygt+@y) «+ (31b)
o (o) )
— P2
@19 \ Wgo

Thus, the amplitudes of oscillation at the two frequencies can be deter-

mined using the Eqns. (31a) and (31b). Experimental values of n = j—' for
1

different values of ‘j“; along with the theoretical values are given in figure 5.
an
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Eqn. (24a) relates the phase difference between two approximately synchronous
oscillations pulled into synchronism by the non-linearity, with Aw. Verification

10 F /I
- !
’
’
08 /
/
L I}
]
1
06 |
R
X 04t
<k f
02 -
| I 1 yu 1 1 1 A 1 11 1 1 1 1 1 _J
06 04 o2 a a2 04 a6 a8 10 12
A5
At
A4, . 2
Yig. . Plot of n = “ % against 4A10? 5o, Wy = Bwqq.
A, Ayt

~=-——-- Thooretical plot for stable oseillations
——— ~ Thooretical plot for unstable oscillations
o Expermmontal points,

of this equation requires determination of ¢ for different settings of Aw. This
was set to different valuos by varying the value of K,K,. Tho phase ¢ was
measurod by an oscilloscope. The arrangement used in shown in figure 6.

MV

R
4 E wnon] T
R Ayt
WAL c
& e >
2 2
R
QOMEM-
R
Fig. 6. Expen tal arrapg { for ing @ when wyg = 8w, + Aw.

Oscillations at the two frequencies were separated as described above. The
sinusoidal voltage varying at the frequency wy was fed to the X-plate and that
varying at the frequency w,, was fed to the Y-plate. In general, the plot on the
oscilloscope screen touches the vertical line at six points, marked A, B, C, D, E
and F in figure 6. Let d g, dgg and dg, denote the distances between 4 and
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F, B and B, C and D respectively. Then I8 _ cos (E - ¢ ) and also -302 =
dar 5§73 duw

co8 (QL + g) The distances dp, dgy end dgp were measured by shifting the

807

60+

-0k

-aoL
Fig. 7. Plot ot ¢ aganst Aw for wsg= Jwyy + Aw.
-=——~-——Thooretical plot.
o  Ixperimental points.

pattern vertically and noting the voltages required for bringing the different
points on the zero line, which was put on the oscilloscope by opening a switch
at intervals. The shifting voltage was obtained from a calibrated helipot which
gives tho distance directly. The experimental plot of ¢ against Aw, for o,?=
w,? = 1 are shown in figure 7 together with the theoretical plot.

Data for verification of Eqns. (26b) and (26c) were obtained in the same
manner a8 indicated in connection with Eqn. (23). The experimental plots of

A, . 2b
-‘Tl -against =

figure 8 along with the theoretically calculated curves.

for three values of Ag? corresponding to A4, = .2 is shown in

RXPERIMENTAL TRAJECTORIES IN THE 4,4, PLANE

In all tho cases discussed above it is found that the oscillator has two possible
modes of stable oscillation. The particular mode chosen by it depends on the
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initial values of 4,, 4, and ¢. The growth of a particular mode from the initial
conditions is usually illustrated by drawing trajectories in the 4,—4, plane

o8l
06t a
z
04 "
Sy :
oz} ‘
0 L ! L 1 .
v oz o4 06 08 10

. 2b
Fig. 8. Plots of A4,/4, sganst z—o for wgp = 2w5¢.

- Theoretical plot
o Exporimental points

I ~Ay92 =02 Ayg? = 0.1
I1 — Ay2 = 0.2 Ayp? = 0.2
NI — A, = 0.2 Ayg = 026,

applying the method of 1soclines. On the difforontial analyzer these trajectories
may also be easily obtained by applying voltages proportional to 4, and A, or
some function of 4, and 4, to the X and Y plates. It has been described before
how voltages proportional to A, sin (o0 4¢,) and A, sm (0 ¢ + ¢,) muy be
obtained by combining the outputs at B and (' (figure 3) in the steady state.
During the transient stato also the combined voltages will have amplitudes very
nearly proportional to 4, and A, when a, and a, are small. Similarly by combin-
ing the outputs at 4 and D voltages proportional to 4, cos (ot+@,) and 4, cos
(wgo t 4 ¢,) may be obtained. By squaring these Sine and Cosine voltages and
adding them voltages representing 4,2 and 4,% may be obtained.

4 o5 ﬁ”.a.i [\ R
£ %s(u,,mr) %
115R ' 0
" iR

Ay Sin wyt l\ e
£ |/,5Ih(n;,,,f+n) L&

Fig. 0. Experimental arrangement for double three phase reotification.
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For getting voltages proportional to 4, and 4,, one may subject the sine
and cosine voltages to multiphase rectification. One arrangement for doing
this is shown in figure 9.

It will be noted that the voltage output at O is proportional to 4, but is mixed
up with a certain amount of ripple, which is 3% in this cage. 'The ripple content
may be further reduced by quadruple three phase rectification in which case the
ripple is only .6%,. For obtaining the trajectories it was found advantageous
to employ the voltages corresponding to A, and A4, as obtained through the
multiphase rectification circuit for it requires less components and is simpler
than the squaring circuit.

The trajectories as obtained on the analyser are shown in figure 10. Figure
10(a) gives the trajectories for a particular combination of wyy and w,, not
integrally relatod. It is seen that in this case the two stable equilibrium points
lie on the two axes. The third equilibrium point which is unstable is also clearly
indioated.

(w)
()

Tig. 10. Experimental trajectories in the 4;—4; plane.
(a) Trajectories for wyy and ;o non-integrally related.
(b) Trajectorios for w.y = 8w,
(o) Trajectories for wyg = 2wyg
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Figure 10(b) gives the trajectories for wsy = 3w,,. In this case one of the
stable equilibrium points lies on the 4, axis, whereas the other one lies at a point
for which both 4, and 4, have finite values. There is a third equilibrium point
which is, however, unstable. In contrast to the previous case, trajectories in
the 4,, 4, plane are not unique in this case since they also depend on ¢. This
explains the crossing of some of the trajectories. Figure 10(c) gives the trajec-
tories for wy) = 20,4, the general characteristics of which are similar to those
in figure 10(b).

CONCLUSIONS

An oscillator with two degrees of freedom and stabilised by a cubic non-
linearity has two possible modes of oscillations. 1t may oscillate at one of the two
possible frequencies at & time or at both simultaneously. The latter mode is
stable only if the two frequencies are related approximately by the integral ratio
3.1 or 2.1. The order of approximuation in the integral ratio permitting the
simultaneous oscillation 18 determined by the magnitude of the non-linearity.
The stable amplitudes of oscillation as also their conditions of stability as obtained
theoretically by the variation of parameter method agree quite closely with those
obtained experimentally with the help of a differential analyser. A differential
analyser can also be used very usefully for obtaining trajoctories in the 4,—A4,
plane which show clearly the growth of oscillations of a particular mode from the
various initial conditions, as well as the different possible equilibrium points,
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