A NOTE ON SOME TUNABLE OSCILLATORS

N. B. CHAKRABORTY* and K. D. DIXIT
J. K. Tnstitute of Appifed Phyeicg, University of Allaifabad, allafabad

(Received, July 1, 1960)

Abstract

Some arrangements of voliage tunable two-path oscillators capuble of large frequency deviation are discussed. Possille combinations of the transfor functions of the individual pathe together with the tummg equation and the constraints for stable amplitude of oserllation are given ln some circust arrangements the variation of frequency with modulating voltage is found to he linear over a wide range.

The present note discusses some circuit arrangements of voltage" tranable oscillators which are theoreticenlly capable of very large frequency deviation. In practical arrangements a frequency trung ratio of two to one and in some cases five to one have been achieved. Tuning is accomplished by means of variation of the gains of the individual paths of a two-path oscillator.

Fig. 1. Schematic diagram of a two-foodback loop.
If $G_{1}(p)$ and $G_{2}(p)$ are the transfer functions of the two paths of the feedback loop in Fig. 1 the characteristic equation of the loop is given by

$$
\begin{equation*}
K_{1} G_{3}+K_{2} a_{2}=1 \tag{l}
\end{equation*}
$$

Here K_{1} and K_{2} are the gain multiplying factors and are in general variable in accordance with the tuning voltage. If the adder is non-idcal and has a transfer function $F(p)$ then Eq. (1) is modified to

$$
\begin{equation*}
K_{1} G_{1}+K_{2} G_{2}=\frac{1}{F} \tag{1.a}
\end{equation*}
$$

The condition for proper working is that the imaginary axis be the root locus with unity feedback.

In Table I some possible combinations of transfer functions together with the tuning equation and the constraints for stable amplitude of oscillation are

[^0]presented. All the circuits have the property that in theory it should be possible Io tune their frequency of operation electronically from very low to very high freduencies. Furthermore the magnitude of their positive feedback voltage should be independent of the frecpency of resonance. In some arrangements the culve of frequency versus modulating voltage is linear over a wide range. In a few arrangements where the stray capacitances can be taken into account in forming the transfer finctions the tuning range can obviously be extended to figure of merit of the tubes employed or a fraction of it depending on the gain required

It will be ohserver that types $1-6$ are practical at audio freguencies, types 1,5 and 6 at low and very low frequencres, while types 16,7 and 8 are useful at rado frequencies. In Fig . $2(\mathrm{a})$ and Fig . 2(b) are presented circuit arrangements

Fig. $\because(a)$. Schematic diagram of the arruit arrangenent of type 1 for low and very low frequencies

Fig. 2(b) Sohomatic diagram of the rireut arrangement of type 1 for A. F. and R. F.
of' oscillator of type 1 for use at low and at radio frequencies For $R F$ an interesting form derived from type 6 making use of delay lines (an be made as shown in Fig. 3(a) and (b). Its troning equation is

$$
\begin{equation*}
w \delta=-\cos ^{-1}\left(-K_{1} / 2\right) \tag{2}
\end{equation*}
$$

Fig. 3(a). Schematic dagram of a circuit arrangoment of type 6 .

Fig. 3(h). Functional diagram of type 6.

The frectucney of excursion in this case is limited to $\frac{1}{2 \bar{\delta}}$. The linearity of modulation around ${ }_{4 \delta}^{\mathbf{J}}$ has been observed to be quite good. It is to be noted that
A Note on Some Tunable Oscillators
TABLE I

Type	$G_{1}(j \omega)$	$G_{2}(j \omega)$	Constraint	Tuning equation	Dufferential equation	Working frequency
1	$\frac{1}{1+j \omega}$	$-\frac{1}{(1+j \omega)^{2}}$	$K_{1}=2$	$\omega=\sqrt{ } K_{2}-1$	$\frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}-x-K_{2} x-\frac{d}{d t} F(x)-F(x)=0$	$\begin{aligned} & \text { L.F., A.F. } \\ & \& \text { R F. } \end{aligned}$
2	$\frac{\omega}{1!j \omega}$	$-\left(\frac{j \omega}{1+\jmath \omega}\right)^{2}$	$K_{1}=2$	$\omega=\frac{\mathrm{I}}{\sqrt{K} \mathrm{~K}_{2}-1}$	$\frac{d^{2} x}{d t^{2}}\left(1-\therefore K_{2}\right)-2 \frac{d x}{d t}+x-\frac{d^{2}}{d t} 2(x)-{ }_{t d}^{d} F(x)=3!$	AF.
3	$\frac{I}{1+\jmath \omega}$	$\frac{j \omega}{(1+j \omega)^{2}}$	$K_{1}-K_{2}=2$	$\omega=\sqrt{K_{2}-1}$	$\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}-x-F(x)-\frac{d}{d t} F(x)-K_{2} \frac{d x}{d t}=0$	A F.
4	$\frac{\mathbf{I}}{\mathbf{1 + j \omega}}$	$\frac{1-j \omega}{\left(1+j \omega^{2}\right)}$	$K_{1}-K_{2}=2$	$\omega=\sqrt{\underline{2} K_{2}-1}$	$\frac{d^{2} x}{d t^{2}}-1 \frac{d x}{d t}+r-K_{2} x-K_{2} \frac{d z}{d t}-F(r)-\frac{d}{d t}=0$	$\begin{aligned} & \text { L.F., A.F. } \\ & \text { \& low F.R } \end{aligned}$
	$\frac{1-j \omega}{1+j \omega}$	$\binom{1-j \omega}{1-j \omega}^{2}$	$K_{2}=-1$	$\omega=\sqrt{\frac{j-\bar{K}_{1}}{2-\bar{K}_{1}}}$	$\begin{aligned} \frac{d^{2} x}{d t^{2}}-2 \frac{d r}{d t} & -K_{1} r-K_{1} \frac{d^{2} x}{d t^{2}} \\ & -\frac{d^{2}}{d t^{2}} F(x) \div \geq \frac{d}{d t} F(x)-F(x)=0 \end{aligned}$	L.F., A.F. \& low R.F.
6	${ }^{\text {ejF }}$ ($\left.{ }^{(}\right)$	$e j 2 F(\mathbb{E})$	$K_{2}=-1$	$F(\omega)=\cos ^{=1} \frac{K_{1}}{\underline{\underline{2}}}$	$\begin{gathered} x(t)-K_{1} x(t-\delta) \perp F(x(t-\because \delta))=0 \\ \text { if } F(\omega)=-\omega \delta . \end{gathered}$	R.F.
7	$\frac{1-e-j \omega \delta}{1 \div-4 \delta}$	$-\left(\frac{1-e-j \omega \delta}{1-e-j \omega \delta}\right)^{2}$	$\kappa_{1}=0$	$\omega=\frac{\ddot{2}}{\delta} \tan ^{-1} \sqrt{\frac{1}{K_{2}}}$	$\begin{aligned} & x(t-\vartheta x(t-\delta) \cdots x(t-2 \delta) \\ & -F(x(t))-\underline{F}(x(t-\delta),-F(x(t-2 \delta))=0 \end{aligned}$	R.F.
8	$\frac{1+e-j \omega 6}{1-e^{-j} \sim \delta}$	$-\left(\frac{1+\varepsilon-j \omega \delta}{1-e-j * \delta}\right)^{2}$	$K_{1}=0$,	$\omega=\frac{2}{\delta} \operatorname{ccs}^{-1} \sqrt{\frac{1}{K_{2}}}$	$\begin{aligned} & x(t)-2 x(t-\delta)-x(t-2 \delta) \\ & -F(x(t))-2 F(x(t-\delta)+F(x(t-2 \delta))=0 \end{aligned}$	R.F.

in arrangements of types 6, 7 and 8, means will have to be adapted to supress harmonica.

The forms 1-5 have idontical characteristic equations. However the way nonlinearities enter into the equation is different and consequently the amplitude stability and other related properties will be different. The nonlinear defining equations in the different cases are also presented in Table I. $F(x)$ represents the nonlinear parameter basically governing the amplitude of oscillation.

It has been found that the variation of frequency is limited in practice to a ratio of five to one in types $1-5$, while in the rest 1 is about two to one. It is thought that this may be due to the very considerable variation of the slope of the loop phase shift. Another cause is the non-dideal behaviour of the adder.

The disturbing effect of the adder can be removed in the following manmer. Supposing that the transfer function of the adder $\frac{b}{p+b}$, is the modified loop, equation is

$$
\begin{equation*}
\left(K_{1} G_{1}+K_{2} G_{2}\right) \cdot \frac{b}{p+b}=1 \tag{1.r}
\end{equation*}
$$

The characteristnc equation of the loop in the oscillating condition will now be

$$
\begin{equation*}
\left(p^{2}+K\right)(p+C)=0 \tag{3}
\end{equation*}
$$

1t will be found in this case that both K_{1} and K_{2} are to be varied. 'For type 1 for example \boldsymbol{K}_{1} and K_{2} are related by

$$
\begin{gather*}
(2 b+1)(2+b)=K_{1} b(2+b)+b\left(1-K_{1}-K_{2}\right) \tag{4}\\
\text { YUNABLE AMPLIFIERS }
\end{gather*}
$$

It is cvident that at a gain setting smaller than that required for selfoscillation all the circuits can be used as tunable amplifiers and hence as spectrum analysers. The nature of the selectivity curve and the variation of the maximum output of the respouse curve with the tuning frequency will obviously depend on the point of observation of the output as well as the nature of the transfer functions. In the diagram of Fig. 1 for example for inputs E_{1}, E_{2} and E_{A} applied respectively at the input to G_{1} circuit, G_{2} circuit and the adder tho voltage outputs at the corresponding output points will be given by

$$
\begin{align*}
& \frac{e_{1}}{G_{1}}=f\left(K_{1} G_{1} E_{1}+K_{2} G_{2} E_{2}+E_{\Lambda}\right)+E_{1} \tag{5.a}\\
& { }_{2}{ }_{2}=f \cdot\left(K_{1} G_{1} E_{1}+K_{2} G_{2} E_{2}+E_{\Lambda}\right)+E_{2} \tag{5.b}\\
& e_{A}=f \cdot\left(K_{1} G_{1} E_{3}+K_{2} G_{2} E_{2}+E_{A}\right) \tag{5c}
\end{align*}
$$

where

$$
f=\frac{1}{1-K_{1} G_{1}-K_{2} G_{2}^{-}}
$$

In the arrangement of Fig. 1, for example, if E_{Δ} be the input applied to the adder the output e_{2} will be given by

$$
\rho_{2}=\underset{1-K_{1}\left(G_{1}-K_{2} G_{2}\right.}{G_{2}} E_{A}-\frac{1}{\left(2-K_{1}\right) j w_{0}} \quad E_{A}, \quad \text { at } p=j u_{0} .
$$

The peak of response will therefore depend on the tuning treguency. If on the other hand, the voltage obtained at the output of G_{1} circuit is transmitted Through a circuit having a transfer function $\underset{p \nmid}{p \nmid 1}$ one obtams a transfer characteristic whech dues not depend on the tuning frequency. It should be noted that a much simpler solution is possible for the arrangement of type 3 .

Andorson, F. B., 1951, Proc. I. R. E., 39, 881.
Delange, O. E, 1949, Proc. 1. R. E., 37, 1328.
Stewart, J. L, 1955. Proc. I. R. L., 43, 589.

[^0]: * Now at the Institute of Redio Physics and Electronies, University of Calcutta.

