7
 DIPOLE MOMENTS OF SOME ALIPHATIC AMINES

D. V. G. L. NARASIMHA RAO
Phyeios Department, Andara University, Waltair
(Received, December 12, 1968)

Abstract

The dipole moments of eight higher members of the aliphatic amines have been determined in solution in benzene at $30^{\circ} \mathrm{C}$ and the results are discussed in the light of their molecular struoture. Apart from the fact that the roported values of the dipole moments are new, the invertigation was undortaken as a complomentary to measurements on the same molecules in the oentimetric region.

INTRODUCTION

The apparent polarisations of ammonia and its mono-, di-, tri- methyl and ethyl derivatives have beon studied in the solvent benzene by Le Fevre and Russell (1947) and Barclay, Le Fevre and Smythe (1950). The latter authors have also extended the investigations (1951) to n-propyl and n-butyl amines for which the variation of moment with state is studied and also the apparent moments in solution of certain other amines. A positive solvent effect is noted by all these investigators. From a study of the moments of eighteen aliphatic and aromatic amines in seven non-polar solvents and of fifteen liquid amines in the pure state, Cowley (1952) could show that in most cases the solvent effect is small. The solvents benzene, toluene and dioxane gave small positive solvent effects confirming the previous results but with othor solvents a small negative solvent effect is the more usual observation. Variation of polarisation with change of concentration from infinite dilution to the pure solute is also studied and is shown to depend on the type of amine and also on the value of its dielectric constant. The dipole moment values are corrected for the atom polarisation which is assumed as 5 per cent of the electron polarisation.

The aliphatic amines may be considered as substitution products of ammonia in which one hydrogen atom is replaced by an alkyl group. The bond angle of ammonia (109°) may be taken as evidence of the existence of hybridized orbitals. It has been found that the lone-pair contribution to the resultant moment is much higher than in the case of water. Arguments similar to those of ammonia also apply to the aliphatic amines. The low moment of tri-methylamine may be explained as due in part to the wider bond angle compared to that in ammonia, with the result that the lone-pair orbital has less s-character and hence makes a smaller contribution to the dipole moment.

Till now all observations are confined only up to butylamine. There are no investigations on the stıll higher aliphatic anines. A systematic study of eight higher members of the homologous scries, starting from amylamine to decylamine, is made by the author, the ineasurements being carried out in solution in benzene at $30^{\circ} \mathrm{C}$. Not only do the results serve as an extension of the provious work, they also provide a useful check on tho values derived by the author from measurements made on the same molecules in the microwave region (to be published shortly).

EXPERIMENTAL

The experimental technigue and the method of computing the moment from the observed data are doseribed in an earlier publication of tho author (1956).

RESULJS AND DISOUSSION

The detailed observations of dielectric constant and refractive index are presented in Tables 1- to VIII and the consolidated results are shown in Table IX. For completeness, literature values on the lower members of the series (Smith, 1955a) are also given m Table 1X.

Let us assume a bond angle of 110° in methylamme, a set of reference axes with the N atom at the origin and fix the x-axis in the axis of symmetry (of the parent NH_{3}) and choose the $x y$-plane to pass through the C atom. The moment components outside the plane of symmetry cancel one another. The bond moments may be dorived from the values for ammonia (1.45D) and trimethylamine (0.64 D) as

$$
\begin{array}{lll}
3(\mathrm{H}-\mathrm{N}) \cos 68^{\circ}=1.45 & \mathrm{H}-\mathrm{N}=1.29 \\
3(\mathrm{R}-\mathrm{N}) \cos 70^{\circ}=0.64 & \mathrm{R}-\mathrm{N}=0.62 & \mathrm{C}-\mathrm{N}=0.22
\end{array}
$$

Using these values, wo get for methylamine

$$
\begin{aligned}
& m_{2}=(\mathrm{R}-\mathrm{N}) \cos 70^{\circ}+2(\mathrm{H}-\mathrm{N}) \cos 70^{\circ}=1.09 \\
& m_{y}=-(\mathrm{R}-\mathrm{N}) \sin 70^{\circ}+2(\mathrm{H}-\mathrm{N}) \sin 70^{\circ} \sin 30^{\circ}=-0.63 \\
& \mu=\left(m_{x}^{2}+m_{\nu}^{2}\right)^{1}=1.26
\end{aligned}
$$

The calculated value thus agrees well with the gas value of 1.28 . It may be shown that the angle between the molecular dipole axis and the C-N bond direction is $30^{\circ}+70^{\circ}=100^{\circ}$ (Smyth, 1955). The calculated value for all the other haghor amines (only one HI atom of NH_{3} is substituted) is the same as for methylamine, except for some induced effects of the primary dipole on the hydrocarbon chains. It is known that the dipole axis in methylamines is not far from perpendicular to the direction of maximum polarisability and hence the solvont effect causes the apparent moments in solution to be higher than the

TABLE I
n-Amylamine

\boldsymbol{w}	8_{12}	ΔE	$\Delta e / w$	n_{12}	$n_{12}{ }^{2}$	$\begin{gathered} \Delta n^{2} \\ (-) \end{gathered}$	$\begin{gathered} \Delta_{(-)}^{n^{2} / w} \end{gathered}$
0.01635	2.3065	0.0425	2.600	1.49298	2.22900	0.00558	0.341
0.04442	23796	0.1156	2.603	1.48976	2.21939	0.01519	0.342
0.06269	2.4283	0.1643	2.620	1.48798	2.21409	0.02049	0.327
0.08900	2.4951	0.2311	2596	148553	2.20681	0.02777	0.312
0.10210	2.5283	02643	2.589	1.48305	2.19045	003513	0.344
0.11950	2 6738	0.3098	2.593	1. 48120	2.19395	0.04003	0.340
0.13090	2.5987	0.3347	2.507	147980	2.18981	0.04477	0.342
$\begin{array}{lc} A=(\Delta e / w)_{\mathrm{w}} \rightarrow 0=2.60 \sigma & P_{0}=48.61 \text { o.c. } \\ B=\left(\Delta n n^{2} / w\right)_{\mathrm{w}} \rightarrow 0=-0.339 & \mu=1.55 D . \end{array}$							

TABLE II
n-Hexylamine

w	ε_{12}	$\Delta \varepsilon$	$\Delta \varepsilon / w$	v_{12}	$n_{12}{ }^{2}$	Δn^{2} $(-)$	$\Delta \bar{n}^{2} / w$ $(-)$
0.01931	2.3083	00443	2292	1.49436	2.22798	0.00660	0.342
003386	2.3389	0.0740	2.211	1.49102	2.22312	0.01145	0.338
004774	2.3667	0.1027	2.150	1.48964	2.21902	0.01650	0326
0.07396	24180	0.1640	2.082	1.48686	2.21076	0.02382	0.322
0.08950	2.4458	0.1818	2.031	1.48500	220522	0.02936	0.328
010280	2.4654	0.2014	1.959	1.48339	220045	0.03413	0332

$A=2320 \quad B=-0.331 \quad P_{0}=50.81$ c.c. $\quad \mu=159 D$
TABLE III
n-Heptylamine

w	8×2	ΔE	$\Delta{ }^{\mathbf{e}} \boldsymbol{\sim}$	n_{12}	$n_{12}{ }^{2}$	$\begin{aligned} & \Delta n^{2} \\ & (-) \end{aligned}$	$\begin{gathered} \Delta n^{2} / w \\ (-1 \end{gathered}$
0.01372	2.2916	0.0276	2.011	1.49325	222981	0.00477	0.348
0.92904	2.3231	0.0591	2.036	1.49158	2.22482	$0.0097{ }^{\text {' }}$	0.336
0.04256	2.3483	0.0843	1.982	1.49003	2.22020	0.01438	0.338
0.06176	2.3837	01197	1.937	1.48810	2.21444	0.02014	0.326
0.07504	2.4060	0.1429	1.904	1.48678	2.21050	0.02408	0.321
0.09217	2.4374	0.1734	1.881	1.48467	2.20425	0.03033	0.325
0.10490	2.4510	0.1870	1.782	1.48340	2.20048	0.03410	0,325
$A=2.040$	- $B=$	-0.332	$P_{0}=51.76$ c.c.		$\mu=1.60 \mathrm{D}$.		,

TABLE IV
n-Octylamine

v	ε_{12}	$\Delta \mathrm{~B}$	$\Delta \varepsilon / w$	n_{12}	$n_{12^{2}}$	Δn^{2} $(-)$	$\Delta n^{2} / w$ $(-)$
0.00673	22732	0.0092	1.374	1.49423	2.23272	0.00186	0.276
0.01253	22809	0.0169	1.351	1.49364	2.23097	0.00361	0288
002077	22920	0.0280	1345	1.49292	2.22880	000578	0.278
0.03260	2.3070	0.0430	1.320	149182	2.22552	0.00906	0.278
0.05841	2.3386	00746	1.277	1.48791	2.2189θ	0.01558	0.267
0.09120	2.3768	0.1128	1.236	1.48702	2.21123	0.02335	0.256
0.11300	2.3926	0.1286	1139	1.48525	2.20507	0.02861	0.253

$$
A=1.380 \quad B=-0.271 \quad P_{0}=40.45 \text { с... } \quad \mu=1.42 \mathrm{D} .
$$

TABLE V
n-Decylamine

w	ε_{12}	$\Delta \varepsilon$	$\Delta e / w$	n_{12}	$n_{11^{2}}$	Δn^{2} $(-)$	$\Delta n^{2} / w$ $(-)$
0.00815	2.2706	00066	1.078	149433	2.23301	0.00157	0.256
0.01369	2.2785	0.0145	1.057	1.49377	2.23135	0.00323	0.236
0.02216	2.2877	0.0237	1.070	1.49313	2.22944	0.00514	0.232
0.02956	2.2940	0.0300	1.014	149257	222777	0.00681	0.230
0.03749	2.3014	0.0374	0.997	1.49171	2.22520	0.00938	0.250
0.04500	2.3082	0.0442	0.083	1.49111	2.22342	0.01116	0.248
0.06039	2.3210	0.0579	0.059	1.48971	2.21925	0.01533	0.254

$A=1090 \quad B=-0.244 \quad P_{0}=39.77$ c.e. $\quad \mu=1.41 \mathrm{D}$

TABLE VI
Isoamylamine

w	ε_{12}	$\Delta \varepsilon$	$\Delta \varepsilon / w$	n_{12}	$n_{12^{2}}$	Δn^{2} $(-)$	$\Delta n^{2} / w$ $(-)$
0.01242	2.2950	0.0310	2.494	1.49348	223048	000410	0.330
0.02973	2.3394	00754	2.536	1.49167	222507	0.00951	0.320
0.04033	2.3672	0.1032	2.560	1.49041	2.22132	0.01826	0.329
005860	2.4141	0.1501	$2.562]$	1.48829	2.21601	0.01957	0.334
0.06960	2.4404	0.1764	2.535	1.48720	2.21175	0.02283	0.328
0.09185	2.4913	0.2273	2.475	1.48465	2.20418	0.03040	0.381
0.10550	$2 .[200$	0.2560	2.426	1.48295	2.19913	0.03545	0.336
$A=2.540$	$B=-0.330$		$P_{0}=47.40 \mathrm{c.0}$.	$\mu=1.53 D$.			

TABLE VII
Isohexylamine

\boldsymbol{w}	8_{12}	ΔE	$\Delta \varepsilon / w$	n_{12}	$\mu_{12}{ }^{2}$	$\begin{aligned} & \Delta n 2 \\ & (-1) \end{aligned}$	$\begin{gathered} \Delta n^{2 / w} \\ (-) \end{gathered}$
0.01114	2.2929	00289	2.502	1.49371	2.23117	0.00341	0.300
0.02310	2.3235	0.0595	2.575	1.49255	2.22770	0.00688	0.298
0.03402	2.3536	00896	2.632	1.49152	2 22464	0.00994	0.292
0.04381	2.3845	0.1205	2751	1.49057	2.22179	001279	0.292
0.05331	2.4137	0.1497	2.809	1.48973	2.21028	0.01530	0.287
006032	2.4379	0.1739	2.883	1.48907	221733	() 01725	0286
$A=2.390$	$B=-0.294$		$P_{0}=5144$ c.c.		$\mu=1.60 \mathrm{D}$.		

TABLE VIII
Tertoctylamine

w	B_{13}	Δt	$\Delta e / w$	n_{12}	$n_{13^{2}}$	$\begin{aligned} & \Delta n^{2} \\ & (-) \end{aligned}$	$\begin{gathered} \Delta n^{2} / w \\ (-) \end{gathered}$
0.01243	22759	0.0119	0.055	149373	2.23122	0.00336	0.270
0.01972	2.2825	0.0185	0.938	1.49303	2.22913	0.00545	0.276
0.04153	2.3050	0.0410	0.988	149152	2.22463	0.00995	0240
0.05181	2.3123	00483	0.931	149018	222064	0.01394	0.269
0.06963	2.3306	0.0666	0.956	1.48845	2.21547	001911	0275
0.07893	2.3390	0.0750	0.950	1.48786	2.21373	0.02085	0.264
009919	2.3589	0.0949	0.957	1.48581	220763	0.02695	0.272
011660	2.3748	0.1108	0950	1.48458	2.20397	0.03061	0262
$A=0.950$	$B=-0.266$		$P_{0}=29.79$ c.a.		$\mu=122 \mathrm{D}$.		

TABLE IX

Compound	Formula	Author $\mu_{\boldsymbol{H}}$	Literature μ_{B}	$\begin{gathered} \text { valuos } \\ \mu_{V} \end{gathered}$
Ammonia	NH_{3}	-	1.40*	$1.45 D$
Mothylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	-	1.46	128
Ethylamine	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	-	1.37	0.99
n-Propylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	-	132	1.17**
n-Butylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	-	1.32	$100{ }^{*}$
sec-Butylamine	$\mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-	1.28	-
tert-Butylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2}$	-	1.29	-
n-Arnylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{1} \mathrm{NH}_{2}$	1.55	-	-
n-Hexylamino	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{ONH}_{2}$	1.59	-	-
n-Heptylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$	1.60	\cdots	-
n-Ootylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{7}^{2} \mathrm{NH}_{2}$	1.42	-	-
n-Deoylaine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{0} \mathrm{NH}_{2}$	1.41	-	-
Isoamylamine	$\left(\mathrm{C}, \mathrm{H}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	1.53	-	-
Isohexylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	1.60	-	-
Tertostylamine	$\left(\mathrm{CH}_{3}\right)_{8} \mathrm{CNH}_{2}\left(\mathrm{CH}_{2}\right)_{4}$	1.22	\longrightarrow	-
*value of Le Fevre and Russell (1947)				
μ_{B} values in solution in benzene				
μ_{V} values in the	state.			

gas values (i.e., a positive solvent effect). It is seen that for all the amines listed in Table IX for which the vapour values are avail- able $\mu_{B}>\mu_{V}$. Cowley (1952) also observed a positive solvent effect for n-propyl and n-butyl amines in all the solvents he used. This may perhaps explain the values obtained in this investigation. But, when compared to the literature values on the lewer members, the author's values appear to be slightly high for some of the mole cules. The following points may be noted •
(1) As we go higher up in the homologous series, there is a tendency for a decrease in tho moment. This is in conformity with the conclusions of Smith (1955b). As is already shown the resultant moment of the primary dipole is inclined at an angle of 100° with the C-N bond. Consequently there is rather a greater change of the induced moments opposing the primary moment than assisting it.
(2) The moments of the normal and iso- compounds are almost the same.
(3) The moment of the tortiary amines is a little less than that of the normal compound. A difference of 0.20 is obtained between n-octylamine and tertoctylamine. The corresponding difference is 0.11 for the butylamines (cf. Table IX).
(4) A small positive solvent offect in benzeno appears reasonable. It is probable that a considerable change in the angle from 90° between the molecular dipole axis and the axis of maximum polarisability lowers the solvent effect so that the difference betweon vapour and solution values becomes much less. -

ACKNOWLEDGMENTS

The author is deeply indebted to Prof. K. R. Rao for his kind and invaluable guidance throughout the progress of work. He is also grateful to the Council of Scientific and Industrial Research for financial assistance.

REFERENCES

Barclay, Le Fevere and Smythe, 1950, Trans. Frurad. Soc. 46, 812.
Barclay, Le Fevre and Smythe, 1951, Trans. Frarad., Soc., 47, 357.
Cowley, 1952, J. Chem. Soc., 3557.
Le Fevre and Russell, 1947, Trans. Farad. Soc., 48, 374.
Narasimha Rao, 1956, Ind. J. Phys. 30, 91.
Smith, 1955a, Eloctric Dipole Moments, Bulterworths scientific publicatiens, London, pp. 194.
Smith, 1955b, ibid., pp. 195.
Smyth, 1055, Dielectric Behaviour and Structure, MoGraw Hill Book Co. Inc. N.Y. pp. 311.

