CRYSTAL STRUCTURE OF 1,2-CYCLOPENTENOPHENANTHRENE

B. S. BASAK
Phesidincy Coldege, Catcutila
AND
M. G. BASAK
Jhargimar Raj (Ollege, Jllargram, West Biengal
(Received, F'ebruary 12, 1959)

Abstract

ABSTRABT. The erystal structure of 1, 2-cyclo-jontenophenanthene hus been determmed by the Founer-synthess method. A qualitative suggestion about tho structure was made by Ibnil (1935) Following aro the cryatal data: Molenular formula $\mathrm{C}_{17} \mathrm{H}_{14}$; Monoclime nystem : $a=18.38 \AA$; $b-5.83 \AA, c=2361 \AA ; \beta=114^{\circ}-18^{\prime}$; space-group per unit cell ('h' face-centred cell) $\mathbf{- 8 . 0}$.

Zero-layer and equi-mclination Wesssenburg photographs were taken in a Unicam Weissenberg gomometer with copper radiation and the intensities estimated microphotomotrically for stronger spots and visually for the weaker ones. The substance was kundly supplied by Dr. Devdas Mukherjee of Scottish Gas Board from Dr. Loudon of the Biochemastry Laboratory, Glasgow University.

Tn finding out the structure by trial, help was taken of the suggestion made by Iball (loc. cit). After a faurly satisfactory trial structure was arrived at, two projections were made about the a and b axes respectively. Because of the large values of a and c axial lengths, electron densities were calculated at intervals of 3° along them, using 3° strips of Lipson and Beevers. Values were calculated at, 6° interval along b axis. Of the 17 carbon atoms, 13 were fairly well resolved in the b axis projection (figure 1). Only a very small number of atoms were resolved in the a axis projection, although the ' y ' co-ordinates could be fixed to a fair degree of accuracy from the same. The considerations of the hydrogen atoms have been omitted for the present. Taking the new co-ordinates obtained from these projections, the values of structure factors were calculated when the reliability index R had the values 0.28 for both the ($o k l$) and ($h o l$) zones, where

$$
R=\frac{\Sigma\left|F_{o b s}-F_{\text {oalo }}\right|}{\Sigma\left|\bar{F}_{o b s}\right|}
$$

Fig. 1.

This high value of R is due most probably to the presence of a comparatively large number of very weak and absent reflections in these two zones. The coordinates of the carbon atoms of one asymmetric unit (one molecule) are given m Table I. The bond lengths and bond angles are all shown in figure 3 . If $\chi_{1}, \psi_{1}, \omega_{1}$ be the angles made by the long axis of the molecule formed ly joming atoms C_{3} and C_{17} with the a, b and c axes respectively and χ_{2}, ψ_{2} and ω_{2} be the corresponding angles mude by the short axis representerl by the straght lme joining C_{10} and C_{12}, then

Fig. 2.

$$
\begin{array}{ll}
x_{1}=109^{\circ} & x_{2}=121^{\circ}-12^{\prime} \\
\psi_{1}=90^{\circ} & \psi_{2}=32^{\circ}-22^{\prime} \\
\omega_{1}=5^{\circ}-18^{\prime} & \omega_{2}=98^{\circ}-23^{\prime}
\end{array}
$$

The mimmum distance of approach between two molecules comes out to be $3.98 \AA$.

TABLE 1
Coordinates of the atoms of one molecule

Atom	$\frac{x}{a}$	$\frac{y}{b}$	z
C_{1}	.1204	. 0616	. 0656
O_{2}	1629	-. 1173	. 1060
C_{4}	. 1948	- 2910	. 0804
C_{4}	. 1827	-. 2858	0174
C,	. 1656	$-.2730$	$-.1063$
Cb_{6}	. 1565	-. 2701	-. 1675
$\mathrm{CH}_{\boldsymbol{7}}$	1130	-. 0900	-. 2060
$\mathrm{C}_{\text {A }}$. 0797	0851	-. 1824
$\mathrm{C}_{\text {g }}$. 0539	. 2510	-.099J
Clu_{10}	. 0638	. 2410	-. 0375
Cl_{11}	. 1077	. 0668	. 0035
C_{12}	1403	--.1068	-.0212
C_{13}	.1303	-. 1016	-.0832
Cl_{14}	. 0895	. 0773	-. 1216
C_{16}	. 0884	. 2177	. 0993
C_{16}	. 1150	. 1320	. 1657
C_{17}	. 1596	$-.0896$. 1864

That the structure is substantially correct is confirmed from the following ronsiderations; (i) The value of $\omega_{1}=5^{\circ}-18^{\prime}$ agrees very well with that of $\omega_{1}=$ about 6° as predicted by Bernal (1935) from optical measurements, (ii) The ' b ' axis projection of the molecule except the five-membered ring agrees very well with the corresponding electron density projection of phenanthrene crystal as obtained by Basak (1950). The structure obtained agrees with the suggestions put forward by Iball (loc.cit). The bond lengths, bond angles and intermolecular
distances all ho within the limits of values generally obtained in other organic compounds of similar chemical formulae. The structure is now being refined with the help of latest techniques and when completed will give informations about the finer details.

ACKNOWLEDGMENTS

The authors wish to record their gratefulness to Prof. K. Banerjee, D.Sc.. F.N.I., Head of the Physics Department, Allahabad University, for his kind interest in the work and also to Dr. S. C. Chakravorty, of the rame department for helping them in some of the experimental works.

REFidences

Besak, B. S., 1950, Ind. Journ. Phys., 24, 309.
Bernal, J. D., 1935, J. Chem. Soc. London, pl. 93.
Iball, J.. 1935, Zeits, f. Kryst. pp. 293.

