A SIMPLE METHOD FOR THE ENERGY ESTIMATION OF ELECTRON PAIRS

P. K. ADITYA*
Physics Honodrs Sohool, Panjab Univenelty, Cianimicaril
(Received for publacation , July 2, 1959)

Abstract

A sample and practical mothod 18 described by wheh olectron pair enorgiox from $2 \times 10^{7} \mathrm{cv}$ to 1012 ov can bo extmated with suftecent reliabilaty 'The mutial divergonce is allowed modification by the multiple coulomb scattering of the olectrona, and the energy of the primnry photon derived from the obsorved opening, which is diroedly measurable. This mothod when epphod to a considerahlo number of pares obtanod from elcetronagnetic casceades has boen shown to yreld memugful results. The advantages and limitutions of the method are dismissed.

During the course of an investigation (Kumar, 1956; 1957-a, b; Aditya, 1959a, b) on the phenomena of electromagnetic cascades at high cnergios, a simple method has been used for estimating energy of electron pars, and found to yield relablo results. In prinerple, the initial divergence of the pair and the subsequent multiple scattering of tho two partners are both taken account of, so that the energy of the materialising photon can be derived directly from the ohserved opening of the pair. The influence of muluple scattering on the true opening of a pair has been considered independently also by Lohrmann (1955) who concluded that the observed divergence for pairs of enorgy ≥ 1 Bev., is essentially determined by the multiple scattermg. Koshiba et al, (1954) had also proposed to discuss such an influence of tho multiple scattering.

Using the method of energy estimation described below, some results on the mean freo path for trident production have been rocently pulishod (\mathbf{T}), where a brief outlme of the method was given. In the present article we propose to discuss the principle alongwith the many approximations and assumptions involved and enumerate the morits, demorits and limitations of the method. The reliability has already been chocked (I) by comparing the onergies so estimated with those expected from using other methods.

When a photon materialises into a negaton-positon pair, the intermodiate angle between the two partners is a function of the enorgy of the photon and of the ratio of the shared energies. This angle is minimum when the two electrons share the energy equally and increases with the disparity of the pair, the disparity being defined as the ratio of the energy of the low energy electron to the energy

* At presenl at the Instıtute for Theorctioal Physices, Univorsity of C penhagen, Denmerk,
of the photon. This opening of the pair may be called its true opening and at a certain dhstance from the origin of the pair, the separation due to it be denoted as d_{T}.

It is well known that during passage through condensed matter, charged particles undergo multiple coulomb scattering the magnitude of which is a function of the particle momenta. Since the true opening is usually small ($\sim 10^{-3}$ radians for an energy~a fow Bev.,) the multiple scattering is expected to lead almost always to an increase of the true angle. For example, according to Baroni et al (1953) the probability that the angle is increased is $\sim \frac{4 \pi-\Omega}{4 \pi}$ where Ω is the solid angle defined by the aperture of the pair. Let us denote this incroase in the separation of the pair by d_{S}.

- Consequently, the observed soparation is a resultant of the true opening d_{T}, and the subsequent separation due to scattering d_{S}. We shall estimate d_{T} and d_{s} in order to find their relativo magnitude at various distances from the pair origin.

Stoarns (1949) has derived the root mean square value of the angle ω_{c} between the olectron and the direction of the photon, so that in the case of equipartition of energy between the negaton and tho positon, the r.m.s., value of the true opening angle of the parr is givon as :

$$
\begin{equation*}
\omega_{p}=2 \frac{m c^{2}}{E} \text { ln } \underset{m}{m c^{2}} \tag{1}
\end{equation*}
$$

For the electron rest mass, $m=0.5 \mathrm{Mev}$., and photon energy expressed also in Mev., eq., (l) gives

$$
\begin{equation*}
\omega_{p} \simeq 10 / E \tag{2}
\end{equation*}
$$

for photons of energy from 1 Bev., to 100 Bev . Following similar arguments, Borsellino (1953) has derived the most probable value of the opening angle, given as

$$
\begin{equation*}
\omega_{p}=\frac{4 m c^{2}}{E^{-}} \cdot \phi \tag{3}
\end{equation*}
$$

where $\phi=1$ for energy equipartition and ~ 1 oven when the energy of one of the electrons is twice than the other. Substitution for m, and for the photon energy in Mev., gives

$$
\begin{equation*}
\omega_{p} \simeq 2 / E \tag{4}
\end{equation*}
$$

The energy found from Stearns' relation (eq. 2) is seon to be about five times that found by using Borsellino's relation (eq.4). Since the latier gives the most probable value, and that in the onergy region upto $\sim 200 \mathrm{Mev}$., the results of

Hinterman (1954) suggest better accordance with Borsellino's relation, we have amongst many other workers, preferred to use this relation. Thus

$$
\begin{equation*}
d_{T^{\prime}} \simeq{ }_{E}^{2} \cdot t \tag{5}
\end{equation*}
$$

where t is the distance measured from the pair origin, and has the same units as d_{T}, say microns.

From the theory of multiple scattoring, it is known that when two electrons of equal energy are mvolved, the mean relative scattering in $t \mu$, is given as

$$
\begin{equation*}
\bar{\alpha}_{t \mu}^{0}=\bar{\alpha}_{100 \mu}{ }^{0} \cdot\left(\frac{t}{100}\right)^{\frac{b}{1}} \cdot 2^{b} \tag{6}
\end{equation*}
$$

where $\bar{\alpha}_{100 \mu}$ denotes in degrees the mean scattering angle per 100μ, while $2 \ddagger$ arisos on account of the assumed equal scattoring of the two electrons. For a photon of energy E (in Mev.,) and equipartition as above,

$$
\begin{equation*}
\alpha_{100 \mu}=\frac{K}{L / 2}=\frac{52}{L} \tag{7}
\end{equation*}
$$

whore K, the scattering constant is taken -26 for the umits of $\bar{\alpha}$ and E mentioned above. In view of the approxmations involved in the method, much purpose is not served by taking into account the variation of the scattoring constant with cell size. So that eqs. (6) and (7), with
lead to

$$
\begin{align*}
\bar{\alpha}_{t \mu}^{0} & =\frac{d s}{t} \cdot \frac{180}{\pi} \tag{8}\\
d_{s} & =\frac{0.128}{E} \cdot t^{3 / 2} \tag{9}
\end{align*}
$$

- where d_{S} and t, are as usual in macrons.

Equating d_{T} from eq.(5) with d_{S} from eq. (9), it is seen that the contribution due to scattering is as much as that due to mitial divergence at a distance of $\sim 250 \mu$ from tho pair origm, while for all larger distances, d_{S} predominates over d_{T}. As an illustration lot us consider the combmed offect of d_{T} and d_{S} on a pair of 10 Bev . In figure l., are plotted the curves between the expected separation against distanco from origm. In addition to the curves for the original and scatlering corrected separations according to Borsellino's and Stearns' relation, are included two curves, one showing the contribution of multiple scattering alone (curve 3) and another showing the separation expected according to Borsellino's relation for a parr of energy 1 Bev., (curve 6). The close proximity of curve 6, with the other curves for 10 Bev. , indicates that without a suitable correction for scattering, the openug angle relations would lead marablably to
an underestimation of energy It is also evident, that as higher encrgies are approached, it makes litile difference as to which one of the Borselhno's or Stearns'

Fig. 1. Evpreted sopuation tor a par has boen plotted against the distaneo fiom par ompin. For a 10 Bov. phis, curves 1 and 2 show tho soparatson according to the relations of Borkellun and Steame, while curve 3 indicates the root menn squaro value of the separation due to multiple, seat termg alono. Consoquently, 4 and σ wo the respochave modified curvos. Cusve 6, wheh gress Bormollmo's neparatson for a 1 Bev., pan as meladed for companition.
relation is usod or may be that none of the two is essential, as has been concluded by Lohrmann (1955). However, smee no sharp eut off can be defined above or bolow which erther of the two contributions due to initial divergence or scattering may be neglected, it appears advanitageous to consider at all energies the combined effect of intial divergence and seattering, so that none of the two is deprived of its true, mportance at various stages of energy and distance from origin.

For various energios from 100 Mev., to 1000 Bev., curves between expected separation and distance from parr origin wero drawn in figure 1 , of (I). Theso curves san, in short, be expressed in the form of an equation as :

$$
\begin{equation*}
E=6 \cdot d^{-1} \cdot d^{1.4} \tag{10}
\end{equation*}
$$

where \boldsymbol{E} is in Bov., t in mm and d in μ.
It had been formerly felt that in those cases, when the energy is so high as to allow no measurement of the soparation made within a few mm from the origin, the measurements made at larger distances involved uncertainity due to radiation losses, large single scatters and the presence of increasing number of secondary phenomena. At the present stage, most of this difficulty can be overcome by making use of the arguments described very recently by Weill (1959), according
to whom the variation of iomsation along the combuned track can be used to derive the separation between the two partners.

The energies of 20 pairs inntiating soft cascades, a number of associated pars in the vicinty of a high energy interaction (Kumar, 1958, Aditya, 1959-c) and the socondary pairs of all these showors havo been estimatod by this method. Results in the very high region (Table 1, Aditya, 1959a) and the enorgy spectrum of the secondary electrons (figure 2, Aditya, 1959a) install confidence in the roliability of the energies estimated by this method. In the energy range, where the multrple scattermg measurements are meanugful, both theso methods yield idontical results. There are howevor two factors that may point out the inaccuracy of the assumptions. Firstly, because of the separation due to relative scaltermg having an r.m s., distribution, the most probable value nhall not be as much as the r.m.s., separation, so that the mothod would load to an overostimation of the par energy Secondly, smee energy equipartition has been assumed, whenever one of the electrons has an energy much different from that of the other, the application of this method is likely to underestrmate the energy. It is oxpected that in most of the cases these two factors might compensate for each other but it cannot be so for all pairs. That is why, for an individual pair the method is not likely to give in all casea the most represontative value for the enorgy. Tho probability considorations mentioned by Lohrmann (1955) would apply to the distribution of the par separation as a result of which large diserepancies have to be allowed for in some cases. Inspite of these limitations, the method has a few outstanding advantages. It is perhaps the most simple method and can be applied even to those events which occur in the stack under unfavouiable geometrical conditions such as steepness. Unloss one needs to go very far from the parr origin, which is not essential in most of the cases, the influence of radiation losses is known to be small. Provided the pair separation is not durectly measurable in the vicinity of the origm, it may be derived from the change of ionisation (Weill 1959).

ACKNOWLEDGMENTS

The basic 1dea of this method has been derived from Professor B. M. Anand to whom it is a great pleasure to thank ulso for encouragement and keen interest. This investigation was carried out while the author had a Research Fellowship from the Govt. of Iudia, Department of Atomic Energy, to which thanks are due. The author is indebted to Professor B. Peters for allowing the use of emulsion stacks exposed by the Tata Institute of Fundamental Research, Bombay.

REFERENCES

Aditya, P. K. , 1950a, Nuovo Oimento, 11, 546.
Aditya, P. K., 1959b, Nuovo Cimento, under publication.
Aditya, P. K., 1959c, Nuovo Cimento, 18, 219.

Burom, G., Borsellmo, A, Scursi, L, and Vanderhauge, G., 1953, Nuovo Cimento, 10. 1653.

Borwellinis, A., J453, Phys Ren, 76, 1023.
IVintorman, K. 1954 Phyк, Rev. 83809
Kobliba M, and Kuplon, M H., 1954, Phus. Rev, 100. 327.
Kumar, P, 1956, Pror. 43rd. Iud. Nor. Cong., Ill-3, Λ bs. 18.
Kımar, P., 1957n., Droc 44(1. 1rıl. Scl. Cong, JTl-3, Abs. 61
 (Unjublislied).
Kımar, P., 1958, Proc. 45th. Ind Sei. Cong., IJJ-3, Abs 9.
Lohrmann, E., 1955, Nиочо ('imento, 2, 1029.
Steajina, M., 194!!, Rhy: Jipv., 76, 836.
Weill, R, 1959), Nuovo (Cmmeto, 11, 7NJ.

