A CASE FOR EFFICACY OF HULBURT-HIRSCHFELDER POTENTIAL FUNCTION

N. R. TAWDE and M. R. KATTI
Drpartment of Phybics, Kahnatak Univelesity, Dhahwair

(Receuved for publention, November 6. 19.8)

Abstract

The Hulbart-Harbehfelder potental onergy function has been teated for ite officacy in rolation to Morse expmession. Its five-parameter chararter has beed converted to four-paramoter one, with 11 view to dorive the fifth parmmeter ap. The caleu. lated data are then rompared to the accurately known expermontal data of a large numbor of diatome molerules The oxpresioion proves much suporior to Morse's and even to nomel others, known to be better than Morso's.

In a recent oxhaustive review, Varshni (1957) has made a critical assessment of the relative merits of various potential energy functions of diatomic molecules The test has been confined only to the functions which do not assume, but which predict the molecular comstants α_{e} or $\omega_{e} x_{e}$. These latter are ihen compared with the actual measured values. Obviously a test of this type is not porsible with functions, such as Hulburt-Hirschfelder (H-H, 1941), whelh employ all the known expermental constants. Hence this function does not figure in the above study. However, if this five-parameter function of $\mathrm{H}-\mathrm{H}$ is converted into a four-parameter one and then the fifth parameter predicted from it, one could still carry out the test in the manner given by Varshni. This is proposed to be done m the present puper.

Varshni flarts by expanding $\mathrm{U}_{(r)}$ near the equilibrium value $\left(r \neq r_{c}\right) \quad$ The expansion is given by

Here the value of the first derivative $V^{I}\left(r_{\theta}\right)$ does not appear as it is obvously zero. Relations first deduced by Kratzer (1920) and modified for the above form of, the expansion, provide values of these derivatives in terms of the spectroscopic constants. Later Dunham (1932) has shown that
and

$$
\begin{align*}
\alpha_{e} & =-\left[\begin{array}{ll}
c_{0} & \left.r_{e}+1\right] \frac{6 B_{e}^{2}}{c_{2}} \\
\omega_{e}
\end{array}\right. \tag{1.2}\\
\mu \omega_{e} x_{e} & =\left[\frac{15}{8}\binom{c_{3}}{c_{2}}^{2}-\frac{3}{2}\left(\frac{c_{4}}{c_{2}}\right)\right] h / 8 \pi^{2} c \tag{1.3}
\end{align*}
$$

where

$$
\begin{equation*}
c_{y}=U^{I I}\left(r_{e}\right) / 2!, c_{3}=U^{I I I}\left(r_{n}\right) / 3!\text { and } c_{4}=U^{I V}\left(r_{e}\right) / 4! \tag{1.4}
\end{equation*}
$$

After putting

$$
\begin{align*}
& U^{I I I}\left(r_{e}\right) / U^{I I}\left(r_{e}\right)=X \tag{1.5}\\
& U^{I}{ }^{\prime}\left(r_{\theta}\right) / U^{I I}\left(r_{e}\right)=\boldsymbol{Y} \tag{1.6}
\end{align*}
$$

one obtains

$$
\alpha_{e}=-\left[\begin{array}{cc}
X r_{e} & +1 \tag{1.7}\\
3 & +1
\end{array}\right] 6 B_{b}{ }^{2} / \omega_{e}
$$

and

$$
\omega_{e} x_{e}=\left[\begin{array}{c}
5 \tag{1.8}\\
3
\end{array} X^{2}-Y\right] \frac{W}{\mu_{d}}
$$

with $W=2.1078 \times 10^{-18}$
In the above equations (1.7) and (1.8), it is only the quantities $\left[\frac{X r_{e}}{3}+1\right]$
and $\left[\begin{array}{ll}5 & X^{2}-Y \\ \mathbf{3} & X^{2}\end{array}\right]$ which will be different for different functions.
Using the most generally adopted Morse's (1929) function

$$
\begin{equation*}
U=D_{e}\left[1-e^{-a\left(r-r_{e}\right)}\right]^{2} \tag{1.9}
\end{equation*}
$$

we have the dorivatives
and

$$
\begin{gather*}
U^{I I}\left(r_{e}\right)=2 a^{2} D_{e} \tag{2.0}\\
U^{I I I}\left(r_{e}\right)=-6 a^{3} D_{e} \tag{2.1}\\
U^{I V}\left(r_{e}\right)=14 a^{4} D_{e} \tag{2.2}
\end{gather*}
$$

From these, the values of X and Y turn out to be

$$
\begin{align*}
& X=-3 a \tag{2.3}\\
& Y=7 a^{2} \tag{2.4}
\end{align*}
$$

Using the above in eqs. (17) and (1.8), Varshni has evaluated the constants α_{e} and $\omega_{e} x_{e}$ in the case of 23 neutral diatomic molecules for whioh reliable experimental data of molecular constants is available. The comparative study of the calculated and observed constants by him has revealed that the percentage dispersion between the two is of the order of ± 33.1 for α_{e} and ± 31.2 for $\omega_{e} x_{e}$. In comparison to the dispersions given by Morse function, other functions give either smaller or larger departures. A function giving smaller dispersion than that of Morse is considered as more satisfactory. Thus the superiority of a function is judged in terms of the accuracy given by Morse's. As for the reproduction of α_{θ} is concerned, there are functions examined by Varshni giving percentage error as low as ± 22.1 and thus proving superior to Morse's.

Some calculational slips have been noticed in Table XIa reduce the percentage orror in case of Morse function from \pm
thus provide relatively better accuracy for it. These slips relate to $\mathbf{O H}, \mathbf{H F}$, $\mathrm{HI}, \mathrm{N}_{2}$ (two cases), SO, and ICl (cf. Table I here for corrections).

In the light of the objective outlined in para 1 , the H-H function can now be viewed as a four-parameter function to predict the value of α_{e}. Hulburt-Hirschfelder's expression is of the form

$$
\begin{equation*}
U=D\left[\left(1-e^{-x}\right)^{2}+c x^{3} e^{-2 x}(1+b x)\right] \tag{2.5}
\end{equation*}
$$

which is the same as that of Morse, except for an additional term which acts as a correction term. Here

$$
\begin{equation*}
x=2 \beta \xi=\frac{\omega_{e}}{2\left(B_{e} D_{e}\right)^{1 / 2}} \cdot \stackrel{r-r_{e}}{r_{e}} \tag{2.6}
\end{equation*}
$$

and b and c are simple algebraic functions of the five spectroscopic constants $K_{e}, r_{\theta} D_{e}, \alpha_{\theta}$ and $\omega_{e} x_{\theta}$

$$
\begin{align*}
c & =1+a_{1}\left(D / a_{0}\right)^{4} \tag{2.7}\\
b & =2-\left[\begin{array}{c}
7 \\
\overline{12}
\end{array}-\begin{array}{c}
D a_{2} \\
a_{0}
\end{array}\right] / c \tag{2.8}
\end{align*}
$$

where a_{0}, a_{1}, and a_{2} are the Dunham coefficients

$$
a_{0}=\omega_{e}^{2} / 4 B_{e}, \quad a_{1}=-1-\alpha_{d} \omega_{e} / 6 B_{e}^{2}, \quad a_{2}=\frac{5}{4} a_{1}{ }^{2}-\begin{gathered}
2 \omega_{e} x_{e} \\
3 B_{e}
\end{gathered}
$$

The function (2.5) on differentiation gave

$$
\begin{align*}
& U^{I I}\left(r_{c}\right)=2 a^{2} D_{e} \tag{2.9}\\
& U^{I I I}\left(r_{e}\right)=6 a^{3}(c-1) D_{e} \tag{3.0}\\
& U^{I V}\left(r_{e}\right)=2 a^{4}[7+12 c(b-1)] D_{e} \tag{3.1}
\end{align*}
$$

and

$$
\begin{array}{r}
X=U^{I I I}\left(r_{e}\right) / U^{I I}\left(r_{e}\right)=3 a(c-1) \\
Y=U^{I V}\left(r_{e}\right) / U^{I I}\left(r_{e}\right)=a^{2}[7+12 c(b-1)] \tag{3.3}
\end{array}
$$

It may be seen from (3.2) above that it involves α_{e} and thus assumes its value. Hence this quantity in the present form cannot be used for the prediction of α_{θ}. If we modify the expression
by putting

$$
\begin{align*}
& a_{1}=-1-\alpha_{c} \omega_{e} / 6 B_{e}{ }^{2} \tag{3.4}\\
& \quad \alpha_{e}=\frac{6 \sqrt{ } \overline{\omega_{e}} \overline{{x_{e}}_{e} B_{e}^{8}}}{\omega_{e}}-\frac{6 B_{e}{ }^{2}}{\omega_{R}}
\end{align*}
$$

a relation due to Pekeris (1934), we make the quantity c independent of α_{θ}. The above substitution is justified by the fact that the Pekeris ralation (3.5) is derived from the Morso function which forms an integral part of H-H's function. Thus c will be determined by

$$
\begin{equation*}
a_{1}=-\sqrt{\frac{\omega_{0} x_{0}}{B_{\theta}}} \text { and } a_{0}=\omega_{a}^{2} / 4 B_{e} \tag{3.6}
\end{equation*}
$$

and thus made independent of α_{e}.

Such an operation is not possible in the case of Y in order to make it independent of $\omega_{e} x_{e}$ and thus to predict $\omega_{e} x_{\theta}$, as too many quantities are involved. This led us to restrict ourselves to the deduction of α_{θ} only. The results of α_{e} evaluated from Morse and H-H function used as above, are shown in the Table I. The various molecular constants employed in the present paper are uniform with those employed by Varshni.

TABLE I

Molecula	$\underset{\text { Morse }}{\substack{\boldsymbol{a}_{\boldsymbol{e}} \\ \text { Present calc. }}}$	\% Error	H.H function Present calc.	\% Error
H_{2}	2.222	-25.8	1.084	-33.7
ZnH	0.4248	$+69.9$	03118	+2473
OdH	0)3599	-65.1	02379	+913
HgH	05090	+63.1	0.3818	122.38
CH	0.5238	-1 9	$0.486]$	- 8.97
OH	$\begin{aligned} & 0{ }^{7076}{ }^{*} \\ & (0.7141) \end{aligned}$	$\begin{gathered} 9.0^{*} \\ (0.0) \end{gathered}$	06268	-12.21
HF	$\begin{aligned} & 0.6055{ }^{*} \\ & (0.5822) \end{aligned}$	$\begin{array}{r} 8.2^{*} \\ (-24.4) \end{array}$	0.6662	- 13.53
HOl	0.3109	+ 33	0 2741	- 921
HBr'	02540	$+7.9$	0) 2131	-571
HI	$\begin{aligned} & 0.2583^{*} \\ & (02015) \end{aligned}$	$\left(\begin{array}{cc} 1 & 41 \\ (1 \mid 9.2 \end{array}\right)^{*}$	0.1295	-29.28
Lis	0.0103	+46.3	000744	+ 568
Na,	0.00146	+84.8	0.001051	+33.04
\mathbf{K}_{3}	0.000412	+881	00003088	- 4102
$\mathrm{N}_{2}(1)$	$\begin{aligned} & 0002442^{*} \\ & (0.02864) \end{aligned}$	$\begin{aligned} & 129.5^{*} \\ & (+53.2) \end{aligned}$	0.01727	-765
$\mathrm{N}_{2}(\mathbf{2})$	$\begin{aligned} & 001969^{*} \\ & (0.01996) \end{aligned}$	$\begin{aligned} & +5.3^{*} \\ & \left(+6 \frac{2}{2}\right) \end{aligned}$	"	"
\mathbf{P}^{2}	0.00177	+24.7	0.001443	+ 0.41
O_{2}	000175	$+10.8$	001244	-2121
SO	$\begin{aligned} & 0.00710^{*} \\ & (0.01095) \end{aligned}$	$\begin{gathered} \mid-27.9^{*} \\ (\mid 948) \end{gathered}$	0.005197	-7.53
Cl_{2}	0.00190	+11.8	0.001925	1.13 .22
Br_{2}	0.000423	+53.8	0.0003357	+22.08
I_{2}	0000154	+31.6). 0001018	-12.99
Iel	$\begin{aligned} & 0.000670^{*} \\ & (0.000654) \end{aligned}$	$\begin{gathered} +25.0^{*} \\ (+22.0) \end{gathered}$	0.0005257	-1.92
CO(1)	0.01912	+ 9.4	0.01691	-3.26
CO(2)	001844	- 5.5	"	"
CO(3)	0.01643	-6.0		
NO(1)	0.0228	+28.1	0.01707	-4.10
$\mathrm{NO}(2)$	0.0198	$1-11.2$	"	"
Average		$\begin{gathered} \pm 31.9 \\ (\pm 33.1) \end{gathered}$		± 15.3

N.B. Figures with asterisk are our corrected values; brackeited are reproducde from Varshni.

It is seen from the Table I that as far as the reproduction of α_{e} is concerned, the results obtained with H -H's function show the average percentage error to be ± 15.3, which is much less than that given by Morse's function. Comparing this accuracy with the other three functions examined by Varshni, the H-H's function used in the manner given above, proves to be much superior to all of them. This is evident from the comparative figures of the magnitude of percentage errors recorded in Table II.

TABLE II

Comparative percentage errors in the α_{e} estimates

Function	\% Error
Morse	+319
Rydheng	$+280$
Third	1.22.9
Empirical 	± 221
Hurgehfolder (Present papier)	± 15.3

Another foature which is apparent is that after the modifications α_{p} becomes mdependent of D_{e}. In view of these findings the relation $c=1-\left(\frac{D x_{e}}{\omega_{e}}\right)^{\frac{1}{2}}$ becomes preferable to one originally given by $\mathrm{H}-\mathrm{H}$, viz., $c=1+a_{1}\left(D / a_{0}\right)^{\frac{1}{2}}$. Further work on these lines is in hand.

ACKNOWLEDGMENTS

The junior author (M.R.K) is grateful to Mr. M. I. Savadatti of this department for numerous helpful discussions.

RENERENCES

Dunham, J. L., 1932, Phys Rev, 41, 713, 7丷ㅣ.
Hulburt J. M. and Hirschfelder, J. (), 1941, J. ('hem. Рhys, 9, 61.
Kıитzer. A., 1920, Z. Physik , 3, 289
Morse, P M, 199\%, Phys. Rev, 34, 57
Pelceris, C. L, 1934, Phys. Rev., 45, 98.
Varshni, Y. I'. 1957, Kev. Mod. Phıs, 29, (i64.

