# ON THE CALCULATIONAL PROCEDURES IN THE DERIVATION OF THE VIBRATIONAL TRANSITION PROBABILITIES OF THE FIRST NEGATIVE ( $b^{4 \Sigma^{-}} \rightarrow \mathrm{a}^{4} \mathrm{II}_{u}$ ) BANDS OF $\mathrm{O}_{2}^{+}$ 

N. R. TAWDE and N. SREEDHARA MURTHY<br>Defartment of Phyeics, Kagnataic Univiersity, Dhakwatr<br>(Recerved for publication, November 18, 1957)


#### Abstract

Recontly, Rao and Ranade have published some calculations of vibrational trangition probubilities of tho bands of $\mathrm{O}_{2}+$ (first negative) system A study of that paper has revealed two vory sorious orrors in the calculations and in the usuge of the mothods applied by tho authors The first error is due to the wrong usage of mathematical tedhmigue of Mannoback for the celculation of vibrationul transitional proberbilitios, and the othor error is 'in the intorpretation and derivation of transition probabilitios by the application of the method of Manneback and Rahman.


Rao and Ranade ( $R \& R$ ) (1957) gave calculations of what, according to them, are transition moments and vibrational transition probabilities of the bands of the first negative system of $\mathrm{O}_{2}{ }^{+}\left(b^{4} \Sigma_{j}{ }^{-} \rightarrow a^{4} \pi_{u}\right)$. They have appled the methods of (i) Manneback (1951) and (i1) Manneback and Rahman (1954) to compute these valuos. These data have been studied by them in terms of the available values of transition probabilities of Jarmain, Fraser and Nicholls (1955) on this system As a result of this comparative study, hey have emphassed the earlier conclusions of Shuler $(1950,1952)$ on $\mathrm{OH}(A \rightarrow X)$ system, that howsoevor one may take the mechanical anharmonicity of the wave function mito account in any theory of vibrational transition probability, the contribution at the same time, of the variation of electronic transition moment with internuclear separation $R$, could not be neglected, as it is an important factor for considoration.

The application of the theory of Manneback and Rahman to such problems requires the knowledge of the exact relation of electronic transition moment with $R$ for the particular band system. For without it, the contribution of this variation to the vibrational transition probability in relation to that of mechanical anharmonicity cannot be judged. To our knowlodge, neither this relation, nor the experimental vibrational intensities for any of the bands of this system, from which this relation could be obtained, are on record. This aspect aroused our interest in the calculations of ( $R \& R$ ). A careful scrutiny of their paper brought out certain vory fundamental points and issues which nullify their results and the conclusions based on them. It was therefore thought imperative to put these findings on record, in order to see the work of ( $R$ \& $R$ ) in its proper perspective,

## Derivation of the Vibrational Transtion Probabilities, etc.

## I

It has been shown already by Tawde, Patil, Sreedhara Murthy and Katti (1957) in the case of $\mathrm{OH}(A \rightarrow X)$ systom that Hutchisson's and Manucback's analytical treatments, although differmg in complexity, lead to exactly identical results. This test has been applied here to the first negative band system of $\mathrm{O}_{2}{ }^{+}$under consideration, employing the same constants as those used by Rao and Ranado (1957). The transition probablities are calculated by Hutchisson's and Manneback's mothods and theso results are presented in Table 1 m columns 2 and 3 For comparison, the values of ( $\mathrm{R} \& \mathrm{R}$ ) by Manneback's method are reproduced side by síde in column 4.

TABLE I

| Calculatod transition probabilities. $\mathrm{O}_{2}{ }^{+}$(First negativo) $\quad b^{4} \Sigma_{v} \rightarrow a^{4} \pi_{u}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Band } \\ v^{\prime}, v^{\prime \prime} \end{gathered}$ | Hutchisson (prosent authoris) | Manneback (prosent authors) | Munneluck (R\&R) |
| 0,0 | 0255 | 0.255 | (0)255 |
| 0,1 | 0373 | 0.373 | 0323 |
| 0,2 | 0.246 | 0.346 | 0.181 |
| 0,3 | 0096 | 0.096 | 0.059 |
| 1,0 | 0.323 | 0323 | 0.373 |
| 1,1 | 0033 | 0.033 | 0033 |
| 1,2 | 0092 | 0 092 | 0082 |
| 1,3 | 0.258 | 0258 | 0.195 |
| 2,0 | 0228 | 0.228 | 0.300 |
| 2,1 | 0050 | 0050 | 0.061 |
| 2,2 | 0.159 | 0159 | 0) 164 |
| 2,3 | $00^{000} 3$ | $00^{000} 3$ | $00002_{3}$ |
| 3,0 | 0.118 | 0.118 | 0.175 |
| 3,1 | 0.168 | ${ }^{0} 168$ | 0.226 |
| 3,2 | 0009 | 0.009 | 0010 |
| 3,3 | 0.127 | 0127 | 0.135 |

It is evident from the table that oven in the case of this system as in OH $(A \rightarrow X)$ system, there is complote agreemont between the results emerging from hoth the methods, viz., Hutchisson's and Manneback's, and this is as it should be, as made out in the work of Tawde, Patıl, Sreedhara Murthy and Kattı (1957), and will be further shown by mathematical equivalence between the two in a forthcoming papor. The fact that the calculated values of ( $\mathrm{R} \& \mathrm{R}$ ) by the same mathematical treatment do not agree with ours indicatos that they have badly erred in following the method of Manneback (1951), and applying it to the problem in hand. In arriving at this conclusion, we have applied whatever internal checks were necossary at each step of the calculations, leading to the results of columns 2 and 3 (Table I), and we have reproduced the values at every stage.

Although, the methorl of Hutchisson is cumbersome and requires laborious calculations over protracted period, we have, as an external check, employed it here only to be sure of the correctness of our procedures in working out the data from Manneback's method.

While attempting to locate the source of the values arrived at by Rao and Ranade it was found that they resulted from the misunderstanding on the part of the authors, of the use of the two general formulae I and II given by Manneback for the calculation of (: $\left(n^{\prime} n^{\prime \prime}\right)$ matrix These formulae contam the quantities. $\Delta, k, a$ and $b$, and are valid for any of these values meluding negatives as stated by Manneback. Correct valuos of transition probabilities would follow by the direct use of these quantities with their proper sigis on the two formulae. The values happen to be negative in the particular case of $\mathrm{O}_{2}{ }^{+}$(first negative) system, and are to be durectly used with their signs in the goneral formulae for the evaluation of (' $\left(n^{\prime} n^{\prime \prime}\right)$ matrix The square of $C\left(n^{\prime} n^{\prime \prime}\right)$ then gives the transition prohabilitics. This way have resulted our data of column 3 in Table I An alternative but simpler way suggested by Manneback when negative valucs of the above are encountered, is to miterchange the meanmg of upper and lower states, i.e. of $n^{\prime}$ and $n^{\prime \prime}$, while retanng their positive values. This smpler way has been adopted by ( $R \& R$ ) but in using it, they have not correcily miterpreted the meaning of 1 t, which is obviously more than mero intorchange of $n^{\prime}$ and $n^{\prime \prime}$. ( $R \& R$ ) have Lakon the above remark of Manneback to meall merely the interchange of quantum numbers, $n^{\prime}$ and $n^{\prime \prime}$, without considering the roal meaning of it, viz., merchange also of the quantitics involved in the upper and lower states along with the mterchange of $n^{\prime}$ and $n^{\prime \prime}$. The consequence is that wrong values have emerged for $C\left(n^{\prime} n^{\prime \prime}\right)$ and hence the transition probabilities, and they are represented as such in their paper. We have also tried this alternative but simpler way with its correct meanmg given above, and arrived at the values identical with those of column 3 (Table I). In following the correct use of Manneback's mathematical technique, the method of Manneback has to be understood in the context of Hutchisson's analytical treatment.

## II

In their attempt to mclude the contribution of variation of electronic transitron moment with $R$, to the transition probability agamst the background of the above results, the authors have also erred in their fundamental approach to this question This problem is sought to be investugated through the application of Manneback and Rahman's treatment. But, in dong so, they have made untenable assumptions. This can be understood from the following analysis

Following Shuler (1950), Mannehack and Rahman start from the integral involving the wave functions of the upper and lower states:

$$
\begin{equation*}
\left|M_{n^{\prime} n^{\prime \prime}}\right|=\int \psi_{n^{\prime}}(R) M_{\phi^{\prime} e^{\prime \prime}}(R) \psi \quad(R) d R \tag{1}
\end{equation*}
$$

where $M_{e^{\prime} e^{\prime \prime}}(R)$, the electronic transition moment can be taken to be constant, or a variable of $R$. The main object of Manueback and Rahman's treatment has been to take the latter into account in the theory, viz., the variability of electronic transition moment wath $R$, and they considered the variation according to the linear relation of Shuler viz., $M_{e e^{\prime \prime}}(R)=c(1 \dashv \rho R), \rho$ leing the expansion coefficient. With the introduction of this relation mequation (1), the integral | $M_{n^{\prime} n^{\prime \prime}}$ | becomes

$$
\begin{equation*}
\left|M_{n^{\prime} n^{\prime \prime}}\right|=c\left[\int \psi_{u^{\prime}}(R) \psi_{n^{\prime \prime}}(R) d R+\rho \int \psi_{n}(R) \psi_{n^{\prime \prime}}(R) R d R \mid \quad \ldots\right. \tag{2}
\end{equation*}
$$

This expression (2) is written in the from

$$
\begin{equation*}
\left|M_{n^{\prime} n^{\prime \prime}}\right|=c \mid C\left(n^{\prime} n^{\prime \prime}\right)+\rho D\left(n^{\prime} n^{\prime \prime} \mid\right. \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{\prime}\left(n^{\prime} n^{\prime \prime}\right)=\int \psi_{n^{\prime}}(R) \psi_{n^{\prime \prime}}(R) d R \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(n^{\prime} n^{\prime \prime}\right)=\int \psi_{n^{\prime}}(R) \psi_{n^{\prime \prime}}(R) R d R \tag{3b}
\end{equation*}
$$

The square of the quantity $\left|M_{n^{\prime} n^{\prime \prime}}\right|$ gives the transition prolability, $p$. The expression for $\mid M_{n^{\prime} n^{\prime \prime}}$ ! consists theretore of two terms. The finst term $C\left(u^{\prime} n^{\prime \prime}\right)$ in the bracket is the same motegral as referred to mannebark's theorotical applicahon discinsed on Section 1 above The second term is the additional one brought about as a result of the electrome transition moment beng considerod to vary with $R$ It consists of two factors. (a) $\rho$, the expansion coeflicient und (b) $D\left(n^{\prime} n^{\prime \prime}\right)$, anothor integral stated above As a close parallel to the treatment for $C\left(n^{\prime} n^{\prime \prime}\right)$ matrix, Manneback and Rahman have given the following formula for computing the $D\left(n^{\prime} n^{\prime \prime}\right)$ matrix

$$
\begin{equation*}
D\left(n^{\prime} n^{\prime \prime}\right)=X C^{\prime}\left(n^{\prime} n^{\prime \prime}\right)+Y n^{\prime} C\left(n^{\prime}-1, n^{\prime \prime}\right)+Z n^{\prime \prime} C^{\prime}\left(n^{\prime}, n^{\prime \prime}-1\right) \tag{4}
\end{equation*}
$$

where the quantities $X, Y$ and $Z$ luave the moaning defined by them. $D\left(n^{\prime} n^{\prime \prime}\right)$ matrix can therefore be computed if $C\left(n^{\prime} n^{\prime \prime}\right)$ martrix is known

The quantity $\left|M_{n^{\prime} n^{\prime \prime}}\right|$ in equation (3) is therefore calculable from $C\left(n^{\prime} n^{\prime \prime}\right)$ and $D\left(n^{\prime} n^{\prime \prime}\right)$, provided the value of $\rho$ is known. The value of constant, $c$, could be eliminated by considering the relative values of transition probabilities for a pair of bands. But $\rho$ for this particular system of $\mathrm{O}_{2}{ }^{+}$(first negative) is not known, nor have ( $\mathrm{R} \& \mathrm{R}$ ) derived any value for 1 t . Hence $\left|M_{n^{\prime} n^{\prime \prime} \mid}\right|$ and therefore $p$ cannot be estimated. It is therofore not understood how ( $\mathrm{R} \& \mathrm{R}$ ) could get the values of $\left|M_{n^{\prime} n^{\prime \prime}}\right|$ and hence $p$. It has, however, been noticed that ( $\mathrm{R} \& \mathrm{R}$ ) have assumed $D\left(n^{\prime} n^{\prime \prime}\right)$ to be itself the "overlap integral" and have taken the square of it to be the value of $p$ for the condition under which the electronic transition moment is supposed to vary with $R$. This is obviously wrong, since it involves the assumptions that $C\left(n^{\prime} n^{\prime \prime}\right)=0, c=1$ and $\rho=1$, which are untenable. As has been shown,
$D\left(n^{\prime} n^{\prime \prime}\right)$ taken along with the factor $\rho$ is only an additional term to $C^{\prime}\left(n^{\prime} n^{\prime \prime}\right)$, to take account of the variation of electronic transition moment with $R$ in the calculation of transition probabilities. Further, the numorical values given by ( $\mathrm{R} \& \mathrm{R}$ ) for $I\left(n^{\prime} n^{\prime \prime}\right)$ are also wrong since the values of $C\left(n^{\prime} n^{\prime \prime}\right)$ on which they depend have been shown to be erroneous.

Apart from the two fundamental defects from which the calculations of ( $R \&$ IR) suffer, there are some minor corrections required which are not so significant as to need a particular note. As a consequenco of these defects the main results of their calculations are erroneous. Hence, the conclusions drawn by them from the comparative study of those results in torms of the values of Jarmain, Fraser and Nicholls (1955) cannot sustain.

## AOKNOWLEDGMENT

One of the authors (N.S M.) acknowledges his gratitude to the Ministry of Education, Government of India, for the award of a Senor Research Training Scholarship which enabled him to participate in thas particular piece of work in the genoral programme in hand.

## REFERENCEN

Jarmain, W. R., Fresor, P. A., and Nicholls R W., 1955, Astrophys. J., 122, 55. Mannoback, C., 1951, Physıca, 17, 1001.
Manneburk, C. und Rahman, A., 1954, Physica, 20, 497.
Rao, P. S. and Ranade, J. D., 1957, Ind. J. Phy., 31, 491.
Shuler, K. E., 1950 , J. Chem. Phys., 18, 1221.
1952, Proo. Phys. Soc. (London), A65, 70.
Tawde, N. R., Patıl, B S., Sroodharu Murthy, N. and Kattı, M. R., 1957, Physica, 23, 154.

