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ABSTRACT. Tho enorgy oigen vulues of a singlo partielo moving in an anisotropic
harmonic oscillalor potential have boen culenlated assummy that the equipotontial surfuco
coincides with the nuclear surfaco It has boen found that in the rare-carth rogion tho shell
madol enorgy levels of a single particlo depond senmitively on the deviution of the nucloar
shapo from cylindrical symmetry, Caleulations huvo heon done upto Cadt cora and i, 18
found that the enorgeticully stuble form of tho nucleus corvesponds to oithm ¥ — 0 or 27/3.
11 1w also found thai the total onevgy of an oblate nuclous 18 about 2 Mov greator than that
ot a prolate ono, which is consistent with tho observod positive oxeess of quadrupolo momont:
m the raro-earth region.

1. INTRODUCTION

Tn the region of the rare-earth nueclei (A — 150 1o 190) vory large positive
quadrupole moments have been ohserved, which indicates that these nuclei are
strongly deformed. Moreover, it has been found (A. Bohr, 1954) that the first
exciled level of the majority of these nucler are of collective rotational origin.
The fact that the energies of these levels are proportional to I (7 { 1) (where Iis
the spin of the level), mndicates that these nuclei have cylmdreal symmetry.
From these {wo observations one can infer that the nucleon configuration in the
vare-earth region prefers energitically a prolate deformation  The object of the
present paper is to see whether this is so, if the nucleons are assumed to be moving
iu an average deformed potential.

From the self-consistency condition it is obvious that the strength of the
nuclear potential is proportional to the particle density inside the nucleus. Hence
one can conclude that at the nuclear surface the equipotential surface more or loss
comeides with the nuclear surface. Starting from this the energy eigen values
of a single particle have been calculated by various workers, (Moszkowski, 1955 ;
Nilsson, 1955 ; Gottiried, 1956) using reciangular well of infinite depth, harmonic
oscillator potential and rectangular well of fimte depth respectively. But they
have {entatively assumed a cylindrical symmetry of the nucleus. Gottfried
(1956), however, showed that for a rectangular woll of finite depth the nucleus
prefors a cylindrical symmetry. But in his calculations the positive and negative
tadrupole moments are found to be equally probable.
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We have taken here an amsotropic harmonic oscillator potential and applying
the usnal perturbation treatment have caleulated the energy eigen values for
ifferent. elhipsordal shapes.  This paper contains the results up to N = 20, while
the oxact machine caleulation for hngher levels arve in progress and will be re.
ported m due course.

2. MATHEMATICAL YORMULATION

Let the hanultovian of a single particle of mass M. moving in an average

field, VP(xr) he

_ W2, ’ ( s
= — Sl A'+V(x')+C 1.8 DY o (M
whore the last two termis ave added to gel (he zero-ovder shell sh'urt\m'c levels,
(Nilsson  1955).

For amsotropic harmonic osallator fiold one can write,

V(') — 1 M(0?,. 224y +o, 2'?). Y (@

where ¥’ gives the position of the particle with respect to a hody-fixed system of
axes (X', Y, Z’) Ti is customary to choose (X', Y, Z’) as the princapal axes of
the nucleus, (A. Bohr 1953) whose surlace is

Ty = AR 1 agVog(0'(") 4 aof Vaul0'h)-) Yo o(0'P' N e ()
The parameter A i (3) preserves the nuclear volume. By st.r:‘ughl]orwm-d mte-

gration one can show from (3) that

a7z
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A3 — 14 3 (a24-2a,2) | 16 e (et g3 —Beaye1,*) e (1)
am 35\ 167

(without, any approximation)

Equating the length of the major axes from (2) and (3), and noting that the volume
of the nucleus remaing constant under deformation, it is easy to see that (2)
can be writlen as

V(r') = 3 MRRTEAT{L- fulagta)}r®-Hfal@gan)r Y og(0'¢") +folagas) 2
1Yo(@@)+ Yymn(9'0))] o ()

where (KR, 2)! = «,° is the zero-order harmonic oscillator frequency, and
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noglecting higher order terms,

So (1) becomes

H=- ‘:II;'I A"+ § Mosg?® (agg)r™[1-} polagtts) Yoo(6'9") +py(ags)
{Y (') + Yy g(0'¢)} ('Y s +DI?]
where Wglys) = og® A1 £ (a )} /2

Polagty) — lj;‘(/{fgg:t)a_,)

and
Dalgts) = 1*{}(:231’:,(%)

Introducing the usual dimensionless co-ordinate

T == z’ etc and two new parameters

_\/ M mo(l;‘;rq:g)_
h

C’
x=—1 fia®,
9
V=
etquation (7) becomes
B = = A ) L hpoeR

where

R = 4] Vo09) + P (Tusl0)+ Yool O)] =25 —
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In (11) we have introduced a new parameter

£ Pz(“o%), ﬂ)“ﬂe)
X Tl

= fltaa) . (12)

3. DETERMINATION OF THE ENERGY-LEVELS

It can be shown that the r-dependent part of the hamiltonian H as given
by ecquation (10) commutes with the operators I, I, & S,, where 1 is the orbital
angular momentum, [, its projection on z-axis and 8 the z-component of the spin
S of the particle. Hence the base vector | NI1.8,> can be obtained krnm the
zoro-th order equation of motion \

0
- ’ign (v—r%) | NILS, > — B, | N 11,8, > Lo (3)

The radial part of the eigen ket appearing in (13) looks like

21("+1) 1, —3r2y 4%
| Nl > o= ‘\/[P(n+l+3/2]3re LY () e (14)

while the orbital part is ¥y, (6¢), with usual notation.

In (14) N=2n-+1 (where # can assume positive integral values, defines the
radial quantum number.

Unfortunately none of the above operators commute with the total hamil-
tonian II as given in equation (10). But it can be readily shown that to a first
approximation, j, commutes with H, where j, is the z-component of the total
angular momentum j (= 1--s) of the particle. Thus one can take the actual
cigen function of a single particle in an ellipsoidal ficld as

| Nje > = By, g | Niom 34> g | NicH—i>1 o (19

Using this wave function the energy eigen values can be easily calculated from
equation (10) from a set of secular equations. The expression for total energy of
a single particle moving in an ellipsoidal field is

E(Nj.ay,) = (N+3/2)hoyagas)+yo, < B > e (16)
The evaluation of < R > is shown in the appendix.

The parameters ¥ and w,® in (16) are so chosen that the energy levels corres-
pond to the Klinkenberg’s (1952) level scheme in the limit of zero deformation,
(@9 = a, =0). For A > 100, %0, ~ 8.8Mev and y is 0.05. The parmeter /



Azial Stability of a Deformed Nucleus 169

Jefined in equation (9b) is of importance only when N > 2.
18 ~ 0.4,

In general, its value

In calculating the energy eigon values we have miroduced two new deforma-
tion parameters § and y defined by

ay = f} cony

ve (17a)
wy, = 1 fsin y ... (17b)
Vv 2

A look at equation (3) will show that if y = 0 the surface of the nucleus be-
comes a prolate spheroid about Z'-axis and if y = 7 it is an oblate spheriod.
In between these two values of v the surface 1s a general ellipsoid.
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Ig, 1. Tho variation of tho energy eigon values of a singlo particle moving in an anisotropie
harmonio oscillator potentinl with y for N =0 wnd 1,
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We have taken f as 0.3 which approximately corresponds to the doformadtion
of Lu'® (as calculated from the mtrinsic quadrupole moment). The variations
of the energy eigen valuc of a single particle with y are presented in figures 1 and
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Tig. 2. Tho varintion of tho onergy eigon valuos of u sngle particlo with y for N — 2.

2 for N = 0, L and 2 respectively.  From these figures 1t 18 obvious that the posi-
tions of the cnergy levels depend sensitively on the chawce of y.  The energy levels
of u single particle in a central field approximation (¢y = «, =— 0) have also been
shown m figures 1 and 2. Figure 3 1illustrates the varation of the parameter £
with y.

Since the interactions between the nucleons are neglected in assuming an
average field. the total energy of the nucleus is simply given by the sum of tho
cnergies of the individual particles. TIn this way total energy of the Ca®-corc
part of Lu'? is plotied against y in figure 4, from which one can sce that. thero aic
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Ing. 3. The deformation parameter { agrinst Y.
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Fig. 4, The caloulated total energy for the Cat0 core plotted agamst y.
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two minima, one at y=0 and the other at y = 27/3 of which the first corresponds
to a prolate shape. It is rather surprising that such a minimum should occur at
y = 27/3, which does not preserve axial symmetry of the nucleus. Up till now
we have not been able to explain this, but this may be smoothed out if one goex
above the magic number 20. 1t is found that the difference in energy 1
approxumately 2 Mev betwoen a prolate and an oblate nucleus which is rather
encouraging since tho nuclei under our consideration prefer a prolate form.

Similar calculations for N>2 are m progress and will be 1eported m duc
course.
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APPENDIX

The evaluation of the matrix R

For N < 2, 1l 18 casy to scc

<R > = < NUUSL| }ErtY,y—20.S|Nllys, > e (1)

T'(n--1)T(n'-| 1) 172 ,
E[ I‘(_ab—i—t—v+1)[‘(n'+t,_v:+l)] vive,

-

Z o I(t-}-o--1) .
— al(n—a)l(n'—0o)! (c+v—n)l(c+v —n)!

\/4_“ 241 _projer, > . < 200]200 >.
7

2041
—2< U,8,)0. B (LL,S,> wee (1b)
where v=3(l'—14+2) _
v o= 3(l—V'+2)
and t = 3(14-1'+3)

The condition on the summation variables o is
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The Clebsch-Gordon coefficients appearing in equation (1b) are those defined
by Condon and Shortley (1936).

The non-vanishing elements of < I't'8,'|I. §|11.8, >

are <UL T3S, 4y > = 1 VAT ¢ FD) o (20)
and
<UL+3|l- 8L +£L > = .3, (2b)

Tn (1a) the Y,y(08)-]- ¥,_o(0@) term has been neglected since m tho first ordor
approximation, its contribution is negligible. The non-diagonal terms (N / N')
m equation (1b) are also of second order importance.
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