ON THE APPLICATION OF AN ELECTRONIC DIFFERENTIAL ANALYSER FOR FINDING THE ROOTS OF A POL.YNOMIAL

B. R. NAG
Ingtidute of Radio Physics and Elloctronics, Calcutta University
(Recenved for publicatoon, August 20, 11157)

Abstract

A method of finding the roots of a polynomial with roil coefficients by on olectronic difierential analyser is doscribed. The princeple underlyng the mothod is io sot up in the analyser a systom having a transfer function, of which the numerbior is the polynomial whose roots are to be obtamed. The denominator of the transfer function is a suitably chosen polynomial. IRoots of tho polynomial are then oblained by detormining the frequencios at which the system givos zoro output.

INTRODUCTION

Different methods of utilising a differential analyser for finding the roots of a polynomial have been investigated. Atkmsen has described a method of ohtaining the roal roots of a polynomial by electromechanical analysers. The same method can also be appliod for obtainung complex roots by breakiug the polynomial into real and imagmary parts. However, simpler methods using an electronic analyser have been described, which give both real and complex roots directly.

In the harmonic synthesis method the variable is represented as re ${ }^{\text {sut }}=$ $r \cos \omega t+j r \sin \omega t$. The polynomial is constructed by generating the terms $r \cos \omega t, r \sin \omega t, r^{2} \cos 2 \omega t, r^{2} \sin 2 \omega t \ldots \ldots$.etc., multiplying them by the proper coefficients of the polynomial and adding them. The quantities cos ωt, sin ωt. $\cos 2 \omega t, \sin 2 \omega t, \ldots$ etc. are first generated by setting oscillators on the analyser having the frequencies $\omega, 2 \omega, \ldots$ otc. Multiplication of these quantities by r, $r^{2} \ldots$ cte. is done by a set of ganged potentiometers. Evidently, a root of the polynomial can be obtained by determining the value of r and ωt which make both the real and the imaginary parts of the polynomial vanish simultaneously. The method is simple but has the disadvantage of requiring a large number of operational amplifiers. An n degree polynomial may require as many as ($5 n+2$) operational amplifiers.

In another method suggested by Cahn (1956) the roots of a polynomial are obtained by determining the frequencies of maintained oscillations of a system having a transfer function, the denominator polynomial of which is identical to the given polynomial. This method requires a smaller number of computing
elements, an n degree polynomial requiring ($2 n+1$) operational amplifiers. This reduction in the number of operational amplifiers is a great advantage when the polynomial is of high degree. However, in this method, after obtaining one root, the polynomial has to be reduced in ordor to obtain tho remaming roots. This reduction may impair the accuracy of the roots and also medves a new arrangement of the computer for finding each root Determination of the frequency of a maintined oscillation also requires a large time in slow computors

In this paper a method is suggested, which requires a small number of operatoonal amplifiers and no reduction of the polynomal. The method is similar to that employed in potential analogues. The roots are obatined by determining the frequencies of zero output of a systom having a transfer function the numerator of which is the given polynomial. The donominator polynomial is, however, chosen suitably. In contrast to the potential analogue method, the residues of the transfer function at the poles are not required to be calculated and the poles can be easily variod without altermg the set up of the analyser This facilitates acemrate determination of the fiequencies of zero output of the system.

PR1NCIPLEOFTHEMETHOD

Let the polynomial be given by

$$
f^{\prime}(z)=a_{l n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}
$$

where $u_{n}, u_{n-1} \ldots u_{0}$ are all real.
The variable z may be represented by the complex frequency p Now, theoretically, a system having the transfer function $f(p)$ can be set on an analyser This system requires differentıators, which, when put in cascade, give at their outputs the voltages $p E_{n}, p^{2} E_{1 n}, \ldots$ ete when $E_{1 n}$ is applied to the input of the casraded system These when multipliod by the respective coefficients and added, gives $f(p) E_{1 n}$. However, in prachice, it is difficult to set such a system. Since the system gain increases with frequency, it has a tendency to become unstable due to stray coupling between the output and mput In addition, extraneous noise is very much amplified in this system.

On the other hand, a system having the transfor function $\begin{aligned} & f(p) \\ & D(p)\end{aligned}$ can be casily constructed where $D(p)$ is a polynomial of the same order as $f(p)$ and has roots with real parts negative and greater than 1.

We first note that $\frac{f(p)}{\bar{D}(p)}$ can be written as $\frac{1}{1+\frac{D_{1}(p)}{f(p)}}$, where $D_{1}(p)=D(p)$. --f(p). Thus if a system having the transfer function $\frac{D_{1}(p)}{f(p)}$ is available one can
realise a system of transfer function $\frac{f(p)}{D(p)}$ in the manner indicated in figure 1

Fig. 1. Arrangoment of the analyer for roalsing a systom having the transfor function $\frac{f(p)}{D(p)}$ whon a syatem having the transfer function $\frac{D_{1}(p)}{f(p)}$ is avalablo.

For obtaming the system with the transfer function $\frac{D_{1}(p)}{f(p)}$, the analyser is arranged to solve the equation $\int(p) E_{\text {out }}=E_{\text {in1 }}$. Then from the outputs of the integrators are obtamed the voltages $\frac{p^{n}}{f(p)} E_{i n 1}, \begin{aligned} & p^{n-1} \\ & f(p)\end{aligned} E_{i n 1} \ldots$ etc.. which, when multuplied by the roefficients of $D_{1}(p)$ and added, give $\begin{gathered}D_{1}(p) \\ f(p)\end{gathered} \quad \dot{E}_{1 n_{1}}$.

Fig. 2. Arrangement of the analyser for finding the roots of a fourth dogroe polynomial

The above principle is illustrated in figure 2 which shows the set up of the analyser for finding the roots of a polynomial of fourth degrec. $a_{9}{ }^{\prime}, a_{2}{ }^{\prime} \ldots a_{0}{ }^{\prime}$ are the coefficients of $D_{1}(p)$.

Evidently, the values of p for which this system gives zero output aro the roots of the polynomial.

METHOD OF SEARCHING THE ROOTS

Roots of the polynomial may be roal, imaginary or complex.
For soarching real and complex roots, there should be provison for transforming the system with transfer function $\frac{f(p)}{D(p)}$ into one having the transfer function $\int\left(\frac{p+\alpha)}{}\right.$, where α is a real quantity and can be varied betweon +1 to -1 . This $I(p+\alpha)$ transformation is done by applying feedback from the output of the integrators to the mputs through potentiomelers set to α. For making α negative, the feedback is appled from the output of the inverter following the integrator. On ganging all the α-potentiometers, as shown in figure $2, \alpha$ can be easily varied between the required limits

For searching real roots a d.c. voltage is applied to the mput and the α-potentiometers adjusted for zero output. The setting of α which gives a zero $E_{\text {out }}$ is a real root of the polynomial.

For searching complex roots a sinusoidal voltage is applied to the input. The froquency of this voltage and α are varied alternately till a zero output is obtamed. It may be noted that on transforming the syatem $\frac{f(p)}{D(p)}$ to the system $f(p+\alpha)$, effectively the imaginary axis in the p plane is shifted to the right by
$D(p+\alpha)$ α. Hence if α is so adjusted that the complex root lies on the shifted imaginary axis the output becomes zero when the input has a frequency equal to the imaginary part of the root. Thus the frequency of the input and the setting of α for zero output give respectively the imaginary and real part of the complex root. To make the searching of the complex root systematic, the input voltage may be supplied by a sweep frequency oscillator and then one has only to vary α to find the root. Once a root is approximately located it may, however, be located accuratoly later by close searching

For searching an imaginary root it is obvious that one needs only set α zero and find the frequency of the inpat voltage for zero output.

The method enables location of roots having real parts respectively within the range +1 to -1 and imaginary within the range $\omega_{h} C R$ to $\omega_{l} C R$, where ω_{h} and ω_{1} are the highest and lowest frequencies of the oscillator and $C R$ is the time
constant of the integrators. Roots lying outside these limits can be found by properly transforming the polynomial.

Chorce of $D(p)$

The roots of $D(p)$ are the poles of the transfer function of the system and since, while searching the roots of the polynomial, α may be set to -1 , the real part of the roots of $D(p)$ should be negative and greater than 1 . The roots of $D(p)$ may be made real and placed far away from the region where the roots of $f(p)$ are soarched. In that case the output of the system will vary exactly in accordance: with the nature of the polynomial. However, placing of the roots of $D(p)$ far away resulte in reduction of the gam of the system on one hand, and on the other, mereases the values of the coefficients of $D(p)$. These effects obviously necessitate the use of a high gain null detector and large gam operational amplifiers. To avord these difficultios the roots of $D(p)$ are plared only slightly away to the left of -1 , and to ensure that the d.c. loop gam is not ineonvenently mcreased whon α is set -1 , the roots are chosen to be complex.

Once the roots of $f^{\prime}(p)$ are approximately known, $D(p)$ may be modified by altering the coefficients of $D_{1}(p)$ so that its roots he very near to the left of the root of $f(p)$ being searched. This would facilitate location of the roots of $f(p)$, specially when they are close together

AOCURACY OTROOT LOCATJON•

The straightforward mothod of determming the accuracy of the roots obtained by an experimental method is to check them agamst the actual roots of the polynomial. However, a good measure of the accuracy of a root is also provided by the value of the polynomial obtamed by sulstituting this root in it. Obvoously it this value is zero, it mdicates that the root is cent per cent accurate. In polynomials, in which the value depends very critically on the values of the coofficients this method of estimating the accuracy may mdicate large error. In such cases one may alternatively judge the accuracy by forming a polynomial with the roots obtained and checking how far the coefficients of the polynomial so found agree with those of the origmal polynomial. If the variation is found to lie within the tolerance limits expected from mstrumental limitations, the roots are accepted

The limits of tolerance expected of the analyser as a whole may be ostimated by ascertaining the errors introduced due to imperfections of the computing elements and to inaccuracies in the values of the computing networks. The amplfiers used in the adders and integrators have finite gan and band-width, hence they perform the operations required of them over a limited range of frequency with a certain prescribed accuracy. However, when the time scale of the computer is properly selected, the adders introduce errors which may bo included m
the values of the network elements. The integrators, however, always operate by $\frac{1}{p^{-1}-\alpha_{0}}$ instead of by $-\frac{1}{p}, \alpha_{0}$ being determined by the d.e gain of the amplifier and loss resistance of the integrating capacitor. This results in an error in the value of α However, α_{0} can be determined and corrected for in the value of the root obtained. The maccuracy of the computing networks introduces maceuracy in the rocfficients of the polynomial and can le estimated on knowing the tolerance of the network elements for any particular polynomial.

The method discussed here has been applied to delermme the roots of a few polynomials employng the electronic differential analyser, installed at the Institute of Radio Physics nud Electronics, Calcutta The roots were found to be aceurate up to the second decomal place.

ACKNOWLEDGMENTS

The author is docply medebted to Professor J. N. Bhar for his constant help and guidance. He wishes to express has gratitude to Sri A K. Choudhury and Sir N. B Chakraborty for valuable descussions

The author is also grateful to Professor S. K Mitra for his kind interest in the work.

REFERENCES

(Gutm C R., 195f, Rew. Sr Instr., 27, 856.
Chorry. IA. C., 1952, Proce日dings of the Symposium on Modorn Network Synthesis (Now York, N.Y.), 140.
Johnson, (. L., 1956, Analog Computer 'Jechniguo (Me-Graw Hill Book Co. Ine., Now York).
Soroka, W W, 1954, Analog Mothods in Computation and Simulation (Mc-Graw JIIl) Book Co. Ine., New York).

