NEW EVIDENCE FOR A PARTICLE OF MASS ~ 525 mc

NILIMA BASU and M. S. SINHA
Bose Institute, Caloutta
(Received for publicution, March 28, 1958)

Abstract

While photographing stopped muons in a multiplate cloud chamber at Culcutta (sea level $12^{\circ} \mathrm{N}$) nine pictures wore obtained in which the rate of ohange of ionisaIon of the particles and thoir rosidual ranges were not compatible with that shown either hy mu-mesons or by protons. Thour mass values were oblained by measuring thoir change in ionisation in the successive gaps and thoir decrease in residual ranges. Ionisation was measured by drop counting. It was found that five of these particles gave an average mass valac, $528 \pm 34 \mathrm{~m}_{e}$ and the remaining four an average of $280 \pm 21 \mathrm{~m}_{e}$. The closo proximity of liho latier value with the pion mass is a strong indioation for the corroctness of the method enployod. A probablo decay evont of the particle of mass $\sim 528 \mathrm{~m}_{\boldsymbol{e}}$ has also been givon.

1. INTRODUCTION

Tho experiments of Alikhanyan et ul. (1948) and his collaborators at an altitude of 3250 mertes with several sots of G.M. counters and lead absorbers placed in a magnetic field indicated for the first time the possible existence of mesons of various masses as deduced from their magnetic deflections and residual ranges. The sume group of workers also confirmed this evidonce from observations in photographic plates Jn 1952 a few events were obtained by Shapire (1952) and Perkins (1952) in photographic cmulsions in which a primary particle of mass $\sim 525 m_{e}$ was observod to undergo a small deflection aftor which the averago scattering of the particle increased two fold pointing to a decrease in mass by a factor of two. These authors interpreted the data as the decay of a particle which was called $\zeta^{ \pm}$according to the mode

$$
\begin{equation*}
\zeta^{ \pm} \rightarrow \pi \pi^{\text {上 }}+\pi^{0}+Q(\mathrm{a} \text { fow } \mathrm{Mev}) \tag{1}
\end{equation*}
$$

Lator, Daniel and Perkins (1954) stated that all such events, excopt only one, could be explained as a normal spread of mass values centred on the pion mass. Thore were, furthermore, three cases obtained by Leighton and Wanlass (1952) in a cloud chamber operated in a magnetic field where a visual estimate of ionisation and ineasured momentum gave the mass value $450 \pm 150,550 \pm 150,750$ ± 150 of which the first two are highly incompatible with either the pion or the K-moson mass. Three doubtful cases of the existence of such particles have been reported by Inoki et al. (1957) from the study of slow meson masses.

Recently an investigation was carried out by the authors (1957) to determine the slow meson intensity at Calcutta $\left(12^{\circ} \mathrm{N}\right)$ by stopping these particles in a multi-
plate cloud chamber fittod with five half inch Cu-plates and triggered by a threofold coincidence cum anti-coincidence method. In course of analysis of the pictures nine cases woro observed, where the change in ionisation of the track of the particle from gap to gap was much slower than that of a normal mu-meson but more rapid than that of a proton or a K-meson. The ionisation produced by these particles was estimated by drop counting in the different gaps and the mass of each particle was detormined by two methods, which although slightly interdependent, help to reduce the statistical error. It is found that five of these particles exhibit a mean value of mass $528 \pm 34 \mathrm{~m}_{e}$ and the remaining four a mean value $280 \pm 21 \mathrm{~m}_{0}$. The close proximity of the mass value of the second group with the pion mass appears to be a strong evidence for the correctness of the mothod. A preliminary report has been given by the authors (1958) in science and Culture, March, 1958.

2. THE METHOD

The change in ionisation of a singly chargod particle on passing through a cortain thickness of matter can be easily converted into the corresponding change in $p / \mu\left(=\beta / \sqrt{1-}-\overline{\beta^{2}}\right)$ of the particle from one side of the plate to the other from the $I / I_{m}-p / \mu$ curves (figure 1). We then use the following equation of Lussis and Greisen (1941) valid for a small momentum interval.

Fig. 1.

$$
\begin{equation*}
\Delta R=R\binom{p_{2}}{\mu}-R\binom{p_{1}}{\mu}=\frac{M}{2 C B}\left[\frac{\left(p_{2} / \mu\right)^{2}+2}{\left\{\left(p_{2} / \mu\right)^{2}+1\right\}^{\frac{1}{\mathrm{~B}}}}-\frac{\left(p_{1} / \mu\right)^{2}+2}{\left\{(p / \mu)^{2}+1\right\}^{i}}\right] \cdots \tag{2}
\end{equation*}
$$

where ΔR is the thicknoss in $\mathrm{g} / \mathrm{cm}^{2}$ of the plate, on passing through which the romsation of the particle changes by such an amount as to reduce the value of ${ }_{\text {ti, }} \nu_{1} / \mu$ from p_{2} / μ to p_{1} / μ. $\quad M$ is 1 ts mass in clectron mass units, C is a constant for the material used and B is a slowly varying function of p / μ. For copper, the material used in this cloud chamber,

$$
C=6.84 \times 10^{-2} \text { and } B=15.71+9.21 \log _{\mathrm{u}}(p / \mu)-\frac{2}{1-\gamma(p / \mu)^{-2}}
$$

[1. should be noted that ΔR is known accurately and the accuracy of the value of the mass determined from equation (2) essontially depends on the accuracy with which the ionisation of the particle can be moasured in the different gaps and the number of gaps available for such measurement. It should also be emphasised that this method of mass determination is quite unsuitable for very heary particles, such as protons where the change in ionisation from plate to plate is quite small and also for vory light particles such as mu-mosons where the number of gaps a vailable for measurement (after $I / 1_{m}>1.5$) is one or almost two. But, for a partucle of mass $\sim 500 \mathrm{~m}_{e}$, the change in I / I_{m} as well as the number of gaps in whech such changes can be estimated are optimum for the determination of tho miss from equation (2).

First of all drop counting was made on thirty selected mu-meson tracks of uniform minimum ronisation which showed less than 0.5° of scattoring in all the five half meh copper plates inside the chamber. They were obtaned by triggermy the chambor with 3 -fold coincidence only. The track in each gap was divided into about thirty cells of length equal to the width of the track and the number of drops in each coll was counted after magnifying tho track to eight times its actual dmension at the time of formation. Back-ground counts of silver grains were mado on both sides of the track at the same time and subtracted from the total counts per cell on the track. The statistical fluctuation of the background counts was small and uniform and the overall statistical error in the final counts per cell of the thirty minimum ionisation tracks was less than 6%. Whenever a portion of minimum ionisation track was available in the picture containing the heavy track, drop counts were made on it and found to agree with the value oblamed from the measurement on the thirty mu-meson tracks. The cloud chamber pressure, the delay of light flash, and the developing procedure of the film were kept uniformly constant throughout the experiment. Out of about five hundred particles stopped inside the cloud chamber the rate of change of ionisation in the successive gaps was apparently smaller than that of mu-mosons in nine cases. Seven of the particles stopped in tho fourth plate and two in the third plate and in
each of them drop counts were made on both the stereo views in all the gaps Back ground counts made on the same negative on the two sides of the track were

Fig. 2.
then subtracted and the resulting number of drops per unit cell found out. The ratio of the average count in any gap to the average count for the thirty mumeson tracks was taken to be the ionisation of the particle in that gap. The
chamber gas was argon and the number of ion-pairs produced per cell was so high that the error due to overlap of drop images was moro than fifteen per cent when the track showed more than three times minimum ionisation and no attempt at estimation of ionisation was made above this valuc. The values of ionisation of the nine particles in the different gaps obtained in this way are given in Table I.

All the five tracks of tho heavy particles are shown in figure 2(a), (b), (c) (d) and (e) and two of the lighter tracks which gave mass values close to the pion mass are shown in figure 3(a), (b) of which the latter shows a visille decay electron. It will be seen from Table I, that although seven of the uine particles stopped in the fourth plate, ionisation measurements in the fourth gap were too high to be measured in two cases. Measurements on the first gap of those tracks which were near minimum in those portions were not carried out extonsively. Measuremeut in gap 2 of picture no. 11505 could not be made owing to the distorted nature of the track in this gap.

Fig. 3.
All these ionisation estimates were then converted into p / μ values from R the $I / I_{m}-p / \mu$ curve (figure 1) valid for an argon filled chamber. From Table I we find that at least three such p / μ values were available for each particle which provided us with three independent estimates $(12,23,13)$ of the mass value from oquation 2. Obviously p / μ values have asymmetric statistical errors and so

TABLE I
Ionisation estimates of nine particles

Pioture number	Value of $\mathrm{I} / 1_{m}$ above plate number			
	1	2	3	4
12050	1.46 ± 0.16		2.02 ± 0.18	2.92 ± 0.22
8610	1.52 ± 0.14	1.70 ± 0.17	2.65 ± 023	
2700	1.59 ± 0.16	1.94 ± 0.18	2.60 ± 0.20	
3705		1.47 ± 0.17	1.79 ± 0.19	2.31 ± 0.20
1605	1.33 ± 0.11	167 ± 0.12	2.74 ± 0.21	
12616	1.40 ± 0.12	1.66 ± 0.14	2.70 ± 0.20	
1715		1.32 ± 0.11	1.65 ± 0.14	3.18 ± 0.32
3700		1.34 ± 0.18	1.76 ± 0.20	3.11 ± 0.24

also these three individual mass values, which together with their six extiemo values were combined to obtain an average mass for the particle and its standard deviation. These average values are shown in column two of Table II.

It is well known that apart from the error in counting and the error due to overlap of the drops in highly ionising tracks, the ionisation process itself is a statistically fluctuating phenomenon, and the correction due to this was incorporated in the following way. The p / μ values obtained for the rarious gajs were converted to R / μ values for Cu (shown in figure 1) and then for each gap, the total expected residual range of the particle was found out from the mean value of the mass obtained for that particle in the above manner and its R / μ value for that gap. In this way the expected repidual ranges of a particular particlo after each of throe gaps were known from the ionisation in these gaps and since the thrcknews of each plate is known accurately, the data gave us the mean expected range of the particle in the plate in which it stopped. It should be noted that in obtaining the range of the particle in the last plate we have taken into account the ionisation of the particle in at least three gaps and the mean of this range is given in column 3 of Table II. The experimental residual range at any gap is now fixcl, being the total matter subsequently passed through by the particle plus its mean range in the last plate as obtained above.

If we now combine the R / μ values as obtained from figure 1 from the ionisation estimates of the particle in each gap with its experimental residual range corresponding to that gap we shall get a value of the mass of the particle. We have given in column 4, Table II, the mass values obtained by the second method.

The two mass values thus obtainod for each particle are then combined and the mean with its standard deviation given in the fifth column. It will be seen that the mean values obtained for the first five particles (first group) are highly incom. patible with the mase of a pion or a K-meson, whereas the mean values obtained for the last four particles (second group) are quite consistent with the pion-mass. We have lastly assumed that the particles in the first group have actually the same mass and so also those in the second group and a grand mean for the two groups is given in the last column with its probable error as computed from the whole data for that group.

TABLE II
Mass values of the nine particles

Picture number	$\underset{\substack{\operatorname{melhod} \\ m_{\mathrm{e}}}}{\Delta R-\Delta(p / \mu)}$	Range in last plato $\left(\mathrm{g} / \mathrm{cm}^{2}\right.$ of Cu)	$\underset{\substack{R-R / \mu \\ \text { method } \\ m_{e}}}{\text { nen }}$	$\underset{m_{0}}{\text { Mean mass }^{2}}$	$\underset{m_{e}}{\text { Graand mean }}$
11505	538 ± 171	8.5	607 ± 141	572 ± 91	
12505	568 ± 120	11.0	610 ± 120	589 ± 65	
8610	484 ± 210	0.7	573 ± 210	528 ± 123	528 ± 34
2700	483 ± 187	0	584 ± 156	533 ± 103	
3705	416 ± 156	8.6	426 ± 102	421 ± 76	
1605	250 ± 70	4.1	259 ± 45	254 ± 21	
12615	317 ± 69	4.8	328 ± 65	322 ± 20	
1715	256 ± 65	2.8	273 土 61	264 ± 28	280 ± 21
3700	271 ± 79	3.0	291 ± 85	281 ± 32	

Aruis, Bridge and Olbert (1953) have indicated a method of rough estimation of mass of particles stopping inside a multiplate cloud chamber by measuring the projected angle of multiple scattering in a certain plate and the residual range of the particle at that plate. The values of the product $\eta^{2}=\phi^{2} R^{2 \alpha}$ for eich plate was computod, where ϕ is the projected angle of scattering in a cerlan plate, R the residual range at the scattering plate and $\alpha=0.55$ for all eldments. The average value of η^{2} for a large number of scatterings is found out and then equated to a theoretical expression which is a function of the mass of the particle, the thickness of the scattering material and a factor which is constant for a particular scatterer. Although this method is not very accurate evon when at least seven or more scattering angles are available, we made an attompt to find in this way the mass of the particle in group one above by measuring the three projected angles of scattering and the residual ranges. The final mean value of the mass so determined is $537 \mathrm{~m}_{e}$ with an as symmetric statis-
tical error of nearly $\mathbf{2 0}$ per cent, if we assume that all the particles in group one are of the same mass, and exclude the scattering of the particle $2(b), 12505$ in the third plate which is too high to be due to multiple scattering. The general agrecmont of this value with the grand mean of group one particles in Table II is a strong support for the contention that the particlos do exbibit a mass value $\sim 525 \mathrm{~m}_{e}$.

Lastly, we want to mention that if the particle actually has a decay mode given by equation (1) it will be hard to observe the charged decay product in a multiplate cloud chamber since the resulting $\pi \pm$ will have a small range. The π^{0} can however undor suitable conditions be recognised by its subsoquent decay into two photons and their resultant electron cascade. It is very interesturg to note that the stopping of the particle (12505) in figure 2(b) in the fourth plate rosults in a heavy particle coming up towards the right which is stopped in the tirst plate it enters into and there is a pair of soft electrons towards the loft. The hoavy particle may be interpreted as the low energy pion and tho pair of electrons the effect of π^{0}. Alikhanyan et al. (1956) have also observed a pair of elec;trons coming out in two cases from the point of stopping of such a particle. These authors further report that particles of mass $\sim 550 \mathrm{~m}_{e}$ always appeared singly in their chamber and this agrees well with our observations that all the five particles have entered the chamber unaccompaniod by any secondary.

ACKNOWLEDGMENTS

This work was porformed with financial support from the A.E.C., Government of India. The authors are indebted to Dr. D. M. Boso, Director, Bose Instilute for his constant advice and encouragement.

REFERENCES

Alikhanyan, A F., et al., 1948, J. Exp. Theor. Phys., 18, 673. Alikhanyan, A. I. et al., 1956, ibid, 81, 955.
Annis, M., Bridgo, 15. S. and Olbert, 1953, Phys. Rev., 89, 1216.
Basu, N. and Sinha, M. S., 1956-57, Trans. Bose Res. Institute, 21.
Basu, N. and Sinha, M. S., 1958, Science and Culture, $23,496$.
Daniol, R. 1. and Perkins, D. H., 1954, Proc. Roy. Soc. A., $221,365$.
Inoki, M., Yasaki, T., Machida, M. and Matakairu, Y. 1957, Phys. Rev., 105, 1879.
Leighton, R. B. and Wanlass, S. D., 1952, Phys. Rev., 86, 426.
Perkins, D. H., 1952, Third Annual Rochoster Confor, Report 72.
Rossi, B. and Groisen, K. 1941, Rev. Mod. Phys., 18, 248.
Shapiro, M., 1952, Third Annual Rochester Conference Roport, p. 71.

