# A COMPACT INSTRUMENT FOR THE MEASUREMENT OF SURFACE TENSION OF LIQUIDS 

P. D. PATHAK and R. M. PATEL<br>M. G. Science Institutid, Ahmedabad<br>(Received for publication, January 8, 1958)


#### Abstract

An instrument, for the measurement of surface tension of liquids by a null method is described. The mothod of balancing the downward force of surface tension on tho edge of a thin glass plate by the upward hydrostatio pressure of tho liquid is used. Tho instrumont is quito compact, handy and sonsitivo and can be usod for rapid measuremont on a number of samples.


## INTRODUCTION

Except perhaps du Nouy's tensiometer, compact instruments for the moasurement of surface tonsion are not available. Invarinbly it is required to assemble a number of loose pieces and it is difficult to obtain accurate results unless extrome care is taken in their manipulation.

Meier (1949) has described a method on which the present instrument is based. He balanced the downward pull due to surface tension on a vertical wire immersed in water by the upthrust of water. Vankataraman (1955) has investigated the scope of the method in detail and found that it is capable of giving results with an accuracy of less than $0.1 \%$. It was thought desirable, therefore, to devise a compact instrument, which should have an advantage of sensitivity, accuracy and rapidity.


Fig. 1


Fig. 2.

1) ESCRIPTION OF THE INSTRUMENT

The instrument is described in figures 1 and $2 . W W$ is the torsion wire. $A B$ is the torsion arm fixed at, the contre of the wire. Tho glass plate $P$ is suspended from the end $B . C$ is the compensating weight.

Since the instrument is generally kopt closed to avoid disturbances due to draught, etc., it was inconvenient to adjust the weight $O$ every time to restore the horizontality of the torsion arm A light metal chain $E$ was wound on the $\operatorname{rod} D D$ and its other end was attached to the end $A$ of the torsion arm. By turning the knob $N_{1}$, the chan could be wound or unwound, thins decreasing or woreasing a slight weight on the cnd $A$. The supports $H H$ aro fixed in the box to allow the torsion arm to deflect in a restrictod range. A rod $M$ with a centimetre scale marked on it and a vernier $V$ aro attached at the end of the instrument. The vernier is fixed while the rod $M$ can be movod up and down by the rack and pinion motion with the help of the knob $N_{2}$. A glass tube $T$ with a flat bottom is attached to tho rod $M$ through a rubber cork as shown in figure 2. The whole assembly rests on the pillars $L L$ fixed to the base $F$.

## OPERATION OF THE INSTRUMENT

The glass plate $P$ is suspended from the end $B$ and the weight $C$ adjusted to koep the arm nearly horizontal. (Once adjusted, this position of the weight is not to be disturbed so long as the glass plate is the same.) The knob $N_{1}$ is then rotated until the arm is exactly horizontal. The glass plates $G G$ are put to illuminate the end $B$. Although we used a microscope to see the image of $B$, the observation could be taken without it. For this a small horizontal line is marked at the centre of each glass plate. The end $B$ is observed from the side
and the knob $N_{1}$ is turned until the lines and the end $B$ are one behind the other. The liquid is then poured in the beaker until its level is just near the lower edge of $B$. The glass tube is lowered by turning the knob $N_{2}$ so that the liquid level just touches the lower edge of $P$. This reading ( $H_{1}$ ) on the scale $M$ is noted. When the liquid level touches the plate, the latter is drawn downward by the force of surface tension. This force is balanced by the upthrust of the liquid by raising the level of the liquid sufficiently. This is done by lowering the glass tube $T$ until the end $B$ is restored to its original position. The reading $\left(H_{\mathfrak{z}}\right)$ on the scale is again noted and the difference $H_{2}-H_{1}$ is found.

When the torsion arm is restored to its horizontal position, the forces of surface tension and upthrust are equal.

$$
\begin{equation*}
\therefore \quad \gamma \cdot 2(l+t)=\rho g h \cdot l t \tag{1}
\end{equation*}
$$

where $\gamma$ is the surface tension of the liquid, $l$ the length of the edge of the glass plate in contact with water, $t$ the thickness of the plate, $\rho$ the density of the liquid and $h$ the height through which the liquid level is raised.

The height $h$ is connected with $H\left(=H_{2}-H_{1}\right)$ by the relation

$$
\begin{equation*}
h\left[\pi\left(R^{2}-r^{2}\right)-l \cdot t\right]=\pi r^{2} H \tag{2}
\end{equation*}
$$

where $R=$ radius of the beaker and $r=$ radius of the glass tube $T$.

$$
\begin{equation*}
\therefore \quad h=\frac{\pi r^{2} H}{\pi\left(R^{2}-r^{2}\right)}-i \cdot t \tag{3}
\end{equation*}
$$

Substituting this valuo of $h$ in eq. (1) we get
or

$$
\begin{gather*}
\gamma \cdot 2(l+t)=\frac{\rho g l t \cdot \pi}{\pi\left(R^{2}-r^{2}\right)} \frac{r^{2} H}{-l} \bar{t} \\
\left.\gamma=\overline{2} \overline{(l}+\frac{\rho g l t \cdot \pi r^{2} H}{\pi\left(R^{2}-r^{2}\right)-l t}\right] \tag{4}
\end{gather*}
$$

The above equation can be written as

$$
\begin{equation*}
\gamma / \rho=C \cdot H \quad \text { for a given instrument } \tag{5}
\end{equation*}
$$

where

$$
\left.C: \quad \frac{\pi r^{2} \cdot g l t}{2(l+t)\left[\pi\left(R^{2}-r^{2}\right)\right.}-l \bar{l}\right]
$$

Thus by drawing a graph of $\gamma / \rho$ against $H$ for different known liquids the constant $C$ of the instrument can be determined. Such a graph drawn from observation on some known liquids like benzene, carbon disulphide, chloroform is shown in figure 3.


Fig. 3.
Typical observations on benzene are given below :
Temperature of the liquid $=26^{\circ} \mathrm{C}$
Radius of the tube $T=r=1.22 \mathrm{cms}$.
Radius of the beaker $=R=3.28 \mathrm{cms}$.
Mean $H_{2}-H_{1}=H=4.280 \mathrm{cms}$.
Length of the plate $=l=1.550 \mathrm{cms}$.
Thickness of the plate $=t=0.101 \mathrm{~cm}$.
Density of benzene $=\rho=0.875 \mathrm{gm} . /$ c.c.
$g=980 \mathrm{~cm} . / \mathrm{Sec}^{2}$
Surface tension $=\gamma=28.08$ ( $\pm 0.088$ ) dynes $/ \mathrm{cm}$. from equation (4).
The accuracy of our method ( $0.32 \%$ ) may be compared with that obtained by Sugden (1921) with the capillary tube method whore it is stated that the possible orrors in the method may amount to $0.3 \%$.

## REFERENCES

Meier, F. A., 1949, School Science Review, 80, 112.
Sugden, Samual, 1921, Jour. Chem. Soc., 119, 1483.
Vonkataraman, S., 1955, Ind. J. Phys., 29, 522.

