P rospects for strangeness m easurem ent in ALIC E

R. Vemet ${ }^{1,}$,
(ALICE)
${ }^{1}$ C onsorzio COMETA, Catania, Italy

The study of strangeness production at LHC w ill bring signi cant inform ation on the bulk chem ical properties, its dynam ics and the hadronisation m echanism s involved at these energies. The A L IC E experim ent w ill m easure strange particles from topology (secondary vertices) and from resonance decays over a w ide range in transverse m om entum and shed light on this new QCD regim e. These m otivations will be presented as well as the identi cation perform ance of ALICE for strange hadrons.

I. INTRODUCTION

From the beginning of the search for the Q uark G luon P lasm a ($Q G P$), strangeness has been a powerful probe of the chem ical and dynam ical properties of the medium created in heavy-ion collisions. A n enhanced production of strangeness was originally considered as a main signature of a hot and therm alised system having partonic degrees of freedom. Indeed, the creation of strange quark-antiquark pairs in a medium in which quarks and gluons are decon ned should be larger than in a pure hadronic system, which should result in an enhancem ent of strange particles: the m ore strangeness they contain, the greater the enhancem ent [1]. In addition, because the volum e involved in heavy-ion collisions is much bigger than in sm all system s , a statistical relative enhancem ent of strange particles is also expected [2].

T he statistical hadron-resonance gas models at equilibrium, as well as W roblew ski factor predictions, describe successfilly the strange particle ratios at SPS and RH IC [3, 4], which indicates a chem ical equilibrium has been possibly reached, which a QGP may be the vector of. W hereas statistically understood, hadron production itself and its mecha-
nism s still rem ain an open question. Several so-called 'recom bination' m odels argue that tw o com petitive m echanism s govem hadron production: low - and interm ediate m om entum hadrons are m ainly created via coalescence of 'soft' quarks, while high m om enta are ruled by fragm entation $[5,6,7,8]$. This idea is con m ed experim entally by several results that reveala strong discrepancy betw een m eson and baryon production when considering observables such asm om entum distributions or nuclearm odi cation factors ($R_{C_{P}}$) [00, 10, 11]. The understanding of hadron production at the Large H adron C ollider (LH C) w ill im ply, therefore, the understanding of the relative contribution of these com peting m echanism s and how they interplay in the interm ediate m om entum region, where the baryon m eson discrepancy is m ore evident.

It is hence m andatory to m easure hadrons at LH C in a region of m om entum as wide as possible to understand the underlying Q CD processes. Strange secondary vertices and resonances o er the opportunity to do so, since their identi cation m ethods (topology and invariant m ass, respectively) m ay be lim ited by statistics only. Besides, resonances provide an additional possibility to investigate the collision dynam ics at its early tim es, in particular for probing the duration betw een chem ical and therm al freeze-outs.

W hile Pb-Pb collisions w ill provide exceptionalconditions to study the Q G P due to large volum e and lifetim e of the system, LHC's rst data will be p-p collisions, which w ill allow to probe values of B jorken-x never reached so far. In addition, $p-p$ collisions will not only serve as benchm ark for Pb-Pb physics, but will also be a way to test PQCD, which is of fundam ental interest in this new energy regim e. In that respect, the preparation of the tools to m easure strange particles at LH C is ofm a jor im portance, either in Pb-Pb or p-p colliding system s. A LIC E (A Large Ion C ollider Experim ent) is speci cally designed for the study of the Q GP at LH C. Thanks to its large acceptance and its highly-precise tracking apparatus, ALICE will satisfy the need of identifying strange particles in a range of p_{T} covering the soft, interm ediate and hard regim es.

In the two follow ing sections, we present A LIC E capabilities to m easure strange i) secondary vertices (w ith a particular em phasis on hyperons) and ii) resonances, considering the particles K^{0} (892) and (1020). W e describe the m ethods developed for the detection of these particles and show their expected reconstruction e ciencies and yields, and give a prospect of what can be achievable w ithin the rst $\mathrm{Pb}-\mathrm{Pb}$ and $\mathrm{p}-\mathrm{p}$ runs.

Strange particles K_{S}^{0}, , and decay, via weak interaction, few centim eters aw ay from the prim ary vertex. T herefore, their charged decay m odesm ay be identi ed using topological m ethods that consist in selecting daughter track candidates according to geom etricalcriteria, as show n in F igure 1 . The identi cation of $V^{0} s$, nam $e l y K_{S}^{0}!{ }^{+}$and ! p, is done applying geom etrical selections on the daughter im pact param eters (b^{+};b) , the distance of closest approach betw een the daughters (D C A) and the pointing angle. A condition on the V^{0} decay position is also im posed by m eans ofa ‘ducial zone', de ned by two extrem e radii in the transverse plane.

The identi cation of cascades (! and ! K) consists in associating a V^{0} candidate w ith a single track candidate (the bachelor'), using selections on the V^{0} m ass and im pact param eter, the DCA betw een the V^{0} and the bachelor, the bachelor im pact param eter, and the cascade pointing angle and transverse decay radius. T he detailed procedure can be found in reference [12].

Single particle identi cation ($P \mathrm{D}$) is not required in these m ethods, which m akes them especially e cient at interm ediate and high transverse m om enta, where energy loss and time of ight identi cation fail. A s a matter of fact, the studies presented in this section were obtained using the A L IC E tracking devices TPC and IT S, w ithout any requirem ent on singletrack energy loss inside these detectors.

The two follow ing subsections present respectively the secondary-vertex identi cation perform ance of A L IC E for Pb-Pb and p-p colliding system s.

A. H yperon reconstruction in Pb-Pb at ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{NN}}}=5: 5 \mathrm{TeV}$

A precise m easurem ent of particle production in the $\mathrm{Pb}-\mathrm{Pb}$ system is very challenging given the very high track density that im plies a large com binatorial contam ination. For this reason, the track topological selection m ust be ne-tuned in order to get as m any secondary vertex candidates as possible, keeping the background at a reasonable level, and allow ing thus to distinguish w ithin the very rst m inutes of data taking the signal from the background in their invariant m ass spectrum .

The results show n in this section were obtained from events sim ulated with the H IJING generator [13] param eterised for a charged particle density ($d N_{c h}=d y$) at m id-rapidity of 4000. The , and (and their antiparticles) multiplicities atm id-rapidity and the inverse slopes of their exponential p_{I} spectra are detailed in reference [12].

Figure 2 show s the invariant m ass spectra of and obtained after processing the full reconstruction chain on 300 of the aforem entioned events. For the , a dedicated study was perform ed due to the low e ciency and requested 6000 events. O ne can observe that the signal is clearly visible for all three hyperons, w ith signal over background ratios ($\mathrm{S}=\mathrm{B}$) close to the unity and resolutions on invariant m ass around $3 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$. The average overall e ciency for (,) reconstruction corresponds to 11% (0.45%, 0.36%). In other words, one should expect an m ean num ber of $11(0.07,0.01)$ identi ed (,) per event.

To draw an estim ate of the capability of ALICE to identify high-p hyperons, we use the overall reconstruction e ciency as function of the hyperon p_{T}, which we multiply by the p_{T} spectrum expected in $\mathrm{Pb}-\mathrm{Pb}$ collisions. Each p_{T} spectrum is obtained assum ing the statistics of 10^{7} centralevents estim ated for the rst Pb-Pb run and considering tw o extrem e values of inverse slopes.

FIG. 3: (left), (middle) and (right) reconstructed yields expected for 10 Pb Pb central events at ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{N} N}}=5: 5 \mathrm{TeV}$. For each particle tw o inverse slopes of the exponential p_{T} spectrum are considered. They are reported on each gure together w ith the assum ed m ultiplicity per un it of rapidity.

The reconstructed yield spectra as function of p_{T} are presented in F igure 3. They show that a statistics of $100(, \quad)$ can be expected at p as high as $10(8,6) \mathrm{GeV}=\mathrm{c}$ w ithin the rst run. In order to take into account hard processes, one could consider an additional pow er-law contribution in the high-pT part of the generated distributions; that would push these statistical lim its to higher values.
B. Hyperon reconstruction in $p-p$ at ${ }^{\mathrm{p}} \overline{\mathrm{S}_{\mathrm{pp}}}=14 \mathrm{TeV}$

The identi cation of secondary vertices in $p-p$ collisions is rather di erent from that in PbPb. Since in the $s m$ all system particle m ultiplicities are low, com binatorial background is even low er, w hich allow s therefore topological selections to be loosened in order to gather m ore signal. H ow ever, the p-p system is a ected by a larger error on prim ary vertex position m easurem ent in low multiplicity events, which can substantially alter the reconstruction e ciency. A detailed study on these e ects can be found in reference 14].

Figure 4 show s the K_{S}^{0}, and reconstructed invariant m ass spectra obtained from p-p events generated w ith PY T H IA 6.214 [15]. T he $S=B$ ratio is very high for the ${ }_{S}{ }_{S}$ and close to unity for and . The obtained precision on invariantm assm easurem ent is about 5 M eV $=$ C for K_{S}^{0} and is com parable to that of $\mathrm{Pb}-\mathrm{Pb}$ for w hat concems and. An estim ate of the and reconstructed yields has been perform ed as well. They are ilhustrated in Figure5 as a function of p_{T} in the rapidity range $\dot{y} j<0: 8$, assum ing a num ber of 10^{9} events. The highest hyperon p_{T} reached (considering a statistics of 100 entries in the corresponding bin) w ithin the rst p-p run is also com parable to that obtained in $\mathrm{Pb}-\mathrm{Pb}$.

FIG. 4: R econstructed invariant m ass spectra of $\mathrm{K}_{\mathrm{S}}^{0}$ (left), (middle) and (right) obtained from $\mathrm{p}-\mathrm{p}$ collisions at ${ }^{\mathrm{p}} \overline{\mathrm{Spp}}=14 \mathrm{TeV}$.

FIG. 5: (left), (middle) and (right) reconstructed yields expected for $18 \mathrm{p}-\mathrm{p}$ events at $\mathrm{P} \overline{\mathrm{S}_{\mathrm{pp}}}=14 \mathrm{TeV} . \mathrm{T}$ he assum ed m ultiplicities per unit of rapidity are reported on each gure.
III. STRANGERESONANCE IDENTIFICATION.

The results show n in this section concem the K^{0} (892) and (1020) resonances. For the sake of sim plicity, they are indicated respectively by K and . The decay m odes investigated in this section are K ! K^{+}(or $\overline{\mathrm{K}}$! K^{+}) and ! $\mathrm{K}^{+} \mathrm{K}$. Since resonances decay very early, their decay daughters are not discemible from other prim ary particles. R esonances are identi ed via invariantm ass reconstruction m ethods that com bine allpossible pairs of prim ary daughter candidates. T he resulting background being very high since no selection other than P D or track quality is applied, we estim ate it by m eans of likesign' or 'event mixing' procedures. B oth aim to reconstruct only non-signal candidates and to reproduce the background shape. T he kaon and pion identi cation used in these studies rely on a com bined P ID obtained from the energy loss ($d E=d X$) in the TPC, and from the tim em easurem ent of the T O F. The analyses have been perform ed on a sam ple of 1.5 M p-p events obtained w ith the particle generator PY TH IA 6.214 at the energy ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{pp}}}=14 \mathrm{TeV}$.

FIG. 6: Left: K invariant mass spectrum (unlike-sign pairs, squares) and estim ated background (like-sign pairs, triangles). R ight: K invariant m ass spectrum after background subtraction (circles) and true signal (crosses). T he curve is a B reit- W igner $t . P$ and y are integrated in both gures.

$$
\text { A. } K^{0}(892) \text { identi cation in } p-p \text { at }{ }^{\mathrm{p}} \overline{\mathrm{~S}_{\mathrm{pp}}}=14 \mathrm{TeV}
$$

W e present here the results obtained for the identi cation of $\mathrm{K} . \mathrm{F}$ igure6 show s , on the left part, the reconstructed invariant m ass spectrum of the 'unlike-sign' pairs (K^{+}) and $\left(\mathrm{K}{ }^{+}\right)$together w ith the estim ated 'like-sign' background. T he like-sign background is in a good agreem ent w ith the unlike-sign spectrum, apart of course in the region of the K m ass w here the signal peak is clearly visible. T he right part of the gure show s the resulting sultraction betw een the unlike- and like-sign spectra, where the associated sim ulated K spectrum is superim posed. A B reit-W igner t of the subtracted spectrum retums a m ean m ass of $895 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$ and a width of $56 \mathrm{M} \mathrm{eV}=\mathrm{C}^{2}$, to be com pared to the expected values 896 and $52 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$ [16]. T he agreem ent is good for the m ass calculation, whereas less accurate for the width, due to detector-resolution e ects. The K yield is calculated here from the t integral; the relative discrepancy w ith the true signal is 0.9%, which indicates the background is estim ated accurately.

A sim ilar signal-calculation procedure was applied for various bins in $\mathrm{p}_{\mathrm{T}} . \mathrm{F}$ igures 7 and 8 show the invariant m ass plots for tw o selected p_{T} intervals: $[0 \quad 0: 5]$ and $[3: 5 \quad 4] \mathrm{G} \mathrm{eV}=\mathrm{c}$. In each bin of p_{T}, the background estim ation is in reasonable agreem ent w th the unlike sign spectrum . This agreem ent does not seem to be a ected, w ithin the uctuation am plitude, by the fact that the spectrum shapes in the two bins strongly di er. Furtherm ore, despite the relative low statistics resulting in each bin, the signal extraction in both cases is still

FIG.7: Left: K invariant mass spectrum (unlike-sign pairs, squares) and estim ated background (like-sign pairs, triangles) for $p_{T}<0: 5 \mathrm{GeV}=\mathrm{C}$. R ight: K invariant m ass spectrum after background subtraction (circles) and true signal (crosses). T he curve is a B reit W igner t.

FIG. 8: Left: K invariant mass spectrum (unlike-sign pairs, squares) and estim ated background (like-sign pairs, triangles) for $3: 5<\mathrm{p}_{\mathrm{T}}<4 \mathrm{GeV}=\mathrm{C}$. R ight: K invariant m ass spectrum after background subtraction (circles) and true signal (crosses). T he curve is a B reit-w igner t.
possible. W e hence chose to draw a rst estim ate of the overall reconstruction e ciency as a function of p_{T} and y. T he corresponding results are presented in F igure 9 , focusing on the intervals $\left[\mathrm{p}_{\mathrm{T}} \mathrm{y}\right]=[(0!4 \mathrm{GeV}=\mathrm{C}) \quad(1: 5!1: 5)]$. The average e ciency is about 4% in the m ost central bins in rapidity, but drops substantially (2%) at larger $\dot{y} j$ j, due to the low er singletrack reconstruction e ciency in that region.

FIG.9: K reconstruction e ciency as a function of transverse m om entum (p_{T}) and rapidity (y) in $\mathrm{p}-\mathrm{p}$ collisions at ${ }^{\mathrm{P}} \overline{\mathrm{Spp}}=14 \mathrm{TeV}$.

FIG. 10: Left: invariant m ass spectrum and estim ated background (like-sign pairs) for p_{T} > $2: 2 \mathrm{GeV}=\mathrm{C}$. R ight: invariant m ass spectrum after background subtraction. The curve is a B reitW igner t .

B . (1020) identi cation

identi cation in A L IC E was already investigated in Pb-Pb collisions IT]. This study, perform ed considering a multiplicity of $\mathrm{dN}_{\mathrm{ch}}=\mathrm{dy}=6000$ using the H IJIN G generator, ilhustrates the fact that the identi cation of the resonance is possible in spite of the very large com binatorial background. Indeed, Figure 10 show s accurate calculation of the like-sign background and signalextraction for $p_{T}()>2: 2 \mathrm{GeV}=\mathrm{C}$ using a single track com bined P PD from TPC and TOF.The obtained values for the reconstructed m ass ($1019: 60 \mathrm{GeV}=\mathrm{c}^{2}$) and

FIG.11: Left: invariant mass spectrum (unlike-sign pairs, squares) and estim ated background (m ixed pairs, circles). R ight: invariant m ass spectrum after background subtraction (circles) and true signal (crosses). T he curve is a B reit-w igner $\quad t$.
width ($4: 32 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$) are com patible w ith PD G values [16].
W e now wish to focus on identi cation in $\mathrm{p}-\mathrm{p}$ at ${ }^{\mathrm{p}} \overline{\mathrm{S}_{\mathrm{pp}}}=14 \mathrm{TeV}$. Single particle $\mathrm{P} \mathbb{D}$ com es from TPC and T O F. W e keep the kaon-candidate tracks that satisfy the tw ofollow ing conditions: i) $p_{k}>0: 4$ and ii) $p_{k}>p_{e}, p, p, p_{p} w h e r e p_{k}$ represents the probability for a track to be an electron, a muon, a pion, a kaon or a proton. T he invariant m ass spectra obtained from all prim ary $\mathrm{K}^{+} \mathrm{K}$ associations satisfying the condition $0<\mathrm{p}_{\mathrm{T}}(\mathrm{)}<4 \mathrm{GeV}=\mathrm{C}$ and $1: 5<\mathrm{y}()<1: 5$, are displayed in F igure 11. The background was estim ated via event-m ixing procedure and then norm alised. O ne can observe that them ixed background is in good agreem ent w ith the real.background except in zones where correlations are expected. The m easured m ass and width obtained from a Breit-w igner t are respectively 1019 and $5.53 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$. Them ass is com patible w ith the expected value $1019 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$, but the w idth m easurem ent is not as precise (to be com pared with $4: 26 \mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$) because of detector resolution. The yield calculation using the t integral reveals a relative discrepancy of 2:5\% w ith respect to the num ber of true actually found, which m eans the calculation is rather accurate. T he overall reconstruction rate, regardless of the p_{T} and y of the , is about 2:8\% . Furtherm ore, we expect the to be identi ed at least up to P. $4 \mathrm{GeV}=\mathrm{C}$ given that the studies on K (presented in the previous section) do not reveal any major di culty to detect kaons in the corresponding m om entum range (in which TOF is still e cient). This assum ption seem s to be con m ed by prelim inary studies.

IV . CONCLUSION S

In these proceedings we have discussed the im portance of m easuring strange secondary vertices and resonances in a broad range of transverse m om entum, and have show n how A L IC E will face this challenge thanks to its tracking apparatus and identi cation m ethods developed for that purpose. From the studies shown here, we conclude that ALICE is perfectly suited for the m easurem ent of the strange secondary vertices K_{s}^{0}, , and in both $\mathrm{Pb}-\mathrm{Pb}$ and $\mathrm{p}-\mathrm{p}$ colliding system s . Topological selections have been tuned to get a good com prom ise betw een signaland background with a precision on reconstructed invariant m asses of a few $\mathrm{M} \mathrm{eV}=\mathrm{c}^{2}$ and overalle ciencies of 11% for $\mathrm{V}^{0} \mathrm{~S}$ and $0: 5 \%$ for cascades. W e have show n that $P \mathbb{D}$ is not m andatory for this m easurem ent, and that these particles can be detected within the very rst minutes of LHC run. W ith statistics as high as the ones expected for the rst runs, they should be identi ed in a range of p varying from alm ost 0 to values of at least $10 \mathrm{GeV}=\mathrm{c}$. W e have also show n that strange resonances can be m easured via invariant m ass m ethods, and that the background can be calculated accurately w ith both like-sign and event-m ixing estim ators. C onceming the K, reaching p_{T} 's as high as $4 \mathrm{GeV}=\mathrm{C}$ is not problem atic, and so it should be for the . H ow ever, the identi cation of higher- p_{T} resonances should be done w ithout using $P \mathbb{D}$.

The tools to identify strange secondary vertices and resonances are ready for the upcom ing data in 2008, and we infer they can provide ' rst-physics' observables. W ithin a larger tim e scale, the statistics of strange particles reconstructed w ith A L IC E w ill by far overstep that of previous experim ents, and will allow several new studies that were barely achievable up to now because of statistics, such as strange high $-\mathrm{p}_{\mathrm{I}}$ hadron quenching or strange hard-soft correlations. W e believe these elds of research w ill be am ong the most exciting ones in strangeness physics.
[1] J. R afelski and B. M uller, Phys. R ev. Lett. 48, 1066 (1982).
[2] A. Tounsiand K . Redlich (2001), hep-ph/0111159.
[3] A. A ndronic, P. B raun $-M$ unzinger, and J. Stachel (2005), nucl-th/0511071.
[4] P.B raun M unzinger, J. C leym ans, H . O eschler, and K .R edlich, N ucl. Phys.A 697, 902 (2002), hep-ph/0106066.
[5] R.C.Hwa and C.B.Yang (2006), nucl-th/0602024.
[6] R . J. Fries, B . M uller, C . N onaka, and S.A. Bass, Phys. R ev. C 68, 044902 (2003), nuclth/0306027.
[7] R . J. Fries and B.M uller, Eur. Phys. J. C 34 , s279 (2004), nucl-th/0307043.
[8] V. G reco, C.M. K o, and P. Levai, Phys. R ev. Lett. 90 , 202302 (2003), nucl-th/0301093.
[9] J. A dam s et al. (STAR) (2006), nuclex/0601042.
[10] B . H íppolyte, Eur. Phys. J. C 49, 121 (2007), nuclex/0608054.
[11] J. A dam s et al. (STAR), N ucl. Phys. A 757, 102 (2005), nuclex/0501009.
[12] R . Vemet et al., C ER N -A L IC E-IN T -2006-011 (2006).
[13] X . N . W ang and M . G yulassy, Phys. R ev. D 44, 3501 (1991).
[14] L. G audichet, C ER N -A L IC E-IN T -2005-041 (2005).
[15] T . S jostrand, L . L onnblad, and S . M renna (2001), hep-ph/0108264.
[16] W . M . Yao et al. (P article D ata G roup), J. Phys. G 33, 1 (2006).
[17] A. D e C aro et al., C ERN -A L IC E-IN T -2003-067 (2003).

