A nti-nuclei and nuclei production in $\mathrm{Pb}+\mathrm{Pb}$ collisions at C ER N SP S energies

V I K olesnikov for the N A 49 collaboration
Joint Institute for N uclear R esearch, D ubna, R ussia
E-m ail: kolesnik@moonhe.jinr.ru

Abstract

W e present new results on production of ${ }^{3} \mathrm{He}$ and t obtained by the NA 49 experim ent in 20A, 30A, 40A and 80A $G e V$ central Pb+Pb collisions at the CERN SPS. Transverse m ass spectra and rapidity distributions for clusters m easured over a large phase space dom ain are discussed. W e observe a weak dependence of the m id-rapidity $\mathrm{t} /{ }^{3} \mathrm{He}$ ratio on collision energy at SPS. T he energy dependence of the total yield for ${ }^{3} \mathrm{He}$ is rem arkably reproduced by a statistical hadron gas m odel. A gradual decrease of the coalescence param eter B_{3} for ${ }^{3} \mathrm{Hew}$ ith ${ }^{\mathrm{P}} \overline{\mathrm{SN}_{\mathrm{N}}}$ is observed. In addition, a m easurem ent of the yield of anti-deuterons in $\mathrm{Pb}+\mathrm{Pb}$ reactions at $\mathrm{SP} \mathrm{S}^{\prime} \mathrm{s}$ top energy of ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{N} N}}=17.2 \mathrm{GeV}$ is presented.

1. Introduction

The aim of the m easurem ents, perform ed by the NA 49 experim ent during the energy scan program at the CERN SPS,was to investigate the properties of strongly interacting m atter in heavy-ion collisions via a vast range of observables from light hadrons (, K) to light nuclear clusters ($\left.{ }^{3} \mathrm{He}, \mathrm{t}\right)$. D ata on com posite particle production in reactions w ith heavy ions gives us valuable inform ation about the late stage of the reball evolution and m ay provide a m easure of the size of the particle em itting source. In addition, a com parison of experim ental data on cluster yields to the statisticalm odel expectations can also shed som e light on the m echanism of form ation of light nuclei in heavy ion collisions.

2. Experim ent NA 49 and data analysis

Them ain com ponents of the NA 49 apparatus [1] are four tim e projection cham bers (TPC s) (tw o of them are placed w ith in m agnetic elds produced by the superconducting m agnets) for tracking and particle identi cation ($\mathrm{P} \mathbb{D}$) via ionization energy loss $\mathrm{dE} / \mathrm{dx} \mathrm{m}$ easurem ents. The tim eof- ight system (two TOF scintillator arrays situated beyond the TPCs) provides tim ing inform ation for $P \mathbb{D}$ covering the m id-rapidity region. The dow nstream zero degree calorim eter was used for triggering and centrality determ ination. This report is based on the analysis of the data collected during the 1999-2002 running period. A totalof1:2 10 events representing the 7\% m ost central Pb+Pb collisions at 20A , 30A , 40A and 80A G eV were used in the study of ${ }^{3} \mathrm{H}$ e and t production. A nti-deuterons are m easured in the $23 \% \mathrm{~m}$ ost central Pb+ Pb collisions at 158A $\mathrm{GeV} \quad(2: 6 \quad 10$ events). C om bined $\mathrm{dE} / \mathrm{dx}$ and TOF inform ation was used for the identi cation of single charged hadrons and (anti)clusters at m id-rapidity. D ouble charged ${ }^{3} \mathrm{H}$ e clusters are identi ed over alm ost the entire phase space via the $d E / d x m$ ethod. The results presented below include corrections for the P D track quality cuts, background contam ination, detection e ciency and geom etrical acceptance. T he detailed description of the analysis procedure is given in R efs. [2, 3].

3. R esults and discussion

Fig. 11 (left panel) show s the m id-rapidity transverse m ass spectra for helium -3 and tritons observed in central Pb+ Pb collisions at 20A -80A G eV. A s expected, the collective transverse
ow attens m-spectra for clusters at low m_{t}, so that the distributions show n are tted w ith a double exponential function (ts are shown as dashed lines in F ig 1). The m ean transverse m ass values as obtained from the ts at 20A and 80A GeV are plotted in F ig 1 (right panel, upper plot) together w ith the NA 49 m easurem ents for hadrons (, K, p) and deuterons [2]. Here, one can see a clear indication of a large collective transverse ow e ect: a considerable increase of $\left\langle m_{t}\right\rangle m$ with particle m ass. A s Polleri et al. argued [4], a linear dependence of m ean $\left\langle m_{t}\right\rangle$ on the particle m ass futherm ore supports the conclusion that the particle em itting source has a uniform (box-like) density distribution and a linear velocity pro le. There is no signi cant di erence in resulting values of $\left\langle m_{\epsilon}>\right.$ for particle species betw een 20A and 80A G eV data. This m ay indicate little change in the strength of the transverse expansion over the SP S energy dom ain.

Figure 1. Left: the m id-rapidity m_{t}-spectra for ${ }^{3} \mathrm{He}$ (upper panel) and t (lower panel) for the 7% m ost central Pb+ Pb collisions (dashed lines show the double exponential ts used for extrapolation to the unm easured range). R ight: (upper panel) $<m_{t}>m$ versus particle m ass as obtained from the ts to the spectra at 20A \quad) and 80A GeV (); (low er panel) m id-rapidity t to ${ }^{3} \mathrm{He}$ ratio as m easured (points) and predicted by the SHM model [5] (band).

For the com plete picture of nuclear cluster production, inform ation about the phase space distribution of neutrons in the nal state (at freezeout) is of im portance. H ow ever the yield of n (usually) rem ains unm easured. As it has been established in the RQMD m odel, the in itial ratio of neutrons participating in the collision to protons ($n: p=1.54: 1$ for ${ }^{208} \mathrm{~Pb}$) changes considerably tow ard the equilibrium value of $n / p=1$ during the reball evolution as a result of strong resonance production. A ssum ing a sim ple additive schem ewhich relates the yield of the cluster to the product of the yields of nucleons, the freezeout n / p ratio m ay be deduced from the $t /{ }^{3} \mathrm{H}$ e ratio. The right bottom panel of F ig [1] show s the ratio $t^{3} \mathrm{H}$ e as a function of ${ }^{\mathrm{P}} \frac{\mathrm{S}_{\mathrm{N}} \mathrm{N}}{}$. W e observe a w eak energy dependence of this ratio in central $\mathrm{Pb}+\mathrm{Pb}$ collisions at ${ }^{\mathrm{P}} \frac{}{\mathrm{S}_{\mathrm{N}} \mathrm{N}}>6 \mathrm{GeV}$. The average value $\left\langle t /{ }^{3} \mathrm{H} e\right\rangle$ is about 1.1 at $S P S$, which indicates a large degree of equilibrium in the nal state of the reaction in this energy dom ain. This trend is well reproduced by the Statistical H adronization M odel (SH M) [5] (SH M predictions are show n by the dark band in Fig.1). The yields of ${ }^{3} \mathrm{He}$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $20 \mathrm{~A}-80 \mathrm{~A} \mathrm{GeV}$ extracted in rapidity slices of
 concave at all energies while those for protons are essentially at around m id-rapidity [6]. The
observed increase of ${ }^{3} \mathrm{He}$ form ation rate at very forw ard rapidities in central $\mathrm{Pb}+\mathrm{Pb}$ collisions has not been explained yet. The total yields for ${ }^{3} \mathrm{He}$ were obtained by tting the m easured rapidity distributions w ith a parabola (ts are show n as dashed lines). The 4 yields of ${ }^{3} \mathrm{H}$ e are plotted in $\mathrm{Fig} \sqrt{2}$ (center) as a function of ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{N}} \mathrm{N}}$. A lso shown are the totalm ultiplicities of ${ }^{3} \mathrm{He}$ predicted by the SHM m odel. The agreem ent w ith the NA 49 m easurem ents is rem arkable.

Figure 2. Left: the rapidity distributions and the parabolic ts (dashed lines) for ${ }^{3} \mathrm{He}$ in $\mathrm{Pb}+\mathrm{Pb}$ at 20A -80A GeV (open sym bols are obtained by re ection at m id-rapidity). Center: total yields of ${ }^{3} \mathrm{He}$ as m easured by NA 49 (circles) and predicted by the SHM model (triangles). R ight: energy dependence for B_{2} and B_{3} in central $A-A$ collisions.

A typical coalescence prescription [7, [8, [9] relates the invariant yield of light nuclei of atom ic m ass num ber A to that of protons raised to the A th power (n and p distributions are assum ed to be the sam e) through a dim ensioned variable - coalescence param eter B_{A} as:

$$
E_{A} \frac{d^{3} N_{A}}{d^{3} P}=B_{A} \quad E_{p}{\frac{d^{3} N_{p}}{d^{3} p}}^{!} ; \quad P=A \quad p
$$

B_{A} can be converted, under speci c assum ption, into the volum e of the reball at freeze-out (B) is inversely related to that volum e). Fig $\sqrt{2}$ (right panel) show s energy dependence for coalescence param eters B_{2} and B_{3} in central heavy ion collisions. O ur m easurem ents (circles) are plotted together w ith A G S [10, 11] and R H IC [12, 13] data. O ne can see, that both B 3 and B_{2} decrease as ${ }^{\mathrm{P}} \overline{\mathrm{S}_{\mathrm{N} N}}$ increases, suggesting increasing freeze-out volum es. To exam ine this general trend futher, the (coalescence) radii of the em itting source have been extracted, using the prescription of Scheibl and H einz [14] for a therm alized reball w ith transverse ow. A com parison of the obtained radii for d and ${ }^{3} \mathrm{Hew}$ ith those m easured at other energies is show n in the left panel of Fig.3. It is seen, that the source sizes for di erent cluster species agree with each other w ith in the error bars and are found to be rising w ith center-ofm ass energy.

N ow we tum to anti-deuterons. In F ig $\sqrt{3}$ (center) the centrality dependence of the invariant yield of anti-deuterons and anti-protons [3] norm alized to the num ber of wounded nucleons is show n. A nti-deuterons are m easured in two centrality bins, corresponding to the 0-10\% and 1023\% m ost central Pb+ Pb collisions. T he yield of anti-deuterons per wounded nucleon exhibits very w eak variation w ith centrality in the m easured range in a m anner sim ilar to that observed for anti-protons. B_{2} for both deuterons and anti-deuterons, m easured in these event sam ples, is plotted in Fig 3 (right panel). T he B 2 values for deuterons agree w ith those for anti-deuterons w ithin the errors. T he observed centrality dependence suggests increase of the source size in m ore central collisions.

Figure 3. Left: $\mathrm{R}_{\text {coal }}$ for $\mathrm{d}(\boldsymbol{\square})$ and ${ }^{3} \mathrm{He}$ () in central A-A collisions at AGS (blue), SPS (red) and RHIC (green). C enter: invariant cross section per wounded nucleon at $\mathrm{p}_{\mathrm{t}}=0$ as a function of $\left\langle\mathrm{N}_{\mathrm{w}}\right\rangle$ for anti-protons () and anti-deuterons ($\mathbf{\square}$). R ight: B_{2} for deuterons (t) and anti-deuterons (■) as a function of $\left\langle\mathrm{N}_{\mathrm{w}}\right\rangle$.

4. Sum m ary

TheNA 49 experim ent hasm easured ${ }^{3} \mathrm{H}$ e and t production in central Pb+ Pb collisions at 20A 80A GeV . The invariant yields for clusters are described by a sum of two exponential functions in m_{t} and the $\left\langle m_{t}\right\rangle$ values appear to follow a linear increase w ith particle m ass. The m idrapidity $t /{ }^{3} \mathrm{H}$ e ratio in central Pb+Pb collisions at SP S energies is m easured to be $t /{ }^{3} \mathrm{He}$ 1.1, which is considerably sm aller than the initial participant's n/p ratio of 1.54 . W e observe that the rapidity distributions for ${ }^{3} \mathrm{H}$ e are concave at all studied energies. It appears that a statistical hadron gas m odel is able to reproduce data on ${ }^{3} \mathrm{H}$ e yields. B_{3} and B_{2} coalescence param eters follow a decreasing trend w ith collision energy. T he source radii deduced from the m easured B_{2} and B_{3} param eters are found to be consistent.

A cknow ledgm ents
This work was supported by the U S D epartm ent of E nergy G rant D E FG 0397ER 41020/A 000, the Bundesm inisterium fur B ildung und Forschung, G erm any, the V irtual Institute V I-146 of H em holtz G em einschaft, G erm any, the P olish State C om m ittee for Scienti c R esearch (1 P 03B 00630,1 P 03B 097 29, 1 P 03B 12730), the H ungarian Science R esearch Foundation (T 032648, T 032293, T 043514), the H ungarian N ationalScience Foundation, OTKA, (F 034707), the PolishG erm an Foundation, the K orea Science \& Engineering Foundation (R 01-2005-000-10334-0) and the Bulgarian national Science Fund (Ph-09/05)

R eferences

[1] A fanasiev S et al. (NA 49 collaboration) 1999 Nucl . Instrum. M eth. A 430210
[2] A nticic T et al. (NA 49 collaboration) 2004 Phys. Rev. C 69024902
[3] A lt C et al. (N A 49 collaboration) 2006 Phys. Rev. C 73044910
[4] Polleri A , B ondorf J P and M ishustin IN 1998 Phys. Lett. B 41919
[5] BecattiniF et al. 2006 Phys. Rev. C 73044905 and private com m unication
[6] B lum e C (for the N A 49 collaboration) 2007 J. Phys. G : N ucl. Part. Phys. 34 S951-S954
[7] Butler S T and Pearson C A 1963 Phys. Rev. 129836
[8] M row czynskiS 1992 Phys. Lett. B 27743
[9] Schwarzschild A and Zupancic C 1963 Phys. Rev. 129854
[10] A m strong T A et al. (E 864 C ollaboration) 2000 Phys. Rev. C. 61064908
[11] Bennett M E et al. (E 878 C ollaboration) 1998 Phys. Rev. C. 581155
[12] Adler C et al. (STAR C ollaboration) 2001 Phys. Rev. Lett. 87262301
[13] A dler S S et al. (PHEN IX C ollaboration) 2005 Phys. Rev. Lett. 94122302
[14] ScheiblR and Heinz R 1999 Phys. Rev. C 591585

