H opf A lgebras and C ongruence Subgroups

Yorck Sommerhauser Yongchang Zhu

A bstract

W e prove that the kemel of the natural action of the m odular group on the center of the D rinfel'd double of a sem isim ple H opf algebra is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the m odular group that is com patible w ith the original one.
C ontents
Introduction 5
1 The m odular group 10
1.1 G enerators and relations 10
1.2 C ongruence subgroups 11
1.3 Orbits and congruence relations 12
1.4 Presentations of the factor groups 16
2 Q uasitriangular H opf algebras 18
2.1 Q uasitriangular H opf A lgebras 18
2.2 The D rinfel'd double construction 18
2.3 Integrals of the D rinfel'd double 19
3 Factorizable H opf algebras 22
3.1 D oubles of quasitriangular H opf algebras 22
3.2 Factorizable H opf algebras 23
3.3 T he coproduct of the evaluation form 26
3.4 The double and the tensor product 29
3.5 Integrals of factorizable H opf algebras 32
4 The action of the m odular group 35
4.1 The role of the integral 35
4.2 The inverse of S 36
4.3 R ibbon elem ents 37
4.4 Integrals, ribbon elem ents, and the double 39
4.5 The m odular group and the double 41
5 The sem isim ple case 43
5.1 The character ring 43
5.2 The Verlinde m atrix 45
5.3 M atrix identities 48
5.4 A com parison 50
5.5 R adford's exam ple 50
6 The case of the D rinfel'd double 53
6.1 The role of the evaluation form 53
6.2 The new maps 54
6.3 The rst relation 57
6.4 T he second approach to the action of the m odular group 58
6.5 M atrix representations of the new m aps 60
7 Induced m odules 62
7.1 Induction 62
7.2 Induction and duality 64
7.3 T he relation w ith the center construction 66
7.4 The relation of the coherence properties 69
7.5 Adjoint functors 71
7.6 M ore coherence properties 73
8 Equivariant Froben ius-Schur ind icators 77
8.1 Equivariant Frobenius-Schur indicators 77
8.2 Indicators and duality 79
8.3 The equivariance theorem 81
8.4 The onbit theorem 86
9 The congruence subgroup theorem 90
9.1 The dual pro jective representation of the m odular group 90
9.2 Induction and m ultiplicities 92
9.3 The congruence subgroup theorem 93
9.4 The pro jective congruence subgroup theorem 94
10 The action of the G alois group 95
10.1 The G alois group and the character ring 95
10.2 T he sem ilinear actions 97
10.3 The action on the center 99
10.4 R epresentations of the D rinfel'd double 101
10.5 T he equivariance of the isom onphism 102
11 G alois groups and indicators 105
11.1 A digression on Frobenius algebras 105
11.2 The invariance of the induced trivialm odule 106
11.3 The action and the indicators 107
11.4 D iagonalm atrices 110
11.5 The Galois group and the m odular group 112
12 G alois groups and congruence subgroups 114
12.1 The H opf sym bol 114
12.2 Properties of the H opf sym bol 115
12.3 H opf sym bols and the congruence subgroup theorem 117
N otes 122
B ibliography 127

Introduction

At least since the work of J. L. C ardy in 1986, the im portance of the role of the m odular group has been em phasized in conform al eld theory, and it has been extensively investigated since then. ${ }^{1} \mathrm{Th}$ is im portance stem s from the fact that the characters of the prim ary elds, which depend on a com plex param eter, are equivariant w ith respect to the action of the m odular group on the upper half plane on the one hand and a linear representation of the m odular group on the other hand, which is nite-dim ensional in the case of a rational conform al eld theory. It w as soon noticed in the course of this developm ent that under quite general assum ptions a frequently used generator of the m odular group has nite order in this representation. ${ }^{2}$ Since this generator and one of its con jugates together generate the m odular group, th is leads naturally to the conjecture that the kemel of the before m entioned representation is a congruence subgroup. A fter an intense investigation, this con jecture was nally established by P. B antay. ${ }^{3}$

In a di erent line of thought, Y. K ashina observed, while investigating whether the antipode of a nite-dim ensional Y etter-D rinfel'd H opf algebra over a sem isim ple H opf algebra has nite order, that certain generalized pow ers associated w ith the sem isim ple H opf algebra tend to becom e trivial after a certain num ber of steps. ${ }^{4}$ She established this fact in several cases and con jectured that in general th is nite num ber after which the generalized pow ers becom e trivial, which is now called the exponent of the H opf algebra, divides the dim ension of the H opf algebra. T his con jecture is presently still open. H ow ever, P. Etingof and S.G elaki, realizing the connection betw een these two lines of thought, w ere able to establish the niteness of the exponent and showed that it divides at least the third power of the dim ension. ${ }^{5}$ They also explained the connection of the exponent to the order of the generator of the m odular group by show ing that the exponent of the H opf algebra is equal to the order of the D rinfeld elem ent of the D rinfel'd double of the H opf algebra. In this context, it should be noted that this connection betw een H opf algebras and conform al eld theory has been intensively investigated by m any authors; we only m ention here the m odular H opf algebras and m odular categories of N. Reshetikhin and V.G. Turaev on the one hand and the m odular transform ations considered by V. Lyubashenko and h is coauthors on the other hand. ${ }^{6}$

It is the purpose of the present w ork to unite these tw o lines of thought further by establishing an analogue of B antay's results for sem isim ple H opf algebras. W e will show in Theorem 9.3 that the kemel of the action of the m odular group on the center of the D rinfeld double of a sem isim ple H opf algebra is a congruence subgroup of levelN, where N is the exponent of the H opf algebra discussed above. The proof of this theorem becom es possible by the use of a new tool, a further generalization of the higher Frobenius-Schur indicators studied earlier by Y.K ashina and the authors.' These new indicators, which we call equivariant Frobenius-Schur indicators, are functions on the center of the

D rinfeld double and carry an action of the m odular group that is equivariant w ith respect to the action of the m odular group on the center. T h is equivariance in particular connects, via the action of the V erlinde m atrix that arises from the other frequently used generator of the m odular group, the rst form ula for the higher Frobenius-Schur indicators w ith the second resp. third form ula, whose interplay is crucial for the proof of C auchy's theorem for H opf algebras.

The D rinfeld double is an exam ple of a factorizable H opf algebra, and the results for the D rinfeld double can be partially generalized to this m ore general class. H ow ever, in the case of a factorizable sem isim ple H opf algebra, the m odular group acts in general only projectively on the center of the H opf algebra. This phenom enon also occurs in conform al eld theory, and also in the general fram ew ork of m odular categories, of which the representation category of a sem isim ple factorizable H opf algebra is an exam ple.' B ut it is still possible to talk about the kemel of the pro jective representation, i.e., the subgroup of the m odular group that acts as the identity on the associated projective space of the center. W e will also show, in Paragraph 9.4, that in this m ore general case th is so-called pro jective kemel is a congruence subgroup of level N.

H ow ever, if the D rinfel'd elem ent of the factorizable H opf algebra has the sam e trace as its inverse in the regular representation, then the pro jective representation just discussed is in fact an ordinary linear representation. This happens in particular in the case of a D rinfeld double, where both of these traces are equal to the dim ension of the doubled H opf algebra. If these traces coincide, it is therefore m eaningful to talk about the kemel of the linear representation, and we show in T heorem 12.3 that this kemel is also a congruence subgroup of levelN.

The article is organized as follow s: In Section 1 , after brie y recalling som e facts about the m odular group, we describe a relation that characterizes the onbits of the principal congruence subgroups and plays an im portant role in the proof of the onb it theorem in P aragraph8.4. In Section2, we recallsom e basic facts about quasitriangular H opf algebras and the D rinfel'd double construction, and prove som e lem m as about the D rinfel'd elem ent and the evaluation form. In Section 3, we prove som e facts about factorizable H opf algebras that are im portant for the equivariance properties that we w ill discuss later. In Section 4, we construct the action of the m odular group on the center of a factorizable H opf algebra. It m ust be em phasized that this construction is not new ; on the contrary, it is discussed in abundance in the literature we have already quoted, especially in V.G.Turaev's m onograph on the one hand and in tw o closely related articles V . Lyubashenko on the other hand. ${ }^{10} \mathrm{~W}$ hat we do in this section is to translate Lyubashenko's graphical proof of the m odular identities into the language of quasitriangular H opf algebras, thereby o ering a presentation of these results that is not yet available in the literature in this form.11

In Section 5, we specialize to the sem isim ple case. W e can then use the centrally prim itive idem potents as a basis and therefore get explicitm atrices for the action
of the m odular group constructed in Section 4. In the case of a D rinfeld double, there is a di erent construction for the action of the m odular group based on the evaluation form and using a slightly less frequently used set of generators of the m odular group. This description of the action, which is crucial for the proof of the equivariance theorem in P aragraph 8.3, is given in Section 6.

For two m odules V and W of a sem isim ple Hopf algebra H, the m odules V W and W V are in general not isom onphic. H ow ever, as we show in Section 7, the corresponding induced m odules of the D rinfel'd double D (H) are isom orphic. The constructed isom orphism is the essential elem ent for the de nition of the equivariant Frobenius-Schur indicators $I_{V}((m ; l) ; z)$ in Section 8, which depend on an H m odule V , two integers m and 1 , and a central elem ent z in the D rinfel'd double $D(H)$. W e then prove the equivariance theorem $I_{V}((\mathrm{~m} ; 1) \mathrm{g} ; \mathrm{z})=\mathrm{I}_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{g}: \mathrm{z})$ for an elem ent g of the m odular group. In Paragraph 8.4, we prove the orbit theorem, which asserts that the equivariant indicators only depend on the orbit of ($\mathrm{m} ; \mathrm{l}$) under the principal congruence subgroup determ ined by the exponent. This is applied in Section 9 to prove the congruence subgroup theorem, which asserts that $g: z=z$ for all z in the center of the D rinfeld double D (H) and allg in the principal congruence subgroup. N ote that the onbit theorem is an im m ediate consequence of the equivariance theorem and the congruence subgroup theorem. Finally, in the case of an arbitrary factorizable H opf algebra, we prove the pro jective congruence subgroup theorem, which asserts that the kemel of the pro jective representation is a congruence subgroup.

T he W edderbum com ponents of the character ring of a sem isim ple factorizable H opf algebra are isom orphic to sub elds of the cyclotom ic eld determ ined by the exponent. ${ }^{12}$ As in conform al eld theory, ${ }^{13}$ we therefore get an action of the G alois group of the cyclotom ic eld on the character ring. A s we explain in Section 10, this linear action of the Galois group arises naturally as the com position of the tw o sem ilinear actions that preserve the characters resp. the prim itive idem potents of the character ring. In Section 11, w e relate these actions of the G alois group to the equivariant Frobenius-Schur indicators, which enables us to show in Theorem 11.5 that in the case of a D rinfeld double the action of the G alois group coincides w ith the action of the diagonal m atrices in the reduced m odular group $S L\left(2 ; Z_{N}\right)$. This is again con m ing the parallels w ith conform al eld theory, where the analogous result was know n in m any cases. ${ }^{14}$ H ow ever, this theorem does not hold for a general sem isim ple factorizable H opf algebra, as we see in Section 12: U nder the assum ption that the character of the regular representation takes the sam e value on the D rinfel'd elem ent and on its inverse, which happens for D rinfel'd doubles, the action of the m odular group, which is in general only pro jective, becom es an ordinary linear representation. G eneralizing the congruence subgroup theorem from P aragraph 9.3, we show in T heorem 12.3 that the kemel of this linear representation is again a congruence subgroup of level N, so that we again get an action of the reduced m odular group SL $\left(2 ; Z_{N}\right)$. But this tim e the action of the G alois group m ay di er from
the action of the diagonalm atrices by a certain Dirichlet character, which, as it generalizes the Jacobi sym bol to H opf algebras, we call the H opf sym bol.

Throughout the whole exposition, we consider an algebraically closed base eld that is denoted by K. From Section 5 on until the end, we assume in addition that K has characteristic zero. A ll vector spaces considered are de ned over K , and all tensor products w ithout subscripts are taken over K. The dual of a vector space V is denoted by $V:=H o m_{K}(V ; K)$, and the transpose of a linear $m a p f: V$! W is denoted by $f \quad$ W ! V . Unless stated otherw ise, a m odule is a left m odule. A lso, we use the so-called K ronecker sym bol ij, which is equal to 1 if $i=j$ and zero otherw ise. The set of natural num bers is the set $N:=f 1 ; 2 ; 3 ;:: 9 ;$ in particular, 0 is not a natural num ber. The sym bol Q_{m} denotes the m th cyclotom ic eld, and not the eld of m adic num bers, and Z_{m} denotes the set $Z=m Z$ of integers m odulo m, and not the ring of m adic integers. T he greatest com m on divisor of two integers m and l is denoted by god ($\mathrm{m} ; 1$) and is alw ays chosen to be nonnegative.

Furtherm ore, H denotes a H opfalgebra of nite dim ension n with coproduct, counit ", and antipode S.W e w ill use the sam e sym bols to denote the corresponding structure elem ents of the dual H opf algebra H, except for the antipode, which is denoted by S . The opposite H opf algebra, in which the m ultiplication is reversed, is denoted by H^{op}, and the coopposite H opf algebra, in which the com ultiplication is reversed, is denoted by $H^{c o p}$. If $b_{1} ;::: ; \mathrm{b}_{n}$ is a basis of H w ith dual basis $b_{1} ;::: ; \mathrm{b}_{\mathrm{n}}$, we have the form ulas ${ }^{15}$

$$
\begin{aligned}
& X_{i=1}^{n} b_{i} \quad b_{i(1)} \quad b_{i(2)} \quad::: \quad b_{i(m)}= \\
& \quad X^{n} \quad b_{i_{1}} b_{i_{2}} \quad i_{i_{m}} b b_{i_{1}} \quad b_{i_{2}} \quad::: \quad b_{i_{m}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.X_{i=1}^{n} b_{i(1)} \quad b_{i(2)} \quad::: \quad b_{i(m)}\right) \quad b_{i}= \\
& X^{n} \quad b_{i_{1}} \quad b_{i_{2}} \quad::: \quad b_{i_{m}} \quad b_{i_{1}} b_{i_{2}} \quad i_{i_{m}} b
\end{aligned}
$$

which we w ill refer to as the dual basis form ulas. W e use the letter A instead of H if the H opf algebra under consideration is quasitriangular. W ith respect to enum eration, we use the convention that propositions, de nitions, and sim ilar item s are referenced by the paragraph in which they occur; they are only num bered separately if this reference is am biguous.

T he essential part of the present w ork was carried out when the rst author held a visiting research position at the H ong K ong U niversity of Science and Technology. He thanks the university, and in particular his host, for the hospitality.

He also thanks the U niversity of C incinnati for a follow -on visiting position during which part of the m anuscript w as w ritten. The second author would like to express his appreciation for the support by the RGC C om petitive Earm arked R esearch G rant HKUST 6059/04.

1 Them odular group

1.1 In this article, the m odular group is de ned as the group $:=\operatorname{SL}(2 ; Z)$ of $22-\mathrm{m}$ atrices w ith integer entries and determ inant 1 ; note that m any authors de ne it as the quotient group P SL ($2 ; \mathrm{Z}$) instead. T he m odular group is generated by the two m atrices 16

$$
s:=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} \quad \text { and } \quad t:=\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}
$$

It is easy to see that these m atrices satisfy the relations

$$
s^{4}=1 \quad(t s)^{3}=s^{2}
$$

how ever, it is a nontrivialresult that these are de ning relations for the m odular group. ${ }^{17}$

It is possible to replace the generator s by the generator

$$
r:=t^{1} s^{1} t^{1}=\quad \begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}
$$

The generators r and t satisfy the relations

$$
\operatorname{trt}=\mathrm{rtr} \quad(r t)^{6}=1
$$

and it follow s from the corresponding result for the preceding generators that this also constitutes a presentation of the m odular group in term s of generators and relations. From this, we get that $s^{1} r=t r t r=t s{ }^{1}$, which m eans that $r=s t s{ }^{1}$, so that the generators r and t are conjugate.

Them atrix

$$
a:=\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}
$$

is not contained in , but con jugation by a induces an autom onphism of , for which we introduce the follow ing notation:

De nition Forg 2 , wede neg $:=$ aga $^{1}=$ aga.

N ote that we have

$$
\begin{array}{ccccccccc}
1 & 0 & a & b & 1 & 0 & & a & b \\
0 & 1 & c & d & 0 & 1 & b & c & d
\end{array}
$$

so that $g=g^{1}$ whenever $\mathrm{a}=\mathrm{d}$. In particular, we nd for the special m atrices that we have used above as generators that

$$
s=s^{1} \quad \tau=t^{1} \quad r=r^{1}
$$

1.2 If N is a natural num ber, the quotient m ap from Z to $\mathrm{Z}_{\mathrm{N}}:=\mathrm{Z}=\mathrm{N} \mathrm{Z}$ induces a group hom om onphism

$$
\operatorname{SL}(2 ; Z)!\quad \operatorname{SL}\left(2 ; Z_{N}\right)
$$

by applying the quotient m ap to every com ponent of the m atrix. The kemel of this m ap is denoted by (N) and called the principal congruence subgroup of levelN. In other words, we have

$$
(N)=f \begin{array}{ll}
a & b \\
c & d
\end{array} 2 S L(2 ; Z) j a \quad d \quad 1 ; b \quad c \quad 0 \quad(\bmod N) g
$$

In particular, we have $(1)=$. A subgroup of the m odular group is called a congruence subgroup if it contains (N) for a suitable N, and the sm allest such N is called the level of the congruence subgroup.

Them odular group acts naturally on the lattice $Z^{2}:=Z \quad Z . T$ he onbits of the principal congruence subgroups can be described as follow s:

Proposition Two nonzero lattice points $(\mathrm{m} ; 1) ;\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right) 2 \mathrm{Z}^{2}$ are in the same (N)-onbit if and only if $t:=\operatorname{god}(\mathrm{m} ; 1)=\operatorname{god}\left(\mathrm{m}^{0} ; 1^{0}\right)$ and

$$
m=t \quad m^{0}=t \quad(m \text { od } N) \quad l=t \quad l^{0}=t \quad(m \circ d N)
$$

Proof. If $(\mathrm{m} ; \mathrm{l})$ and $\left(\mathrm{m}^{0} ; 1^{0}\right)$ are in the sam e (N)-orbit, so that

$$
\begin{array}{rlll}
\mathrm{m}^{0} & l^{0} & \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~m} \\
\mathrm{c} & \mathrm{l}
\end{array}
$$

then we have for the ideals of Z generated by $m ; 1$ resp. $m^{0} ; 1^{0}$ that

$$
\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)=(\mathrm{am}+\mathrm{bl} ; \mathrm{m}+\mathrm{dl}) \quad(\mathrm{m} ; \mathrm{l})=(\mathrm{t})
$$

and vice versa, so that the rst assertion holds. If we divide the above relation by t, we see that ($m=t ; l=t$) and ($m^{0}=t ; l^{0}=t$) are still in the same (N)-onbit, and if we reduce this relation m odulo N , we see that they are com ponentw ise congruent.

For the converse, we can assum e that $t=1$. If now tw opairs ($\mathrm{m} ; 1$) and ($\mathrm{m}^{0} ; 1^{0}$) of relatively prim e integers are com ponentw ise congruent modulo N, this also holds for the pairs $g(m ; l)$ and $g\left(m^{0} ; 1^{0}\right)$ for any $g 2$, and if we can show that $g(m ; 1)$ and $g\left(m^{0} ; 1^{0}\right)$ are in the same (N)-orbit, then this also holds for the original pair ($\mathrm{m} ; 1$) and $\left(\mathrm{m}^{0} ; 1^{0}\right)$, as (N) is a norm al subgroup.

Now as m and lare relatively prim e, we can nd integers n and k satisfying $m \mathrm{n}+\mathrm{lk}=1$, so that

$$
\begin{gathered}
\mathrm{m} \\
\mathrm{l}
\end{gathered}=\begin{array}{ccc}
\mathrm{m} & \mathrm{k} & 1 \\
\mathrm{l} & \mathrm{n} & 0
\end{array}
$$

In other words, $(\mathrm{m} ; 1)$ and $(1 ; 0)$ are in the same -orbit, so that we can in fact assum $e(m ; 1)=(1 ; 0)$. Thism eans that we only have to show that a pair $\left(\mathrm{m}^{0} ; 1^{0}\right)$ of relatively prim e integers of the form $\left(\mathrm{m}^{0} ; 1^{0}\right)=(1+a N ;$ bN $)$ is in the sam e (N)-onbit as $(1 ; 0)$. But this m eans that we have to nd integers $c ; d 2 \mathrm{Z}$ so that

$$
\begin{array}{cccc}
\mathrm{m}^{0} \\
\mathrm{l}^{0}
\end{array}=\begin{array}{cc}
1+\mathrm{aN} & \mathrm{CN} \\
\mathrm{bN} & 1+\mathrm{dN}
\end{array}
$$

sub ject to the determ inant condition

$$
1=(1+a N)(1+d N) \quad(b N)(c N)=1+a N+d N+a d N^{2} \quad b_{1} N^{2}
$$

or altematively

$$
0=a+d(1+a N) \quad b c N=a+d m{ }^{0} \quad c l^{0}
$$

A $s m^{0}$ and l^{0} are relatively prim e, this equation is solvable. 2

N ote that this proposition shows that the condition to be com ponentw ise congruent modulo N is not su cient for two lattice points to be in the same
(N)-orbit, as the pairs $(2 ; 4)$ and $(5 ; 7)$ ilhustrate for $N=3$. Furtherm ore, it should be noted that in the case $N=1$ it yields the follow ing fact:

C orollary Two nonzero lattice points $(\mathrm{m} ; 1) ;\left(\mathrm{m}^{0} ; 1^{0}\right) 2 \mathrm{Z}^{2}$ are in the same -orbit if and only if $\operatorname{god}(m ; 1)=\operatorname{god}\left(\mathrm{m}^{0} ; 1^{0}\right)$.
1.3 The group hom om onphism from $S L(2 ; Z)$ to $S L\left(2 ; Z_{N}\right)$ discussed at the beginning of P aragraph 1.2 is surjective. The proof of this fact uses the follow ing lem m a, which we w ill use below for a di erent purpose: ${ }^{18}$

Lem m a Suppose that m, l, and N are relatively prim e integers and that $l \in 0$. T hen there exists an integer k 2 Z such that $\mathrm{m}+\mathrm{kN}$ is relatively prim e to l.

W e need to introduce another subgroup of the m odular group. W e denote by (N) the subgroup of that is generated by all conjugates $g t^{N} g^{1}$ of t^{N} for 92 . This subgroup is obviously norm al, and it follow from the discussion in Paragraph 1.1 that it contains r^{N}. Since (N) is a norm al subgroup that contains t^{N}, we have that (N) is contained in (N). H ow ever, (N) is strictly sm aller than (N) if $N \quad 6$, and it is not even a congruence subgroup in this case. ${ }^{19}$ To dealw ith this di culty, we adapt the follow ing notion from the theory ofm onoids to our situation? ${ }^{20}$
$D e n$ ition An equivalence relation on the lattice Z^{2} is called a congnuence relation if, for all $g 2$, the lattice points $g:(m ; 1)$ and $g:(n ; k)$ are equivalent w henever the lattice points ($m ; l$) and $(\mathrm{n} ; \mathrm{k})$ are equivalent.

From every norm alsubgroup of them odular group, w e get a congruence relation by de ning that two lattice points are equivalent if they are in the sam e onbit under the action of the nom al subgroup. In this way, both (N) and (N) give rise to congruence relations.

C onsidering relations as sets of pairs, one can show as in the case of monoids that the intersection of congruence relations is again a congruence relation. ${ }^{21}$ T herefore, for every relation there is a sm allest congruence relation that contains this relation, nam ely the intersection of allcongruence relations that contain the given relation. In this sense, we now consider the sm allest congruence relation on the lattice Z^{2} that has the follow ing tw o properties:

1. W e have (m;l) $\mathrm{t}^{\mathrm{N}}:(\mathrm{m} ; 1)$.
2. W e have ($\mathrm{m} ; 1$) ($\mathrm{m} ; \mathrm{kl}$) for every k 2 Z that satis es $k \quad 1(\mathrm{modN})$ and $\operatorname{god}(m ; k l)=\operatorname{gcd}(m ; l)$.

The second property appears to be asym m etricalw ith respect to the tw o com ponents. This is, how ever, not the case, because if k satis es $k \quad 1(\bmod N)$ and $\operatorname{god}(\mathrm{km} ; \mathrm{l})=\operatorname{gcd}(\mathrm{m} ; \mathrm{l})$, we have

so that ($\mathrm{m} ; \mathrm{l}$) (km ; 1).
W e will need another property of the congruence relation :
Proposition For every integer n 2 Z , we have (nm ; nl) ($n m{ }^{0}$; $\mathrm{n} \mathrm{l}^{0}$) whenever (m;l) (m $\left.{ }^{0} 1^{0}\right)$.

Proof. This is obvious if $n=0$, so let us assum e that $n \in 0$. Suppose that is an arbitrary congruence relation that satis es the two de ning properties of , i.e., that satis es $(\mathrm{m} ; 1) \quad \mathrm{t}^{\mathrm{N}}:(\mathrm{m} ; 1)$ and $(\mathrm{m} ; 1) \quad(\mathrm{m} ; \mathrm{kl})$ for every k 2 Z w ith the properties $k \quad 1(m o d N)$ and $\operatorname{gcd}(m ; k l)=\operatorname{gcd}(m ; l)$. Recall that is the intersection of all such congruence relations. W e de ne a new relation n by setting

$$
(\mathrm{m} ; 1) \mathrm{n}\left(\mathrm{~m}^{0} ; 1^{0}\right):, \quad(\mathrm{nm} ; \mathrm{nl}) \quad\left(\mathrm{nm}^{0} ; \mathrm{nl}^{0}\right)
$$

It is $\mathrm{m} m$ ediate that this is again a congruence relation. It also satis es the rst de ning property, nam ely that $(m ; l) n t^{N}:(m ; l)$. For the second property, note that if $k 2 \mathrm{Z}$ satis es $k \quad 1(\mathrm{mod} N)$ and $\operatorname{gcd}(\mathrm{m} ; \mathrm{kl})=\operatorname{gcd}(\mathrm{m} ; 1)$, it also satis es $\operatorname{god}(\mathrm{nm} ; \mathrm{knl})=\operatorname{god}(\mathrm{nm} ; \mathrm{nl})$, so that $(\mathrm{nm} ; \mathrm{nl}) \quad(\mathrm{nm} ; \mathrm{knl})$ and therefore $(m ; l) \quad n(m ; k l)$.

This show s that $(m ; 1) \quad\left(m^{0} ; 1^{0}\right)$ im plies $(m ; 1) \quad n\left(m^{0} ; 1^{0}\right)$, which m eans that ($\mathrm{nm} ; \mathrm{nl}$) ($\mathrm{nm}^{0} ; \mathrm{nl} \mathrm{l}^{0}$). A s this holds for all such congruence relations, we get $(\mathrm{nm} ; \mathrm{nl}) \quad\left(\mathrm{nm}{ }^{0} ; \mathrm{n} \mathrm{l}^{0}\right)$, as asserted. 2

It is not hard to see that, if we had dropped the second de ning property above, the congruence relation that would have arisen would have been exactly the one determ ined by the group (N) as described above. T he follow ing theorem asserts that, by incorporating the second property, w e get exactly the congruence relation determ ined by the group (N):

Theorem Two lattice points ($\mathrm{m} ; 1$) and $\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)$ are in the same (N)-orbit if and only if $(\mathrm{m} ; 1) \quad\left(\mathrm{m}^{0} ; 1^{0}\right)$.

Proof. (1) Let us rst show that equivalent lattice points are in the sam e (N)-orbit. For this, we need to look at the two de ning properties of our congruence relation. For the rst property, it is obvious that ($\mathrm{m} ; 1$) and $\mathrm{t}^{\mathrm{N}}:(\mathrm{m} ; 1)$ are in the same (N)-orbit. For the second property, suppose that 2 Z satis es $\mathrm{k} \quad 1(\mathrm{mod} N)$ and $t: \operatorname{god}(\mathrm{m} ; \mathrm{l})=\operatorname{god}(\mathrm{m} ; \mathrm{kl})$. If $(\mathrm{m} ; \mathrm{l})$ is nonzero, we have that $(m=t ; l=t)$ and ($m=t ; k l=t$) are com ponentw ise congruent modulo N. By Proposition 1.2, this im plies that ($\mathrm{m} ; \mathrm{l}$) and ($\mathrm{m} ; \mathrm{kl}$) are in the same (N)-onbit. C learly, this is also the case if $(\mathrm{m} ; \mathrm{l})=(0 ; 0)$.
T his show s that the congruence relation determ ined by (N), for which the equivalence classes are exactly the (N)-orbits, takes part in the intersection that was used to de ne the relation. In other words, if ($\mathrm{m} ; 1$) $\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)$, then ($\mathrm{m} ; 1$) and $\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)$ are in the same (N)-orbit.
(2) N ow suppose that ($\mathrm{m} ; \mathrm{l}$) and $\left(\mathrm{m}^{0} ; 1^{0}\right)$ are in the sam e (N)-onbit. In the case $\mathrm{N}=1$, we have $(\mathrm{N})=(\mathrm{N})=$, and we have already pointed out above that the tw o lattice points are then equivalent. W e w ill therefore assum e in the sequel that $N>1$.
W e rst consider the case where m and lare relatively prim e; by C orollary 1.2, we then also have that m^{0} and l^{0} are relatively prim e . W e need a couple of reductions. The rst reduction is that we can assume in addition that all the com ponents m, l, m^{0}, and l^{0} are also relatively prim e to N. To see this, choose two distinct prim es pand q that do not divide N. By C orollary 1.2, we can then nd $g 2$ such that $g:(m ; 1)=(p ; q)$. If we de ne $\left(p^{0} ; q^{0}\right):=g:\left(m^{0} ; 1^{0}\right)$, then ($p ; q$) and $\left(p^{0} ; q^{0}\right)$ are also in the sam e (N)-orbit, because (N) is a norm alsubgroup. By P roposition [1.2, this im plies that p^{0} and q^{0} are relatively prim e and that

$$
p \quad p^{0} \quad(\bmod N) \quad q \quad q^{0} \quad(m o d N)
$$

so that in particular also p^{0} and q^{0} are relatively prime to N. But if we could establish that ($p ; q$) and ($p^{0} ; q^{0}$) are equivalent, then also ($m ; 1$) and ($\mathrm{m}^{0} ; 1^{0}$) w ould be equivalent, because is a congruence relation. T herefore, we can assum e from the beginning that all the com ponents m, l, m^{0}, and l^{0} are also relatively prim e to N . N ote that this im plies in particular that the com ponents are nonzero. T his com pletes our rst reduction.
(3) The second reduction is that we can assum e in addition that m is relatively prim e to l^{0} and that m^{0} is relatively prim e to l. N ow the num bers m and Nl
are relatively prim e, which obviously im plies that the num bers m,N1, and I^{0} are relatively prim e. W e can therefore apply the lem m a stated at the beginning of the paragraph to $n d$ an integer $k 2 \mathrm{Z}$ such that $\mathrm{m}+\mathrm{kN} \mathrm{l}$ is relatively prime to l^{0}. N ote that $m+k N l$ is still relatively prime to N and l, and that $(m+k N l ; l)=t^{k N}:(m ; 1)$ is equivalent to $(m ; 1)$ even ifk is negative. By replacing ($\mathrm{m} ; 1$) by ($\mathrm{m}+\mathrm{kN} \mathrm{l} ; \mathrm{l}$), we can therefore assum e from the beginning that in addition m and l^{0} are relatively prim e. U sing the sam e argum ent w ith the lattice points interchanged, we can furthem ore assum e that m^{0} and 1 are relatively prim e.
(4) The third reduction is that we can assume in addition that $m=m^{0} . W e$ have assum ed that m^{0} and N are relatively prim e, which im plies that there is a num ber $k^{0} 2 \mathrm{Z}$ such that $m \mathrm{k}^{0} \quad 1(\bmod N)$. The num bers k^{0} and N are then relatively prim e, which obviously im plies that the num bers $\mathrm{k}^{0}, \mathrm{~N}$, and $\not 7^{0}$ are relatively prim e. A s all com ponents are nonzero, we can apply the above lem ma again to $n d$ an integer $k 2 \mathrm{Z}$ such that $\mathrm{n}:=\mathrm{k}^{0}+\mathrm{kN}$ is relatively prim e to 11^{0}. As we also have nm ${ }^{0} \quad k^{0} m^{0} \quad 1(\mathrm{mod} N)$, we get by the variant of the second de ning property of our congruence relation discussed above that (m ; 1) ($\mathrm{nm} \mathrm{m} ; 1$). But $m \quad \mathrm{~m}^{0}(\mathrm{mod} \mathrm{N})$ by Proposition [1.2, so that

$$
\mathrm{nm} \quad \mathrm{~nm}^{0} \quad 1 \quad(\bmod N)
$$

and furtherm ore nm and 1^{0} are relatively prim e. A gain by the variant of the second de ning property, we therefore see that ($\mathrm{m}^{0} ; 1^{0}$) ($\mathrm{nm} \mathrm{m}{ }^{0} ; 1^{0}$). By replacing ($\mathrm{m} ; \mathrm{l}$) by ($\mathrm{nm} \mathrm{m} ; \mathrm{l}$) and $\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)$ by $\left(\mathrm{nm} \mathrm{m}{ }^{0} ; \mathrm{l}^{0}\right)$, we can therefore reduce to the situation where $m=m^{0}$.
(5) W e have now two lattice points ($\mathrm{m} ; 1$) and ($\mathrm{m} ; \mathrm{l}^{0}$) w ith relatively prim e com ponents m and l resp. m and l^{0}. M oreover, all of these com ponents are relatively prim e to N , and in particular nonzero. By assum ption, they are in the same (N)-onbit, so that $1 \quad l^{0}(\mathrm{mod} N)$ by Proposition 1.2. We have to establish that they are equivalent.
For this, we argue as in the preceding step: C hoose k such thatkl $1(\mathrm{mod} N)$. T hen the num bers k and N are relatively prim e, which clearly im plies that the num bers k, N, and m are relatively prim e. Therefore, again by the above lem $m a$, we can nd an integer $n^{0} 2 \mathrm{Z}$ such that $\mathrm{n}:=\mathrm{k}+\mathrm{n}^{0} \mathrm{~N}$ is relatively prim eto m . W e then have $\mathrm{n} \mathrm{k}(\mathrm{mod} \mathrm{N})$ and therefore

$$
\mathrm{nl} \quad \mathrm{n} 1^{0} \quad 1 \quad(\bmod N)
$$

and m and $n l$ resp. $n l^{0}$ are relatively prim e. By the second de ning property of our congruence relation, we have that ($\mathrm{m} ; 1$) ($\mathrm{m} ; \mathrm{nl} l^{0} 1$), and sim ilarly that $\left(\mathrm{m} ; 1^{0}\right) \quad\left(\mathrm{m} ; \mathrm{n} \boldsymbol{l}^{0}\right)$. A s equal pairs are clearly equivalent, this nishes the proof in the case of lattice points w ith relatively prim e com ponents.
(6) W e now consider the general case, in which we have tw o lattice points (m ;1) and $\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right)$ in the sam e (N)-orbit, but m and lare not necessarily relatively
prim e. We have to establish that they are equivalent, and we can clearly assum e that they are di erent from the origin. By Proposition 1.2, we have $t:=\operatorname{gcd}(\mathrm{m} ; 1)=\operatorname{gcd}\left(\mathrm{m}^{0} ; 1^{0}\right)$ and

$$
m=t \quad m^{0}=t \quad(m \text { od } N) \quad l=t \quad l^{0}=t \quad(m \text { od } N)
$$

N ow $m=t$ and $l=t$ are relatively prim e, and $m^{0}=t$ and $l^{0}=t$ are relatively prim e as well. Furthem ore, $(m=t ; l=t)$ and $\left(m^{0}=t ; l^{0}=t\right)$ are in the sam e (N)-onbit. By the facts already established, we therefore get $(\mathrm{m}=\mathrm{t} ; \mathrm{l}=\mathrm{t}) \quad\left(\mathrm{m}^{0}=\mathrm{t} ; \mathrm{l}^{0}=\mathrm{t}\right)$, which im plies ($\mathrm{m} ; 1$) (m^{0}; 1^{0}) by the above proposition. 2
1.4 The groups $\operatorname{SL}\left(2 ; \mathrm{Z}_{\mathrm{N}}\right)=\mathrm{SL}(2 ; \mathrm{Z})=(\mathrm{N})$ are obviously generated by the im ages of the generators under the canonicalm ap, which are

$$
s:=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} \quad \text { and } \quad t:=\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}
$$

or altematively t and

$$
r:=t^{1} s^{1} t^{1}=\quad \begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}
$$

H ow ever, the de ning relations for these generators are not easy to obtain. To write them down, we introduce the abbreviation $d(q):=s t^{\mathrm{q}^{0}} \mathrm{~s}^{1} \mathrm{t}^{\mathrm{q}} \mathrm{st}^{\mathrm{q}^{0}}$ for $q ; q^{0} 2 \mathrm{Z}$ such that $q q^{0} 1(\bmod N)$. A though we want to understand this expression here as an abbreviation for a word in the generators, it is of course also possible to com pute the corresponding m atrix in $\operatorname{SL}\left(2 ; Z_{N}\right)$:

$$
\begin{aligned}
& d(q)=\begin{array}{llllllllllll}
0 & 1 & 1 & q^{0} & 0 & 1 & 1 & q & 0 & 1 & 1 & q^{0} \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array} \\
& =\begin{array}{ccccccccccccc}
0 & 1 & 0 & 1 & 0 & 1 \\
1 & q^{0} & 1 & q & 1 & q^{0} & = & 1 & q & 0 & 1 & q^{0} & 0 \\
1 & q^{0} & = & q^{2} & 0 & q^{0}
\end{array}
\end{aligned}
$$

N ote also that we have intentionally suppressed the dependence of $d(q)$ on q^{0}, on which it, as an abbreviation for a word in the generators, in principle depends.

The follow ing proposition, which is adapted from [11], lists one possible set of de ning relations:

Proposition W rite $N=2^{e} m$, where m is odd. T hen the relations

1. $s^{4}=1 \quad(t s)^{3}=s^{2} \quad t^{N}=1$
2. $t^{2}\left(s t^{m} s^{1}\right)=\left(s t^{m} s^{1}\right) t^{e}$
3. $d(q) s=s d(q)^{1}$
4. $d(q) t=t^{q^{2}} d(q)$
for allq 2 Z that are relatively prim eto N , are de ning relations for $\mathrm{SL}\left(2 ; \mathrm{Z}_{\mathrm{N}}\right)$.

P roof. This is proved in [11], x 2.2,Lem .1.c, p.5,where also further references are given. N ote that the generator s is de ned di erently in [11], nam ely as our s^{1}. It is also shown there that the relations 3 and 4 are not necessary for all q that are relatively prim e to N, but only for $q=1 \quad 2 d, q=2 d$, and $q=2 d+1$,where d is an integer that satis es $d \quad 1\left(\bmod 2^{e}\right)$ and $d \quad 0$ (mod m). 2

2 Q uasitriangular H opf algebras

2.1 Recall that a H opf algebra A is called quasitriangular ${ }^{22}$ if its antipode is invertible and it possesses a so-called R-m atrix, which is an invertible elem ent

$$
\begin{aligned}
& \quad(\quad i d)(R)=X_{i ; j=1}^{X^{m}} a_{i} \quad a_{j} \quad b_{i} b_{j} \quad(i d \quad)(R)=\sum_{i ; j=1}^{X^{m}} a_{i} a_{j} \quad b_{j} \quad b_{i} \\
& \text { A ssociated w ith the } R \text { m atrix is the D rinfeld elem ent } u:={\underset{m}{m}}_{P_{i=1}} S\left(b_{i}\right) a_{i} \text {. This } \\
& \text { is an invertible elem ent that satis } e^{23}
\end{aligned}
$$

$$
(u)=(u \quad u)\left(R^{0} R\right)^{1}=\left(R^{0} R\right)^{1}(u \quad u) \quad S^{2}(a)=u^{u} u^{1}
$$

where $R^{0}:=P_{i=1}^{m} b_{i} \quad a_{i}$ arises from the $R m$ atrix by interchanging the tensorands. The inverse D rinfeld elem ent is given by $u^{1}={ }_{i=1}^{m} S^{2}\left(b_{i}\right) a_{i}$. In this context, it should be noted that the elem ent $R^{0}{ }^{1}$ always also is an $R \mathrm{~m}$ atrix for A. T he H opf algebra is called triangular if these two choices for the $R \mathrm{~m}$ atrices coincide.
2.2 An im portant source of quasitriangular H opf algebras is the D rinfel'd double construction..24 For an anbitrary nite-dim ensionalH opfalgebra H, the D rinfeld double $D:=D(H)$ is a H opf algebra whose underlying vector space is H H. The coalgebra structure is the tensor product coalgebra structure H cop H, so that coproduct and counit are given by the form ulas

The form ula for the product is a little m ore involved; it reads

$$
\left({ }^{\prime} \quad h\right)\left({ }^{\prime 0} \quad h^{0}\right)=\underbrace{0}_{(1)}\left(S^{1}\left(h_{(3)}\right)\right)^{\prime}{ }_{(3)}^{0}\left(h_{(1)}\right)^{\prime \prime} \underbrace{0}_{(2)} h_{(2)} \mathrm{h}^{0}
$$

To establish the assertion that the D rinfel'd double is quasitriangular, we have to endow it w ith an R m atrix, which is explicitly given as follow s : If $\mathrm{b}_{1} ;::: ; \mathrm{b}_{\mathrm{n}}$ is a basis of $H \mathrm{w}$ ith dual basis $\mathrm{b}_{1} ;::: ; \mathrm{b}_{\mathrm{n}}$, then the $\mathrm{R} m$ atrix is

$$
R=X_{i=1}^{X^{n}}\left(\begin{array}{llll}
l & b_{i}
\end{array}\right) \quad\left(b_{i} \quad 1\right)
$$

The associated D rinfel'd elem ent u_{D} and its inverse are therefore

$$
u_{D}=X_{i=1}^{X^{n}} S^{1}\left(b_{i}\right) \quad b_{i} \quad u_{D}^{1}=X_{i=1}^{X^{n}} S^{2}\left(b_{i}\right) \quad b_{i}
$$

The D rinfeld elem ent has an analogue in the dual D, nam ely the evaluation form

$$
\text { e:D ! K; ' h } 7{ }^{\prime} \text { (h) }
$$

The evaluation form is a sym m etric Frobenius hom om onphism . ${ }^{25}$ It is invertible w ith inverse e^{1} ('
$h)='\left(S^{1}(h)\right)$.
2.3 The integrals of the D rinfel'd double can be described in term s of the integrals of the original H opf algebra H. If we choose left integrals 2 H and

2 H aswell as right integrals 2 H and 2 H , then
D $=$
is a two-sided integral of the D rinfeld double, which in particular tells that the D rinfeld double is unim odular. ${ }^{26}$ Sim ilarly, the functions D and D in D de ned by

$$
D(\prime \quad h)=\prime^{\prime}\left(\begin{array}{ll}
) & \left.\left.(h) \quad D\left({ }^{\prime} \quad h\right)\right)^{\prime}()(h)\right)
\end{array}\right.
$$

are left resp. right integrals on D. U sing the form s of the D rinfeld elem ent and its inverse given in P aragraph 2.2, we see that

$$
\begin{array}{ll}
D\left(u_{D}\right)=\left(S^{1}()\right) & D\left(u_{D}^{1}\right)=\left(S^{2}()\right) \\
D\left(u_{D}\right)=\left(S^{1}()\right) & D\left(u_{D}^{1}\right)=\left(S^{2}()\right)
\end{array}
$$

U sing these integrals, it is possible to relate the D rinfel'd elem ent u_{D} and the evaluation form e:

Lem ma

1. $D(1) e(D(2))=e(D) u_{D}$
2. $e\left(D_{(1)}\right) D_{(2)}=e\left(D_{D}\right) S_{D}\left(u_{D}\right)$
3. $e^{1}(\mathrm{D}(1)) \mathrm{D}(2)=e^{1}(\mathrm{D}) \mathrm{U}_{\mathrm{D}}{ }^{1}$
4. $D(1) e^{1}\left(D_{(2)}\right)=e^{1}\left(D_{D}\right) S_{D}\left(u_{D}{ }^{1}\right)$

P roof. For every h 2 H, we have

$$
\begin{aligned}
& =((2)){ }_{(1)} S^{1}(h)=() S^{1}(h)=e(D) S^{1}(h)
\end{aligned}
$$

Therefore, if $b_{1} ;::: ; b_{n}$ is a basis of H w ith dualbasis $b_{1} ;::: ; \mathrm{b}_{\mathrm{n}}$, we have

$$
\begin{aligned}
& \text { D(1) } e(D(2))= \\
& \text { (2) (1) e((1) } \\
& \text { (2)) }= \\
& \text { (2) (1) (1) (} 2 \text {) } \\
& =X_{i=1}^{X^{n}} b_{i} \\
& \text { (2) }\left(\mathrm{b}_{\mathrm{i}}\right) \\
& \text { (1) } \\
& \text { (1) }\left(\begin{array}{ll}
(2)
\end{array}\right)=e(D)^{X} \\
& b_{i} \quad S^{1}\left(b_{i}\right)=e\left(D_{D}\right) u_{D}
\end{aligned}
$$

This proves the rst relation. The second relation follow sfrom this by applying the antipode S_{D}, because D is invariant under the antipode, ${ }^{27}$ and we have $S_{D}(e)=e$, since

$$
\begin{aligned}
S_{D}(e)\left(l^{\prime} \quad h\right) & =e\left(\left({ }^{\prime \prime} \quad S(h)\right)\left(S^{1}\left({ }^{\prime}\right) \quad 1\right)\right) \\
& =e\left(\left(S^{1}(\prime) \quad 1\right)(" \quad S(h))\right)=r^{\prime}(h)
\end{aligned}
$$

For the third relation, note that

$$
\begin{aligned}
& \text { (1) (h) (2) }\left(S^{1}\left(\text { (1) }^{\prime}\right)\right) S^{2}(\text { (2) })=\left(h S ^ { 1 } \left(\text { (1)))S }{ }^{2}(\text { (2)) }\right.\right. \\
& =\left(h_{(2)} S^{1}\left({ }_{(1)}\right)\right) h_{(1)} S^{1}\left({ }_{(2)}\right) S^{2}\left({ }_{(3)}\right)=\left(h_{(2)} S^{1}()\right) h_{(1)} \\
& =\left(S^{1}()\right) h=e^{1}(D) h
\end{aligned}
$$

which im plies

$$
\begin{aligned}
& =X_{i=1}^{X^{n}} \quad(1)\left(b_{i}\right) \quad(2)\left(S^{1}\left({ }_{(1)}\right) b_{0}\right. \\
& =e^{1}\left(D_{D}\right)^{X^{n}} b_{i} \quad S^{2}\left(b_{i}\right)=e^{1}\left(D_{D}\right) u_{D}^{1}
\end{aligned}
$$

T he fourth relation follow s as before from the third by apply ing the antipode. 2

W e will also need the corresponding result that expresses the evaluation form in term s of the D rinfel'd elem ent: ${ }^{28}$

Proposition

1. $D\left(u_{D} x\right)=D\left(x u_{D}\right)=D\left(u_{D}\right) e(x)$
2. $D\left(S_{D}\left(u_{D}{ }^{1}\right) x\right)=D\left(x S_{D}\left(u_{D}{ }^{1}\right)\right)=D\left(S_{D}\left(u_{D}{ }^{1}\right)\right) e^{1}(x)$

Proof. We can assum e that $x=$ ' h. For the rst relation, we then have

$$
\begin{aligned}
& ={ }^{\prime}\left(S^{2}\left(\text { (1))) (1) }\left(S^{1}\left({ }^{1}\right)\right)\right)_{(2)}(\mathrm{h})\right. \\
& ={ }^{\prime}\left(S^{2}(\text { (1) })\right)\left(S^{1}(\text { (2) }) h\right) \\
& ={ }^{\prime}\left(S^{2}\left({ }_{(1)}\right) S^{1}\left({ }_{(2)}\right) h_{(2)}\right)\left(S^{1}(\text { (3) }) h_{(1)}\right) \\
& ={ }^{\prime}\left(h_{(2)}\right)\left(S^{1}()_{(1)}\right)=r^{\prime}\left(h^{\prime}\right)\left(S^{1}()\right)=e(x) \quad D\left(u_{D}\right)
\end{aligned}
$$

This shows that $D\left(u_{D} x\right)=D_{D}\left(u_{D}\right) e(x)$; if we replace x by $u_{D}{ }^{1} x u_{D}$ and use that e is a sym m etric Frobenius hom om onphism, we get that also $D\left(x u_{D}\right)=$ d (u_{D}) $e(x)$.

For the second relation, we have

$$
\begin{aligned}
& \left.D\left(S_{D}\left(u_{D}^{1}\right) x\right)\right)^{X^{n}} \quad D\left(S_{D}\left(\begin{array}{ll}
\left(b_{i}\right)
\end{array} S_{D}\left(S^{2}\left(b_{i}\right) \quad 1\right) x\right)\right. \\
& i=1 \\
& X^{n} \\
& ={ }^{X} \quad D\left(\left(\begin{array}{ll}
\| & b_{i}
\end{array}\right)\left(S^{2}\left(b_{i}\right) \quad 1\right) \mathrm{x}\right) \\
& i=1 \\
& =X^{X^{n}} \quad D\left(\left(S^{2}\left(b_{i}\right) \quad 1\right) x\left({ }^{\prime} \quad S^{2}\left(b_{i}\right)\right)\right) \\
& i=1 \\
& =X_{i=1}^{X^{n}} D\left((b _ { i } \quad 1) x \left(\begin{array}{ll}
\left.\left(b_{i}\right)\right)=X_{i=1}^{X^{n}} D\left(b_{i}^{\prime} \quad h b_{i}\right)
\end{array}\right.\right. \\
& X^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\prime\left({ }_{(2)}\right)\left(h_{(1)}\right)=\prime^{\prime}\left(S^{1}\left(\mathrm{~h}_{(3)}\right) \mathrm{h}_{(2)} \quad \text { (2) }\right) \quad\left(\mathrm{h}_{(1)} \quad \text { (1) }\right) \\
& \left.\left.=^{\prime}\left(S^{1}\left(h_{(2)}\right)\right)\left(h_{(1)}\right)\right)^{\prime}\left(S^{1}(h)\right)()^{\prime}\right)^{1}(x)()
\end{aligned}
$$

For $\mathrm{x}=1$, this yields $\mathrm{D}_{\mathrm{D}}\left(\mathrm{S}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{D}}{ }^{1}\right)\right)=(\mathrm{)}$, which we can resubstitute in order to establish one of the claim ed identities. T he other one follow s as before by substituting $S_{D}\left(u_{D}\right) x S_{D}\left(u_{D}{ }^{1}\right)$ for x and using the sym m etry of $e .2$

3 Factorizable H opf algebras

3.1 If A is already a quasitriangular H opf algebra, it is of course also possible to form its double D = D (A). In this case, there exists a H opf algebra retraction

$$
\text { :D (A)! A; ' a } \quad \text { I (' } \quad \text { id) (R) a }
$$

from the double of A to A itself. ${ }^{29} \mathrm{U}$ sing the altemative $R \mathrm{~m}$ atrix $\mathrm{R}^{0}{ }^{1} \mathrm{~m}$ entioned in P aragraph 2.1 instead of R, we get another H opfalgebra retraction ${ }^{0}$. A swe have ${ }^{30} R^{1}=\left(\begin{array}{ll}S & i d\end{array}\right)(R)=\left(\begin{array}{lll}\text { id } & S^{1}\end{array}\right)(R)$, this m ap is explicitly given as

From these two hom om onphism s, we derive the algebra hom om onphism

$$
: D(A)!A \quad A ; x T \quad\left(\quad{ }^{0}\right)(D(x))
$$

where A A carries the canonical algebra structure. N ote that this m ap is in generalnot a coalgebra hom om onphism w ith respect to the canonical coalgebra structure on A A. H ow ever, it becom es a Hopf algebra hom om onphism if we tw ist the com ultiplication ${ }^{31}$ by the cocycle $F:=1 \quad R^{1} 12 \mathrm{~A}{ }^{4}$. In other words, is a Hopf algebra hom om onphism if considered as a map to the H opf algebra (A A) , which has the canonical tensor product algebra structure, but the tw isted coproduct

$$
\mathrm{F}(\mathrm{a} \quad \mathrm{~b})=\mathrm{F}\left(\left(\mathrm{a}_{(1)} \quad \mathrm{b}_{(1)}\right) \quad\left(\mathrm{a}_{(2)} \quad \mathrm{b}_{(2)}\right)\right) \mathrm{F}^{1}
$$

The H opf algebra (A A) even becom es quasitriangular by using the tw isted R matrix ${ }^{32} R_{F}:=F_{t} R_{A} A_{A}{ }^{1}$, where

$$
R_{A} \quad A:=X_{i ; j=1}^{X^{m}} \quad a_{i} \quad b_{j} \quad b_{i} \quad S\left(a_{j}\right)
$$

is an $R m$ atrix for the tensor product H opfalgebra $A \quad A$ and F_{t} arises from F by interchanging the rst and the third as well as the second and the fourth tensor factor. By using this speci cR m atrix, becom es amonphism ofquasitriangular H opf algebras ${ }^{33}$ in the sense that it m aps the $R-m$ atrix of the D rinfeld double to R_{F}. This im plies that the im age of the D rinfel'd elem ent is given as follow s:

Lem ma $\quad\left(u_{D}\right)=u \quad u^{1}$

P roof. In general, if the coproduct of a H opf algebra is m odi ed by a cocycle, then the resulting H opf algebra has the antipode $S_{F}(a)=W S(a) W{ }^{1}$, where w arises from (id S)(F) by multiplication of the tensorands. ${ }^{34}$ From this, we see that

$$
S_{F}^{2}(a)=x S^{2}(a) x^{1}
$$

$w h e r e x=w S\left(w^{1}\right)$, and it can be shown that the D rinfel'd elem ent u_{F} that arises from the $R-m$ atrix $R_{F}=F_{t} R F^{1}$ is related to the original one via the form ula $u_{F}=x u$.

In our case, we nd

$$
w=X_{i=1}^{X^{n}}\left(1 \quad S\left(a_{i}\right)\right) S_{A} \quad A\left(b_{i} \quad 1\right)=X_{i=1}^{X^{n}} S\left(b_{i}\right) \quad S\left(a_{i}\right)=R^{0}
$$

This implies in this case that $x=1$, which m eans that the D rinfel'd elem ents of (A A $)_{F}$ and A A coincide. Because is a morphism of quasitriangular H opf algebras, this elem ent is equal to (u_{D}). But for the D rinfel'd elem ent of A A, we nd
$u_{A} \quad=X_{i ; j=1}^{X^{n}} S_{A} \quad$ A $\left(b_{i} \quad S\left(a_{j}\right)\right)\left(a_{i} \quad b_{j}\right)=X_{i ; j=1}^{X^{n}} S\left(b_{i}\right) a_{i} \quad S^{2}\left(a_{j}\right) b_{j}=u \quad S^{2}\left(u^{1}\right)$
B ecause the D rinfel'd elem ent is invariant under the square of the antipode, th is im plies the assertion. 2
 a second H opf algebra hom om onphism
where this tim e we have to use the cocycle $\mathrm{F}^{0}:=1 \quad \mathrm{R}^{0} \quad 12 \mathrm{~A}{ }^{4}$ to tw ist the com ultiplication on the right-hand side. A s before, the H opf algebra (A A) 0 is quasitriangular w ith respect to the R matrix $R_{F}{ }^{0}:=F_{t}{ }^{0} R_{A}^{\infty}{ }_{A} F^{0}{ }^{1}$, where

$$
R_{A}^{\infty} A=X_{i ; j=1}^{X^{m}} b_{i} \quad a_{j} \quad S\left(a_{i}\right) \quad b_{j}
$$

is an $R m$ atrix for the tensor product H opfalgebra $A \quad A$ and F_{t}^{0} arises from F^{0} by interchanging the rst and the third as well as the second and the fourth tensor factor. By using this speci cR-m atrix, ${ }^{0}$ becom es a m onphism ofquasitriangular H opf algebras in the sense that it m aps the $R-m$ atrix of the D rinfel'd double to $R_{F}{ }^{0}$. Furtherm ore, the D rinfel'd elem ent arising from the altemative $R m$ atrix $R^{0}{ }^{1}$ is exactly the inverse u^{1} of the original one, so that the preceding lem m a yields that ${ }^{0}\left(u_{D}\right)=u^{1} u$.
3.2 In the situation of Paragraph 3.1, we have a left action of A A on A by requiring that the elem ent a $a^{0} 2 \mathrm{~A} A$ acts on b 2 A by mapping it to albS ${ }^{1}$ (a). Pulling this action back along ${ }^{0}$, we get a left action of $D(A)$ on A given by

$$
\mathrm{x} \quad \mathrm{~b}=\left(\mathrm{x}_{(2)}\right) \mathrm{bS}{ }^{1}\left({ }^{0}\left(\mathrm{x}_{(1)}\right)\right)
$$

If $x=$, $\quad a$ and $R=P_{i=1}^{m} a_{i} \quad b_{i}$, this action is explicitly given as

$$
\begin{aligned}
& \left(\begin{array}{ll}
\prime & \mathrm{a}) \\
\mathrm{b} & \left.=\underset{\mathbf{(' N}_{(1)}}{ } \mathrm{a}_{(2)}\right) \mathrm{bS}{ }^{1}\left({ } ^ { 0 } \left(^{\prime}{ }_{(2)}\right.\right. \\
\left.\left.\mathrm{a}_{(1)}\right)\right)
\end{array}\right. \\
& =\mathrm{X}^{\mathrm{n}} \quad,{ }_{(1)}\left(\mathrm{a}_{\mathrm{i}}\right) \mathrm{b}_{\mathrm{i}} \mathrm{a}_{(2)} \mathrm{bS}^{1}\left({ }^{\prime}{ }_{(2)}\left(\mathrm{b}_{\mathrm{j}}\right) \mathrm{S}\left(\mathrm{a}_{\mathrm{j}}\right) \mathrm{a}_{(1)}\right) \\
& i_{i j}=1 \\
& \mathrm{X}^{\mathrm{m}} \\
& \left.={ }^{X} \quad,\left(a_{i} b_{j}\right) b_{i} a_{(2)}\right) b^{1}\left(a_{(1)}\right) a_{j} \\
& \text { i;j=1 }
\end{aligned}
$$

W e w ill use the sam e notation for the restrictions of this action to A and A , i.e., we de ne

$$
\begin{aligned}
& \mathrm{a} \quad \mathrm{~b}:=\left(\begin{array}{ll}
\left(\begin{array}{ll}
l & \mathrm{a}
\end{array}\right) \quad \mathrm{b}=\mathrm{a}_{(2)} \mathrm{bS}^{1}\left(\mathrm{a}_{(1)}\right) \\
, & \mathrm{b}:=\left(\begin{array}{ll}
\prime & 1
\end{array}\right) \quad \mathrm{b}=\mathrm{X}_{\mathrm{i} ; j=1}^{n}
\end{array},\left(\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{j}\right) \cdot b_{i} b a_{j}\right.
\end{aligned}
$$

N ote that the restriction of the action to A is just the left ad joint action of ${ }^{\text {cop }}$ on itself. T he space of invariants for this restricted action therefore is exactly the center $Z(A)$ of A.

W e also introduce the m ap

$$
: A \quad!A ;^{\prime} \eta \quad(\prime \quad 1)=X_{i ; j=1}^{X^{n}} \quad\left(a_{i} b_{j}\right) b_{i} a_{j}=(i d \quad,)\left(R^{0} R\right)
$$

If C (A) denotes the subalgebra

$$
C(A):=\mathrm{f} \quad 2 \mathrm{~A} \quad j \quad(\mathrm{ab})=\left(\mathrm{bS}^{2}(\mathrm{a})\right) \text { for alla; } \mathrm{b} 2 \mathrm{Ag}
$$

of A , it is know n^{35} that has the follow ing property:
Proposition W e have

$$
\left(^{\prime}\right)=(\prime)(\quad)
$$

for all' 2 A and all 2 C (A). Furthem ore, we have
$a \quad(\prime)=\prime_{(1)}\left(S^{1}\left(a_{(2)}\right)\right)_{(3)}^{\prime}\left(a_{(1)}\right) \quad\left(\prime_{(2)}\right)$
for all' 2 A and alla 2 A . C onsequently, restricts to an algebra hom om orphism from $C(A)$ to $Z(A)$.

P roof. It is possible to verify these properties by direct com putation ; how ever, it is interesting to derive them from our construction of . T he second equation holds since
a

$$
\begin{aligned}
& \left(^{\prime}\right)=\left(\begin{array}{ll}
1 & \mathrm{a})\left(\mathbf{\prime}^{\prime}\right. \\
1
\end{array}\right) \quad 1={ }^{\prime}{ }_{(1)}\left(\mathrm{S}^{1}\left(\mathrm{a}_{(3)}\right)\right)^{\prime}{ }_{(3)}\left(\mathrm{a}_{(1)}\right)\left(^{\prime}{ }_{(2)} \quad \mathrm{a}_{(2)}\right) \quad 1 \\
& ={ }^{\prime}{ }_{(1)}\left(S^{1}\left(a_{(2)}\right)\right)^{\prime}{ }_{(3)}\left(a_{(1)}\right) \quad\left({ }^{\prime}{ }_{(2)}\right)
\end{aligned}
$$

This am ounts to saying that is an A-linearm ap from A to A, where A is considered as an A m odule via a \quad I ${ }_{(1)}\left(S^{1}\left(a_{(2)}\right)\right)_{(3)}\left(\mathrm{a}_{(1)}\right)^{\prime}{ }_{(2)}$; this action is the left coad joint action, built w ith the inverse antipode, and is actually used in the construction of the D rinfeld double as a double crossproduct. ${ }^{36}$ The space C (A) is exactly the space of invariants for this action. A s an A-linearm ap takes invariants to invariants, m aps C (A) to the center Z (A).

For the rst assertion, note that we clearly have' $\quad z=(\prime \quad 1) z$ if z 2 Z (A), so that
(') = (')
$1=\prime \quad($
$1)=$ '
() = ('

1) () = (') ()
if 2 C (A). Finally, note that it follows from the elem entary properties of $R \mathrm{~m}$ atrices ${ }^{37}$ that preserves the unit elem ent. 2

In a very sim ilar way, we have a right action of A A on A by requiring that the elem ent a $a^{0} 2 \mathrm{~A} A$ acts on b 2 A by mapping it to $S^{1}\left(a^{0}\right)$ ba. Pulling this action back along, we get a right action of D (A) on A given by

$$
\text { b } \quad x=S^{1}\left({ }^{0}\left(x_{(2)}\right)\right) \text { b } \quad\left(x_{(1)}\right)
$$

T he two actions are related via the form ulas

$$
S(x \quad b)=S(b) \quad S_{D}(x) \quad \text { and } \quad S(b \quad x)=S_{D}(x) \quad S(b)
$$

If $x=$, $\quad a$ and $R=P_{i=1}^{m} a_{i} \quad b_{i}$, this action is explicitly given as

$$
\begin{aligned}
& x^{m} \\
& \left.={ }^{X^{n}} S^{1}{ }^{\prime}{ }_{(1)}\left(b_{i}\right) S\left(a_{i}\right) a_{(2)}\right) b^{\prime}{ }_{(2)}\left(a_{j}\right) b_{j} a_{(1)} \\
& \text { i;j=1 } \\
& =X_{i ; j=1}^{X^{n}},\left(b_{i} a_{j}\right) S^{1}\left(a_{(2)}\right) a_{i} b b_{j} a_{(1)}
\end{aligned}
$$

A s before, we use the sam e notation for the restrictions of this action to A and A , so that

$$
\begin{aligned}
& \text { b } \left.\quad a:=b \quad\left(\begin{array}{ll}
1 & a
\end{array}\right)=S^{1}\left(\mathrm{a}_{(2)}\right)\right)_{a_{(1)}} \\
& \mathrm{b} \quad \prime:=\mathrm{b} \quad\left(\begin{array}{ll}
\prime & 1
\end{array}\right)=^{\prime} \quad\left(\mathrm{b}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{bb} \mathrm{~b}_{\mathrm{j}} \\
& \text { i;j= } 1
\end{aligned}
$$

N ote that the restriction of the action to A is just the right adjoint action of A ${ }^{\text {cop }}$ on itself, and as for the left ad joint action considered before, the space of invariants is the center Z (A).

W e also introduce the map

$$
: A \quad!A ;^{\prime} \eta \quad(1 \quad,)=X_{i ; j=1}^{X^{n}} \quad\left(b_{i} a_{j}\right) a_{i} b_{j}=\left(\begin{array}{ll}
\prime & i d)\left(R^{0} R\right)
\end{array}\right.
$$

This m ap has sim ilar properties as the m ap : If C (A) denotes the subalgebra

$$
C(A):=f \quad 2 A \quad j \quad(a b)=\left(b s{ }^{2}(a)\right) \text { for alla;b2Ag }
$$

of A, we have

$$
\left.(\prime)=()^{\prime}\right)
$$

for all 2 C (A) and all' 2 A . Furtherm ore, satis es

$$
\left(^{\prime}\right) \quad a={ }^{\prime}{ }_{(1)}\left(a_{(2)}\right)^{\prime}{ }_{(3)}\left(S^{1}\left(a_{(1)}\right)\right) \quad\left({ }^{\prime}{ }_{(2)}\right)
$$

i.e., it is an A-linear m ap from A w ith the right coad joint action, built w ith the inverse antipode, to A w ith right adjoint action of $A^{\text {cop }}$. T he space of invariants of the right coad joint action is C (A), whereas the space of invariant of the right adjoint action is the center Z (A), so that restricts to an algebra hom om onphism from C (A) to $Z(A)$. These properties can be veri ed directly ${ }^{38}$ or derived from our construction of in a way sim ilar to the proof of the preceding proposition. It is also possible to derive them from the corresponding properties of , aswe have

$$
S\left(\left(^{\prime}\right)\right)=S\left(\left(^{\prime} \quad 1\right)=S(1) \quad S^{1}\left({ }^{\prime}\right)=\left(S^{1}\left({ }^{\prime}\right)\right)\right.
$$

and sim ilarly $S\left(\left(^{\prime}\right)\right)=\left(\begin{array}{ll}S^{1} & (\prime)) \text {. }\end{array}\right.$
Them appings and are related in various ways to the D rinfel'd elem ent u. Besides the equations

$$
\left({ }^{\prime}\right)=\left(\mathrm{id}^{\prime}\right)\left(\left(\begin{array}{ll}
u & \mathrm{u}
\end{array}\right)\left(\mathrm{u}^{1}\right)\right)=\left(\mathrm{id}^{\prime} \quad\right)\left(\left(\mathrm{u}^{1}\right)\left(\begin{array}{ll}
u & \mathrm{u}
\end{array}\right)\right)
$$

and

$$
\left(^{\prime}\right)=\left(\begin{array}{ll}
\prime & i d
\end{array}\right)\left(\left(\begin{array}{ll}
u & u
\end{array}\right)\left(\begin{array}{ll}
u^{1} & l^{1}
\end{array}\right)=\left(\begin{array}{ll}
\prime & i d
\end{array}\right)\left(\left(\begin{array}{ll}
u^{1}
\end{array}\right)\left(\begin{array}{ll}
u & u
\end{array}\right)\right)\right.
$$

which are direct consequences of the identity for (u) stated in Paragraph 2.1, we also have the follow ing relation: The elem ent $g:=u S\left(u^{1}\right)$ is a grouplike elem ent. ${ }^{39}$ If $2 \mathrm{C}(\mathrm{A})$, de ne ${ }^{0} 2 \mathrm{~A}$ by ${ }^{0}(\mathrm{a}):=\left(\mathrm{ag}{ }^{1}\right)$. Then ${ }^{0} 2 \mathrm{C}(\mathrm{A})$, and ${ }^{40} \quad\left({ }^{0}\right)=(\quad)$.

A s it tums out, ${ }^{41}$ the four conditions that is bijective, that is bijective, that is bijective, and that ${ }^{0}$ is bijective, are allequivalent. If these conditions are satis ed, the H opf algebra A is called factorizable. ${ }^{42}$
3.3 If A is the D rinfeld double of a nite-dim ensional Hopf algebra H, the m apping takes a very sim ple form. To m ake this explicit, we decom pose the dualof the double in the form $D(H)=H \quad H \quad$, where we use the isom onphism

From the form of the R matrix of the D rinfeld double described in Paragraph 2.2, we see that

$$
R^{0} R=X_{i ; j=1}^{X^{n}}\left(b_{j} \quad b_{i}\right) \quad\left(\begin{array}{ll}
\left(b_{j}\right)\left(b_{i}\right. & 1)
\end{array}\right.
$$

 for under additional restrictions: ${ }^{43}$

Lem ma Suppose that $={ }^{P}{ }_{j} h_{j} \quad{ }^{\prime}{ }_{j} 2 D(H)$.

1. If $2 C(D(H))$, then $(\quad)=P_{j} S^{2}\left({ }^{\prime}{ }_{j}\right) h_{j}$.
2. If $2 C(D(H))$, then ()$=P_{j} S^{2}\left({ }_{j}\right) \quad h_{j}$ 。

Proof. For the rst assertion, we have

$$
\begin{aligned}
& (\quad)=X_{i ; j=1}^{X^{n}}\left(b_{j} \quad b_{i}\right) \quad\left(\left(\begin{array}{ll}
(1 & b_{j}
\end{array}\right)\left(b_{i} \quad 1\right)\right) \\
& \mathrm{X}^{\mathrm{n}} \\
& ={ }_{i ; j=1}^{X}\left(b_{j} \quad b_{i}\right) \quad\left((b _ { i } \quad 1) S _ { D } ^ { 2 } \left(\begin{array}{ll}
\left.\left(\begin{array}{l}
l
\end{array}\right)\right)
\end{array}\right.\right. \\
& =X_{i ; j=1}^{X^{n}}\left(b_{j} \quad b_{i}\right) \quad\left(b_{i} \quad S^{2}\left(b_{j}\right)\right)=_{j}^{X} S^{2}\left({ }^{\prime}{ }_{j}\right) \quad h_{j}
\end{aligned}
$$

The proof of the second assertion is very sim ilar. 2

A the end of P aragraph 3.2, w e have expressed the m appings and in term s of the D rinfeld elem ent. In the case of a D rinfel'd double, we can replace the D rinfel'd elem ent by the evaluation form to get very sim ilar form ulas for their inverses:

Proposition Suppose that $D=D(H)$ is the D rinfeld double of a nitedim ensional H opf algebra H. Then we have for x $2 \mathrm{D}(\mathrm{H})$ that

$$
\begin{aligned}
& \text { 1. } \quad{ }^{1}(x)=\left(\begin{array}{lll}
\left(\mathrm{id}_{H}\right. & \left.S^{2}\right) & S_{D}^{1}
\end{array}\right)\left(e_{(1)}^{1} e\right)\left(e_{(2)}^{1} e\right)(x) \\
& \text { 2. } \\
& { }^{1}(x)=\left(\begin{array}{lll}
S_{D} & \left(S^{2}\right. & \text { id })
\end{array}\right)\left(e_{(2)}^{1}\right)\left(e_{(1)}^{1}\right)(x)
\end{aligned}
$$

Proof. We can assume that $x=$ ' h for ' 2 H and h 2 H . Suppose that $b_{1} ;::: ; b_{n}$ is a basis of H with dualbasis $b_{1} ;::: ; \mathrm{b}_{n}$. U sing the form of the R m atrix given in Paragraph 2.2, we nd

$$
\begin{aligned}
& \left(\left(\left(i_{H} \quad S^{2}\right) \quad S_{D}{ }^{1}\right)\left(e_{(1)}^{1} e\right)\right)\left(e_{(2)}^{1} e\right)(x) \\
& =X_{i ; j=1}^{X^{n}} S_{D}^{1}\left(e_{(1)}^{1} e\right)\left(b_{i} \quad S^{2}\left(b_{j}\right)\right)\left(\begin{array}{llll}
\prime \prime & \left.b_{i}\right)\left(b_{j}\right. & \left.1) e_{(2)}{ }^{1}\left({ }^{\prime}{ }_{(2)} \quad h_{(1)}\right) e^{\prime}{ }_{(1)} \quad h_{(2)}\right)
\end{array}\right. \\
& i ; j=1 \\
& ={ }_{i ; j=1}^{X} e\left(b_{i(2)} \quad S^{2}\left(b_{j(1)}\right)\right) e_{(1)}^{1}\left(S_{D}^{1}\left(b_{i(1)} \quad S^{2}\left(b_{j(2)}\right)\right)\right)\left(\begin{array}{ll}
\left." \quad b_{i}\right)\left(b_{j} \quad 1\right)
\end{array}\right. \\
& \mathrm{e}_{(2)}{ }^{1}\left({ }^{\prime}{ }_{(2)} \quad \mathrm{h}_{(1)}\right)^{\prime}{ }_{(1)}\left(\mathrm{h}_{(2)}\right)
\end{aligned}
$$

where we have used the fact that e is invariant under the antipode observed in the proof of Lem m a.3. U sing the de nition ofe, this becom es
where, in the last step, we have used that the antipode is antim ultiplicative and that e^{1} is cocom m utative. U sing the explicit form of e^{1}, this becom es
U sing the antipode equation, we can cancel tw o term s to get

$$
\begin{aligned}
& \left(\left(\left(\operatorname{id}_{H} \quad S^{2}\right) \quad S^{1}\right)\left(e_{(1)}^{1} e\right)\right)\left(e_{(2)}^{1} e\right)(x)= \\
& \mathrm{X}^{\mathrm{n}} \quad \mathrm{~b}_{\mathrm{i}}\left(\mathrm{~h}_{(2)}\right)^{\prime}\left(\mathrm{h}_{(3)} \mathrm{b}_{j} S^{1}\left(\mathrm{~h}_{(1)}\right)\right)\left(\begin{array}{l}
\left." \quad \mathrm{~b}_{\mathrm{i}}\right)\left(\mathrm{b}_{j} \quad 1\right)= \\
\end{array}\right. \\
& i ; j=1
\end{aligned}
$$

This proves the rst form ula. For the second form ula, recall from Paragraph 3.2 that $\quad{ }^{1}=S_{D} \quad{ }^{1} \quad S_{D}$, so that we get from the rst form ula

$$
\begin{aligned}
&{ }^{1}(x)=\left(\begin{array}{lll}
S_{D} & 1 & S_{D}
\end{array}\right)(x)=\left(S _ { D } \quad \left(\begin{array}{ll}
\text { id } & \left.S^{2}\right) \\
& =\left(\begin{array}{ll}
S_{D} & 1
\end{array}\right)\left(e_{(1)}^{1} e\right)\left(e_{(2)}^{1} e\right)\left(S_{D}(x)\right) \\
& =\left(\begin{array}{lll}
S_{D} & \text { id }) \quad S_{D}
\end{array}\right)\left(e_{(1)}^{1} e\right)\left(e_{(2)}^{1} e\right)\left(S_{D}(x)\right)
\end{array}\right.\right. \\
&\text { id })\left(e_{(2)}^{1}\right)\left(e_{(1)}^{1}\right)(x)
\end{aligned}
$$

as asserted. 2
N ote that, in the case where the antipode of H is an involution, these form ulas reduce to

$$
{ }^{1}(x)=S_{D}\left(e_{(1)}^{1} e\right)\left(e_{(2)}^{1} e\right)(x) \quad{ }^{1}(x)=S_{D}\left(e e_{(2)}^{1}\right)\left(e e_{(1)}^{1}\right)(x)
$$

which should be com pared w ith the ones given in P aragraph 3.2 using the D rinfel'd elem ent.
3.4 If $\mathrm{f}: \mathrm{A}$! B is a monphism of quasitriangular Hopf algebras, then it follow s directly from the form ulas for and given in Paragraph 3.2 that the diagram s

com m ute, where the index indicates to which H opfalgebra the m apping belongs. A pplying this to, we see that the diagram s

comm ute. N ow we have by de nition that $\binom{A}{A}_{F}=A \quad A$ as algebras. But these two H opf algebras have even m ore things in com m on:

Lem ma W e have $C\left(\begin{array}{ll}\left.\left.\left(\begin{array}{ll}A & A\end{array}\right)_{F}\right)=C\left(\begin{array}{ll}A & A\end{array}\right) \text { and } C\left(\begin{array}{ll}A & A\end{array}\right)_{F}\right)=C\left(\begin{array}{ll}A & A\end{array}\right) \text { as } .\end{array}\right.$ algebras.

P roof. W e have already seen in the proof of Lem m a 3.1 that the D rinfel'd elem ents of (A A) and A A coincide. Therefore, the squares of the antipodes coincide, too. This im plies the asserted equalities as vector spaces. That the products also agree follow s from the fact that $\left(S^{2} S^{2}\right)(F)=F$ in our case. 2

From this lem ma,we can extract the follow ing inform ation about the restrictions of and :

Proposition Thediagram s

and

com m ute.
Proof. From the form ula $R_{F}=F_{t} R_{A} A_{A}{ }^{1}$ for the tw isted R m atrix, we get im m ediately that $R_{F}^{0} R_{F}=F R_{A}^{0}{ }_{A} R_{A} \quad A^{\prime}{ }^{1}$. N ow we have

$$
R_{A}^{0} \quad{ }_{A} R_{A} \quad A=X_{i ; j ; k ; l=1}^{X^{m}} \quad b_{k} a_{i} \quad S\left(a_{1}\right) b_{j} \quad a_{k} b_{i} \quad b_{1} S\left(a_{j}\right)
$$

and therefore

$$
\begin{aligned}
& R_{F}^{0} R_{F}=\left(_{p=1}^{X^{n}} 1 \quad S\left(a_{p}\right) \quad b_{p} \quad 1\right) R_{A}^{0}{ }_{A} R_{A} \quad \underset{A}{ }\left(_{q=1}^{X^{n}} 1 \quad a_{q} \quad b_{q} \quad 1\right) \\
& \mathrm{p}=1 \\
& ={\underset{i ; j ; k ; 1 ; p ; q=1}{ } b_{k} a_{i} \quad S\left(a_{p}\right) S\left(a_{1}\right) b_{j} a_{q} \quad b_{p} a_{k} b_{i} b_{q} \quad b_{1} S\left(a_{j}\right)}^{i_{i}}
\end{aligned}
$$

For two elem ents '; 2 C (A), we therefore nd

$$
x^{n}
$$

$$
\left(^{\prime}\right)=\underbrace{\wedge}_{i ; j ; k ; l p ; q=1} \mathrm{~b}_{\mathrm{k}} \mathrm{a}_{\mathrm{i}} \quad \mathrm{~S}\left(\mathrm{a}_{\mathrm{p}}\right) \mathrm{S}\left(\mathrm{a}_{1}\right) \mathrm{b}_{j} \mathrm{a}_{\mathrm{q}}{ }^{\prime}\left(\mathrm{b}_{\mathrm{p}} \mathrm{a}_{\mathrm{k}} \mathrm{~b}_{\mathrm{i}} \mathrm{~b}_{\mathrm{q}}\right) \quad\left(\mathrm{b}_{1} \mathrm{~S}\left(\mathrm{a}_{j}\right)\right)
$$

N ow note that

$$
\begin{aligned}
X_{j ; l=1}^{X^{n}} S\left(a_{1}\right) b_{j}\left(b_{1} S\left(a_{j}\right)\right) & =\underbrace{X^{n}}_{j ; 1=1} S\left(a_{1}\right) b_{j} \quad\left(S\left(a_{j}\right) S^{2}\left(b_{1}\right)\right) \underbrace{X^{n}}_{j ; l=1} a_{1} b_{j} \quad\left(S\left(a_{j}\right) S\left(b_{1}\right)\right) \\
& =X_{j ; 1=1}^{X^{n}} S^{1}\left(S\left(b_{j}\right) S\left(a_{1}\right)\right) \quad\left(S^{\prime}\left(a_{j}\right) S\left(b_{1}\right)\right) \\
& =X_{j ; 1=1}^{X^{n}} S^{1}\left(b_{j} a_{1}\right) \quad\left(a_{j} b_{1}\right)=S^{1}((\quad))
\end{aligned}
$$

which is a central elem ent by Proposition 3.2. W e can therefore rew rite the above expression in the form

But in this expression, we can cancel the sum m ation over p and q, as we have

$$
\begin{aligned}
& \left.X^{n} S\left(a_{p}\right) a_{q}^{\prime}\left(b_{p} a_{k} b_{i} b_{q}\right)\right)_{p ; q=1}^{X^{n}} S\left(a_{p}\right) a_{q}{ }^{\prime}\left(a_{k} b_{i} b_{q} S^{2}\left(b_{p}\right)\right) \\
& p ; q=1 \\
& =X_{p ; q=1}^{X^{n}} a_{p} a_{q}^{\prime}\left(a_{k} b_{i} b_{q} S\left(b_{p}\right)\right) \sum_{p ; q=1}^{X^{n}} a_{p} a_{q}^{\prime}\left(a_{k} b_{i} S^{\prime}\left(b_{p} S^{1}\left(b_{q}\right)\right)\right)=1^{\prime}\left(a_{k} b_{i}\right)
\end{aligned}
$$

A fter this cancellation, we get

$$
\begin{aligned}
(\prime \quad) & =\mathrm{X}_{\mathrm{i} ; \mathrm{k}=1}^{\mathrm{X}^{n}} \mathrm{~b}_{\mathrm{k}} \mathrm{a}_{\mathrm{i}} \quad S^{1}\left(()^{\prime}\left(\mathrm{a}_{\mathrm{k}} \mathrm{~b}_{\mathrm{i}}\right)\right. \\
& =\left({ }^{\prime}\right) \quad S^{1}(())=(\prime) \quad S(())
\end{aligned}
$$

where the last step follows from the fact that $S^{2}(())=u() u^{1}=()$ since () is central. This show the com mutativity of the rst diagram. The com m utativity of the second diagram follow sfrom sim ilar com putations. 2
N ote that, in contrast to the factorizable case, it is not true in general that m aps the center of D (A) to the center of $A A$, as the exam ple of a group ring w ith an $R-m$ atrix equal to the unit show s.

In the whole discussion, it is possible to replace the originalR m atrix by $R^{0}{ }^{1}$. W e have already pointed out above that this interchanges and 0 aswellas F and F^{0}. The analogue of is the m ap that assigns to every ' 2 A the elem ent (id \quad) ($\mathrm{R}^{1} \mathrm{R}^{0}{ }^{1}$). If' $2 \mathrm{C}(A)$, this elem ent can be expressed in term s of the originalmap as follow s :

$$
\begin{aligned}
& \left(\begin{array}{ll}
\text { id } & \prime
\end{array}\right)\left(R^{1} R^{0}{ }^{1}\right)=X_{i ; j=1}^{X^{m}} S\left(a_{i}\right) b_{j}^{\prime}\left(b_{i} S\left(a_{j}\right)\right)=X_{i ; j=1}^{X^{m}} S\left(a_{i}\right) b_{j}^{\prime}\left(S\left(a_{j}\right) S^{2}\left(b_{i}\right)\right) \\
& =S^{1}\left({ }^{X^{m}} S\left(b_{j}\right) S^{2}\left(a_{i}\right)^{\prime}\left(S\left(a_{j}\right) S^{2}\left(b_{i}\right)\right)\right) \\
& i ; j=1 \\
& =S^{1}\left({ }^{X^{m}} \quad b_{j} a_{i}^{\prime}\left(a_{j} b_{i}\right)\right)=S^{1}\left(\left(^{\prime}\right)\right)=S\left(\left(^{\prime}\right)\right) \\
& i ; j=1
\end{aligned}
$$

where the last step uses the argum ent from the end of the proof of the preceding proposition. Som ething sim ilar holds for the analogue of : If' 2 C (A), we have

$$
\left(l^{\prime} \quad i d\right)\left(R^{1} R^{0}{ }^{1}\right)=S\left(\left(^{\prime}\right)\right)
$$

as can be seen by a sim ilar com putation. Therefore, the corresponding com m u tative diagram sfor ${ }^{0}$ are

and

3.5 Let us now assum e in addition that our quasitriangular H opf algebra A is also factorizable. It is then nite-dim ensionaland unim odular, ${ }^{44} \mathrm{which}$ im plies ${ }^{45}$ that a right integral $2 \mathrm{~A} m$ ust be contained in C (A). The im age of this integral under is again an integral:

Lem ma () is a two-sided integral of A.

Proof. It follow s from the discussion in Paragraph 3.2 that
() (') = (') = ' (1) () = " ((')) ()
for all' 2 A. Because A is factorizable, every a 2 A can be written in the form $a=(\prime)$, show ing that () is a right integral. It is also a left integral since A is unim odular, or altematively because () is central, as we saw in P aragraph 3.2. 2

From this lemma, it follows in particular that $(())=(\quad)\left(R^{0} R\right) \notin$ if $\& 0$,because nonzero integrals do not vanish on nonzero integrals. ${ }^{46}$ It also show s that a factorizable H opf algebra is sem isim ple if and only if it is cosem isim ple, because (1)="(()), and, by M aschke's theorem, A is cosem isim ple if and only if (1) 0 , and sem ismple if and only if " (()) $0 .{ }^{47}$ Finally, it also shows that, for a left integral 2 A , the elem ent () is a two-sided integral of A, since we get from Paragraph 3.2 that $S(1))=\left(S^{1}()\right)$.

W e now discuss how the integrals behave under. It is obvious that is a right integral on the tensor product Hopf algebra A A. Therefore, a
general result on the behavior of integrals under tw isting, ${ }^{48}$ together w ith the discussion in Lem m 3.1, yields that it is also a right integralon (A A) .A s is a H opf algebra isom onphism, () m ust be a right integral on D (A). To m ake this m ore precise, we decom pose the dual of the double in the form $D(A)=A$ A as described in Paragraph 3.3. We then get the follow ing form ulas for the integrals:

Proposition Suppose that 2 A is a left integral, that 2 A is a right integral, and that 2 A is a tw o-sided integral. Then we have

$$
\begin{array}{ll}
\text { 1. }(\quad)=() \\
\text { 2. } \quad(\quad)=() \\
\text { 3. } \quad(\quad)=()
\end{array}
$$

P roof. (1) To establish the rst assertion, we com pute as follow s:

where unim odularity is used in particular for the fth equation.
(2) For the second assertion, we get from Proposition 3.4 that

$$
(\quad(\quad))={ }^{1}(() \quad S(()))={ }^{1}(() \quad())
$$

since 2 C (A). But this gives (()) = () by the assertion just established. Since C ($D(A)$) and $Z(D(A))$ have the sam e dim ension, it now follow s from Lemm a 3.3 that ${ }^{49}$

$$
(\quad)={ }^{1}(\quad())=() S^{2}()=()
$$

(3) For the third assertion, we substitute () for and S () for into the rst assertion to get, using another result from P aragraph 3.2, that

$$
\left.(S \quad() \quad())=(S \quad()) \quad()=S^{1}(1)\right) \quad()=() \quad()
$$

U sing the second part of P roposition 3.4 on the right-hand side, this becom es (S () ()) = () , so that

$$
S(1) \quad()=(\quad)(\quad)
$$

Since the left-hand side is a tw o-sided integral of D (A), it is invariant under the antipode, so that we can rew rite this equation as

$$
\begin{aligned}
& (\quad)(\quad)=S_{D}(S(1) \quad(1))=S_{D}(" \quad(1)) S_{D}(S \quad(1) 1)
\end{aligned}
$$

by the discussion in Paragraph 3.3. N ow cancelling gives the assertion. 2

4 The action of the m odular group

4.1 In our factorizable H opf algebra A, we now x a nonzero right integral , and introduce the m ap

$$
: A!A ; a \eta \quad(a):=(1)(a)
$$

The fact that is a Frobenius hom om onphism ${ }^{50} \mathrm{~m}$ plies that is bijective. The fact that $2 C$ (A) in plies that is an A-linear map from A with the right adjoint action of A to A with the right coadjoint action, built w ith the inverse antipode, which we have considered in P aragraph3.2. In particular, induces an isom orphism betw een the spaces of invariants of these actions; in other words, it restricts to a bijection between the center Z (A) and the algebra C (A). ${ }^{51}$ Follow ing ${ }^{52}$ [25], Eq. (2.55), p. 369, we use to introduce them aps S 2 End (A) and $S \quad 2$ End (A) as

$$
S:=S \quad S:=S^{1}
$$

It is im portant to distinguish S from the transpose S of S. U sing the form of the $R-m$ atrix given in P aragraph 2.1, we have explicitly

$$
S(a)=X_{i ; j=1}^{X^{n}} \quad\left(a_{1} a_{j}\right) S\left(a_{i} b_{j}\right)
$$

The relationship of these m aps is clari ed in the follow ing proposition, which also lists som e of their basic properties:

Proposition S is an A-linear m ap from the right adjoint representation of A to itself. In particular, S preserves the center Z (A) of A. Furtherm ore, the diagram s

are com m utative, and we have S
$S=S \quad S$.

P roof. The com position of A -linearm aps is A -linear. From the linearity properties of and discussed so far, we get that is A-linear from the right ad joint representation of A to the right ad joint representation of $A^{c o p}$; i.e., satis es

$$
\left.\left.(\quad)\left(S\left(a_{1)}\right)\right) b a_{(2)}\right)=S^{1}\left(a_{(2)}\right)(\quad)(b) a_{1)}\right)
$$

A pplying the antipode to this equation gives $S\left(S\left(a_{(1)}\right) b a_{(2)}\right)=S\left(a_{(1)}\right) S(b) a_{(2)}$, which is the rst assertion. T he preservation of the center is a direct consequence. T he com m utativity of the rst diagram follow sfrom the equation

$$
S=S^{1} \quad=S \quad=S
$$

where we have used the fact that $S=S^{1}$ established in P aragraph 3.2. To establish the com mutativity of the second diagram, we rst derive the formula $S=S$.For' 2 A and a 2 A , we have

```
S (')(a)='(S (a))='(S (( (a))))=((a) S ('))(R R R ) = (a)( (S (')))
    = (a)(S ' }\mp@subsup{}{}{\prime}(\mp@subsup{(}{}{\prime})))=(\mp@subsup{\textrm{aS}}{}{1}(\mp@subsup{(}{}{\prime})))=(S(('))a)=(S((')))(a
```

where we have used for the second last equality that 2 C (A). From this, we im m ediately get the com m utativity of the second diagram, as we now have $S=S=S$.Furtherm ore, using the results from ParagraqB.2, we can rew rite the form ula for S above in the form $S=S^{1}$, which yields $S \quad S=\quad=S \quad S .2$

It m ay be noted that the com m utativity of the second diagram is equivalent to the condition $(S(a) b)=(a S(b))$, which is an adjunction property of S with respect to the associative bilinear form determ ined by the Frobenius hom om orphism .
4.2 As we have explained in Paragraph 2.1, R^{01} is always an altemative choice for the $R-m$ atrix of a quasitriangular H opf algebra. Th is raises the question how S is m odi ed if one replaces R by $R^{0}{ }^{1}$. The answ er to this question is that, up to a scalarm ultiple, S tums into its inverse:

$$
\text { P roposition } S^{1}(a)=\frac{1}{(\quad)\left(R^{0} R\right)}{ }_{i ; j=1}^{X^{n}}\left(a a_{i} b_{j}\right) S^{2}\left(a_{j}\right) b_{i}
$$

Proof. Because A is nite-dim ensional, it su ces to prove that

$$
X_{i ; j=1}^{X^{m}} \quad\left(a a_{i} b_{j}\right) S\left(S^{2}\left(a_{j}\right) b_{i}\right)=(\quad)\left(R^{0} R\right) a
$$

To see this, we use the identity $\left(\mathrm{ab}_{11}\right) \mathrm{S}\left(\mathrm{b}_{(2)}\right)=\left(\mathrm{a}_{(1)} \mathrm{b}_{\mathrm{b}} \mathrm{a}_{(2)}\right.$ to com pute

$$
\begin{aligned}
& X^{X^{n}}\left(a a_{i} b_{j}\right) S\left(S^{2}\left(a_{j}\right) b_{i}\right)=X_{i ; j ; k ; 1}^{X^{n}}\left(a a_{i} b_{j}\right) \quad\left(S^{2}\left(a_{j}\right) b_{i} b_{k} a_{1}\right) S\left(a_{k} b_{1}\right) \\
& =X_{i ; j=1}^{X^{m}}\left(a a_{i} b_{j}\right) \quad\left(b_{1} b_{k} a_{1} a_{j}\right) S\left(a_{k} b_{1}\right)=X_{i ; 1=1}^{X^{n}}\left(a a_{i(1)} b_{j(1)}\right) \quad\left(b_{1} a_{j}\right) S\left(a_{i(2)} b_{j(2)}\right) \\
& =X_{i ; j=1}^{X^{n}}\left(a_{(1)} a_{i} b_{j}\right) \quad\left(b_{1} a_{j}\right) a_{(2)}=\left(a_{(1)}(1)\right) a_{(2)}=(()) a
\end{aligned}
$$

where the last step follow s from Lemm a 3.5. 2

This form ula has an interesting consequence for the restriction of S to the center:

C orollary For alla $2 \mathrm{Z}(\mathrm{A})$, we have $\mathrm{S}^{2}(\mathrm{a})=(\quad)\left(\mathrm{R}^{0} \mathrm{R}\right) \mathrm{S}(\mathrm{a})$.
Proof. In this case, we get from the form ula in the preceding proposition that

$$
\begin{aligned}
(\quad)\left(R^{R} R\right) S^{1}(a) & =X_{i ; j=1}^{X^{n}}\left(a a_{i} b_{j}\right) S^{2}\left(a_{j}\right) b_{i}=X_{i ; j=1}^{X^{m}}\left(a a_{i} S^{2}\left(b_{j}\right)\right) a_{j} b_{i} \\
& =X_{i ; j=1}^{X^{n}}\left(\left(b_{j} a a_{i}\right) a_{j} b_{i}=X_{i ; j=1}^{X^{n}} \quad\left(a b_{j} a_{i}\right) a_{j} b_{i}=S^{1}(S(a))\right)
\end{aligned}
$$

which becom es the assertion if we insert S (a) for $a .2$

By rescaling if necessary, we can achieve that ($\quad)\left(R^{0} R\right)=1$, as we saw in Paragraph 3.5 that this expression is nonzero, and in our algebraically closed eld every elem ent has a square root. In this case, the form ula in the preceding corollary asserts that $S^{2}(a)=S(a)$ for all a $2 Z$ (A).
4.3 Recall ${ }^{33}$ that a ribbon elem ent is a nonzero central elem ent v 2 A that satis es

$$
(v)=\left(\begin{array}{ll}
R^{0} R
\end{array}\right)(v \quad v) \text { and } S(v)=v
$$

It follow s^{54} that v is an invertible elem ent that satis es " $(v)=1$ as well as $v^{2}=u S(u) . W$ e use it to de ne the endom onphism

$$
\mathrm{T}: \mathrm{A}!\mathrm{A} ; \mathrm{a} \text { ! va }
$$

which is just multiplication by the central elem ent v. The fact that v is central directly yields the equation $(T(a) b)=(a T(b))$, which can, as for S in P aragraph 4.1, be expressed by saying that the diagram

is com m utative.
The decisive relation betw een S and T is the follow ing. ${ }^{55}$

Proposition $S \quad T \quad S=(v) T^{1} S \quad T^{1}$
Proof. From Proposition 4.2, we have

$$
\begin{aligned}
& (())\left(S^{1} \quad T \quad S\right)(a)=(()) \underbrace{X^{n}}_{i ; j=1}\left(a a_{j}\right) S^{1}\left(v S\left(a_{i} b_{j}\right)\right) \\
& x^{n} \\
& =\quad\left(a_{1} a_{j}\right)\left(v S\left(a_{i} b_{j}\right) a_{k} b_{1}\right) S^{2}\left(a_{1}\right) b_{k} \\
& \text { i; } ; \text {; } k ; 1=1 \\
& X^{n} \\
& =\sum_{i ; j ; k ; l=1}^{X}\left(a_{i} a_{j}\right)\left(S^{2}\left(b_{1}\right) v S\left(b_{j}\right) S\left(a_{i}\right) a_{k}\right) S^{2}\left(a_{1}\right) b_{k} \\
& X^{m} \\
& =\quad\left(a S^{1}\left(b_{i}\right) S^{1}\left(a_{j}\right)\right) \quad\left(v a_{1} b_{j} a_{i} a_{k}\right) a_{1} b_{k} \\
& i ; j ; k ; 1=1 \\
& =X_{i ; j=1}^{X^{m}}\left(a S^{1}\left(b_{i(2)}\right) S^{1}\left(a_{j(2)}\right)\right) \quad\left(v b_{j} a_{i}\right) a_{j(1)}, b_{i(1)}
\end{aligned}
$$

U sing that $\left(\begin{array}{ll}1 & v^{1}\end{array}\right)(v)=P_{i ; j=1}^{m} v b_{j} a_{i} \quad a_{j} b_{i}, w e$ can w rite this in the form

$$
\begin{aligned}
\left((\begin{array} { l l l l }
{ 1 }
\end{array}) \left(\begin{array}{ll}
\mathrm{S}^{1} & \mathrm{~T} \quad \mathrm{~S})(\mathrm{a})
\end{array}\right.\right. & =\left(\mathrm{aS}^{1}\left(\mathrm{v}_{(2)}^{1} \mathrm{~V}_{(3)}\right)\right)\left(\mathrm{v}_{(1)}\right) \mathrm{v}_{(1)}{ }^{1} \mathrm{~V}_{(2)} \\
& =\left(\mathrm{aS}^{1}\left(\mathrm{v}_{(2)}^{1}\right)\right)(\mathrm{v}) \mathrm{v}_{(1)}^{1}
\end{aligned}
$$

O n the other hand, we have that

$$
\left(v^{1}\right)=\left(v^{1} \quad v^{1}\right)\left(R^{0} R\right)^{1}=X_{i ; j=1}^{X^{n}} v^{1} a_{i} b_{j} \quad v^{1} S^{1}\left(b_{i}\right) S\left(a_{j}\right)
$$

so that Proposition 4.2 also im plies that

$$
(())\left(T^{1} \quad S^{1} \quad T^{1}\right)(a)=X_{i ; j=1}^{X^{n}}\left(v^{1} a a_{i} b_{j}\right) v^{1} S^{2}\left(a_{j}\right) b_{i}=\left(\mathrm{av}_{(1)}^{1}\right) S\left(v_{(2)}^{1}\right)
$$

Com paring both expressions and using $S\left(v^{1}\right)=v^{1}$, we get that

$$
\left(\begin{array}{lll}
S^{1} & T & S
\end{array}\right)(a)=(v)\left(T^{1} \quad S^{1} \quad T^{1}\right)(a)
$$

which is equivalent to the assertion. 2

The restrictions of S and T to the center of A induce of course also autom orphism s of the corresponding pro jective space $P(Z(A))$ of one-dim ensional subspaces of Z (A), which are even independent of the choice of the integral. It is a consequence of the results above that these autom onphism syield a pro jective representation of the m odular group:

C orollary T here is a unique hom om onphism from $S L(2 ; Z)$ to $P G L(Z(A))$ that m aps s to the equivalence class of S and t to the equivalence class of T.

P roof. The hom om orphism is unique because s and t generate the m odular group, as discussed in Paragraph 1.1. For the existence question, recall the de ning relations $s^{4}=1$ and (ts) ${ }^{3}=s^{2}$. Because the square of the antipode is given by conjugation w ith the D rinfeld elem ent, ${ }^{56}$ it restricts to the identity on the center, and therefore C orollary 4.2 im plies the rst relation needed. T he second de ning relation tststs $=s^{2}$ can also be w ritten in the form $s t s=t{ }^{1} s t^{1}$, and therefore it follows from the preceding proposition that this relation is satis ed, too. 2

The proof shows that if $(\quad)\left(R^{0} R\right)=1$ and $(v)=1$, we even get a linear representation $S L(2 ; Z)!G L(Z(A))$ by assigning S to s and T to t. How ever, this happens if and only if $(\mathrm{v})=\left(\mathrm{v}^{1}\right)$, as we see from the follow ing lem ma..7

Lemma $\quad(\quad)\left(R^{0} R\right)=(v)\left(v^{1}\right)$
Proof. W e have seen in Lemma 3.5 that ()$=\left(V^{1} V_{(1)}\right) V^{1} V_{(2)} 2 \mathrm{~A}$ is a tw o-sided integral. W e therefore have

$$
\left(\mathrm{v}^{1} \mathrm{v}_{(1)}\right) \mathrm{v}_{(2)}=\mathrm{v}()="(\mathrm{v}) \quad()=()
$$

N ow there is a grouplike elem ent 92 A , called the right m odular elem ent, that satis es $a_{(1)}\left(a_{(2)}\right)=g(a)$ for alla $2 A$, and furtherm ore $(a g)=\left(S^{1}(a)\right) .^{58}$ T he preceding com putation therefore yields that

$$
\begin{aligned}
(\quad)\left(R^{0} R\right) & =(())=\left(v^{1} V_{(1)}\right)\left(v_{(2)}\right) \\
& =\left(v^{1} \mathrm{~g}\right)(\mathrm{v})=\left(\mathrm{S}^{1}\left(\mathrm{v}^{1}\right)\right)(\mathrm{v})=\left(\mathrm{v}^{1}\right)(\mathrm{v})
\end{aligned}
$$

as asserted. 2

It m ay be noted that we have discussed after Lem m a 3.5 that this quantity is nonzero if is nonzero. Furtherm ore, since A is unim odular, the right m odular elem ent g that appears in the preceding proof is exactly the grouplike elem ent, also denoted by g, that appeared in the discussion at the end ofP aragraph 3.2. ${ }^{59}$ It should also be noted that we do not claim that it is im possible to m odify the representation so that it becom es linear. ${ }^{60}$
4.4 W e have seen in Proposition 3.5 that $\mathrm{D}:=(\mathrm{l}=(\mathrm{l}$ is a right integral in D (A). A s in the case of A itself, we therefore get an isom orphism

$$
D: D(A)!D(A) ; x T \quad D(x): D(1)(x) D(2)
$$

Since D is de ned as the im age of under the H opf algebra hom om orphism , it is obvious that the diagram

com m utes, as we have already pointed out in P aragraph 3.5 that is also a right integral in (A A) F C om bining this w ith Proposition 3.4, we get the follow ing com m utative diagram :

From the general form ula for the antipode of a tw ist m entioned in the proof of Lem ma3.1, it is im m ediate that the antipode of $\left(\begin{array}{ll}A & A\end{array}\right)_{F}$ coincides w ith the antipode of A A on the center. This im plies that the follow ing diagram is also com m utative:

T he ribbon elem ent can be treated in a sim ilar way. It is im mediate from the de nition that a ribbon elem ent v 2 A satis es

$$
\left(v^{1}\right)=\left(\begin{array}{llll}
R^{1} & R^{0} & 1
\end{array}\right)\left(v^{1} \quad v^{1}\right)
$$

which m eans that v^{1} is a ribbon elem ent for A endow ed w ith the altemative $R m$ atrix $R^{0}{ }^{1}$. This implies that $v v^{1}$ is a ribbon elem ent for $A \quad A$, endow ed with the R m atrix R_{A} A considered in Paragraph 3.1. It is not di cult to see that a ribbon elem ent stays a ribbon elem ent if the coproduct of the H opf algebra is tw isted, and therefore $\mathrm{V} \quad \mathrm{V}^{1}$ is also a ribbon elem ent for $\left(\begin{array}{ll}\mathrm{A} & \mathrm{A}\end{array}\right)_{\mathrm{F}}$.

This enables us to de ne a ribbon elem ent v_{D} of the D rinfeld double $D(A)$ by setting $v_{D}:={ }^{1}\left(v V^{1}\right)$. So, if we de ne T 2 End ($\left.D(A)\right)$ to be the multiplication by v_{D}, as in P aragraph 4.3, it is obvious that the follow ing diagram is com m utative:

N ote that it follow s from Lem m a 3.1 that in the case that the ribbon elem ent is the inverse D rinfel'd elem ent, so that $v=u^{1}$, the arising ribbon elem ent of $D(A)$ is also the inverse D rinfel'd elem ent.
4.5 A s we have discussed there, the pro jective representation of the m odular group on the center of A described in C orollary 4.3 is not induced by a linear representation in general. H ow ever, the situation is better for a certain tensor product:

Lem m a T here is a unique hom om onphism from $S L(2 ; Z)$ to $G L(Z(A) \quad Z(A))$ that mapss to $S \quad S{ }^{1}$ and to $T \quad T^{1}$.

P roof. A s in the proofof C orollary 4.3, we have to check the de ning relations $s^{4}=1$ and $(t s)^{3}=s^{2}$. For the rst relation, we have by C orollary 4.2 that

$$
\left(S \quad S^{1}\right)^{2}=\frac{(\quad)\left(R^{0} R\right)}{(\quad)\left(R^{0} R\right)} S \quad S^{1}
$$

which im plies the assertion, since $S^{2}=i d$ on the center. It should be noted that, in contrast to S, the endom onphism $S \quad S^{1}$ is independent of the choice of an integral. T he second de ning relation can be rew ritten in the form sts $=t^{1}$ st ${ }^{1}$, as in the proof of C orollary 4.3. This now follow from Proposition 4.3, too, as we have

$$
\left(\begin{array} { l l l l l l l l l l }
{ (S } & { S ^ { 1 } }
\end{array} \quad \left(\begin{array}{lllll}
(T & \left.T^{1}\right)
\end{array}\left(S \quad S^{1}\right)=\frac{(v)}{(V)}\left(T^{1} \quad T\right) \quad\left(S \quad S^{1}\right) \quad\left(T^{1} \quad T\right)\right.\right.
$$

and the factors (v) involved now cancel. 2

The associated pro jective representation on the pro jective space P (Z (A) Z (A)) is the tensor product of two projective representations: The rst is the one constructed in Corollary 4.3, and the second is the rst one tw isted by the con jugation w ith the m atrix a described in Paragraph 1.1. This im plies that
when $(v)=\left(v^{1}\right)=1$, in which case these tw o pro jective representations lift to ordinary linear representations, we can w rite

$$
g:\left(\begin{array}{ll}
z & z^{0}
\end{array}\right)=g: z \quad g: z^{0}
$$

This equation holds because it su ces to check it on generators, and for the generators we observed in Paragraph 1.1 that $g=g^{1}$.

From C orollary 4.3, we also get a pro jective representation of the m odular group on the center of the D rinfel'd double $D(A)$, using the integral $D=(\quad)$ and the ribbon elem ent $v_{D}={ }^{1}\left(v v^{1}\right)$ introduced in Paragraph 4.4. Suppose now that is nom alized so that $(\quad)\left(R^{0} R\right)=1$. By Lem ma4.3, we then have

$$
D\left(v_{D}\right)=(v)\left(v^{1}\right)=(\quad)\left(R^{0} R\right)=1
$$

and sim ilarly also that $D^{(}\left(\mathrm{v}_{\mathrm{D}}{ }^{1}\right)=1$. Therefore again by Lem m a 4.3, we can conclude for the $R-m$ atrix of the D rinfeld double that ($D \quad D)\left(R^{0} R\right)=1$. By the discussion in Paragraph 4.3, this m eans that the pro jective representation on Z ($\mathrm{D}(\mathrm{A})$) is induced from an ordinary linear representation. C learly, is equivariant w ith respect to this action and the one considered in the preceding lemma:

Proposition For allg2 and allz 2 Z (D (A)), we have ($g: z)=g:(z)$.
Proof. It su ces to check this on generators, i.e., in the case $g=s$ and $g=t$. But in these cases the assertion is exactly what we have established in Paragraph 4.4, because $S \quad S=S^{1}$ by C orollary 4.2. 2

It should be noted that in the case $(\mathrm{v})=1$, in which the pro jective representation on Z (A) lifts to a linear representation, the form ula in the proposition can be w ritten as

$$
(g: z)=\left(\begin{array}{ll}
g & g
\end{array}\right):(z)
$$

5 The sem isim ple case

5.1 Let us now assum e that our quasitriangular H opfalgebra A is factorizable, sem isim ple, and that the base eld K is algebraically closed of characteristic zero. In this case, A is also cosem isim ple and the antipode is an involution. ${ }^{61}$ By W edderbum's theorem, ${ }^{62}$ we can decom pose A into a direct sum of sim ple tw o-sided ideals:

$$
A=M_{i=1}^{M^{k}} I_{i}
$$

For every $i=1 ;::: ; k$, we can then nd a sim ple m odule such that the corresponding representation m aps I_{i} isom onphically to $E n d\left(V_{i}\right)$ and vanishes on the other two-sided ideals I_{j} if $j \not i$. We denote the dim ension of V_{i} by $n_{i} . W e$ can assume that $V_{1}=K$, the base eld, considered as a trivialm odule via the counit. W e denote the character of V_{i} by i , so that, for a 2 A ,

$$
i(a):=\operatorname{tr}\left(a j_{j_{1}}\right)
$$

is the trace of the action of a on V_{i}. W e then have that the character R of the regular representation, i.e., the representation given by left m ultiplication on A itself, has the form

$$
R(a)=X_{i=1}^{X^{k}} n_{i} i(a)
$$

This character is a tw o-sided integral in A . ${ }^{63}$
The subspace of A spanned by the characters $1 ;::: ;$; is called the character ring of A, and is denoted by $\mathrm{Ch}(\mathrm{A})$. It is easy to see that it really is a subalgebra of A , which consists precisely of the cocom m utative elem ents. Because the antipode is an involution, this m eans that the character ring $\mathrm{Ch}(\mathrm{A})$ coincides w ith both of the algebras C (A) and C (A) introduced in Paragraph 3.2, and Proposition 3.2 therefore asserts that induces an isom orphism betw een the character ring and the center Z (A), which is spanned by the centrally prim itive idem potents $e_{i} 2 I_{i}$. The rst idem potent e_{1} is then a two-sided integral norm alized such that " $\left(e_{1}\right)=1$. N ote that it follow s from the discussion in Paragraph 3.2 that the restrictions of and to $\mathrm{Ch}(\mathrm{A})$ are equal, because the grouplike elem ent $g:=u S\left(u^{1}\right)$ is the unit elem ent in this case. ${ }^{64} \mathrm{~T}$ he center Z (A) is a com m utative sem isim ple algebra that adm its exactly k distinct algebra hom om onphism $S!_{1} ;::: ;!_{k}$ to the base eld, which are explicitly given as

$$
!_{i}: Z(A)!k ; z \eta \frac{1}{n_{i}} i(z)
$$

T hese m appings are called the central characters; they satisfy $!_{i}\left(e_{j}\right)={ }_{i j}$. Because is an algebra isom onphism betw een $C h(A)$ and $Z(A), C h(A)$ is also a com m utative sem isim ple algebra, ${ }^{65}$ whose k distinct algebra hom om orphism S_{1};:::; k to the base eld are given as $i=!_{i} \quad . T h e p r i m$ itive idem potents $p_{1} ;::: ; p_{k}$ of the character ring are accordingly given as $p_{j}:={ }^{1}\left(e_{j}\right)$
and satisfy $i_{i}\left(p_{j}\right)=i j$. The rst prim itive idem potent is then proportional to the character of the regular representation; m ore precisely, we have $R=n p_{1} .{ }^{66}$

B ecause the pairing betw een the character ring and the center is nondegenerate, a linear functional on the character ring can be uniquely represented by an elem ent in the center. Therefore, there exist elem ents ${ }^{67} z_{1} ;::: ; z_{k} 2 Z(A)$ such that $i()=\left(z_{i}\right)$ for all $2 \mathrm{Ch}(\mathrm{A})$. They are explicitly given as

$$
z_{i}=X_{j=1}^{X^{k}} \frac{i(j)}{n_{j}} e_{j}
$$

We will call $z_{1} ;::: ; z_{k}$ the class sum s, as they are related to the norm alized con jugacy class sum s in the group ring of a nite group. N ote that $\mathrm{z}_{1}=1$.

For every sim ple module V_{i}, its dual V_{i} is again sim ple. Therefore, there is a unique index i $2 \mathrm{fl} ;::: ; \mathrm{kg}$ such that $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}$. T he character of this m odule will also be denoted by $i=$ i. Themap il i is an involution on the index set f1;:::;kg. Because the use of the antipode in the de nition of the dualm odule, characters, centrally prim itive idem potents, and centralcharacters behave as follow s w ith respect to dualization:

$$
i=S\left(i_{i}\right) \quad e_{i}=S\left(e_{i}\right) \quad!_{i}=!_{i} \quad S
$$

W e have derived in Paragraph 3.2 that $S\left(\left(^{\prime}\right)\right)=\left(S^{1}\left({ }^{\prime}\right)\right)$. Since A is involutory and and agree on the character ring, we get furtherm ore that

$$
i=i \quad S \quad p_{i}=S \quad\left(p_{i}\right)
$$

which im plies the form ula $z_{i}=S\left(z_{i}\right)$ for the class sum s .
U sing duals, we can express the character a of the left adjoint representation in the form ${ }^{68}$

$$
A=X_{i=1}^{X^{k}} \quad i
$$

This in tum enables to invert the expansion $\quad{ }_{j}=P_{i=1}^{k} i(j) p_{i}$ of the characters in term s of the idem potents:

Proposition For $i=1 ;::: ; k$, we have

$$
p_{i}=\frac{1}{i(A)}_{j=1}^{X^{k}} i(j)_{j}
$$

Proof. The elem ent ${ }^{P} \underset{j=1}{k} j \quad j$ is a C asim ir elem ent; ${ }_{j}^{69}$ i.e., it satis es

$$
X^{k} X^{k} \quad j \quad j=X_{j=1}^{j} \quad j
$$

for all $2 \mathrm{Ch}(\mathrm{A})$. Applying i to the rst tensor factor, we get

$$
i()_{j=1}^{X^{k}} i(j)_{j}=X_{j=1}^{X^{k}} i(j)_{j}^{j}
$$

This show sthat $P_{j=1}^{k} i(j) j$ is proportional to p_{i}. Since $i\left(p_{i}\right)=1$, we nd that the proportionality factor is $i\left(\begin{array}{l}k \\ j=1\end{array} i(j) j\right)=i(A)$.Thisproportionality factor cannot be zero, since the elem ent itself is not zero, so the assertion follow s. 2
5.2 As A is involutory, u is central. ${ }^{70}$ A s explained in Paragraph 5.1, u is also invariant under the antipode, and therefore we can in this situation use u ${ }^{1}$ as a ribbon elem ent. For this ribbon elem ent, the quantum trace coincides w ith the usual trace, ${ }^{71}$ so that the categoricaldim ensions coincide w ith the ordinary dim ensions n_{i} introduced above. C learly, we can expand the D rinfel'd elem ent and its inverse in term s of the centrally prim itive idem potents:

$$
u=\sum_{i=1}^{X^{k}} u_{i} e_{i} \quad u^{1}=X_{i=1}^{X^{k}} \frac{1}{u_{i}} e_{i}
$$

for num bers $u_{i} 2 \mathrm{~K}$, which are nonzero because the D rinfel'd elem ent is invertible. U sing these num bers, we de ne the diagonalm atrix ${ }^{72}$

$$
T:=\left(\frac{1}{u_{i}} i j\right)_{i ; j=1 ;::: ; k}
$$

Because for this ribbon elem ent T is the m ultiplication by $u{ }^{1}$, this m atrix represents the restriction of T to the center w ith respect to the basis consisting of the centrally prim itive idem potents. Furtherm ore, we will need an auxiliary m atrix, the so-called charge conjugation m atrix $C:(i ; j)_{i ; j=1 ;::: j,}$, which is the m atrix representation of the action of the antipode on the center of A w ith respect to the basis consisting of the centrally prim itive idem potents. It is also the m atrix representation of the action of the dual antipode on the character ring w ith respect to the basis consisting of the irreducible characters.

W e de ne still another m atrix, the so-called Verlinde m atrix S, which should not be confused w ith the antipode: ${ }^{73}$

Denition T he Verlinde m atrix is the m atrix $S=\left(S_{i j}\right)_{i ; j=1 ;:: ; k} w$ ith entries

$$
S_{i j}:=\left(\begin{array}{ll}
i & j
\end{array}\right)\left(R^{0} R\right)=i((j))
$$

W e list som e well-know n properties of the Verlinde m atrix $:{ }^{74}$

Lem mathe Verlinde matrix is invertible. Its entries satisfy

1. $S_{i j}=S_{j i}$
2. $s_{i j}=s_{i}{ }_{j}$
3. $s_{i j}=n_{i j}(j)$

Proof. The rst property follows from the trace property of the characters. T he second property can be deduced from the fact that $(S \quad S)(R)=R$. The third property follow s from the de nitions:

$$
i(j)=!_{i}((j))=\frac{1}{n_{i}} i((j))=\frac{1}{n_{i}} S_{i j}
$$

T his also show s that the Verlinde m atrix is inyertible: Expanding the characters
 ($i(j)$) is invertible as a base change m atrix, and the Verlinde m atrix is, by the third property, the product of this m atrix and an invertible diagonalm atrix. 2

In contrast to the m atrix T, the Verlinde m atrix is not exactly the m atrix representation of S w ith respect to the centrally prim itive idem potents, although these tw o m atrices are closely related. To understand th is relation, recall that S depends, via , on the choice of an integral 2 A . Because the space of integrals is one-dim ensional, has to be proportional to the character R of the regular representation, so that $=\mathrm{R}$ for a nonzero number 2 K . A lthough it is in principle possible to x by norm alizing the integral in som e way, we will see that it is convenient not to do that at the m om ent and to keep as a free param eter. W ith this param eter introduced, let us see how the maps and behave w ith respect to the new bases introduced in P aragraph 5.1:

Proposition Foralli=1;:::;k, we have

1. $(\mathrm{i})=\mathrm{n}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}$
2. $\left(e_{\text {e }}\right)=n_{i}$
3. (Z $)=i(A) p_{i}$

Proof. For the rst assertion, we note that by the above lem ma

$$
n_{i j}(j)=s_{i j}=s_{j i}=n_{j}(i)
$$

so that the de nition of the class sum s from Paragraph 5.1 can be rew ritten in the form

$$
z_{i}=X_{j=1}^{X^{k}} \frac{i\left({ }_{j}\right)}{n_{j}} e_{j}=X_{j=1}^{X^{k}} \frac{j(i)}{n_{i}} e_{j}
$$

Expanding (i) in term s of centrally prim itive idem potents, we therefore have

$$
\left(i_{i}\right)=X_{j=1}^{X^{k}}!_{j}((\quad i)) e_{j}=X_{j=1}^{X^{k}} \quad j(i) e_{j}=n_{i} z_{i}
$$

For the second assertion, we have by de nition of that

$$
(e)(a)=\quad R\left(e_{i} a\right)=X_{j=1}^{X^{k}} n_{j}\left(e_{i} a\right)=n_{i}(a)
$$

The third assertion follow s from the second assertion, together w ith Proposition 5.1 and the form ula for the class sum s given in that paragraph. W e then nd

$$
\begin{aligned}
\left(Z_{\text {E }}\right)=X_{j=1}^{X^{k}} \frac{i(j)}{n_{j}}(e) & =X_{j=1}^{X^{k}} \frac{i(j)}{n_{j}} n_{j} j \\
& =X_{j=1}^{k} \quad i\left({ }_{j}\right) \quad j=i(A) p_{i}
\end{aligned}
$$

where we have used that $i\left(j_{i}\right)=i(j)$ and $i(A)=i(A) .2$

From this proposition, we can deduce the precise relation of the V erlinde m atrix and the m atrix representation of S resp. S. Up to scalar m ultiples, $S \mathrm{~m}$ aps idem potents to class sum s , and vice versa. Sim ilarly, $S \mathrm{~m}$ aps idem potents to m ultiples of characters and characters to m ultiples of idem potents:

C orollary

1. $S\left(z_{j}\right)=\quad j\left({ }_{A}\right) e_{j}=\quad X^{k} \frac{n_{i}}{n_{j}} S_{j i} z_{i}$
2. $S\left(e_{j}\right)=n_{j}^{2} z_{j}=X_{i=1}^{k} \frac{n_{j}}{n_{i}} S_{j i} e_{i}$
3. $S(j)=n_{j}\left(A_{A}\right) p_{j}=X_{i=1}^{k} S_{j i} \quad i$

$$
\text { i= } 1
$$

4. $S\left(p_{j}\right)=n_{j}=X_{i=1}^{k} \frac{n_{j}}{n_{i}} s_{i j} p_{i}$

P roof. If we apply to the form ula in Proposition 5.1 and use the preceding proposition, then we get

$$
e_{j}=\frac{1}{j(A)}_{i=1}^{X^{k}} j(i) n_{i} z_{i}=\frac{1}{j(A)}_{i=1}^{X^{k}} \frac{n_{i}}{n_{j}} S_{j i} z_{i}
$$

Since and coincide on the character ring, we get from the de nition of S in P aragraph 4.1 that

$$
S\left(z_{j}\right)=j(A) S\left(\left(p_{j}\right)\right)=j(A) e_{j}
$$

C om bining these two form ulas, we get the rst statem ent. For the second statem ent, we get from the preceding proposition that

$$
S\left(e_{j}\right)=n_{j} S((j))=n_{j}^{2} z_{j}=n_{j}^{2} X_{i=1}^{X^{k}} \frac{j(i)}{n_{i}} e_{i}
$$

For the third statem ent, recall that by its de nition in P aragraph 4.1 we have $S=S \quad$, so that the preceding proposition gives

$$
S \quad(j)=n_{j} S\left(\left(Z_{j}\right)\right)=n_{j}\left(A_{A}\right) p_{j}=X_{i=1}^{X^{k}} n_{j j}(i) i_{i}=X_{i=1}^{X^{k}} S_{j i}
$$

where the third equation follow s from P roposition 5.1. For the fourth statem ent, we have

$$
S\left(p_{j}\right)=S((e))=n_{j}{ }_{j} \int_{i=1}^{X^{k}} n_{j i}(j) p_{i}=X_{i=1}^{X^{k}} \frac{n_{j}}{n_{i}} s_{i j} p_{i}
$$

as asserted. 2
5.3 The fact that the m atrices S and T are essentially the m atrix representations of S and T im plies that they essentially satisfy the de ning relations of the m odular group. M ore precisely, they satisfy the follow ing relations: ${ }^{75}$

Proposition

$$
S^{2}=\operatorname{dim}(A) C \quad S T S=R\left(u^{1}\right) T{ }^{1} S C T{ }^{1}
$$

P roof. By C orollary 5.2, we have

$$
S^{2}\left(e_{j}\right)=X_{l=1}^{X^{k}} \frac{n_{j}}{n_{1}} S_{j l} S\left(e_{1}\right)=2^{X^{k}} \frac{n_{j}}{n_{i}} S_{j l} S_{i} e_{i}
$$

O n the other hand, it follow s from C orollary 4.2 and Lem m a 4.3 that

$$
S^{2}(a)=(u)\left(u^{1}\right) S(a)
$$

Inserting $a=e_{j}$ into this equation and com paring it w ith the preceding one, we nd
(u) $\left(u^{1}\right) e_{j}=2^{X^{k}}{ }_{i}=1=1 n_{j} n_{j} S_{j 1} e_{i}$
which implies (u) $\left(u^{1}\right)_{i j}=\frac{n_{j}}{n_{i}} P_{l=1}^{k} S_{j 1} S_{i 1}$ by comparing coe cients. N ow note that by Lemm a 4.3

$$
\frac{1}{2}(u)\left(u^{1}\right)=R(u) R\left(u^{1}\right)=R\left(\left(R_{R}\right)\right)=\operatorname{dim}(A)
$$

because (R) is an integralsatisfying " $((\mathrm{R}))=$ dim (A) by Lem ma.5. This shows that ${ }^{76}$

$$
\mathrm{X}_{\mathrm{l}=1}^{\mathrm{X}} \mathrm{~S}_{\mathrm{il}} \mathrm{~S}_{\mathrm{lj}}=\operatorname{dim}(\mathrm{A})_{i j}
$$

which is the rst assertion.
For the second assertion, recall that $\mathrm{S} \quad \mathrm{T} \quad \mathrm{S}=\left(\mathrm{u}^{1}\right) \mathrm{T}{ }^{1} \quad \mathrm{~S} \quad \mathrm{~T}^{1}$ by Proposition 4.3. B y C orollary 5.2, w e have

$$
\left(\begin{array}{l}
S \quad T \quad S
\end{array}\right)(e)=X_{l=1}^{X^{k}} \frac{n_{j}}{n_{l}} S_{j} \frac{1}{u_{l}} S\left(e_{1}\right)=2^{X^{k}} \frac{n_{j}}{n_{i}} \frac{S_{j l} S_{l} i}{u_{l}} e_{i}
$$

as well as

$$
\left(\begin{array}{lll}
T^{1} & S & T^{1}
\end{array}\right)\left(e_{j}\right)=X_{i=1}^{k} \frac{n_{j}}{n_{i}} u_{i} u_{j} S_{j} i e_{i}
$$

Com paring coe cients, we nd that ${ }^{77}$

$$
X_{l=1}^{X^{k}} \frac{S_{j} I_{l i}}{u_{l}}=\left(u^{1}\right) u_{i} u_{j} S_{j i}
$$

or altematively that $\left.{ }^{P} \underset{l=1}{k} \frac{S_{j 1} s_{1 i}}{u_{1}}=R^{(} u^{1}\right) u_{i} u_{j} S_{j i}$, which gives the second relation. 2

In the proof of the rst m atrix identity above, we have used one of the two form ulas for $S\left(e_{j}\right)$ given in C orollary 5.2. U sing the other form reveals another interesting identity:

C orollary $\quad i(A)=\frac{\operatorname{dim}(A)}{n_{i}^{2}}$
P roof. From C orollary 5.2, we have

$$
S^{2}\left(e_{j}\right)=n_{j}^{2} S\left(z_{j}\right)={ }^{2} n_{j}^{2}\left(A_{A}\right) e_{j}
$$

B ut in the proof of the preceding proposition, we have derived that

$$
S^{2}\left(e_{j}\right)=(u) \quad\left(u^{1}\right) e_{j}
$$

and also that $(u)\left(u^{1}\right)={ }^{2} \mathrm{dim}(A)$. Therefore, the assertion follow s by com paring coe cients. 2

It should be noted that $i^{(A)}$) is an eigenvalue of the multiplication w ith the character A corresponding to the eigenvector p_{i}, and therefore an algebraic integer. As the corollary show s , it is also a rational num ber, and therefore an integer. T his yields the well-know n^{78} result that n_{i}^{2} divides dim (A).

It should furthem ore be noted that the preceding corollary can also be used to give a di erent proof of the equation $S^{2}=\operatorname{dim}(A) C$, as we have

$$
X_{l=1}^{X^{k}} S_{i 1} S_{l j}=X_{l=1}^{X^{k}} n_{i i}\left(L_{1}\right) n_{j j}(1)=n_{i} n_{j j}\left(A_{A}\right)_{i}\left(P_{j}\right)=n_{j}^{2}{ }_{j}\left(A_{i j}\right.
$$

where the rst equation follow s from Lemma 5.2 and the second equation from Proposition 5.1.
5.4 W e proceed to carry out a m ore precise com parison of our setup w ith the setup in [58]. For this, we need the follow ing lem ma:

$$
\begin{aligned}
& \text { Lemma }{ }_{i=1}^{X^{k}} n_{i} u_{i}{ }^{1} u_{j}{ }^{1} S_{i j}=n_{j R}\left(u^{1}\right) \\
& \text { P roof. Since }(u)=\left(\begin{array}{ll}
R & \left.{ }^{0} R\right)^{1}\left(\begin{array}{ll}
u & u
\end{array}\right)=\left(\begin{array}{ll}
u & u
\end{array}\right)\left(R^{0} R\right)^{1}, \text { we have }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& X_{i=1}^{X^{k}} n_{i} u_{i}{ }^{1} u_{j}{ }^{1} S_{i j}=X_{i=1}^{X^{k}} n_{i} u_{i}{ }^{1} u_{j}{ }^{1}\left(i_{i} \quad j\right)\left(R{ }^{0} R\right)=X_{i=1}^{X^{k}} n_{i}(i \quad j)\left(\left(^{u^{1}}\right)^{1}\right) \\
& \left.=\left(\begin{array}{ll}
\mathrm{R} & \mathrm{j}
\end{array}\right)\left(\begin{array}{ll}
\left(\mathrm{u}^{1}\right.
\end{array}\right)\right)=\left(\begin{array}{ll}
\mathrm{R} & \mathrm{j}
\end{array}\right)\left(\mathrm{u}^{1}\right)=\mathrm{n}_{\mathrm{j} R}\left(\mathrm{U}^{1}\right)
\end{aligned}
$$

where the last equality follows from the fact that the character of the regular representation is an integral. 2

A s we have already pointed out in Paragraph 5.2, categorical dim ensions and ordinary dim ensions coincide for our choice of a ribbon elem ent, so that the num bers dim (i) introduced in [58], Sec. II.1.4, p. 74 are equal to n_{i}. A lso, since our ribbon elem ent is u^{1}, it is clear that the num bers v_{i} and introduced in [58], Sec. II.1.6, p. 76 are equal to $1=u_{i}$ resp. $R(u)$. It therefore follow s from the preceding lem m a that the param eters d_{i} introduced in [58], Sec. II.3.2, p. 87 are in our case equal to $d_{i}=n_{i}=R_{R}\left(u^{1}\right)$, which is in accordance p^{W} ith [58]], Lem. II.3.2.3, p. 89. For the rank D, we have the two choices $D=\overline{\operatorname{dim}(A)}$. T he equation dim $(A)=R_{R}(u)_{R}\left(u^{1}\right)$ observed in Paragraph 5.3 then becom es the equation $=d_{0} D^{2}$ in [58], Sec. II.3.2, Eq. (3.2.j), p. 89.
5.5 W e now illustrate the preceding considerations by inspecting an exam ple given by D.E.Radford. ${ }^{79}$ C onsider a cyclic group G of order n. D enote the group ring by $A=K[G]$, and x a generator g of G. As A is cocom mutative,

A is certainly quasitriangular w ith respect to the R m atrix 1 1. H ow ever, w ith respect to this R m atrix, it is not factorizable. R adford has determ ined all possible $R-m$ atrices for A, and shown that A can only be factorizable if n is odd, what we will assum e for the rest of this paragraph, and that in this case the R m atrix necessarily has the form

$$
R=\frac{1}{n}{ }_{i ; j=0}^{\mathbb{X}}{ }^{1} \quad g^{i} \quad g^{j}
$$

where is a prim itive n-th root of unity. ${ }^{80}$ To follow his convention, we will deviate in this paragraph from the enum eration introduced in Paragraph 5.1 and enum erate the (centrally) prim itive idem potents in the form $e_{0} ;::: ; \mathrm{e}_{\mathrm{n}} 1$ instead of $\mathrm{e}_{1} ;::: ; \mathrm{e}_{\mathrm{k}}$; note that $\mathrm{n}=\mathrm{k}$ in the present situation. They are then given by the form ula ${ }^{81}$

$$
e_{j}=\frac{1}{n}_{i=0}^{\mathbb{X}}{ }^{i j} g^{i}
$$

The irreducible characters are determ ined by $i_{i}\left(e_{j}\right)={ }_{i j}$ and therefore satisfy $i(g)={ }^{i}$. R adford also gives the follow ing form ulas for the D rinfel'd elem ent and its inverse: ${ }^{82}$

$$
u=\mathbb{X}_{i=0}^{1} \quad i^{2} e_{i} \quad u^{1}=\mathbb{X}_{i=0}^{1} i^{2} e_{i}
$$

He also gives the form ula $\quad\left(u^{1}\right)=P_{\substack{n \\ i \\ j \\ 1 \\=0}}(i+j)^{2} e_{i} \quad e_{j}$ for the coproduct of the inverse D rinfeld elem ent, from which we get that

$$
R^{0} R=\left(\begin{array}{ll}
u & u
\end{array}\right)\left(u^{1}\right)=\mathbb{X}^{1 ; j}{ }^{2 i j} e_{i} \quad e_{j}
$$

T his m eans that the entries of the Verlinde m atrix are given as

$$
S_{i j}=\left(\begin{array}{ll}
i & j
\end{array}\right)\left(R^{0} R\right)=2 i j
$$

so that, using C orollary 5.2, we nd the expressions

$$
S\left(e_{j}\right)=\mathbb{X}_{i=0}^{1} \quad{ }^{2 i j} e_{i} \quad T\left(e_{j}\right)={ }^{j^{2}} e_{j}
$$

for the m appings S and T, since T is the m ultiplication by $u{ }^{1}$.
T he reason for m entioning this exam ple is its follow ing feature:
Proposition W e have

$$
R\left(u^{1}\right)=\begin{array}{lllll}
R(u) & \text { if } & n & 1 & (\bmod 4) \\
R(u) & \text { if } & n & 3 & (\bmod 4)
\end{array}
$$

P roof. From the form of the inverse D rinfel'd elem ent given above, we see that $R\left(u^{1}\right)={\underset{i}{n}}_{n}^{1} i^{2}$ is the quadratic G aussian sum. A s the quadratic G aussian sum transform S w ith the Jacobisym bol under change of the root of unity, ${ }^{83}$ we have

$$
R\left(u^{1}\right)=\frac{1}{n} \quad R(u)
$$

The assertion now follows from the rst supplem ent to Jacobi's reciprocity law. ${ }^{84} 2$

For the discussion in Paragraph 4.3, th is result m eans that the tw o conditions ($\quad)\left(R^{0} R\right)=1$ and $(v)=1$ can not always be sim ultaneously satis ed. It also m eans that Lem m a 4.3 can , in a sense, be considered as a generalization of the form ula for the absolute value of the quadratic G aussian sum.$^{85} \mathrm{~W}$ e will further elaborate on this analogy in P aragraph 12.1.

6 The case of the D rinfel'd double

6.1 In the case where A is the D rinfeld double $D=D(H)$ of a sem isim ple H opf algebra, it is possible to give another description of the action of the m odular group that $w i l l$ play an im portant role in the sequel. W e therefore suppose now that H is a sem isim ple H opf algebra over an algebraically closed eld of characteristic zero, and set A = D (H), its D rinfel'd double. F irst, recall from Paragraph 2.3 that the tw o-sided integral of the D rinfeld double has the form $D=$ for an integral 2 H and an integral $2 \mathrm{H} . \mathrm{We}$ can choose these integrals in such a way that " ()$=1$ and ()$=1$. They are then uniquely determ ined and satisfy (S ()) = 1 aswellas (1) = dim (H)..86 From Paragraph 2.3, we then know that the right integral D on D given by

$$
D\left(\begin{array}{ll}
\prime & h
\end{array}\right)=\prime^{\prime}\left(\begin{array}{l}
\text { l }
\end{array}\right.
$$

satis es $D\left(u_{D}{ }^{1}\right)=D\left(u_{D}\right)=1$, which implies that $(D \quad D)\left(R^{0} R\right)=1$ by Lemma 4.3 and $D(\mathrm{D})=()^{2}=1$. By com paring norm alizations, we see that the character of the regular representation is $R=\operatorname{dim}(H)$, so that we have

$$
R\left(u_{D}^{1}\right)=R\left(u_{D}\right)=\operatorname{dim}(H)
$$

T his m eans on the one hand that the param eter $=D$, introduced in Paragraph 5.2, is in the case of the D rinfel'd double w ith these norm alizations given by $D=\frac{1}{\operatorname{dim}(H)}$, and on the other hand m eans that, as discussed in Paragraph 4.3, the representation of SL $(2 ; Z)$ on the center is not only a pro jective representation, but rather is linear.

Recall from Lem man 3.3 that, under the correspondence $H \quad H \quad D \quad$ described there, the restrictions of and to the character ring are just the interchange of the tensorands. From this, and the fact that the antipode is an involution, it is clear that the evaluation form e introduced in Paragraph 2.2, which is contained in the character ring, ism apped under and to the inverse D rinfel'd elem ent $u_{D}{ }^{1}$, which, as discussed in Paragraph 5.1, can be used as a ribbon elem ent. A nother consequence of these considerations is the follow ing fact:

Lem m a Suppose that $z={ }^{P}{ }_{j}{ }_{j} \quad h_{j}$ is a central elem ent. T hen we have also

$$
z=\underbrace{\Lambda}_{j}\left(\begin{array}{lll}
\prime \prime & \left.h_{j}\right)\left({ }_{j}^{j}\right. & 1
\end{array}\right)
$$

Proof. Put $:={ }^{1}(z)$. By Lemma 3.3, we then have $={ }^{P}{ }_{j} h_{j} \quad{ }^{\prime}{ }_{j}$. But we have also seen in Paragraph 3.3 that ()$={ }_{j}\left(" h_{j}\right)\left({ }_{j} \quad 1\right)$. Since agrees w ith on the character ring, the assertion follow s. 2

For the right and the left m ultiplication w ith the evaluation form, we now introduce the notation T and T. In other words, we de ne the endom onphism s T
and T of D by

$$
T()=e \quad T()=e
$$

This notation is justi ed by the follow ing proposition, which should be com pared w ith P roposition 4.1:

Proposition The diagram s

are com m utative.

P roof. The com m utativity of the rst diagram follow s directly from Proposition 3.2, as we have

$$
(T \quad())=(e)=()(e)=() u D^{1}=T(())
$$

A lso in Paragraph 3.2, we saw that (e)=(e) ()= $u_{D}{ }^{1}()$, which yields the comm utativity of the second diagram . 2

This proposition im plies that we also get a representation of the m odular group on the character ring of the D rinfeld double by m apping the generator s to the restriction of S and the generator t to the restriction of T. This action is, via , just conjugate to the action on the center constructed in C orollary 4.3. N ote that T and T really preserve the character ring, as they are left resp. right m ultiplication w ith the character e. A s the character ring is com m utative, these tw o endom onphism s in fact coincide on the character ring.
6.2 The second construction of the m odular group action alluded to above is based on the follow ing m aps R and R, which should not be confused w ith the R-matrix:
$D e n i t i o n ~ W e d e ~ n e ~ t h e ~ e n d o m ~ o r p h i s m ~ s R ~ a n d ~ R ~ o f ~ D ~ b y ~ s e t t i n g ~$

$$
\mathrm{R}(\mathrm{a}):=\mathrm{e}\left(\mathrm{a}_{(1)}\right) \mathrm{a}_{(2)} \quad \mathrm{R}(\mathrm{a}):=\mathrm{e}\left(\mathrm{a}_{(2)}\right) \mathrm{a}_{(1)}
$$

Furthem ore, we de ne the endom onphism R of D as

$$
R \quad()(a)=\left(u_{D}^{1} a\right)
$$

In other words, we set R = T, the transpose of T. N ote that $w e$ also have $R=T$ and $R=T$.

These m aps are related in a sim ilar w ay as the ones considered earlier:
Proposition Thediagram s

are com m utative.
P roof. (1) R ecall from Paragraph 2.2 the form ula $u_{D}{ }^{1}=P_{i=1}^{n} b_{i} \quad b_{i}$, where $\mathrm{b}_{1} ;::: ; \mathrm{b}_{\mathrm{n}}$ is a basis of H w ith dualbasis $\mathrm{b}_{1} ;::: ; \mathrm{b}_{\mathrm{n}} . \mathrm{Recall}$ further that we have set up in Paragraph 6.1 a correspondence betw een H H and D, so that we can associate w ith every h 2 H and ' 2 H an elem ent 2 D . For this elem ent, we nd that

$$
\left.\begin{array}{rl}
(\quad) & =X_{i ; j=1}^{X^{n}}\left(\begin{array}{lll}
b_{i} & b_{j}
\end{array}\right)\left(\begin{array}{ll}
\left(\begin{array}{ll}
l & b_{i}
\end{array}\right)\left(b_{j}\right. & 1
\end{array}\right) \\
& =X_{i ; j=1}^{X^{n}} b_{i}(h)^{\prime}\left(b_{j}\right)\left(\begin{array}{lll}
\prime \prime & b_{i}
\end{array}\right)\left(b_{j}\right. \\
1
\end{array}\right)=\left(\begin{array}{lll}
\left(\begin{array}{ll}
l & h
\end{array}\right)\left(\begin{array}{ll}
\prime & 1
\end{array}\right)
\end{array}\right.
$$

which im plies that

$$
\begin{aligned}
& R(())=e\left(\left(\begin{array}{ll}
\prime & \left.\left.h_{(2)}\right)\left({ }^{\prime}{ }_{(1)} \quad 1\right)\right)\left(" \quad h_{(1)}\right)\left({ }^{\prime}{ }_{(2)} 1\right)
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& ={ }^{\prime}(1)\left(\mathrm{h}_{(2)}\right)\left(\mathrm{"}^{\prime} \mathrm{h}_{(1)}\right)\left({ }^{\prime}{ }_{(2)} \quad 1\right)
\end{aligned}
$$

(2) On the other hand, for $a=$, $0 h^{0} 2 D$, we have by the centrality of the D rinfel'd elem ent that

$$
\begin{aligned}
& R \quad()(a)=\left(u_{D}{ }^{1} a\right)=\left(\left(\prime^{0} \quad 1\right) u_{D}{ }^{1}\left({ }^{\prime \prime} \quad h^{0}\right)\right)=X_{i=1}^{X^{n}} \quad\left({ }^{\prime} b_{b_{i}} \quad b_{i} h^{0}\right) \\
& ={ }^{X^{n}}\left(, o_{b_{i}}\right)(h)^{\prime}\left(\left(b_{i} h^{0}\right)={ }^{X^{n}} \quad,{ }^{0}\left(h_{(1)}\right) b_{i}\left(h_{(2)}\right)^{\prime}{ }_{(1)}\left(b_{i}\right)^{\prime}{ }_{(2)}\left(h^{0}\right)\right. \\
& ={ }^{\circ}\left(\mathrm{h}_{(1)}\right)^{\prime}{ }_{(1)}\left(\mathrm{h}_{(2)}\right)^{\prime}{ }_{(2)}\left(\mathrm{h}^{0}\right)
\end{aligned}
$$

This m eans that R () 2 D corresponds to ${ }^{\prime}{ }_{(1)}\left(\mathrm{h}_{(2)}\right) \mathrm{h}_{(1)} \quad{ }^{\prime}{ }_{(2)} 2 \mathrm{H} \quad \mathrm{H}$. By the preceding com putation of , we therefore have

$$
(\mathrm{R} \quad(\quad))={ }^{\prime}{ }_{(1)}\left(\mathrm{h}_{(2)}\right)\left({ }^{\prime} \quad \mathrm{h}_{(1)}\right)\left({ }^{\prime}(2) \quad 1\right)=R((\quad))
$$

T his establishes the com m utativity of the second diagram.
(3) The comm utativity of the rst diagram is a consequence of the com m utativity of the second. A s discussed in Paragraph5.1, we have $S_{D}\left(u_{D}\right)=u_{D}$, and therefore $S_{D} \quad R=R \quad S_{D}$. From the proof of Lemman2.3, we have $S_{D}(e)=e$, which im plies that $S_{D} \quad R=R \quad S$. A swe saw in P aragraph 3.2, we also have $S_{D} \quad=\quad S_{D}$ as a consequence of involutivity, so that

$$
\begin{array}{rlrlrll}
S_{D} & R & = & S_{D} & R= & R & S_{D} \\
& =R & & S_{D}=R & S D & =S_{D} & R
\end{array}
$$

A fter cancelling the antipode, this is the com m utativity of the rst diagram . 2

It is interesting to look at the linearity properties of our new maps:

Lem ma Foralla;b2 D, we have

1. $R\left(S_{D}{ }^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{ab}_{(2)}\right)=\mathrm{S}_{\mathrm{D}}{ }^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{R}(\mathrm{a}) \mathrm{b}_{(2)}$
2. $R\left(b_{(1)} a_{S}{ }^{1}\left(b_{(2)}\right)\right)=b_{(1)} R(a) S_{D}{ }^{1}\left(b_{(2)}\right)$

In particular, R and R both preserve the center of D.
Proof. By the sym m etry property of the evaluation form e recorded in Paragraph 2.2, we have

$$
\begin{aligned}
\mathrm{R}\left(\mathrm{~S}_{\mathrm{D}}^{1}{ }^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{ab}_{(2)}\right) & =\mathrm{e}\left(\mathrm{~S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(2)}\right) \mathrm{a}_{(1)} \mathrm{b}_{(3)}\right) \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{a}_{(2)} \cdot \mathrm{b}_{(4)} \\
& =\mathrm{e}\left(\mathrm{a}_{(1)} \mathrm{b}_{(3)} \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(2)}\right)\right) \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{a}_{(2)} \mathrm{b}_{(4)} \\
& =\mathrm{e}\left(\mathrm{a}_{(1)}\right) \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{a}_{(2)} \mathrm{b}_{(2)}=\mathrm{S}_{\mathrm{D}}{ }^{1}\left(\mathrm{~b}_{(1)}\right) \mathrm{R}(\mathrm{a}) \mathrm{b}_{(2)}
\end{aligned}
$$

For the second assertion, we have sim ilarly that

$$
\mathrm{R}\left(\mathrm{~b}_{(1)} \mathrm{aS}_{\mathrm{D}}{ }^{1}\left(\mathrm{~b}_{(2)}\right)\right)=\mathrm{b}_{(1)} \mathrm{a}_{(1)} \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(4)}\right) \mathrm{e}\left(\mathrm{~b}_{(2)} \mathrm{a}_{(2)} \mathrm{S}_{\mathrm{D}}^{1}\left(\mathrm{~b}_{(3)}\right)\right)=\mathrm{b}_{(1)} \mathrm{R}(\mathrm{a}) \mathrm{S}_{\mathrm{D}}{ }^{1}\left(\mathrm{~b}_{(2)}\right)
$$

These com putations do not use that the antipode is an involution; how ever, th is is necessary for the statem ent about the center, because a is central if and only if $S_{D}\left(\mathrm{~b}_{(1)}\right) \mathrm{ab}_{(2)}="_{\mathrm{D}}(\mathrm{b})$ a for all b 2 D , a relation that is then preserved by R . A sim ilar argum ent show s that R preserves the center. 2
6.3 O ne im portant step in the second approach tow ard the action of the m odular group is the follow ing relations betw een our m aps:

Proposition

$$
\mathrm{T} \quad \mathrm{R} \quad \mathrm{~T}=\mathrm{R} \quad \mathrm{~T} \quad \mathrm{R} \quad \mathrm{~T} \quad \mathrm{R} \quad \mathrm{~T}=\mathrm{R} \quad \mathrm{~T} \quad \mathrm{R}
$$

P roof. A s discussed in Paragraph [5.1, we have $S_{D}\left(u_{D}\right)=u_{D}$ in our case. It then follow s from Proposition 2.3 that $e^{1}=D_{(2)}\left(u_{D}{ }^{1}\right) D(1)$.W e therefore get

$$
R^{1}\left(T^{1}()\right)=R^{1}\left(e^{1}\right)=D(2)\left(u_{D}^{1}\right) R^{1}(D(1))
$$

Since D is an integral, we can rew rite this as ${ }^{87}$

$$
\begin{aligned}
R^{1}\left(T^{1}(\quad)\right) & =\left(D_{(2)} S_{D}()\right)\left(u_{D}^{1}\right) R^{1}\left(D_{(1)}\right) \\
& =D(3)\left(u_{D}^{1}(1)\right) S_{D}()\left(u_{D(2)}^{1}\right) D(2)\left(u_{D}\right) D_{(1)} \\
& =D(2)\left(u_{D} u_{D}^{1}(1)\right) R\left(S_{D}()\right)\left(u_{D} u_{D(2)}^{1}\right) D_{(1)}
\end{aligned}
$$

U sing the form ula that expresses in term s of the D rinfel'd elem ent given at the end of P aragraph 3.2, this can be w ritten as

$$
\begin{aligned}
R^{1}\left(T^{1}()\right) & =D(2)\left(\left(R^{(}\left(S_{D}()\right)\right)\right) D_{(1)} \\
& \left.=D_{(2)}\left(R^{(}\left(S_{D}()\right)\right)\right) D_{(1)}=\left(e_{D(2)}\right)\left(\left(S_{D}()\right)\right) D_{(1)}
\end{aligned}
$$

where the second equality follow s from Proposition 6.2. U sing the relation between and the D rinfel'd elem ent backw ards, this becom es

$$
R^{1}\left(T^{1}()\right)=\left(e_{D(2)}\right)\left(u_{D} u_{D}^{1}{ }_{(1)}^{1}\right) S_{D}()\left(u_{D} u_{D}^{1}(2)\right) \quad D(1)
$$

N ow D is in our case also a left integral, and furthem ore we saw in Paragraph 2.3 that e is invariant under the antipode, so that we can rew rite the preceding equation in the form

$$
\begin{aligned}
R^{1}\left(T^{1}(\quad)\right) & =D(2)\left(u_{D} u_{D}^{1}(1)\right) S_{D}()\left(u_{D} u_{D}^{1}(2)\right) e_{D(1)} \\
& =D(2)\left(u_{D}\right) D(3)\left(u_{D}^{1}(1)\right) R^{1}\left(S_{D}()\right)\left(u_{D}^{1}(2)\right) e_{D(1)}^{1} \\
& =\left(D_{D(2)} R^{1}\left(S_{D}()\right)\right)\left(u_{D}^{1}\right) R^{1}\left(D_{(1)}\right)
\end{aligned}
$$

A s discussed in P aragraph 6.2, we have $S_{D} \quad R=R \quad S$, and by using this and the properties of the integral again, we can rew rite this expression as

$$
\begin{aligned}
R^{1}\left(T^{1}()\right) & =\left(D(2) S_{D}\left(R^{1}()\right)\right)\left(u_{D}{ }^{1}\right) e R^{1}(D(1)) \\
& =D(2)\left(u_{D}{ }^{1}\right) e R^{1}\left(D_{(1)} R^{1}(1)\right) \\
& =e R^{1}\left(e^{1} R^{1}()\right)=T \quad\left(R^{1}\left(T^{1}\left(R^{1}()\right)\right)\right)
\end{aligned}
$$

where the third equation uses P roposition 2.3 again. This proves R ${ }^{1} \mathrm{~T}^{1}=$ $T \quad R^{1} T^{1} \quad R^{1}$, which is equivalent to the rst assertion. T he second assertion follow sfrom the rst by conjugating w th the antipode S_{D} of D, as we have already noted that S_{D} commutesw ith R, and $S_{D} \quad T=T \quad S_{\text {b }}$ holds since S_{D} is antim ultiplicative and preserves e. 2

Instead of using endom onphism s of D, we can use endom onphism s of D. The corresponding relation then has the follow ing form:

C orollary

$$
\begin{array}{cccccccc}
\mathrm{T} & \mathrm{~T}=\mathrm{R} \quad \mathrm{~T} & \mathrm{R} & \mathrm{R} & \mathrm{~T}=\mathrm{R} \quad \mathrm{~T} & \mathrm{R}
\end{array}
$$

P roof. U sing Proposition 6.1 and Proposition 6.2, this follow s by con jugating the rst formula in the preceding proposition by and the second form ula in the preceding proposition by . 2
6.4 C orollary 6.3 suggests that wem ight get a representation of the m odular group by assigning T to the generator t and R to the generator r, the two altemative generators described in Paragraph 1.1. The rst de ning relation trt $=$ rtr then follows from this corollary. H ow ever, we still need the second de ning relation $(r t)^{6}=1$. This relation only holds for the restrictions of T and R to the center of D. W e now proceed not only to verify this relation, but also to check that the representation of the m odular group that w e construct in th is way agrees w ith the one constructed earlier. To do this, we introduce the follow ing analogue of :

$$
: D \quad!\quad D ; \quad 7 \quad D(1) \quad(\quad D(2))
$$

These m aps together satisfy the follow ing relations: $:^{88}$

$$
(\quad)()=D(D) S_{D}() \quad(\quad)(x)=_{D}(D) S_{D}(x)
$$

W ith the help of this $m a p$, we can deduce the follow ing fact, which relates the tw o approaches to the representation of the m odular group:

Proposition

$$
S=T^{1} \quad R^{1} \quad T^{1}=R^{1} \quad T^{1} \quad R^{1}
$$

Proof. The second equality is just the inversion of the second identity in Proposition 6.3; it is therefore su cient to show the rst equality. W e have the comm utation relation $T=R$ because, as discussed in P aragraph 5.1, $u_{D}{ }^{1}$ is invariant under the antipode, and therefore we have ${ }^{89}$

$$
\begin{aligned}
T(\quad(1)) & =u_{D}^{1} D(1)(D(2))=D(1) \quad\left(S_{D}^{1}\left(u_{D}^{1}\right) D(2)\right) \\
& =D(1) \quad\left(u_{D}^{1} \quad D(2)\right)=D(1)^{1} \quad()\left(D_{(2)}\right)=(R \quad())
\end{aligned}
$$

It follow s from Lemma 2.3 that $\left(e^{1}\right)=S_{D}\left(u_{D}{ }^{1}\right)=u_{D}{ }^{1}$, because $e^{1}\left(D_{D}\right)=$
$\left(S^{1}()\right)=1$ in our case. From the expression for in term S of the D rinfel'd
elem ent given in P aragraph 3.2, we therefore get

$$
\begin{aligned}
& (\quad)=u_{D} u_{D}{ }^{1}(1) \quad\left(u_{D} u_{D}{ }_{(2)}^{1}\right)=T^{1}\left(u_{D}{ }_{(1)}^{1}\right) R{ }^{1}(\quad)\left(u_{D}{ }^{1}(2)\right) \\
& =T^{1}(D(1)) R^{1}() e^{1}(D(2)) \\
& =T^{1}(D(1)) T^{1}\left(R^{1}(1)\right)(D(2))
\end{aligned}
$$

so that, by the de nition of S in Paragraph 4.1 and the properties of and m entioned above, we have

$$
S=S^{1} \quad=S^{1} \quad R^{1} \quad T^{1} \quad R^{1}=R^{1} \quad T^{1} \quad R^{1}
$$

as asserted. 2

It is easy to convert the preceding proposition from a statem ent about endom onphism of D into a statem ent about endom onphism of D: If we con jugate the identity by and use P roposition 4.1, P roposition 6.1, and P roposition 6.2, we get

$$
\mathrm{S}=\mathrm{T}^{1} \quad \mathrm{R}^{1} \quad \mathrm{~T}^{1}=\mathrm{R}^{1} \quad \mathrm{~T}^{1} \quad \mathrm{R}^{1}
$$

W e have proved in Proposition 4.1 that S preserves the center, and this is also true for T by the centrality of the D rinfel'd elem ent. In Lem m a 6.2, we have seen that R preserves the center. W e use the sam e sym bols for the restrictions of these m aps to the center. W e then have

C orollary T here is a unique hom om onphism from $S L(2 ; Z)$ to $G L(Z(D))$ that m aps r to R and to T.

P roof. The hom om orphism is unique because r and t generate the m odular group, as discussed in P aragraph1.1. For the ex istence question, recall the de ning relations trt $=r \operatorname{tr}$ and $(r t)^{6}=1 . T$ he rst relation holds by C orollary 6.3. W e have (D D) ($\left.R^{0} R\right)=1$, and therefore C orollary 4.2 yields that the restriction of S^{2} to the center coincides w ith the antipode. Together w ith the above considerations, this show s that

$$
\text { (R } \quad \mathrm{T} \varphi=\left(\begin{array}{llllll}
\mathrm{R} & \mathrm{~T} & \mathrm{R} & \mathrm{~T} & \mathrm{R} & { }^{2} \mathrm{~T} \Rightarrow \mathrm{~S}
\end{array}{ }^{4}=\mathrm{S}_{\mathrm{D}}{ }^{2}=\mathrm{id}\right.
$$

on the center, which is the second relation needed. 2

Because $s=t{ }^{1} r{ }^{1} t{ }^{1}$, it is clear that this representation of the m odular group agrees w ith the one constructed in C orollary 4.3.
6.5 W ehave discussed them atrix representations of T and S in Paragraph 5.2. It is possible to give a sim ilar discussion of the m atrix representations of R, R, and R :

Proposition
$1 . R \quad(i)=\frac{1}{u_{i}} i=i(e)_{i}$
2. $R\left(z_{i}\right)=R\left(z_{i}\right)=\frac{1}{u_{i}} z_{i}=\quad i(e) z_{i}$

Proof. For the rst assertion, note that

$$
R \quad(i)(a)=i_{i}\left(u_{D}^{1} a\right)={\frac{1}{u_{i}}}_{i}(a)
$$

which gives the rst equation. T he second equation holds since

$$
i(e)=!_{i}((e))=!_{i}\left(u_{D}^{1}\right)=\frac{1}{u_{i}}
$$

The second assertion follows by applying to the rst assertion and using Proposition 5.2 and Proposition 6.2; note that we discussed in P aragraph 6.1 that and agree on the character ring. 2

U sing this proposition, we can expand the evaluation form explicitly in term s of the irreducible characters:

C orollary

$$
e=\frac{1}{\operatorname{dim}(H)}{ }_{i=1}^{X^{k}} n_{i j}\left(e^{1}\right)_{i} \quad e^{1}=\frac{1}{\operatorname{dim}(H)}{ }_{i=1}^{X^{k}} n_{i j}(e)_{i}
$$

Proof. Since R is an integral, we can deduce from Proposition 2.3 that

$$
R(R)=R\left(u_{D}^{1}\right) e^{1}=\operatorname{dim}(H) e^{1}
$$

The second assertion therefore follow s from the preceding proposition by apply-
 sim ilar way by applying R^{1}, as we have $R^{1}\left({ }_{R}\right)=$ dim (H)e by Proposition 2.3 and $R^{1}\left(i_{i}\right)=i_{i}\left(e^{1}\right)$ i by the preceding proposition. 2

It should be pointed out in this context that these tw o elem ents are interchanged by S :

Lem ma

$$
S \quad(e)=e^{1} \quad S \quad\left(e^{1}\right)=e
$$

Proof. It follow sfrom the de nition that R ("D $)=$ "D. Therefore, we get by Proposition 6.4 that

$$
S \quad(e)=\left(\begin{array}{lllll}
T^{1} & R^{1} & T^{1}
\end{array}\right)(e)=T^{1}\left(R^{1}\left("_{D}\right)\right)=T^{1}\left("_{D}\right)=e^{1}
$$

This proves the rst assertion. T he second assertion follow from the rst by applying S,becausewehave $S^{2}()=S_{D}(1)$ forall $2 \mathrm{Ch}(\mathrm{D})$ by Proposition4.1 and C orollary 4.2, and we have seen in the proofofLem ma2.3 that $S_{D}(e)=e .2$

7 Induced m odules

7.1 Suppose that H is a sem isim ple H opf algebra over an algebraically closed eld K of characteristic zero, and consider its D rinfel'd double D = D (H).For an H m odule V , we can form the induced D m odule:

$$
\text { D H } \mathrm{V}=(\mathrm{H} \quad \mathrm{H}) \quad \text { н } \mathrm{V}=\mathrm{H} \quad \mathrm{~V}
$$

where the last isom onphism maps' $h \quad \mathrm{H} V$ to ' $\mathrm{h} . \mathrm{v}$. This isom onphism is D -linear if we consider $H \quad V$ as a D m odule via the m odule structure ${ }^{90}$

$$
\left.\left(\begin{array}{lll}
\prime & h
\end{array}\right):\left(\boldsymbol{(}^{\prime 0} \quad \mathrm{v}\right):=\boldsymbol{\prime}_{(1)}^{0}\left(S\left(h_{(3)}\right)\right)_{(3)}^{\prime 0}\left(h_{(1)}\right)\right)_{(2)}^{\prime 0} h_{(2)}: v
$$

W e will view the induced module from this latter view point in the sequel and therefore w rite Ind $(\mathrm{V}):=\mathrm{H} \quad \mathrm{V}$, considered as a $\mathrm{D}-\mathrm{m}$ odule w ith this m odule structure.

Suppose now that W is another H m odule. W e introduce the follow ing $m a p$:
De n ition Suppose that $b_{1} ;::: ; b_{n}$ is a basis of H with dualbasis $b_{1} ;::: ; b_{n}$. W e de ne

$$
\mathrm{V} ; \mathrm{W}: \operatorname{Ind}(\mathrm{V} \quad \mathrm{~W})!\operatorname{Ind}(\mathrm{W} \quad \mathrm{~V})^{\prime} ;^{\prime} \quad \mathrm{v} \quad \mathrm{w} \mathrm{~T}_{\mathrm{i}=1}^{\prime} \mathrm{b}_{\mathrm{i}} \quad \mathrm{w} \quad \mathrm{~b}_{\mathrm{i}}: \mathrm{V}
$$

Let us record som e rst properties of this m ap:
Lem madvis is a D-linear isom onphism. The inverse is given by

$$
v ;{ }^{1}\left(\begin{array}{ll}
\prime & w
\end{array} \quad v\right)=X_{i=1}^{\prime n} \quad b_{i} \quad S\left(b_{i}\right): v \quad w
$$

Furtherm ore, we have

$$
(w ; v \quad v ; N)(x)=u_{D}^{1} x
$$

for alle 2 Ind (V W).
P roof. To establish D-linearity, $v ; N$ has to commute w ith elem ents of the form ' 1 and elem ents of the form " h.A s it clearly com m utes w ith elem ents of the rst form, we can concentrate on elem ents of the second form. W e have

```
(" h): v;N (' v w )=
```

X^{n}
$\left({ }^{\prime}(1) b_{i(1)}\right)\left(S\left(h_{(4)}\right)\right)\left({ }_{(3)} b_{i(3)}\right)\left(h_{(1)}\right)^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}(2)} \quad \mathrm{h}_{(2)}: \mathbb{w} \quad \mathrm{h}_{(3)}, \mathrm{b}_{\mathrm{i}}: \mathrm{v}=$
$\mathrm{i}=1$
X^{n}
${ }^{\prime}{ }_{(1)}\left(\mathrm{S}\left(\mathrm{h}_{(6)}\right)\right) \mathrm{b}_{\mathrm{i}(1)}\left(\mathrm{S}\left(\mathrm{h}_{(5)}\right)\right)^{\prime}{ }_{(3)}\left(\mathrm{h}_{(1)}\right) \cdot \mathrm{b}_{\mathrm{i}(3)}\left(\mathrm{h}_{(2)}\right)^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}(2)} \quad \mathrm{h}_{(3)}: \mathrm{w} \quad \mathrm{h}_{(4)} \mathrm{b}_{\mathrm{i}}: \mathrm{v}$
$\mathrm{i}=1$

U sing the dual basis form ulas stated in the introduction, this becom es

```
(" h): v; (' v w) =
    \(\mathrm{X}^{\mathrm{n}}\)
        \({ }^{\prime}{ }_{(1)}\left(\mathrm{S}\left(\mathrm{h}_{(6)}\right)\right) \mathrm{b}_{\mathrm{i}_{1}}\left(\mathrm{~S}\left(\mathrm{~h}_{(5)}\right)\right)^{\prime}{ }_{(3)}\left(\mathrm{h}_{(1)}\right) \mathrm{b}_{\mathrm{i}_{3}}\left(\mathrm{~h}_{(2)}\right)\)
\(\mathrm{i}_{1} ; \mathrm{i}_{2} ; \mathrm{i}_{3}=1\)
    \({ }^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}_{2}} \quad \mathrm{~h}_{(3)}: \mathrm{w} \quad \mathrm{h}_{(4)}, \mathrm{b}_{\mathrm{i}_{1}} \mathrm{~b}_{\mathrm{i}_{2}}, \mathrm{~b}_{\mathrm{i}_{3}}: \mathrm{v}=\)
\(X^{n}\)
            \({ }^{\prime}{ }_{(1)}\left(\mathrm{S}\left(\mathrm{h}_{(6)}\right)\right)^{\prime}{ }_{(3)}\left(\mathrm{h}_{(1)}\right)^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}_{2}} \quad \mathrm{~h}_{(3)}: \mathrm{w} \quad \mathrm{h}_{(4)} \mathrm{S}\left(\mathrm{h}_{(5)}\right) \mathrm{b}_{\mathrm{i}_{2}} \mathrm{~h}_{(2)}: \mathrm{v}=\)
\(\mathrm{i}_{2}=1\)
\(X^{n}\)
    \({ }^{\prime}{ }_{(1)}\left(\mathrm{S}\left(\mathrm{h}_{(4)}\right)\right)^{\prime}{ }_{(3)}\left(\mathrm{h}_{(1)}\right)^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}} \quad \mathrm{h}_{(3)}: \mathrm{w} \quad \mathrm{b}_{\mathrm{i}} \mathrm{h}_{(2)}: \mathrm{v}\)
\(\mathrm{i}=1\)
```

But this is exactly v ; $\mathrm{N}((\mathrm{l} \quad \mathrm{h}):(\prime \mathrm{v} \quad \mathrm{w}))$, which establishes the D -linearity. To establish the form of the inverse, we note that

$$
\begin{aligned}
& \left.\mathrm{v} ; \mathrm{w}\left(\mathrm{X}^{\mathrm{n}} \quad, \mathrm{~b}_{\mathrm{i}} \quad \mathrm{~S}\left(\mathrm{~b}_{\mathrm{i}}\right): \mathrm{v} \quad \mathrm{w}\right)\right)^{\mathrm{X}^{\mathrm{n}}} \quad, \mathrm{~b}_{\mathrm{i}} \mathrm{~b}_{\mathrm{j}} \quad \mathrm{w} \quad \mathrm{~b}_{j} S\left(\mathrm{~b}_{\mathrm{i}}\right): v \\
& i=1 \quad i ; j=1 \\
& =\mathrm{X}^{\mathrm{n}} \quad, \mathrm{~b}_{\mathrm{i}} \quad \mathrm{w} \quad \mathrm{~b}_{\mathrm{i}(2)} S\left(\mathrm{~b}_{\mathrm{i}(1)}\right): \mathrm{v}=, \quad \mathrm{w} \quad \mathrm{v} \\
& \text { i;j= } 1
\end{aligned}
$$

by the dual basis form ulas, which establishes that the m ap stated is a right inverse of v ;N . It can be show n sim ilarly that it is also a left inverse.

To establish the last property, we can assum \& that $\mathrm{x}=\mathrm{I} \quad \mathrm{v} \quad \mathrm{w}$ is decom pos-
 involutory. W e therefore have

$$
u_{D}^{1} x=x_{i=1}^{X^{n}} \quad b_{i} \quad b_{i(1)}: v \quad b_{i(2)}: w=x_{i ; j=1}^{X^{n}} \quad b_{i} b_{j} \quad b_{i}: v \quad b_{j}: w
$$

by the dual basis form ula. But this is exactly (w ; v V ; N$)(\mathrm{x}) .2$
From the point ofview of category theory, is a natural transform ation betw een
 transform ation also satis es the follow ing coherence properties:

Proposition IfU , V, and W are H m odules, the follow ing diagram com m utes:

In addition, the follow ing diagram s also com m ute:

H ere, the verticalm aps are induced from the canonical isom onphism s.
Proof. If' 2 H ,u $2 \mathrm{U}, \mathrm{v} 2 \mathrm{~V}$, and w 2 W , we have

$$
\begin{aligned}
& \mathrm{i}=1 \\
& =x_{i ; j=1}^{X^{n}}, b_{i} b_{j} \quad w \quad b_{i}: u \quad b_{j}: v
\end{aligned}
$$

on the one hand and

$$
u \quad v ;{ }^{\prime}\left(\begin{array}{llll}
\prime & u & v & w
\end{array}\right)=\sum_{i=1}^{X^{n}} \quad b_{i} \quad w \quad b_{i(1)}: u \quad b_{i(2)}: v
$$

on the other hand. By the dual basis form ula, both expressions agree, proving $\mathrm{u} V ; \mathrm{N}=\mathrm{V} ; \mathrm{N} \quad \mathrm{U} \quad \mathrm{U} ; \mathrm{V} \mathrm{w}$, which establishes the commutativity of the rst diagram. The com m utativity of the tw o rem aining diagram sfollow s directly from the de nitions. 2
7.2 For a nite-dim ensionalm odule V, it tums out that the induced m odule of the dual is isom onphic to the dual of the induced m odule. M ore generally, suppose that V and V^{0} are two nite-dim ensional $H \mathrm{~m}$ odules endow $e d w$ ith a nondegenerate pairing h; i:V $\mathrm{V}!\mathrm{K}$ that satis es

$$
\text { hh }: v ; v^{0} i=h v ; S(h): v^{0} i
$$

for all $\mathrm{v} 2 \mathrm{~V}, \mathrm{v}^{0} 2 \mathrm{~V}^{0}$, and h 2 H . If we then choose a nonzero integral 2 H and de ne a pairing h; i: Ind (V) Ind $\left(V^{0}\right)!K$ as

$$
h^{\prime} \quad v ; \quad v^{0} i=(S \quad(\prime))()^{\prime} h v ; v_{i}
$$

for'; $2 \mathrm{H}, \mathrm{v} 2 \mathrm{~V}$, and $\mathrm{v}^{0} 2 \mathrm{~V}^{0}$, this pairing has the follow ing properties:

Lem mah ; is nondegenerate. Forx 2 D , we have

$$
h x:(\prime \quad v) ; \quad v^{0} i=h^{\prime} \quad v ; S_{D}(x):\left(\quad v^{0}\right) i
$$

Proof. The nondegeneracy follows from the nondegeneracy of the pairing (' ;) 7 (S ('))(). ${ }^{91}$ To prove the second assertion, it su ces to show this in the cases $x=101$ and $x=" h$. In the rst case, this am ounts to the identity

$$
\left(S \quad\left({ }^{0},\right)\right)() h v ; v^{0} i=\left(S \quad(\prime) S\left(r^{0}\right)\right)() h v ; v^{0} i
$$

In the second case, this am ounts to the identity

$$
\begin{aligned}
& =\quad(1)\left(h_{(1)}\right) \quad \text { (3) }\left(S\left(h_{(3)}\right)\right)\left(S \quad\left({ }^{\prime}\right) \quad(2)\right)()_{i v} ; S\left(h_{(2)}\right): v^{0} i
\end{aligned}
$$

which by the property of the original pairing w ill follow from

$$
\begin{aligned}
& { }^{\prime}{ }_{(1)}\left(S\left(h_{(3)}\right)\right)^{\prime}{ }_{(3)}\left(h_{(1)}\right)^{\prime}{ }_{(2)}\left(S\left(\text { (1) }^{\prime}\right)\right) \quad\left({ }_{(2)}\right) h_{(2)} \\
& \left.=\text { (1) }\left(\mathrm{h}_{(1)}\right) \quad{ }_{\text {(3) }}\left(\mathrm{S}\left(\mathrm{~h}_{(3)}\right)\right)^{\prime}\left(\mathrm{S}_{(1)}\right)\right)_{\text {(2) }}\left(\mathrm{C}_{\text {(2) }}\right) \mathrm{h}_{(2)}
\end{aligned}
$$

T his can be w ritten as
which is a consequence of the fact that $S\left({ }_{(1)}\right) \quad$ (2) is a sym m etric C asim ir elem ent. ${ }^{92} 2$

Suppose now that W and W^{0} is another pair of nitedim ensional H m odules endow ed w ith another nondegenerate pairing h; i:W W ! K that satis es

$$
\text { hh :w } ; w^{0} i=h w ; S(h): w_{i}^{0}
$$

for allw $2 \mathrm{~W}, \mathrm{w}^{0} 2 \mathrm{~W}^{0}$, and h $2 \mathrm{H} . \mathrm{W}$ e can then form a pairing betw een the tensor products $V \quad W$ and $W^{0} \quad V^{0}$ that has the form

$$
\text { hv w; } \mathrm{w}^{0} \quad \mathrm{v}^{0} \mathrm{i} \quad=\mathrm{hv} ; \mathrm{v}^{0} \mathrm{ihw} ; \mathrm{w}^{0}{ }^{\mathrm{i}}
$$

This pairing is also nondegenerate and satis es

$$
\text { hh: }(v \quad w) ; w^{0} \quad v^{0} i=h v \quad w ; S(h):\left(w^{0} \quad v^{0}\right) i
$$

W e can therefore invoke the preceding lemma to get a nondegenerate pairing h; ibetw een Ind $(V \quad W)$ and $\operatorname{Ind}\left(W^{0} \quad V^{0}\right)$ that has the explicit form

$$
h^{\prime} \quad v \quad w_{i} \quad w^{0} \quad v^{0} i=\left(S\left(^{\prime}\right)\right)() h v ; v^{0} i^{\prime} w_{w} ; w_{i}
$$

Interchanging the roles of V and W, we also get a pairing betw een Ind (W V) and $\operatorname{Ind}\left(V^{0} \quad W^{0}\right)$, for which we use the sam e notation and which is explicitly given as

$$
h^{\prime} \quad w \quad v ; \quad v^{0} \quad w^{0} i=\left(S\left(^{\prime}\right)\right)() h w ; w^{0}{ }_{i h v} ; v^{0} i
$$

T hese pairings are com patible w ith the m onphism s introduced in P aragraph 7.1 in the follow ing way:

Proposition

$$
\mathrm{h}_{\mathrm{v} ; \mathrm{W}}\left(\mathrm{r}^{\prime} \quad \mathrm{v} \quad \mathrm{w}\right) ; \quad \mathrm{v}^{0} \quad \mathrm{w}^{0} \mathrm{i}=\mathrm{h}^{\prime} \quad \mathrm{v} \quad \mathrm{w}^{\prime} ; \mathrm{v}^{0} ; \mathrm{N} 0\left(\mathrm{v} \quad \mathrm{v}^{0} \mathrm{w}^{0}\right) \mathrm{i}
$$

P roof. O n the one hand, we have

$$
\begin{aligned}
& h_{v ; N}\left({ }^{\prime} \quad v \quad w\right) ; \quad v^{0} \quad w^{0} i=X_{i=1}^{X^{n}} h^{\prime} b_{i} \quad w \quad b_{i}: v ; \quad v^{0} \quad w^{0}{ }^{0} \\
& =\mathrm{X}_{\mathrm{in}}^{\mathrm{n}}\left(\mathrm{~S}\left({ }^{\prime} \mathrm{b}_{\mathrm{i}}\right)\right)\left(\mathrm{hw} ; \mathrm{w}^{0}{ }^{0} \mathrm{ihb}_{\mathrm{i}}: v ; \mathrm{v}^{0}{ }_{i}\right. \\
& \mathrm{i}=1 \\
& =X^{X^{n}}\left(S \quad\left(b_{i}\right) S \quad(\prime)\right)() h w ; w^{0} i h v ; S\left(b_{i}\right): v_{i}^{0} \\
& \text { i= } 1 \\
& \mathrm{X}^{\mathrm{n}} \\
& =\sum_{i=1}^{X}\left(b_{i} S \quad\left({ }^{\prime}\right)\right)\left(h_{w} ;{ }^{0}{ }^{0} h_{v} ; b_{i}: v^{0} i\right.
\end{aligned}
$$

O n the other hand, we have

$$
\begin{aligned}
& h^{\prime} \quad v \quad w^{\prime} ; v^{0 ;} ; 0\left(v^{0} \quad w^{0}\right) i=X_{i=1}^{X^{n}} h^{\prime} \quad v \quad w ; b_{i} \quad w^{0} \quad b_{i}: v^{0} i \\
& =\mathrm{X}^{\mathrm{i}=1}\left(\mathrm{~S} \quad\left(^{\prime}\right) \mathrm{b}_{\mathrm{i}}\right)\left(\mathrm{hv} ; \mathrm{b}_{i}: \mathrm{v}^{0} \mathrm{ihw} ; \mathrm{w}^{0} i\right. \\
& \mathrm{i}=1
\end{aligned}
$$

B oth expressions are equal because is cocomm utative. ${ }^{93} 2$

It is of course possible to choose the dualV for V^{0} and the dual W for W^{0}. The above discussion then show sthat Ind (V W) = Ind ($\mathrm{W} \quad \mathrm{V}$) and also Ind (W V) $=\operatorname{Ind}(V \quad W$). U sing these identi cations, it follow from the above proposition that we have

$$
\mathrm{v} ; \mathbb{N}=\mathrm{v} ; \mathbb{N}
$$

for the transpose of $v ;$; .
7.3 A spointed out by D.N ikshych, ${ }^{94}$ the naturaltransform ation introduced in D e nition 7.1 can be related to the categorical center construction. $\mathrm{Recal19}^{5}$ that the category of m odules over the D rinfel'd double $D=D(H)$ can be considered as the center of the category of H m odules. This im plies in particular that for every D module U and every $H-m$ odule V we have the isom onphism

$$
\mathrm{c}_{\mathrm{V} ; \mathrm{U}}: \mathrm{V} \quad \mathrm{U}!\mathrm{U} \quad \mathrm{~V} ; \mathrm{v} \quad \mathrm{u} \mathrm{~T}_{\mathrm{i}=1}^{\wedge}\left(\mathrm{b}_{\mathrm{i}} \quad 1\right): \mathrm{u} \quad \mathrm{~b}_{\mathrm{i}}: \mathrm{v}
$$

which consists in the application of the R m atrix follow ed by interchanging the tensorands. Its inverse is therefore given by

$$
\mathrm{C}_{\mathrm{V} ; \mathrm{U}}^{1}: \mathrm{U} \quad \mathrm{~V}!\mathrm{V} \quad \mathrm{U} ; \mathrm{u} \quad \mathrm{~V} \mathrm{~T}_{\mathrm{i}=1}^{\mathrm{X}^{\mathrm{n}}} \mathrm{~S}\left(\mathrm{~b}_{\mathrm{i}}\right): \mathrm{v} \quad\left(\mathrm{~b}_{\mathrm{i}} \quad 1\right): u
$$

To relate this m ap to the isom onphism $v ; N$, where W is another H m odule, note that

$$
H \circ m_{D}(\operatorname{Ind}(V \quad W \quad) ; U)=H o_{H}(V \quad W ; U)
$$

by the Frobenius reciprocity theorem.96 Therefore, there is a unique isom orphism ${ }_{\mathrm{V} ; \mathrm{N} ; \mathrm{J}}^{0}$ that m akes the diagram

 on the right. T he isom onphism ${ }_{\mathrm{V} ; \mathrm{N}}^{0}$; U is given explicitly as

$$
\stackrel{V}{V} ; \mathbb{N} ; U_{0}(f)(\mathrm{v} \quad \mathrm{w})=\mathrm{X}_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~b}_{\mathrm{i}} \quad 1\right): f\left(\mathrm{w} \quad \mathrm{~b}_{\mathrm{i}}: \mathrm{v}\right)
$$

for $\mathrm{f} 2 \mathrm{Hom} \mathrm{H}_{\mathrm{H}}$ (W V ; U) , as we have
for $\mathrm{g}_{2} \mathrm{Hom} \mathrm{D}_{\mathrm{D}}(\operatorname{Ind}(\mathrm{W} \quad \mathrm{V})$; U$)$.
Besides the adjunction betw een induction and restriction that appears in the Frobenius reciprocity theorem, there are tw o other pairs of ad joint functors that appear in this setting: T he com position ${ }^{97}$
where the rst map takes f to $f \quad i_{V}$ and the second evaluates V on V,
 im age $\mathrm{g} 2 \mathrm{Hom} \mathrm{K}_{\mathrm{K}}(\mathrm{W} \quad \mathrm{V}$; U) off 2 Hom (W ; $\mathrm{U} V$) is given explicitly as

$$
g(w \quad v)={ }_{j}^{X} \quad j(v) u_{j}
$$

if $f(w)={ }^{P}{ }_{j} u_{j} \quad j$. This com position is bijective if V is nitedim ensional. Because the evaluation m ap $V \quad V$! K; $V 7 \quad(v)$ is H -linear, both m appings that appear in the com position preserve the subspace of H-linear m aps, so that we can restrict this com position to a map from H om (W ; U V) to H_{H} ($\mathrm{W} V$; U), which is an isom onphism in the nite-dim ensional case.

Sim ilarly, the com position
obtained by tensoring $w i$ ith i_{V} on the left and then evaluating V on V leads to a hom om orphism that takes a linearm ap $f 2 \mathrm{Hom}_{\mathrm{K}}(\mathrm{W} ; \mathrm{V} \quad \mathrm{U}$) to the m ap $\mathrm{g} 2 \mathrm{Hom}_{\mathrm{K}}(\mathrm{V} \mathrm{W} ; \mathrm{U}$) that satis es

$$
\left.g\left(\begin{array}{ll}
v & w
\end{array}\right)\right)_{j}^{X} \quad j(v) u_{j}
$$

if $f(w){ }^{P}$ j j u_{j}. This tim e, the second hom om orphism in the com position uses the evaluation m ap

$$
\mathrm{V} \quad \mathrm{~V} \quad!\mathrm{K} ; \mathrm{v} \quad \mathrm{~T} \quad \text { (v) }
$$

But as the antipode is an involution, this evaluation m ap is also H -linear, so thatwe again get a hom om onphism from $\mathrm{Hom}_{\mathrm{H}}\left(\mathrm{W} ; \mathrm{V} \mathrm{U}\right.$) to H om $\mathrm{H}_{\mathrm{H}}(\mathrm{V} \mathrm{W}$; U) by restriction, which is an isom orphism if V is nite-dim ensional.

All these m appings com e together in the follow ing proposition:
Proposition The diagram

Proof. Suppose that $f 2 \mathrm{Hom}_{\mathrm{H}}$ (W ; U V). The two possible paths in the diagram give two elem ents of H om ${ }_{H}(V \mathrm{~W} ; \mathrm{U}$), and we have to prove that they are equal. For this, it su ces to show that they agree for every decom posable tensorv w $2 \mathrm{~V} \quad \mathrm{~W}$. To see this, w rite $\mathrm{f}(\mathrm{w})=\mathrm{j}_{\mathrm{j}} \mathrm{u}_{j} \quad{ }_{j}$. Then we have

This m eans that the hom om onphism that arises from com posing the low er and the right arrow m aps our decom posable tensor v w to

$$
\begin{aligned}
& \mathrm{X} \quad \mathrm{X}^{\mathrm{n}} \quad \mathrm{X} \quad \mathrm{X}^{\mathrm{n}} \\
& { }_{j} i=1 \quad j \quad i=1
\end{aligned}
$$

where we have used that the antipode is an involution.
On the other hand, if $\mathrm{g} 2 \mathrm{Hom}(\mathrm{W} \mathrm{V}$; U) is the im age of f under the left arrow, then we have $g(w \quad v)=j_{j}(v) u_{j}$, so that
${ }_{\mathrm{V} ; \mathrm{N} ; \mathrm{U}}^{0}(\mathrm{~g})(\mathrm{v} \quad \mathrm{w})=^{\mathrm{X}^{\mathrm{n}}}\left(\mathrm{b}_{\mathrm{i}}\right.$

1) $: g\left(w \quad b_{i}: v\right)=$
$\mathrm{X} \quad \mathrm{X}^{\mathrm{n}}$
$\mathrm{i}=1$
j i=1
which is exactly the result com ing from the other path. 2
 arrow s by the isom orphism s com ing from the Frobenius reciprocity theorem to get the diagram

which exhibits the relation betw een the natural transform ation and the categorical center construction.
7.4 T he coherence properties of the natural transform ation stated in P roposition 7.1 can also be related to the coherence properties of the natural transform ation c required in the categorical center construction. ${ }^{98}$ If V_{1} and V_{2} are H m odules and U is a D m odule, then the natural transform ation $c m$ akes the triangle

com m utative. If W is another H m odule, we therefore have that the diagram

$$
\begin{aligned}
& \text { Hom }{ }_{\mathrm{H}}\left(\mathrm{~W} ; \mathrm{U} \quad \mathrm{~V}_{2} \quad \mathrm{~V}_{1}\right) \xrightarrow{\mathrm{C}_{2}{ }^{1} \mathrm{~V}_{1} ; \mathrm{U}} \mathbf{-} \mathrm{Hom} \mathrm{H}_{\mathrm{H}}\left(\mathrm{~W} ; \mathrm{V}_{2} \quad \mathrm{~V}_{1} \quad \mathrm{U}\right) \\
& \text { @ } \\
& \text { @ } \\
& \left(\mathrm{C}_{\mathrm{v}_{2} ; \mathrm{U}}^{1} \quad \mathrm{id}_{\mathrm{V}_{1}}{ }^{@}\right)^{@} \quad\left(\mathrm{id}_{\mathrm{V}_{2}} \quad \mathrm{C}_{\mathrm{V}_{1} ; \mathrm{U}}{ }^{1}\right) \\
& \text { @ } \\
& { }^{@} \\
& \mathrm{Hom}_{\mathrm{H}}\left(\mathrm{~W} ; \mathrm{V}_{2} \quad \mathrm{U} \quad \mathrm{~V}_{1}\right)
\end{aligned}
$$

also com m utes, where we have used the circle notation from Paragraph 7.3. To translate this diagram into a diagram for the natural transform ation , we need as an interm ediate step on the left side the diagram

where the rst diagram comm utes because of the naturality of the adjunction and the second diagram com m utes by P roposition 7.3. Sim ilarly, w e need on the right side the diagram

which com m utes for exactly the sam e reasons. U sing this, the com m uting triangle for c above translates into the diagram

where the m ap at the top has been translated by P roposition 7.3 , using the fact that $\left(V_{1} \quad V_{2}\right)=V_{2} \quad V_{1}$ in a way that is com patible w ith the translation.

U sing the adjunction betw een induction and restriction again, we can translate the last triangle further into the triangle

which in tum by the Yoneda lem m a im plies the rst coherence property of as given in Proposition 7.1. N ote that, although all the above diagram s com m ute in any case, this am ounts to a new proof of rst coherence property of only in the case w here V_{1} and V_{2} are nitedim ensional, because otherw ise the com mu tativity of the second triangle above does not logically im ply the com m utativity of the third triangle.
7.5 To analyse the relation betw een and c further, we need som e preparation. So far in this section, we have basically used tw o pairs of ad joint functors: The adjunction betw een induction and restriction and the adjunction betw een tensoring w ith a m odule and tensoring w ith its dual. T hese tw o ad junctions can be related by the follow ing m ap:

Lem ma For an H m odule V and a D m odule W , the m ap
is a D -linear isom orphism.

P roof. First, $r_{V ; N}$ is well-de ned, as we have

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{V} ; \boldsymbol{N}}(\mathrm{xh} \quad \mathrm{H} \quad(\mathrm{~V} \quad \mathrm{w}))=\left(\mathrm{X}_{(1)} \mathrm{h}_{(1)} \quad \mathrm{H} \quad \mathrm{~V}\right) \quad \mathrm{X}_{(2)} \mathrm{h}_{(2)} \text { :W } \\
& =\left(X_{(1)} \quad \text { H } h_{(1)} V\right) \quad X_{(2)} h_{(2)}: \mathbb{w}=r_{V ; N}\left(X_{H} \quad\left(h_{(1)}: v \quad h_{(2)}: \mathbb{w}\right)\right)
\end{aligned}
$$

T he reader should verify at this point that $r_{V} ; N$ is D-linear. The bijectivity w ill follow if we can show that the potential inverse
is also well-de ned. T his holds because

$$
\begin{aligned}
& =x_{(1)} \quad \text { н } \quad\left(h_{(1)}: v \quad h_{(2)} S\left(h_{(3)}\right) S\left(x_{(2)}\right): \mathbb{w}\right)=x_{(1)} \quad \text { н } \quad\left(h: v \quad S\left(x_{(2)}\right): \mathbb{N}\right)
\end{aligned}
$$

establishing the assertion. 2

N ote that, under the correspondence of both Ind (V W) and Ind (V) W to H $\quad V \quad W$ introduced in Paragraph 7.1, the m ap $r_{V ; N}$ becom es

O ur claim that $r_{V ; N}$ relates the two adjunctions is justi ed by the follow ing proposition:

Proposition For an $H \mathrm{~m}$ odule V and $\mathrm{D} m$ odules W and U , the diagram

com m utes.
Proof. Suppose that $f 2 \mathrm{Hom}$ ($\operatorname{Ind}(V)$; $U \quad W$), and consider the im age g 2 Hom ($\mathrm{V} \quad \mathrm{W}$; U) of f under the left path. Since

$$
\left.r_{\mathrm{V} ; \mathrm{W}}\left(\begin{array}{llll}
1 & \mathrm{H} & (\mathrm{~V} & \mathrm{w}
\end{array}\right)\right)=\left(\begin{array}{lll}
1 & \mathrm{H} & \mathrm{~V}
\end{array}\right) \quad \mathrm{w}
$$

 the m ap that arises as the m age of f under the right path. 2
7.6 A s a com parison show s, the coherence condition stated at the beginning of P aragraph 7.4 corresponds to only one of the two conditions that appear in the de nition of a quasisym m etry..${ }^{99}$ From the point of view of the center construction, the second condition enters into the de nition of the tensor product of two ob jects. W e therefore expect that there is another relation betw een and c that can be deduced from this second condition by arguing as in Paragraph 7.4. B efore we state th is relation, we recall the relation betw een braiding and duality:

Lem m a For an H module V and a D module U , the diagram

com m utes.
Proof. Recall ${ }^{100}$ that the top horizontalarrow maps' $2 \mathrm{~V} \quad \mathrm{U}$ to the linear form $u \quad v 7{ }^{\prime}(v)(u)$, and the horizontalarrow at the bottom is de ned sim ilarly. W e therefore have for' $2 \mathrm{~V}, 2 \mathrm{U}, \mathrm{v} 2 \mathrm{~V}$, and u 2 U that

$$
\begin{aligned}
& \left.G_{v} ; U^{\prime} \quad\right)\left(\begin{array}{ll}
v & u
\end{array}\right)=^{X^{n}}\left(\left(b_{i} \quad 1\right): \quad b_{i}:^{\prime}\right)\left(\begin{array}{ll}
v & u
\end{array}\right) \\
& \mathrm{i}=1 \\
& \mathrm{X}^{\mathrm{n}} \\
& =\quad\left(S_{D}\left(b_{i} \quad 1\right): u\right)^{\prime}\left(S\left(b_{i}\right): v\right) \\
& \mathrm{i}=1 \\
& \mathrm{X}^{\mathrm{n}} \\
& =\quad\left(\left(b_{i} \quad 1\right): u\right)^{\prime}\left(b_{i}: v\right)=\left({ }^{\prime} \quad\right)\left(\mathrm{c}_{\mathrm{v} ; \mathrm{U}}(\mathrm{v} \quad \mathrm{u})\right) \\
& \mathrm{i}=1
\end{aligned}
$$

where we have used the notation from Paragraph 2.2 resp. P aragraph 7.4 for the R m atrix. 2

W ith the help of this lem m a, we now derive the follow ing additional relation betw een and c:

P roposition Suppose that V and W are H modules and that U is a $D-$ m odule. W e assum e that V and U are nite-dim ensional. Then the diagram

com m utes.

Proof. By the Yoneda lem ma, it su ces to prove the com mutativity of the diagram after the application of the contravariant functor $H_{o m}$ (; X), where X is another $\mathrm{D} \cdot \mathrm{m}$ odule. A fter this application, the diagram takes the form

U sing the de ning property of the maps ${ }^{0}$ from Paragraph 7.3 together w ith P roposition 7.5, w e see that the com m utativity of this diagram follow s from the com m utativity of the diagram

By tak ing V and U to the right side in this diagram, we get from Proposition 7.3 that our assertion is equivalent to the com m utativity of

where we have used in addition the preceding lem m a for the right verticalarrow . But this is now by the Yoneda lem m a equivalent to the equation

$$
q_{0} ; x \quad=\left(i d_{x} \quad q_{0} ; u\right)\left(\Phi ; x \quad i d_{u}\right)
$$

that is used to de ne the tensor product in the center construction. ${ }^{101} 2$

It is of course also possible to prove this proposition by direct com putation: For ' $2 \mathrm{H}, \mathrm{v} 2 \mathrm{~V}, \mathrm{w} 2 \mathrm{~W}$, and u 2 U , we have on the one hand

$$
\begin{aligned}
& =\left(r_{W}{ }^{1}{ }_{\mathrm{V} ; \mathrm{U}} \quad\left(\mathrm{~V} ; \mathrm{W} \quad i \mathrm{~d}_{\mathrm{U}}\right)\right)\left({ }^{\prime}{ }_{(2)} \quad \mathrm{V} \quad \mathrm{w} \quad\left({ }^{\prime}{ }_{(1)} 1\right):\right. \text { u) } \\
& =\mathrm{X}^{\mathrm{n}} \mathrm{r}_{\mathrm{W}}{ }^{1}{ }_{\mathrm{V} ; \mathrm{U}}\left({ }^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}} \quad \mathrm{w} \quad \mathrm{~b}_{\mathrm{i}}: \mathrm{v} \quad\left({ }^{\prime}{ }_{(1)} \quad 1\right): \mathrm{u}\right) \\
& \text { i=1 } \\
& \mathrm{X}^{\mathrm{n}} \\
& =\quad{ }_{(3)} \mathrm{b}_{\mathrm{i}(2)} \quad \mathrm{w} \quad \mathrm{~b}_{\mathrm{i}}: \mathrm{v} \quad\left(\mathrm{~S}^{1}\left({ }^{\prime}{ }_{(2)} \mathrm{b}_{\mathrm{i}(1)}\right) \quad 1\right)\left({ }^{\prime}{ }_{(1)} \quad 1\right): \mathrm{u} \\
& \mathrm{i}=1 \\
& =X^{X^{n}} \quad b_{i(2)} \quad w \quad b_{i}: v \quad\left(S^{1}\left(b_{i(1)}\right) \quad 1\right): u \\
& \text { i= } 1
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
& =X^{X^{n}} \operatorname{Ind}\left(i d_{W} \quad c_{V}{ }_{i v}^{1}\right)\left({ }^{\prime} b_{i} \quad w \quad u \quad b_{i}: v\right) \\
& \text { i= } 1 \\
& =x^{\prime} b_{i} \quad w \quad S\left(b_{j}\right) b_{i}: v \quad\left(b_{j} \quad 1\right): u \\
& i ; j=1
\end{aligned}
$$

The assertion therefore would follow from the equation
$X_{i=1}^{X^{n}} b_{i(2)} \quad b_{i} \quad S^{1}\left(b_{i(1)}\right)=X_{i ; j=1}^{X^{n}} \quad b_{i} \quad S\left(b_{j}\right) b_{i} \quad b_{j}$

But as we have

$$
\begin{aligned}
X^{n} b_{i(2)}(h) b_{i} S^{1}\left(b_{i(1)}\right)\left(h^{0}\right) & =X_{i=1}^{n} b_{i}\left(S^{1}\left(h^{0}\right) h\right) b_{i} \\
& =S^{1}\left(h^{0}\right) h=X_{i ; j=1}^{n} b_{i}(h) S\left(b_{j}\right) b_{i} b_{j}\left(h^{0}\right)
\end{aligned}
$$

this equation holds.
B esides being substantially sim pler, the proof by direct com putation also show s that the requirem ent that V and U be nite-dim ensionalis unnecessary.W e have nonetheless chosen to give the proof above because it exhibits the relation to the second condition in the de nition of a quasisym m etry. N ote that these conditions also correspond to the equations for ($\quad i d)(R)$ and (id $)(R)$ that appear in the de nition of a quasitriangular H opf algebra stated in Paragraph 2.1.

8 Equivariant Froben ius-Schur indicators

8.1 W e continue to work in the setting of Section 7, which was described in P aragraph 7.1. So, H is a sem isim ple H opf algebra over an algebraically closed eld K of characteristic zero, and $D=D(H)$ is its D rinfel'd double. For a nitedim ensional $H \mathrm{~m}$ odule V and a positive integer m , we can of course form the m-th tensor power $V{ }^{m}$ of V, and the D rinfel'd double D acts on its induced m odule $\operatorname{Ind}\left(V^{m}\right)$. W e denote the corresponding representation by

$$
m: D \quad!\operatorname{End}\left(\operatorname{Ind}\left(V^{m}\right)\right)
$$

 ents, we can now de ne the follow ing quantities:

Denition For integersm;12 Z with $m>1$ and a centralelem ent z 2 Z (D), we de ne the ($\mathrm{m} ; \mathrm{l}$)-th equivariant Frobenius-Schur indicator of V and z as

$$
I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z}):=\operatorname{tr}\left(^{1} \mathrm{~m}(\mathrm{z})\right)
$$

W e extend this de nition to all integers m as follow s : If $m=1$, we de ne the indicator by setting $I_{V}((m ; 1) ; z):=\operatorname{tr}\left(1\left(u_{D}{ }^{l}\right) \quad{ }_{1}(z)\right)$. If $m=0$, we write $z=j^{\prime}{ }_{j} \quad h_{j}$, and de ne for $l>0$

$$
I_{V}((0 ; 1) ; z):=\operatorname{dim}(H)^{X} \quad "\left(h_{j}\right)^{\prime}{ }_{j}((1)) V_{1}((2))
$$

j
where 2 H is the integral that satis es " () = 1. For $l=0$, we de ne $I_{V}((0 ; 0) ; z):=\operatorname{dim}(H) \quad{ }_{j} "\left(h_{j}\right)^{\prime}{ }_{j}(1)$, whereas we de ne

$$
I_{\mathrm{V}}((0 ; 1) ; \mathrm{z}):=I_{\mathrm{V}}\left((0 ; 1) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)
$$

for $l<0$. In the last case where $m<0$, we sim ilarly de ne

$$
I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)
$$

In them ain case wherem >1, it should be noted thatwe have ${ }^{l}=\mathrm{V}_{1 ; \mathrm{V}} \quad(\mathrm{m} \quad$ 1) for $l=1 ; 2 ;::: ; \mathrm{m} \quad 1$. This follows inductively from the coherence property given in Proposition 7.1, because, if we set $\mathrm{U}=\mathrm{V}^{1}$ and $\mathrm{W}=\mathrm{V}\left(\begin{array}{ll}\left(\begin{array}{ll}1 & 1\end{array}\right)\end{array}\right.$
 we interpret the 0 -th tensor power as the trivialm odule $\mathrm{K}=\mathrm{V} \quad 0$, then this form ula also extends to the cases $l=0$ and $l=m$,because ${ }^{0}=i d$ corresponds to $\mathrm{k} ; \mathrm{V} \mathrm{m}$ by Proposition 7.1, and

by Lemma 7.1, which corresponds by Proposition 7.1 to v m ; . From this view point, the case $m=1$ can also be subsum ed under the case $m>1$,because
then coincidesw ith the action of $u_{D}{ }^{1}$. It should also be noted that the form ula $I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=I_{V}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)$ holds for all integers m and 1 by de nition; if $\mathrm{m}=\mathrm{l}=0$, one needs Lem m a.1 in addition to see this.

A n easy consequence of this de nition is the follow ing form ula for the indicators of a tensor power:

Lem ma $I_{V} q((m ; 1) ; z)=I_{V}((q m ; q 1) ; z)$

P roof. It is understood here that $q>0$ is a natural num ber. W e consider the case $m>1$ rst. As just explained, the q-th power of $:=v ; v(q m \quad 1)$ is ${ }^{q}=v_{\text {q ; }}(q \operatorname{m}$ q), so that

$$
I_{\mathrm{V}} \quad \mathrm{q}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\operatorname{tr}(\mathrm{ql} \quad \mathrm{qm}(\mathrm{z}))=\mathrm{I}_{\mathrm{V}}((\mathrm{qm} ; \mathrm{q} \mathrm{l}) ; \mathrm{z})
$$

The form ula also holds in the case $m=1$ by the explanations above, and in the cases $m=0$ and $m<0$ it follow sdirectly from the de nitions. 2

Part of the name given above to the quantities $I_{V}((m ; 1) ; z)$ is explained by the follow ing proposition, which relates them to the higher Frobenius-Schur indicators. ${ }^{102}$

Proposition Suppose that 2 H and 2 H are integrals that are norm alized so that " ()$=(1)=1$, and set $\quad \mathrm{D}:=$. If v denotes the character of the H m odule V, then we have for itsm th Frobenius-Schur indicator $m(\mathrm{v})$ that

$$
m(\mathrm{v})=I_{V}((\mathrm{~m} ; 1) ; \mathrm{D})
$$

for all integers $m>0$.

P roof. W e treat the case $m=1$ separately. W e have seen in Paragraph 2.3 that D is an integral of D; how ever, the norm alization here is di erent from the one in Paragraph6.1. By de nition, we therefore have

$$
I_{V}((1 ; 1) ; D)=\operatorname{tr}\left(1\left(u_{D}^{1}\right) \quad 1(D)\right)=\operatorname{tr}(1(D))
$$

 is the assertion.

In the case $m>1$, note that the m ap

$$
\left(V^{m}\right)^{H} \quad \text { ! Ind }\left(V^{m}\right)^{D} ; \text { w } \text { ! w }
$$

is an isom onphism betw een the spaces of invariants, ${ }^{103}$ because $m(D)$ is a pro jection to Ind ($\left.V^{m}\right)^{D}$ and we have

$$
m\left(D_{m}\right)\left(\prime \quad v_{1} \quad::: \quad v_{m}\right)=\quad:\left({ }^{\prime}(1) v_{1} \quad::: v_{m}\right)
$$

Because is D-linear, it com m utes w ith m (D), and therefore preserves the space Ind $\left(V^{m}\right)^{D}$ of invariants. Sim ilarly, the m ap

$$
: V^{m}!V^{m} ; \mathrm{V}_{1} \quad::: \mathrm{V}_{\mathrm{m}}^{\mathrm{T}} \mathrm{~V}_{2} \quad \mathrm{~V}_{3} \quad::: \mathrm{V}_{\mathrm{m}} \quad \mathrm{~V}_{1}
$$

preserves ${ }^{104}$ the space $\left(V^{m}\right)^{\mathrm{H}}$, and the diagram

is com m utative, since $w e$ have

$$
\begin{aligned}
& \mathrm{i}=1 \\
& =\quad \mathrm{v}_{2} \quad::: \mathrm{v}_{\mathrm{m}} \quad \mathrm{v}_{1}=\quad\left(\mathrm{v}_{1} \quad \mathrm{v}_{2} \quad::: \mathrm{v}_{\mathrm{m}}\right)
\end{aligned}
$$

Since the restriction of to $\operatorname{Ind}\left(V^{m}\right)^{D}$ is therefore con jugate to the restriction of to $\left(V^{m}\right)^{H}$, the traces of these two m aps have to coincide, which yields
 by the rst form ula for the Frobenius-Schur indicators. ${ }^{105} 2$

It should be noted that the nom alization for the integral of the D rinfel'd double in the preceding proposition is di erent from the one used in P aragraph 6.1; we have chosen the norm alization in the proposition to avoid the appearance of another proportionality factor. Furtherm ore, it should be noted that, as a consequence of the preceding argum ent, the restriction of a pow er ${ }^{1}$ to $\operatorname{Ind}\left(V{ }^{m}\right)^{D}$ is also con jugate to the restriction of the corresponding pow er ${ }^{1}$ to $\left(V \mathrm{~V}^{\mathrm{m}}\right)^{\mathrm{H}}$, so that we get

$$
\left.I_{V}((m ; l) ; D)=\operatorname{tr}\left({ }^{l} j_{V} m\right)^{H}\right)
$$

 prim e to m.
8.2 It is possible to express the equivariant Frobenius-Schur indicators in term s of the pairing betw een induced m odules that we introduced in Paragraph 7.2. So, let V be a nitedim ensional H m odule with dualV. A pplying repeatedly the construction described in P aragraph7.2, we get from the natural pairing h; i:V V ! K a pairing betw een $V{ }^{m}$ and $V{ }^{m}$ that is given by

$$
h_{v_{1}} \quad v_{2} \quad::: \quad v_{m} ; m \quad::: \quad 2 \quad 1 i=h v_{1} ;{ }_{1}{i h v_{2}} ;{ }_{2} i \quad m \mathbb{N}_{m} \text { i }
$$

and this pairing leads, after we choose a nonzero integral , to a pairing h; i betw een Ind (V^{m}) and $\operatorname{Ind}\left(\mathrm{V}{ }^{\mathrm{m}}\right)$. W e choose an integral satisfying " ()$=1$. Then, if $\mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{d}} 2 \mathrm{~V}$ is a basis of V w ith dual basis $\mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{d}} 2 \mathrm{~V}$, we get the follow ing form ula for the equivariant Frobenius-Schur indicators:

Proposition For all integers m; 12 Z w ith $\mathrm{m}>1$ and all central elem ents z 2 Z (D), we have

$$
\begin{aligned}
& X^{d} \\
& I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\operatorname{dim}(\mathrm{H}) \quad \mathrm{X}\left({ }^{\mathrm{l}} \quad \mathrm{~m}(\mathrm{z})\right)\left(\mathrm{l} \mathrm{~V}_{\mathrm{i}_{1}} \quad \mathrm{~V}_{\mathrm{i}_{2}} \quad::: \quad \mathrm{V}_{\mathrm{i}_{\mathrm{m}}}\right) \text {; } \\
& i_{1} ;:: i_{i m}=1 \\
& \text { " } \mathrm{v}_{\mathrm{i}_{\mathrm{n}}} \quad::: \mathrm{v}_{\mathrm{i}_{2}} \quad \mathrm{v}_{\mathrm{i}_{1}} \mathrm{i}
\end{aligned}
$$

Proof. If $z={ }^{P}{ }_{j}{ }_{j} \quad h_{j}$, we have because z is central that

$$
m(z)\left({ }^{\prime} \quad v_{1} \quad v_{2} \quad::: \quad v_{m}\right)={ }^{X} \quad \prime_{j} \quad h_{j(1)}: V_{1} \quad::: \quad h_{j(m)}: V_{m}
$$

j
and $\quad\left({ }^{\prime} \quad \mathrm{V}_{1} \quad \mathrm{~V}_{2} \quad::: \mathrm{V}_{\mathrm{m}}\right)=\mathrm{P}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{b}_{\mathrm{i}} \quad \mathrm{V}_{2} \quad::: \mathrm{V}_{\mathrm{m}} \quad \mathrm{b}_{\mathrm{i}}: \mathrm{V}_{1}$. This im plies that, under the isom onphism End ($\mathrm{H} \quad \mathrm{V} \mathrm{m}^{\mathrm{m}}$) = End (H) End (V^{m}), ${ }^{\mathrm{l}} \mathrm{m}(\mathrm{z})$ decom poses into a sum of tensor products of right m ultiplications and endom orphism sof $V{ }^{m}$. But the trace of the right m ultiplication by ${ }^{\prime}$ on H is given by dim (H)' (), and the trace of an endom onphism of $V{ }^{m}$ can be found by dualbases. Since $S()=$, this gives the assertion. 2

A s a consequence, we can give a form ula for the equivariant indicators of the dualm odule:

C orollary For allm ; l2 Z and all z 2 Z (D), we have

$$
I_{V} \quad((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)
$$

P roof. In the case where $m>1$, we can argue as in the proof of the preceding proposition to obtain the form ula

$$
\begin{aligned}
& i_{1} ;:::_{i n}
\end{aligned}
$$

B ut by P roposition 7.2 and the discussion after Lem m a 7.2, the right-hand side of this form ula is equal to the right-hand side of the form ula in the preceding proposition, establishing the case where $m>1$. In the case $m=1$ the assertion follow s directly from the de nition, since u_{D} is invariant under the antipode, and the case $m<0$ reduces to the cases already treated.

N ow suppose that $\mathrm{m}=0$. For $\mathrm{l}>0$, we have

$$
\begin{aligned}
& x^{j} \\
& =\operatorname{dim}(H) \quad "\left(h_{j}\right)^{\prime}{ }_{j}((1)) \vee{ }_{1}\left(S\left(\mathrm{~S}^{2}\right)\right)
\end{aligned}
$$

Because is cocom m utative and invariant under the antipode, ${ }^{107}$ we can rew rite this as

$$
I_{V}((0 ; 1) ; z)=\operatorname{dim}(H)^{X} \quad "\left(h_{j}\right)^{\prime}(S(\quad(1)))_{v} 1((2))
$$

But it follow s from Lemma 6.1 that $S_{D}(z)={ }^{P}{ }_{j} S\left({ }^{\prime}{ }_{j}\right) \quad S\left(h_{j}\right)$, so that the last expression is $I_{V}\left((0 ; 1) ; S_{D}(z)\right)$. T he case $l=0$ can be established by a very sim ilar reasoning, and the case $1<0$ reduces as above to the cases already treated. 2

It should be noted that, by com parison with Lem m a 8.1 and in view of our de nitions, this corollary show s that the dual space behaves w ith respect to the indicators like a 1-st tensor pow er of V.
8.3 T he other part of the nam e of the quantities $I_{V}((m ; l) ; z)$ is explained by the follow ing equivariance theorem :

Theorem For allg 2 SL (2;Z), we have $I_{V}((m ; l) g ; z)=I_{V}((m ; l) ; g: z)$.
P roof. (1) It su ces to check this on the generators given in Paragraph 1.1, and begin w ith the generator t. A s th is generator acts via T, the assertion then is that $I_{V}((m ; m+l) ; z)=I_{V}\left((m ; l) ; u_{D}{ }^{1} z\right)$. For $m>1$, this follows from the fact that ${ }^{m}=m\left(u_{D}{ }^{1}\right)$ as endom onphism s of $H \quad V{ }^{m}$, a fact that w as already discussed after D e nition 8.1. The case $m=1$ follow s directly from the de nition, and form <0 we have

$$
\begin{aligned}
I_{V}((\mathrm{~m} ; \mathrm{m}+\mathrm{l}) ; \mathrm{z}) & =\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{m} \quad \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)=\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{u}_{\mathrm{D}}{ }^{1} \mathrm{~S}_{\mathrm{D}}(\mathrm{z})\right) \\
& =\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{D}}{ }^{1} \mathrm{z}\right)\right)=\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{u}_{\mathrm{D}}{ }^{1} \mathrm{z}\right)
\end{aligned}
$$

In the case $m=0$ and $l_{P} 0$, write $z=P_{j}{ }^{\prime}{ }_{j} \quad h_{j}$. Because u_{D} is central, we then have $u_{D}{ }^{1} z=\stackrel{P}{\mathrm{P}} \underset{\mathrm{i}=1}{\mathrm{P}} \quad{ }_{j}{ }^{\prime}{ }_{j} b_{i} \quad b_{i} h_{j}$ and therefore

$$
\begin{aligned}
& I_{V}\left((0 ; 1) ; u_{D}{ }^{1} z\right)=\operatorname{dim}(H)^{X^{n} X} \quad "\left(b_{i} h_{j}\right)\left({ }_{j}{ }_{j} b_{i}\right)(\quad(1)) V_{i} \quad(\quad(2)) \\
& \stackrel{i=1}{X} \quad j
\end{aligned}
$$

The case $m=0$ and $l=0$ can be established by a very sim ilar reasoning, and the case $m=0$ and $l<0$ reduces as above to the cases already treated.
(2) As the generator r^{1} acts via R^{1}, the assertion in this case says that $I_{V}((m+l ; l) ; z)=I_{V}\left((m ; 1) ; R^{1}(z)\right)$. It follows from Proposition 6.2 and the fact, explained in Paragraph 5.1, that and agree on the character ring, that we have $R^{1}(z)=R^{1}(z)=e^{1}\left(z_{(2)}\right) z_{(1)}$ for every central elem ent z.

The assertion therefore can also be written in the form $I_{V}((m+1 ; 1) ; R(z))=$ $I_{V}((m ; l) ; z)$, which we now establish in the case $m>0$ and $l>0$. For this, we write $l=p m+q$, where $0 \quad q<m$. If $z=j^{\prime}{ }_{j} h_{j}$, we have

```
\(\left({ }_{l+m}(\mathrm{R}(\mathrm{z})) \quad{ }^{\mathrm{l}}\right)\left(\mathrm{l}^{\prime} \quad \mathrm{V}_{1} \quad::: \quad \mathrm{V}_{\mathrm{l}+\mathrm{m}}\right)=\)
    \(X^{\mathrm{n}} \quad \mathrm{X}\)
                \({ }^{\prime}{ }_{j(1)}\left(\mathrm{h}_{\mathrm{j}(2)}\right)^{\prime} \mathrm{b}_{\mathrm{i}_{1}} \quad \mathrm{i}_{1}{ }^{\prime} \mathrm{g}_{(2)}\)
```

$\mathrm{i}_{1} ;::: \mathrm{i}_{1}=1$ j

$$
h_{j(1)}:\left(v_{l+1} \quad::: \quad v_{l+m} \quad b_{i_{1}}: v_{1} \quad::: \quad b_{i_{1}}: v_{1}\right)
$$

By the dual basis form ulas stated in the introduction, th is m eans that we have

$$
\left(l_{l+m}(R(z)) \quad{ }^{l}\right)\left(l^{\prime} \quad x \quad w\right)=X_{i=1}^{X^{n}} \quad X^{\prime} \quad \prime_{j(1)}\left(h_{j(2)}\right)^{\prime} b_{i}^{\prime \prime}{ }_{j(2)} \quad h_{j(1)}:\left(w \quad b_{i} x\right)
$$

for all $\mathrm{x} 2 \mathrm{~V}^{\mathrm{l}}$ and $\mathrm{w} 2 \mathrm{~V} \mathrm{~m}^{\mathrm{m}}$. This is a sum of tensor products of right m ultiplications on H and endom onphism sof $\mathrm{V}(1+\mathrm{m})$. If 2 H is an integral satisfy ing " () = 1, the right m ultiplication by ' 2 H has the trace $\mathrm{n}^{\prime}(\mathrm{)}$, so that the equivariant Frobenius-Schur indicator $I_{V}((m+1 ; 1) ; R(z))$, which is the trace of this $m a p$, is n-tim es the trace of the endom onphism f of $V(1+m)$ given by

$$
f\left(\begin{array}{ll}
x & w
\end{array}\right)=X_{i=1}^{X^{n}} \quad X_{j} \quad{ }_{j(1)}\left(h_{j(2)}\right)\left(b_{i}^{\prime}{ }_{j(2)}\right)() h_{j(1)}:\left(w \quad b_{i} x\right)
$$

for $\mathrm{x} 2 \mathrm{~V}^{\mathrm{l}}$ and $\mathrm{w} 2 \mathrm{~V}{ }^{\mathrm{m}}$, which can be rew ritten in the form

$$
\begin{aligned}
& f(x \quad w)={ }^{X} \quad{ }^{\mathrm{X}}{ }_{\mathrm{j}(1)}\left(\mathrm{h}_{\mathrm{j}(3)}\right)^{\prime}{ }_{j(2)}(\quad(2))\left(\mathrm{h}_{\mathrm{j}(1)}: \mathbb{W} \quad \mathrm{h}_{\mathrm{j}(2)} \quad \text { (1) } \mathrm{X}\right) \\
& x^{j} \\
& =\quad{ }^{j(1)}\left(\mathrm{h}_{\mathrm{j}(3)}\right)^{\prime}{ }_{\mathrm{j}(2)}\left(\mathrm{S}\left(\mathrm{~h}_{\mathrm{j}(2)}\right) \quad \text { (2) }\right)\left(\mathrm{h}_{\mathrm{j}(1)}: \mathrm{w} \quad \text { (1) } \mathrm{X}\right) \\
& x^{j} \\
& =\quad{ }^{\prime}{ }_{j}\left({ }_{(2)}\right)\left(\mathrm{h}_{\mathrm{j}}: \mathbb{W} \quad \text { (1) } \mathrm{X}\right) \\
& \text { j }
\end{aligned}
$$

(3) A s we have discussed in P aragraph 8.1, we have on the right-hand side of the assertion that

$$
m(z) \quad{ }^{l}=m(z) \quad p m \quad q=m\left(z u_{D}^{p}\right) \quad q
$$

so that

$$
\begin{aligned}
& \left(\mathrm{m}(\mathrm{z}){ }^{\mathrm{l}}\right)\left({ }^{\prime} \quad \mathrm{V}_{1} \quad::: \quad \mathrm{V}_{\mathrm{m}}\right)= \\
& X^{n} \quad X^{n} \quad X \quad, b_{i_{1}} \quad{ }_{i_{q}} \log _{\rho_{1}} \quad j_{p}{ }^{\prime} \mathrm{O}_{\mathrm{j}}
\end{aligned}
$$

$\mathrm{i}_{1} ;::: \mathrm{i}_{\mathrm{q}}=1 \mathrm{j}_{1} ;::: \mathrm{j}_{\mathrm{p}}=1 \mathrm{j}$

$$
h_{j} \mathrm{~b}_{\mathrm{j}_{\mathrm{p}}} \quad \mathrm{j}_{1}: l\left(v_{\mathrm{q}+1} \quad::: \quad \mathrm{v}_{\mathrm{m}} \quad \mathrm{~b}_{\mathrm{i}_{1}}: \mathrm{v}_{1} \quad::: \quad \mathrm{b}_{\mathrm{i}_{\mathrm{q}}}: \mathrm{v}_{\mathrm{q}}\right)
$$

U sing the dual basis form ulas as before, we can write this as

$$
\begin{aligned}
& \left(m(z) \quad{ }^{1}\right)\left(\begin{array}{lll}
\prime & y & t
\end{array}\right)= \\
& X^{\mathrm{n}} \quad \mathrm{X}^{\mathrm{n}} \quad \mathrm{X} \\
& \left.{ }^{\prime} b_{i} b_{j_{1}} \quad j_{p}{ }^{\prime} b_{j} \quad h_{j} b_{j_{p}} \quad j_{1}: 1(t) \quad b_{i} \cdot y\right) \\
& i=1 \quad j_{1} ;::: ; j_{p}=1 \quad j
\end{aligned}
$$

fory $2 \mathrm{~V}{ }^{q}$ and $\mathrm{t} 2 \mathrm{~V}\left(\mathrm{~m} \mathrm{q}^{q)}\right.$. This is again a sum of tensor products of right m ultiplications on H and endom orphism s of $V{ }^{m}$, so that we see as before that the equivariant Frobenius-Schur indicator $I_{V}((m ; l) ; z)$, which is the trace of this $m a p$, is $n-t i m$ es the trace of the endom onphism g of $V{ }^{m}$ given by

$$
g\left(\begin{array}{ll}
y & t
\end{array}\right)=\begin{aligned}
& X^{n} \quad X^{n} \quad X \\
& i=1 j_{1}::::: j_{p}=1
\end{aligned} \quad j \quad\left(b_{i} b_{j_{1}} \quad j_{p} \eta_{j}\right)\left(\begin{array}{ll}
h_{j} b_{j_{p}}
\end{array} \quad j_{j_{1}}:(t) \quad b_{i} \cdot y\right)
$$

fory $2 \mathrm{~V} \quad \mathrm{q}$ and $\mathrm{t} 2 \mathrm{~V}\left(\mathrm{~m}^{\mathrm{q})}\right.$, which can be rew ritten in the form

$$
g\left(\begin{array}{ll}
y & t
\end{array}\right)=X_{j}^{X},_{j}((p+2)) h_{j}(p+1) \quad \text { (2) }:(t \quad \text { (1) }: y)
$$

(4) The assertion therefore now is that $\mathrm{tr}_{\mathrm{V}}(\mathrm{m}+1)(\mathrm{f})=\operatorname{tr} \mathrm{r}_{\mathrm{V}} \mathrm{m}$ (g$)$. This will hold if $w e$ can show that g is the partial trace of f over the last 1 tensor factors. Let us explain in greater detailw hat this m eans. C hoose a basis $\mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{d}}$ of V w ith dualbasis $\mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{d}}$ of $\mathrm{V} . \mathrm{T}$ he assertion then is that
X^{d}

$$
\begin{aligned}
& \mathrm{i}_{1} ;::: \mathrm{i}_{1}=1
\end{aligned}
$$

for all $\mathrm{w} 2 \mathrm{~V} \mathrm{~m}^{\mathrm{m}}$. To establish this, it is better to use a basis $\mathrm{w}_{1} ;::: ; \mathrm{W} \mathrm{dm}$ of $\mathrm{W}:=\mathrm{V} \mathrm{m}^{\mathrm{m}}$ with dualbasis $\mathrm{w}_{1} ;::: ; \mathrm{w}_{\mathrm{dm}}$ of W as well as a basis $\mathrm{y}_{1} ;::: ; \mathrm{Y}_{\mathrm{dq}}$ of $Y:=V{ }^{q}{ }_{\mathrm{w}}$ ith dualbasis $\mathrm{y}_{1} ;::: ; \mathrm{y}_{\mathrm{dq}}$ of Y , and also to decom pose w in the form $\mathrm{w}=\mathrm{y}$ t fory 2 V a and t 2 V (m q). The assertion then becom es

$$
\begin{aligned}
& X^{\mathrm{dm}} \quad \mathrm{X}^{\mathrm{dq}}
\end{aligned}
$$

$$
\begin{aligned}
& j_{1} ;::: j_{p}=1 i=1
\end{aligned}
$$

To see this, we start at the right-hand side:

$$
\begin{aligned}
& x^{m} \quad x^{d q} \\
& \left(i d_{V} \quad m \quad y_{i} \quad w_{j_{1}} \quad::: \quad w_{j_{p}}\right) f\left(\begin{array}{llllll}
\mathrm{y} & \mathrm{t} & \mathrm{Y}_{\mathrm{i}} & \mathrm{w}_{\mathrm{j}_{1}} \quad::: & \mathrm{w}_{\mathrm{j}_{\mathrm{p}}}
\end{array}\right)= \\
& \mathrm{j}_{1} ;::: \mathrm{j}_{\mathrm{p}}=1 \mathrm{i}=1 \\
& \mathrm{X}^{\mathrm{m}} \quad \mathrm{X}^{\mathrm{dq}} \mathrm{X} \\
& { }^{\prime}{ }_{j}((p+3))\left(i d_{V} m \quad y_{i} \quad w_{j_{1}} \quad::: \quad w_{j_{p}}\right) \\
& j_{1} ;::: ; j_{p}=1 i=1 \quad j \\
& \left(\mathrm{~h}_{\mathrm{j}}: \mathrm{W}_{\mathrm{j}_{\mathrm{p}}} \quad \text { (1) }: \mathrm{Y} \quad \text { (2) }: \mathrm{t} \quad \text { (3) }: \mathrm{Y}_{\mathrm{i}} \quad \text { (4) }: \mathbb{W}_{\mathrm{j}_{1}} \quad::: \quad(\mathrm{p}+2): \mathbb{W}_{\mathrm{j}_{\mathrm{p}}} \quad 1\right)
\end{aligned}
$$

In this expression, we can carry out the summation over i, in which case it becom es

$$
\begin{aligned}
& \text { X } x^{m} \\
& { }^{\prime}{ }_{j}(\quad(p+3))\left(i d_{V} \quad m \quad W_{j_{1}} \quad::: \quad W_{j_{p}}\right) \\
& j_{1} ;::: ; j_{p}=1 \quad j \\
& \left(\mathrm{~h}_{\mathrm{j}}: \mathrm{w}_{\mathrm{j}_{\mathrm{p}}} \quad \text { (2) }: \mathrm{t} \quad \text { (3) (1) }: \mathrm{Y} \quad \text { (4) }: \mathbb{W}_{j_{1}} \quad::: \quad(\mathrm{p}+2): \mathbb{W}_{j_{p} \quad 1}\right)
\end{aligned}
$$

N ext, we carry out the sum m ation over j_{p} to get

$$
\begin{aligned}
& X^{\text {dm }} \quad X \\
& { }^{\prime}{ }_{j}((p+3))\left(i d_{V} m \quad w_{j_{1}} \quad::: \quad W_{j_{p}}\right) \\
& j_{1}:::: ; j_{p} \quad 1=1 \quad j
\end{aligned}
$$

> (2) : t
> 3) (1) $: Y$
> 4) ${ }^{W} j_{1} \quad::$

C ontinuing to carry out the sum m ations up to j_{2}, this becom es

${ }^{\prime}{ }_{j}((p+3))\left(i d_{V} m \quad W_{j_{1}}\right)\left(h_{j}(p+2)\right.$
(4)) $\mathrm{W}_{\mathrm{j}_{1}}$
(2): t
(3) (1):y)
$j_{1}=1 \quad j$
W e can even carry out the sum m ation over j_{1} to get
X

$$
r_{j}((p+3)) h_{j}(\quad(p+2) \quad \text { (4) }):(\text { (2) }: t \quad \text { (3) (1) }: y)
$$

j

$$
={ }_{j}^{X}{ }_{j}{ }_{j}(p(p+2)) h_{j}(p(p+1)
$$

It should be pointed out that this argum ent needs to be slightly modi ed in the case $p=0$, where the sum m ation over $j_{1} ;::: ; j_{p}$ is empty. In fact, this im plies that the com putation sim pli es substantially in this case. Furtherm ore, the reader is urged to check that this argum ent also covers the case $m=1$.
(5) N ext, we establish the form ula $I_{V}((m+l ; l) ; z)=I_{V}\left((m ; l) ; R{ }^{1}(z)\right)$ in the case $m>0$ and $l=0$, in which it asserts that $\operatorname{tr}(m(z))=\operatorname{tr}\left(m\left(R^{1}(z)\right)\right)$. For this, we show that z and $R{ }^{1}(z)$ have the sam e trace on every induced module, which corresponds in fact to the case $m=1$. N ow suppose that $z=$
$j^{\prime}{ }_{j} \quad h_{j} 2 Z(D)$, and that v is the character of V. W e can write $l_{1}(z)$ as before as a tensor product of right m ultiplications on H and an endom orphism of V and get that $\operatorname{tr}\left({ }_{1}(z)\right)=n{ }_{j}{ }^{\prime}{ }_{\mathrm{j}}(\mathrm{l}) \mathrm{v}\left(\mathrm{h}_{\mathrm{j}}\right)$. Since

$$
R^{1}(z)=e^{1}\left(z_{(1)}\right) z_{(2)}=X_{j} \quad{ }_{j(2)}\left(S\left(h_{j(1)}\right)\right)^{\prime}{ }_{j(1)} \quad h_{j(2)}
$$

this im plies also that

$$
\begin{aligned}
& \operatorname{tr}\left({ }_{1}\left(R^{1}(z)\right)\right)=n^{X} \quad{ }_{j(2)}\left(S\left(h_{j(1)}\right)\right)^{\prime}{ }_{j(1)}() v^{\left(h_{j(2)}\right)} \\
& =n^{X} \quad y_{j}\left(S\left(h_{j(1)}\right)\right) v\left(h_{j(2)}\right)=n^{X} \quad \quad_{j}() v\left(h_{j}\right)=\operatorname{tr}\left(l_{1}(z)\right) \\
& \text { j } \\
& \text { j }
\end{aligned}
$$

as asserted.
(6) To establish the assertion $I_{V}((m+1 ; 1) ; z)=I_{V}\left((m ; 1) ; R^{1}(z)\right)$ in the case $m=0$ and $l>0$, we argue sim ilarly: W e have

$$
\begin{aligned}
& x^{j} \\
& =n \quad{ }^{\prime}{ }_{j}\left({ }_{(1)} S\left(h_{j}\right)\right)_{V}{ }^{1}\left({ }_{(2)}\right) \\
& \text { j }
\end{aligned}
$$

on the one hand and

$$
\begin{aligned}
& I_{V}((1 ; 1) ; z)=\operatorname{tr}\left(I_{1}\left(u_{D}^{1} z\right)\right)=n^{X^{n} X} \quad\left({ }_{j} b_{i}\right)() \quad V_{1}\left(b_{i} h_{j}\right) \\
& =n^{X} \quad, \quad{ }_{j}((1))_{V}^{i=1} \quad{ }^{i}\left((2)_{j}\right) \\
& \text { j }
\end{aligned}
$$

on the other hand. B oth expressions are equalby the basic C asim ir properties of the integral..$^{108} \mathrm{~A}$ very sim ilar reasoning establishes the form ula in the casem $=$ 0 and $l=0$, and for $m=0$ and $l<0$ we have

$$
\begin{aligned}
I_{V}((1 ; 1) ; z) & =I_{V}\left((l l) ; S_{D}(z)\right) \\
& =I_{V}\left((0 ; \quad 1) ; \mathrm{R}^{1}\left(S_{D}(z)\right)\right)=I_{V}\left((0 ; 1) ; \mathrm{R}^{1}(z)\right)
\end{aligned}
$$

because R and S_{D} commute.
(7) W e have now established that $I_{V}((m+1 ; 1) ; z)=I_{V}\left((m ; 1) ; R^{1}(z)\right)$ whenever m 0 and $l \quad 0$. Instead of establishing the rem aining cases, we use this fact to prove that $I_{V}((1 ; m) ; S(z))=I_{V}((m ; 1) ; z)$ ifm >0 and $1 \quad 0$. For this, we write $l=a m+b, w h e r e a \quad 0$ and $0 \quad b<m$, and argue by induction on a. T he induction beginning is the case $a=0$, in which we have $l=b<m . W e$ have seen in P aragraph 1.1 that $s=t{ }^{1} r{ }^{1} t{ }^{1}$, so that by the rst step we get

$$
\begin{aligned}
I_{V}((1 ; m) ; S(z)) & =I_{V}\left((1 ; m) ;\left(\begin{array}{llll}
1 & R^{1} & \left.\left.T^{1}\right)(z)\right) \\
& =I_{V}((1 ; \mathrm{m} & 1) ;\left(\mathrm{R}^{1}\right. & \left.\left.\mathrm{T}^{1}\right)(z)\right)
\end{array}\right.\right.
\end{aligned}
$$

Because m l> 0, we can apply the identity established above to rew rite this further as

$$
I_{V}((1 ; m) ; S(z))=I_{V}\left((m ; m \quad l) ; T \quad{ }^{1}(z)\right)=I_{V}((m ; 1) ; z)
$$

where we have applied the nst step again.
For the induction step, note that it follow s from the discussion in P aragraph 1.1 that rs $=$ st. $B y$ the induction assum ption, we have

$$
I_{V}(((\mathrm{a} \quad 1) \mathrm{m}+\mathrm{b} ; \mathrm{m}) ; \mathrm{S}(\mathrm{z}))=I_{V}\left(\left(\mathrm{~m} ; \quad\left(\begin{array}{lll}
\mathrm{a} & 1) \mathrm{m} & \mathrm{~b}
\end{array}\right) ; \mathrm{z}\right)\right.
$$

which m eans that $I_{V}((a m+b ; m) ; R(S(z)))=I_{V}((m ; a m \quad b) ; T(z)) . B y$ the preceding com m utation relation, this asserts that

$$
I_{V}((l ; m) ; S(T(z)))=I_{V}((m ; l) ; T(z))
$$

so that the assertion now follow s by substituting $T^{1}(z)$ for z.
(8) Inspection of the preceding argum ent show s that it also proves the form ula $I_{V}((1 ; m) ; S(z))=I_{V}((m ; 1) ; z)$ in the case $m=1=0 . T o$ establish it ifm 0 and $l>0$, note that it asserts in this case that

$$
I_{V}((l ; m) ; S(z))=I_{V}\left((\mathrm{~m} ; \mathrm{l}) ; S_{D}(\mathrm{z})\right)
$$

Since $S_{D}(z)=S^{2}(z)$, this is equivalent to $I_{V}((1 ; m) ; z)=I_{V}((\mathrm{~m} ; \mathrm{l}) ; S(\mathrm{z})), \mathrm{a}$ fact that we have just established.
The proof that $I_{V}((1 ; m) ; S(z))=I_{V}((m ; l) ; z)$ if $m \quad 0$ and $l<0$ is sim ilar: T he assertion then is that

$$
I_{V}\left((\quad l ; m) ; S_{D}(S(z))\right)=I_{V}((m ; l) ; z)
$$

If we substitute $S(z)$ for z, this becom es $I_{V}((\quad l ; m) ; z)=I_{V}((m ; 1) ; S(z))$, which we have obtained already.

Finally, if $m<0$ and $l 0$, the assertion is that

$$
I_{V}\left((\mathrm{l} ; \mathrm{m}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{~S}(\mathrm{z}))\right)=I_{V}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)
$$

which upon substituting $S_{D}(z)$ for z also reduces to the established case. 2
8.4 In our situation, the D rinfel'd elem ent u_{D} has nite order. ${ }^{109}$ This order is called the exponent of H ; wedenote it by N . It is known that N dividesdim (H$)^{3}$; how ever, the original con jecture of Y . K ashina, nam ely that N divides dim (H), is still open. ${ }^{110}$
W e now consider the cyclotom ic eld $Q_{N} \quad K$ that arises by adjoining to the prime eld Q K all N th roots of unity that are contained in $K . W e$ denote by $Z_{Q_{N}}(D)$ the span of the centrally prim itive idem potents $e_{1} ;::: ; e_{k}$ introduced in Paragraph 5.1 over the sub eld Q_{N} of K. This space has the follow ing property:

Lem m a $Z_{Q_{N}}(D)$ is invariant under the action of the m odular group.
Proof. It su ces to show that it is invariant under T and S. The fact that u_{D}
 graph 5.2 that the coe cients u_{i} are N th roots of unity. Since T is the m ultiplication by $u_{D}{ }^{1}$, we see that $Z_{Q_{N}}(D)$ is invariant under T.
To see that $Z_{Q_{N}}(D)$ is invariant under S, recall ${ }^{111}$ that the entries $S_{i j}$ of the Verlinde m atrix are contained in Q_{N}. Therefore, the assertion follow from the form ula $S\left(e_{j}\right)=\frac{1}{\operatorname{dim}(H)} \quad{ }_{i=1}^{k} \frac{n_{j}}{n_{i}} S_{j} e_{i}$ established, taking Paragraph 6.1 into account, in C orollary 5.2. 2

This lem m a has the follow ing consequence for the indicators:

Proposition For z $2 Z_{Q_{\mathrm{N}}}(\mathrm{D})$, we have $I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z}) 2 \mathrm{Q}_{\mathrm{N}}$.
Proof. In the case $(m ; 1)=(0 ; 0)$, it follow s easily from the de nition that $I_{V}((m ; l) ; z)$ is the trace of the action of z on the induced m odule Ind (K) of the trivialmodule, which is in Q_{N} if $z 2 Z_{Q_{N}}(D)$. If (m;l) $(0 ; 0)$, we set $t:=\operatorname{god}(\mathrm{m} ; 1)>0$. By C orollary 1.2 , we can nd $g 2$ such that $(m ; l)=(\mathrm{t} ; 0) \mathrm{g}$. By T heorem 8.3, we then have

$$
I_{V}((\mathrm{~m} ; 1) ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}((\mathrm{t} ; 0) ; \mathrm{g}: \mathrm{z})=\operatorname{tr}(\mathrm{t}(\mathrm{~g}: \mathrm{z}))
$$

which is in Q_{N} since $g: z_{2} Z_{Q_{N}}$ (D) by the preceding lem ma. 2

W e now consider the principal congruence subgroup (N) corresponding to the exponent N. The follow ing orbit theorem asserts that the indicator depends only on the (N)-orbit of the lattice point:

Theorem Suppose that two lattice points $(\mathrm{m} ; 1)$ and $\left(\mathrm{m}^{0} ; 1^{0}\right)$ are in the sam e (N)-onbit. Then we have $I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left(\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right) ; \mathrm{z}\right)$ for every H m odule V and every z 2 Z (D).

Proof. (1) We x an H m odule V , and introduce an equivalence relation on the lattice Z^{2} by de ning $(m ; 1) \quad\left(m^{0} ; l^{0}\right)$ if and only if

$$
I_{V}((\mathrm{~m} ; 1) ; \mathrm{z})=I_{V}\left(\left(\mathrm{~m}^{0} ; \mathrm{l}^{0}\right) ; \mathrm{z}\right)
$$

for all z 2 Z (D). Then is a congruence relation, since, for g 2 , (m;l) $\left(\mathrm{m}^{0} ; 1^{0}\right)$ im plies in particular that $I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{g}: \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left(\left(\mathrm{m}^{0} ; 1^{0}\right) ; \mathrm{g}: \mathrm{z}\right)$, which yields $I_{V}((\mathrm{~m} ; \mathrm{l}) \mathrm{g} ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left(\left(\mathrm{m}^{0} ; \mathrm{l}^{0}\right) \mathrm{g} ; \mathrm{z}\right)$ by T heorem [8.3, so that $(\mathrm{m} ; \mathrm{l}) \mathrm{g} \quad\left(\mathrm{m}^{0} ; 1^{0}\right) \mathrm{g} . \mathrm{N}$ ote that there is a slight adaption necessary: In Section 1, we have considered the left action of the m odular group on the lattice points, considered as colum ns, whereas we consider here the transposed right action, where the lattice points are considered as row s.
(2) W e now want to check that satis es the two de ning properties of the congruence relation listed in Paragraph 1.3. A though the transpose of t^{N} is r^{N}, we can also work w ith t^{N} in the transposed situation, since t^{N} and r^{N} are conjugate and the inverse sign does not m atter. For the rst property, we therefore have to check that $(\mathrm{m} ; 1)(\mathrm{m} ; \mathrm{l}) \mathrm{t}^{\mathbb{N}}$. But this is im m ediate, since we have $T^{N}(z)=u_{D}{ }^{N} z=z$ and therefore

$$
I_{V}\left((\mathrm{~m} ; \mathrm{l}) \mathrm{t}^{\mathrm{N}} ; \mathrm{z}\right)=\mathrm{I}_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{l}) ; \mathrm{T}^{\mathrm{N}}(\mathrm{z})\right)=\mathrm{I}_{\mathrm{V}}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})
$$

by T heorem 8.3.
(3) For the second property, we are given $q 2 \mathrm{Z}$ that satis es $q 1(\mathrm{mod} N)$ and $t:=\operatorname{god}(m ; 1)=\operatorname{god}(m ; q 1)$, and have to establish that $(m ; l)(m ; q l)$, in other words, that

$$
I_{V}((\mathrm{~m} ; 1) ; z)=I_{V}((m ; q l) ; z)
$$

for all z 2 Z (D). W e treat the case $\mathrm{m}>0$ rst, where we also have $\mathrm{t}>0$. It is su cient to establish this in the case where $z=e_{i}$ is a centrally prim itive idem potent.
If we write $m=t m{ }^{0}, l=t l^{0}$, we have that q is relatively prim e to m^{0}. C onsider the cyclotom ic eld $Q_{\mathrm{Nm}}{ }^{\circ} \quad \mathrm{K}$. Because q is relatively prim e to $\mathrm{Nm}{ }^{0}$, there is a unique autom onphism ${ }_{q} 2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{Nm}}{ }^{0}=\mathrm{Q}\right)$ w ith the property that

$$
q()=q
$$

for every $\mathrm{N} \mathrm{m}^{0}$-th root of unity . Because $\mathrm{q} \quad 1(\mathrm{mod} N)$, we have ${ }_{\mathrm{q}}(\mathrm{r})=$ if is an N th root of unity, and therefore even q $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{Nm}}{ }_{0}=\mathrm{Q}_{\mathrm{N}}\right)$. By the preceding proposition, this m eans that ${ }_{q}\left(I_{V}((m ; l) ; z)\right)=I_{V}((m ; l) ; z) . O n$ the other hand, we have by de nition that $\left.I_{V}((m ; 1) ; z)=\operatorname{tr}^{(1} m(z)\right)$, where $=\quad v ; v(m \quad 1)$, properly understood in the case $m=1 . \mathrm{N}$ ow we have

$$
\left({ }^{1}\right)^{m^{0}}=t 1^{0} m^{0}=\left({ }^{m}\right)^{1^{0}}=m\left(u_{D}^{1}\right)^{1^{0}}
$$

so that $\left({ }^{1}\right)^{m^{0}}{ }^{0}=i d_{\text {Ind }\left(V{ }^{m}\right)}$. Since $z=e_{i}, m(z)$ is the projection to the isotypical com ponent of V_{i} in $\operatorname{Ind}\left(V{ }^{m}\right)$, so that ${ }^{l} \quad m(z)$ coincides w ith ${ }^{l}$ on this isotypical com ponent and vanishes on the other isotypical com ponents. In particular, the eigenvalues of ${ }^{l} \mathrm{~m}^{1}(\mathrm{z})$ are $\mathrm{N} \mathrm{m}^{0}$-th roots of unity, and the eigenvalues of its q-th power ${ }^{l q} m(z)$ are the q-th powers of its eigenvalues, so that for the trace we get the form ula

$$
I_{V}((m ; l q) ; z)=\operatorname{tr}\left({ }^{\operatorname{lq}} \quad m(z)\right)=q\left(\operatorname{tr}\left({ }^{l} m(z)\right)\right)=q\left(I_{V}((m ; l) ; z)\right)
$$

C om bining this w ith our earlier observation, this establishes the assertion in the case $m>0$.
(4) The case $m<0$ reduces im m ediately to the case just treated, since
$I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})=\mathrm{I}_{\mathrm{V}}\left((\mathrm{m} ; \mathrm{l}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)=\mathrm{I}_{\mathrm{V}}\left((\mathrm{m} ; \mathrm{ql}) ; \mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)=\mathrm{I}_{\mathrm{V}}((\mathrm{m} ; q \mathrm{l}) ; \mathrm{z})$
N ow suppose that $m=0$. If also $l=0$, the assertion is obvious, so that we can assume that $l \in 0$. In this case, the conditions that $q \quad 1(m o d N)$ and $\operatorname{gcd}(\mathrm{m} ; 1)=\operatorname{god}(\mathrm{m} ; q \mathrm{l}) \mathrm{mply}$ that $\mathrm{ql}=1$, so that $\mathrm{q}=1$. The case $\mathrm{q}=1$ is obvious, so that we now assum e that $q=1$,which can only happen if $\mathrm{N}=1$ or $N=2$. A Hopf algebra of exponent 1 is onedim ensional, and for a Hopf algebra of exponent 2 we have $h=h_{(1)} h_{(2)} S\left(h_{(3)}\right)=S(h)$, so that the antipode of H is the identity. Then the antipode of H is also the identity, so that H is com m utative and cocom m utative, which im plies that D is com m utative and cocom m utative, ${ }^{112}$ so that its antipode is again the identity. W e therefore have

$$
I_{V}((0 ; 1) ; z)=I_{V}\left((0 ; 1) ; S_{D}(z)\right)=I_{V}((0 ; l) ; z)
$$

in the case $N=1$ aswellas in the case $N=2$, and the second de ning property is com pletely established.
(5) In Paragraph 1.3, we have de ned the relation as the intersection of all congruence relations that satisfy the two de ning properties just veri ed. Therefore $(\mathrm{m} ; 1) \quad\left(\mathrm{m}^{0} ; 1^{0}\right)$ im plies that $(\mathrm{m} ; 1) \quad\left(\mathrm{m}^{0} ; 1^{0}\right)$. B ut by T heorem [1.3, ($\mathrm{m} ; 1$) $\left(\mathrm{m}^{0} ; 1^{0}\right) \mathrm{m}$ eans that $(\mathrm{m} ; 1)$ and $\left(\mathrm{m}^{0} ; 1^{0}\right)$ are in the same (N$)$-orbit, so that this is exactly the assertion. 2

W e put dow n one easy special case of this theorem that w ill be needed later:
C orollary For an H module V, let be the character of Ind (V). Then we have $(g: z)=(z)$ for allg $2(N)$ and allz 2 Z (D).

Proof. W e have $(z)=\operatorname{tr}(1(z))=I_{V}((1 ; 0) ; z)$, so that by T heorem 8.3 the assertion is equivalent to $I_{V}((1 ; 0) g ; z)=I_{V}((1 ; 0) ; z)$.But since $(1 ; 0)$ and $(1 ; 0) g$ are obviously in the same (N)-orbit, this follow s directly from the preceding theorem. 2

9 The congruence subgroup theorem

9.1 W e now w ill apply the results of Section 8 to prove that the kemel of the pro jective representation of the m odular group on the center of a sem isim ple factorizable H opf algebra is a congruence subgroup. N ote that the kemel of a group hom om onphism consists of those elem ents that are mapped to the unit elem ent, which in the pro jective linear group consists of all nonzero scalar m ultiples of the identity. If therefore a pro jective representation is induced from an ordinary linear representation, the kemel of the pro jective representation is in general larger than the kemel of the linear representation.

So, let A be a sem isim ple factorizable H opf algebra over our algebraically closed base eld K of characteristic zero. The exponent of A w ill be denoted by N . O therw ise, we w ill use the notation introduced in Section 5; in particular, we w ill use the inverse D rinfel'd elem ent u^{1} as our ribbon elem ent. H ow ever, the whole discussion in Section 5 depended on a param eter thatw as introduced in P aragraph 5.2; we w ill now dispose of this param eter in the follow ing intricate way: If $R(u)=R\left(u^{1}\right)$, in which case, as discussed in Paragraph 4.3, our representation is linear, we set $=\frac{1}{R(u)}$, so that our integral 2 A satis es
$(u)=\left(u^{1}\right)=1$. By Lemma4.3, this integralalso satis es $(\quad)\left(R^{0} R\right)=1$. N ote that in the case where $A=D$ (H) is the D rinfeld double of a sem isim ple H opf algebra H, we therefore pick here the integral d from Paragraph 6.1.

If $R(u) \notin\left(u^{1}\right)$, in which case our representation is not linear, we choose so that ${ }^{2}=\frac{1}{\operatorname{dim}(A)}$. This obviously only determ ines up to a sign, but in view of the form ula $R_{R}\left(u_{R}\left(u^{1}\right)=\right.$ dim (A) observed in Paragraph 5.3, im plies that $(\quad)\left(R^{0} R\right)=(u)\left(u^{1}\right)=1$. In particular, the choice of in both cases is com patible, the only di erence is that in the rst, linear case even the sign of is determ ined. In any case, this choice of is the one that m akes equivariant, as explained in P aragraph 4.5, as it is com patible w ith the condition that $D_{D}()$.
N ext, we discuss the dual of our pro jective representation. W e denote the m orphism that a linearm ap f induces betw een the corresponding pro jective spaces by P (f). By considering the character ring as dual to the center, we can dualize the pro jective representation of the m odular group on the center to a pro jective representation of the m odular group on the character ring as follow s : If the group elem entg 2 SL ($2 ; Z$) is represented by the equivalence class P (f) 2 PGL(Z (A)), consider for $2 \mathrm{Ch}(\mathrm{A})$ the character ${ }^{0} 2 \mathrm{Ch}(\mathrm{A})$ that satis es

$$
{ }^{0}(z)=\left(f^{1}(z)\right)
$$

for all z $2 \mathrm{Z}(\mathrm{A})$, and set $\mathrm{g}:={ }^{0}$. This does not depend on the choice of the representative f and gives a projective representation of $S L(2 ; Z)$ on $P(C h(A))$.
T his construction raises the question whether the isom onphism $P()$ that induces betw een the projective spaces of the center and the character ring is
equivariant w ith respect to the corresponding actions. This is the case only after the action on the center is m odi ed w ith the help of the autom onphism introduced in De nition 1.1:

Proposition For allg 2 , the diagram

com m utes.

P roof. It su ces to check this for the generators s and t, for which we have seen in Paragraph 1.1 that $s=s^{1}$ and $\tau=t^{1}$. In the case of s, the assertion therefore follow s from Proposition 4.1, and in the case of t it follow sfrom the corresponding diagram gìven in Paragraph 4.3. 2

The analogous question for $P()$ can be deduced from this proposition:

C orollary For allg 2 , the diagram

com m utes.

P roof. Thisw ill follow from the preceding proposition by reversing the vertical arrow s if we can verify that $S=1$ on the character ring, or equivalently that $=S^{1}$.Butas and agree on the character ring, we have from the de nition of that $=S \quad S$ on the center, which in view of C orollary.2 im plies the assertion. 2

N ote that in the case where we have a linear representation of SL (2;Z) on the center Z (A), wew illalso get in this way a linear representation on $\mathrm{Ch}(\mathrm{A})$, and and w ill then be equivariant w ith respect to the linear representations.
9.2 If 2 A is an integral which satis es "() = 1, we de ne the bilinear form h; in $C h(A)$ by the equation

$$
\mathrm{h} ;{ }_{i}=\left(\mathrm{S}\left({ }^{0}\right)\right)()
$$

Then we have $h_{i} ;{ }_{j} i=i j=\operatorname{dim} H_{A}\left(V_{i} ; V_{j}\right)$ for the irreducible characters, ${ }^{113}$ which show s that this bilinear form is nondegenerate and sym m etric.

For $l=1 ;::: ; k$, we denote the character of the induced $D(A)$ m odule Ind (V_{1}) by 1 . U sing this, we can express this bilinear form as follow s:

Proposition For all ; ${ }^{0} 2 \mathrm{Ch}(\mathrm{A})$, we have

$$
\text { h } \quad{ }^{0} ; \quad 1 i=\frac{1}{\operatorname{dim}(A)}{ }_{1}\left(\quad^{1}\left({ }^{1}() \quad{ }^{1}\left({ }^{0}\right)\right)\right)
$$

Proof. Because both sides of the equation are bilinear in and ${ }^{0}$, we can assum e that both characters are irreducible, so that $=i$ and ${ }^{0}=j$ for som e $i ; j \quad k$. The vector space $V_{i} \quad V_{j}$ can be considered as an $A \quad A$ m odule by the com ponentw ise action; it is then sim ple. W e can tum it into a D (A)m odule by pullback along . W e denote this D (A)-m odule by U; since is an isom orphism, this module is also sim ple, and the centrally prim itive idem potent in $Z(D(A))$ corresponding to U is ${ }^{1}\left(\begin{array}{ll}e_{i} & e_{j}\end{array}\right)$.Because (lla) $\left.\quad a\right)(a)$, the restriction of U to $A \quad D(A)$ is the same as the pullback of the $A \quad A$ m odule structure along, which is exactly how the tensor product $V_{i} V_{j}$ of A m odules is form ed.

W e now have by the Frobenius reciprocity theorem ${ }^{114}$ that

$$
\begin{aligned}
& =\operatorname{dim} \operatorname{Hom}_{D(A)}\left(U ; \operatorname{Ind}\left(V_{1}\right)\right)=\frac{1}{n_{i} n_{j}}{ }_{1}\left(\quad{ }^{1}\left(e_{i} \quad e_{j}\right)\right)
\end{aligned}
$$

By P roposition 5.2, we have (e $)=\mathrm{n}_{\mathrm{i}}$ i, so that

$$
\frac{e_{i}}{n_{i}}={ }^{1}\left({ }_{i}\right)
$$

Inserting this into the preceding form ula and using ${ }^{2}=\frac{1}{\operatorname{din}(A)}$, we get the assertion. 2

This proposition has the follow ing consequence:

C orollary Suppose that $R(u)=R\left(u^{1}\right)$. Then we have

$$
(g:)\left(g:{ }^{0}\right)=0
$$

for allg 2 (N) and all ; ${ }^{0} 2 \mathrm{Ch}(\mathrm{A})$.

P roof. R ecall that the assum ption im plies that the representation of the m odular group is linear. By the nondegeneracy of the bilinear form above, it su ces to show thath(g:) (g: ${ }^{0}$); 1 i $=h \quad{ }^{0}$; 1 i for $a l l l=1 ;::: ; k . N$ ow we get from the preceding proposition for g 2 (N) that

$$
\begin{aligned}
h(g:)\left(g:{ }^{0}\right) ;{ }_{1} i & =\frac{1}{\operatorname{dim}(A)}{ }_{1}\left({ }^{1}\left({ }^{1}(g:) \quad{ }^{1}\left(g:{ }^{0}\right)\right)\right) \\
& =\frac{1}{\operatorname{dim}(A)}{ }_{1}\left({ }^{1}\left(g:{ }^{1}() \quad g:{ }^{1}\left({ }^{0}\right)\right)\right) \\
& =\frac{1}{\operatorname{dim}(A)}{ }_{1}\left(g:{ }^{1}\left({ }^{1}() \quad{ }^{1}\left({ }^{0}\right)\right)\right) \\
& =\frac{1}{\operatorname{dim}(A)}{ }_{1}\left({ }^{1}\left({ }^{1}() \quad{ }^{1}\left({ }^{0}\right)\right)\right)=h \quad{ }^{0} ;{ }_{1}
\end{aligned}
$$

where the second equality follow s from Proposition 9.1, the third from Proposition 4.5, and the fourth from C orollary 8.4. 2
9.3 W e now tum for a moment to the special case where $A=D(H)$, the D rinfeld double of a sem isim ple H opf algebra H, which is denoted by D to distinguish it from the general case. N ote that H and D have the same exponent N. ${ }^{115}$ In this case, we now prove the follow ing congruence subgroup theorem:

Theorem The kemelof the representation of the m odular group on the center of D is a congruence subgroup of levelN.

P roof. It follow s from C orollary 8.4 that the character of every D m odule that is induced from an H m odule is invariant under (N). T he regular representation of D is induced from the regular representation of H, and therefore its character is invariant under (N). This now im plies that the counit is also invariant under (N). To see this, recall that C orollary 5.2 gives in particular that $S\left(p_{1}\right)=\frac{1}{\operatorname{dim}(H)} 1$, which m eans that $S\left(R_{R}\right)=\operatorname{dim}(H) D_{D}$. In view of Proposition 4.1, this in tum says that $S^{1}:_{R}=\operatorname{dim}(H) " D$. For an elem ent g 2 (N), this gives

$$
g:_{D}=\frac{1}{\operatorname{dim}(H)} g S^{1}:_{R}=\frac{1}{\operatorname{dim}(H)^{1}} S^{1}\left(\operatorname{SgS}^{1}\right):_{R}=\frac{1}{\operatorname{dim}(H)} S^{1}:_{R}=H_{D}
$$

since (\mathbb{N}) is a norm al subgroup.
If we now substitute "D for ${ }^{0}$ in Corollary 9.2, we get that g : $=$ for every character of D and every g 2 (N), and since conjugation by a restricts to an autom onphism of (N), we see that every character is invariant under (N). But considering how we de ned this action in Paragraph 9.1, this im plies that every central elem ent is invariant under (N), since the pairing betw een the
character ring and the center is nondegenerate. In other w ords, the kemel of the representation contains (N), and therefore is a congruence subgroup.

It rem ains to be proved that the level of the kemel is exactly N . But if there were som e $\mathrm{N}^{0}<\mathrm{N}$ w ith the property that $\left(\mathrm{N}^{0}\right)$ would also be contained in the kemel, th is would in particular im ply that $t{ }^{N}{ }^{\circ}$ acts trivially on the center, which would m ean that $u_{D}^{N}{ }^{0}=1$. But as N is by de nition the order of u_{D}, this cannot be the case. 2
9.4 Retuming to the generalcase of an anbitrary factorizable sem isim ple H opf algebra A, in which the action of the m odular group in general is only pro jective, we can still look at the kemel of the corresponding group hom om onphism to PGL(Z (A)). For this kemel, the follow ing analogue of T heorem 9.3 holds:

Theorem The kemel of the pro jective representation of the m odular group on the center of A is a congruence subgroup of levelN.

P roof. To show that (N) is contained in the kemel, suppose that this is not the case, and chooseg 2 (N) that is notm apped to the identity in PGL(Z (A)). C hoose a representative $f 2 \mathrm{GL}(\mathrm{Z}(\mathrm{A}))$ for the action of g, and also a representative f for the action of g. Because f is not a scalar m ultiple of the identity, there exists an elem ent $z 2$ (A) such that z and $f(z)$ are not proportional, and therefore linearly independent. This implies that $z \quad z$ and $f(z) \quad f(z)$ are not proportional. But we saw in P aragraph 4.5 that the tensor product of our projective representation w ith its conjugate under a is induced by a linear representation, and that this linear representation is via isom onphic to the representation on Z (D (A)), on which g acts trivially by T heorem 9.3. But this m eans that it acts trivially on $z \quad z$, too, contradicting the fact that $z \quad z$ and $f(z) \quad f^{\Omega}(z)$ are not proportional.

As in the proof of T heorem 9.3, it rem ains to be proved that the level of the kernel is exactly $\mathrm{N} . \mathrm{N}$ ow if there were som $\mathrm{eN}{ }^{0}<\mathrm{N}$ w ith the property that $\left(\mathrm{N}^{0}\right.$) would also be contained in the kemel, this would in this case only im ply that u_{D}^{N} acts on the center by m ultiplication by a scalar. But as u_{D} alw ays preserves the integral, this scalar has to be 1, which contradicts the de nition of N as in the previous case. 2

10 The action of the G alois group

10.1 In this section, we will introduce an action of the Galois group of the cyclotom ic eld determ ined by the exponent that w ill tum out to be intim ately connected to the action of the m odular group. A s in Section 9, we consider a sem isim ple factorizable H opfalgebra A over our algebraically closed base eld K of characteristic zero. T he exponent of A will be denoted by N. O therw ise, we w ill use the notation introduced in Section 5; in particular, we will use the inverse D rinfel'd elem ent u^{1} as our ribbon elem ent. T he constant , which determ ines the norm alization of the integral , is chosen as in Paragraph 9.1, and is de ned using this integral.

In Paragraph 5.1, we have constructed the algebra hom om onphism s 1;:::; k from the character ring to the center. If we denote by $C h_{Q}(A)$ the span of the irreducible characters $1 ;::: ; \mathrm{k}$ not over K , but over the rational num bers Q K, it can be show n^{116} as in the case of the D rinfeld double that the im ages $i\left(C h_{Q}(A)\right)$ are contained in the cyclotom ic eld Q_{N} determ ined by the exponent. The restriction of i to $C h_{Q}(A)$ is a Q algebra hom om onphism to Q_{N}, and clearly i is uniquely determ ined by this restriction. For $2 G a l\left(Q_{N}=Q\right)$, the m ap $\quad i$ is again a Q algebra hom om onphism from $C h_{Q}(A)$ to Q_{N}, which m ust coincide w ith one of the restrictions of ${ }_{1} ;::: ;{ }_{k}$. In this way, we get an action of $G a l\left(Q_{N}=Q\right)$ on the set $f 1 ;::: ; k g$ so that

$$
i \dot{\mathcal{L}}_{\mathrm{h}}(\mathrm{~A})=:: \dot{\operatorname{i}} \mathrm{h}_{Q}(\mathrm{~A})
$$

From this perm utation representation, we get an action of the G alois group on the character ring $\mathrm{Ch}(\mathrm{A})$ over the fullbase eld K by pem uting the characters accordingly, in the sense that

$$
\text { : i }:=\quad \text { i }
$$

and extending this action K -linearly.
The follow ing lem m a lists som e basic properties of this action:
Lem ma

1. $\mathrm{n}_{: ~}^{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}$
2. $\left(S_{i j}\right)=S_{: i ; j}=S_{i ;}: j$
3. $:_{1}=1$

Proof. For the rst assertion, recall the form ula $i_{i}\left(A_{i}\right)=\frac{d i m(A)}{n_{i}^{2}}$ established in C orollary 5.3. U sing this, we get

$$
\frac{\operatorname{dim}(A)}{n^{2}: i}=\quad: i(A)=(i(A))=\left(\frac{\operatorname{dim}(A)}{n_{i}^{2}}\right)=\frac{\operatorname{dim}(A)}{n_{i}^{2}}
$$

from which the rst assertion is im m ediate.
For the second assertion, recall the form ula $s_{i j}=n_{i}\left({ }_{j}\right)$ from Lemma5.2, from which we get

$$
\left(s_{i j}\right)=n_{i} \quad(i(j))=n: i \quad: i(j)=s: i ; j
$$

Furthem ore, we observed in Lem m a 5.2 that the Verlinde m atrix is sym m etric, from which we see that $\left(s_{i j}\right)=\left(s_{j i}\right)=s_{: j ; i}=s_{i ; ~}{ }_{j}$.

For the third assertion, note that we have

$$
1(i)=!_{1}((i))="((i))=n_{i}
$$

so that $(1(i))=1(i)$.This implies $: 1=1.2$

The action on the character ring can also be view ed in a di erent way: Ch_{Q} (A) is a com m utative sem isim ple Q algebra, and therefore by W edderbum's theorem ${ }^{117}$ isom onphic to a direct sum of elds. As in the case of the D rinfel'd double, ${ }^{118}$ it can be shown that these elds are sub elds of the cyclotom ic eld Q_{N}. Since the G alois group of Q_{N} is abelian, every sub eld of the cyclotom ic eld is norm al, and therefore preserved by the action of the G alois group of Q_{N}. W e therefore get an action of this G alois group on $C h_{Q}$ (A) as the sum of the actions on the W edderbum com ponents. The action of the Ga alois group constructed above is exactly the K-linear extension of this action to $\mathrm{Ch}(\mathrm{A})=\mathrm{Ch}_{\mathrm{Q}}(\mathrm{A}) \quad$ Q K. To see this, note that the restrictions of $1 ;::: ; \mathrm{k}$ to $C h_{Q}$ (A) arise by pro jecting to som $\mathrm{e} W$ edderbum com ponent and then em bedding it into $Q_{N} \quad K$. Because the G alois group is abelian, it does not m atter whether we rst act on the W edderbum com ponent and then em bed into Q_{N}, or rst em bed and then act. In other words, the action on the W eddenbum com ponents satis es

$$
i\left(:_{j}\right)=(i(j))
$$

for all $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{N}}=Q\right)$. But on the other hand it follows from the preceding lemma that we have $i(: j)=(i(j))$, so that the action constructed before also satis es this equation, which m eans that the two actions have to coincide.

If we consider the cyclotom ic eld Q_{N} as a sub eld of the com plex num bers, com plex con jugation restricts to an autom orphism of the cyclotom ic eld, which we denote by $2 \mathrm{Gal}\left(Q_{\mathrm{N}}=Q\right)$. It does not depend on the way how the cyclotom ic eld is em bedded into the com plex num bers, as it can be characterized by the property that itm aps any N-th root of unity to its inverse. A s proved in several places in the literature, ${ }^{119}$ it acts on Ch(A) via the antipode:

Proposition For all $2 \mathrm{Ch}(\mathrm{A})$, we have : $=\mathrm{S}(\mathrm{)}$.

Stated di erently, this asserts that $: i=i$, which in particular im plies that
:(i) $=\left(\right.$:i) for all $2 G \operatorname{al}\left(Q_{N}=Q\right)$, as the G alois group $G a l\left(Q_{N}=Q\right)$ is abelian. U sing this, we can deduce further properties of our action:

C orollary

1. $\quad \mathrm{P}_{\mathrm{i}}=\mathrm{P} \quad{ }^{1}$:i
2. $S(())={ }^{1}(S \quad())$

P roof. By P roposition 5.1 and C orollary 5.3, we have

$$
p_{i}={\frac{n_{i}^{2}}{\operatorname{dim}(A)}}_{j=1}^{X^{k}} i(j)_{j}
$$

U sing the facts just proved, we therefore get

$$
\begin{aligned}
P_{i} & ={\frac{n_{i}^{2}}{\operatorname{dim}(A)} X_{j=1}^{k}}^{X^{k}(j) \quad: j={\frac{n_{i}^{2}}{\operatorname{dim}(A)}}_{j=1}^{X^{k}}{ }_{i}\left({ }^{1}: j\right){ }_{j}} \\
& ={\frac{n^{2}{ }_{1: i}}{\operatorname{dim}(A)}}_{j=1}^{X^{k}} \quad{ }^{1}: i(j) j=p \quad{ }^{1}: i
\end{aligned}
$$

which is the rst assertion.
It su ces to check the second assertion on a basis, so that we can assum e that
$=j . W$ e then have by C orollary 5.2 that

$$
\begin{aligned}
S \quad((j))=S \quad(: j) & \left.=n_{: j}: j(A)\right) p: j \\
& \left.=n_{j}\left(A_{\text {A }}\right)\right){ }^{1}: P_{j}={ }^{1}(S \quad(j))
\end{aligned}
$$

by the rst assertion and the proof of the preceding lem ma. 2

This corollary show s in particular that the G alois group perm utes the idem potents, which m eans that it acts via algebra autom onphism s. This fact, how ever, is also obvious from the second description via the W edderbum decom position that we gave above.
10.2 B esides the spaces Ch (A) and $\mathrm{Ch} h_{\ell}$ (A) thatw e have considered above, we need to consider a third space that lies in betw een, nam ely the space $C h_{Q_{N}}$ (A), which we de ne to be the span of the irreducible characters w ith coe cients in the cyclotom ic eld Q_{N}. From the form of the base change m atrix betw een the irreducible characters and the prim itive idem potents of the character ring given in P roposition 5.1, we see that we could altematively have de ned it as the span of $p_{1} ;::: ; p_{k}$ over the cyclotom ic eld Q_{N}. If we therefore, as in Paragraph 8.4, denote by $Z_{Q_{N}}(A)$ the span of the centrally prim itive idem potents $e_{1} ;::: ; e_{k}$ w ith coe cients in the cyclotom ic eld, we have that $\left(C h Q_{N}(A)\right)=Z_{Q_{N}}(A)$. W e use these two di erent bases of the space to de ne tw o sem ilinear actions of the G alois group on $C h_{Q_{N}}$ (A) as follow s:

Denition For $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{N}}=\mathrm{Q}\right)$, we de ne autom onphisms () and ${ }^{0}$ () of $C h_{Q_{N}}$ (A) by

In other words, () acts on the coe cients in an expansion in term s of the irreducible characters, and ${ }^{0}()$ acts on the coe cients in an expansion in term s of the prim itive idem potents. B oth of the autom onphism s are sem ilinear in the sense that

$$
\begin{aligned}
& \qquad()()=()()() \quad 0^{0}()()=()^{0}()() \\
& \text { for } 2 Q_{N} \text { and } 2 C h_{Q_{N}}(A) \text {. M oreover, we have }()(i)=i \text { as well as } \\
& { }^{0}()\left(p_{i}\right)=p_{i} \text { for all } i=1 ;:: ; k \text {. }
\end{aligned}
$$

The connection w ith the action of the G alois group considered in P aragraph 10.1 is given by the follow ing form ula:

Proposition For all $2 \mathrm{Ch}_{Q_{\mathrm{N}}}$ (A), we have

$$
:=\left({ }^{0}() \quad()^{1}\right)()
$$

M oreover, () and ${ }^{0}(\mathrm{r})$ commute for all ; $2 \mathrm{Gal}\left(Q_{N}=Q\right)$. If $\mathrm{R}(\mathrm{u})$ is rational, we have furtherm ore that ${ }^{0}()=S \quad() S^{1}$.

Proof. For the rst assertion, note that ${ }^{0}\left(\mathrm{r} \quad()^{1}\right.$ is actually Q_{N}-linear, so that it su ces to prove that $: i=\left({ }^{0}()()^{1}\right)(i)$.Butwe have

$$
\begin{aligned}
& \left.\left.\left({ }^{0}() \quad()^{1}\right)(i)={ }^{0}()(i)={ }^{0}()\right)^{X^{k}} \quad j(i) p_{j}\right) \\
& j=1 \\
& =X_{j=1}^{X^{k}}\left({ }_{j}\left(i_{i}\right)\right) p_{j}=X_{j=1}^{X^{k}}{ }_{j}(: i) p_{j}=\quad: i=\quad:_{i}
\end{aligned}
$$

by Lem ma 10.1 and the discussion in P aragraph 5.1.
For the com m utativity assertion, note that () obviously com m utes w ith the action of , because the action of is linear and perm utes the characters. A lso, it clearly com m utes w ith (), and therefore also w ith ${ }^{0}$ () by the result just proved.

For the third assertion, note that the assum ption that ${ }_{R}(u)$ is rationalim plies that $R(u)=\left(R_{R}(u)\right)=R_{R}\left(u^{1}\right)$, so that by our convention also $=1=R(u)$ is rational. To prove that ${ }^{0}() \quad S=S \quad(1)$ we also use that both sides
are sem ilinear, so that it again su ces to check that both sides give the sam e result on i. But here we have by C orollary 5.2 that

```
    \({ }^{0}()(S \quad(i))={ }^{0}()\left(n_{i} i(A) p_{i}\right)=n_{i}\left(A_{A}\right) p_{i}=S \quad(i)=S \quad(\quad(i))\)
```

which im plies the assertion. 2

W egive a second proofof the fact that : $=\left({ }^{0}\left(\mathrm{l}()^{1}\right)()\right.$ from the point of view of the second construction of the action via the W edderbum decom position of the character ring, discussed after Lem m a 10.1. From Proposition 5.1, we know that the prim itive idem potents p_{i} are already contained in $C h_{Q_{N}}$ (A). A swe discussed above, a sim ple ideal of $C h_{Q}$ (A) is isom onphic to a sub eld L of the cyclotom ic eld Q_{N}, and the action on the character ring restricts on these W edderbum com ponents to the action of the G alois group. In other w ords, w ith respect to the isom onphism $C h_{Q_{N}}(A)=C h_{Q}(A) \quad Q_{N}$, we have

$$
:(\quad)=\left(\begin{array}{l}
\text { (}
\end{array}\right)(\quad)=\quad(\text {) }
$$

for 2 L and $2 \mathrm{Q}_{\mathrm{N}}$. This shows that the formula that $w e$ have to prove is ${ }^{0}()()=() \quad()$.

Because L is a Galois extension of the rationals, the m ap

$$
\mathrm{L} \quad Q_{\mathrm{N}}!Q_{\mathrm{N}}^{\mathrm{Gal}(\mathrm{~L}=Q)} ; \quad \mathrm{T}(\quad())_{2 \mathrm{Gal}(\mathrm{~L}=Q)}
$$

is an algebra isom onphism, ${ }^{120}$ where the right-hand side is an algebra w ith respect to com ponentw ise multiplication. Therefore, for every $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{N}}=\mathrm{Q}\right.$) there is a unique elem ent ${ }_{j} l_{j} \quad$ juch that ${ }_{j}\left(l_{j}\right)_{j}=;$, corresponding to a prim itive idem potent of Q_{N}^{G} al(L=Q). Because of its uniqueness, we have

X	$\left(I_{j}\right)$	$\left({ }_{j}\right)={ }_{j}^{X} I_{j} \quad{ }_{j}$,

 of $C h_{Q_{N}}$ (A) is a sem ilinear m ap that preserves prim itive idem potents, w hich is the de ning property of ${ }^{\circ}$ (), establishing the assertion.
10.3 A swe have $(\mathrm{Ch}(\mathrm{A}))=\mathrm{Z}(\mathrm{A})$, we can use to transfer the action of the Galois group on the character ring to an action on the center. In other words, we de ne an action of $G \operatorname{al}\left(Q_{N}=Q\right)$ on $Z(A)$ by requiring that the diagram

is com m utative. W ith respect to a sm aller base eld, we can also de ne representations : Gal($\left.Q_{N}=Q\right)!G L\left(Z_{Q_{N}}(A)\right)$ and ${ }^{0}: G a l\left(Q_{N}=Q\right)!G L\left(Z_{Q_{N}}(A)\right)$ by requiring that the diagram s

com m ute. It is then a direct consequence of P roposition 10.2 that

$$
: z=\left({ }^{0}() \quad()^{1}\right)(z)
$$

Furtherm ore, () and ${ }^{0}$ () commute for all ; $2 \mathrm{Gal}\left(Q_{\mathrm{N}}=Q\right.$), and if $\mathrm{R}_{\mathrm{R}}(\mathrm{u})$ is rational, we get from Proposition 4.1 that ${ }^{0}(\quad)=S \quad(\quad) \quad S^{1} \cdot W$ e can also deduce im m ediately from Proposition 5.2, c orollary 10.1, and the equation $\left(p_{i}\right)=e_{i}$ that we have

$$
: z_{i}=z: i \quad: e_{i}=e^{1}: i
$$

Sim ilarly, we have for the sem ilinear representations that

$$
\left.()_{i=1}^{X^{k}}{ }_{i} z_{i}\right)={\underset{i=1}{X^{k}}}_{i=1}^{(i) z_{i}} \quad 0()(\underbrace{X^{k}}_{i=1} \quad i e_{i})=X_{i=1}^{X^{k}} \quad(i) e_{i}
$$

for $i 2 Q_{N}$.
Let us list som e basic properties of th is action:
Proposition For $2 \mathrm{Gal}\left(Q_{N}=Q\right), \quad 2 \mathrm{Ch}(\mathrm{A})$, and z 2 Z (A), we have

1. $(z)={ }^{1}:(z)$
2. $(z)=(:)(z)$
3. $S(: z)={ }^{1}: S(z)$

P roof. For the rst assertion, we have by Proposition 5.2 and Lem m a 10.1 that

For the second assertion, we can assum e that $=j$ and $z=z_{i} \cdot W$ W then have by Lem ma 5.2 and Lem m a 10.1 that

$$
\begin{aligned}
n_{i} j\left(: z_{i}\right)=n: i j(z: i) & =n: i: i(j)=s: i ; j \\
& =s_{i} ;: j=n_{i} i(\quad: j)=n_{i} \quad: j\left(z_{i}\right)
\end{aligned}
$$

A ltematively, one can deduce this from the equation ${ }_{j}\left(e_{i}\right)=n_{i} i_{j}$. The third assertion follow s from C orollary 10.1by applying and using P roposition 4.1. 2
10.4 O ur next goal is to investigate the equivariance properties of the action of the G alois group w ith respect to the isom onphism introduced in Paragraph 3.1. If V_{i} and V_{j} are any two of our sim ple $A-m$ odules, $V_{i} V_{j}$ can be considered as an A A m odule by the com ponentw ise action. A s is an algebra isom orphism betw een D (A) and A A, we can introduce a D (A)-m odule structure on $V_{i} \quad V_{j}$ by pullback via . W e denote $V_{i} \quad V_{j}$ by $V_{i j}$ if endowed w ith this D (A)-m odule structure; note that this m odule $w a s$ denoted by U in Paragraph 9.2. If ij denotes the character of $V_{i j}$, we have $i j=(i \quad j)$. Its degree is $n_{i j}=n_{i} n_{j}$, and the corresponding centrally prim itive idem potent is $e_{i j}={ }^{1}\left(e_{i} \quad e_{j}\right)$.

A s described in P aragraph 5.1, from ij we can derive several additionalquantities: the central characters

$$
!_{i j}: Z(D(A))!K ; z \eta \frac{1}{n_{i j}} i j(z)
$$

the idem potents of the character ring $p_{i j}:={ }^{1}\left(e_{i j}\right)$, and the corresponding characters
which in tum are used to de ne the class sum $s z_{i j} 2 Z(D(A))$ via the requirem ent that $\left(z_{i j}\right)=i_{i j}()$.The follow ing proposition describes how these quantities com pare to the corresponding quantities for A:

Proposition Forz $2 \mathrm{Z}(\mathrm{D}(\mathrm{A}))$ and ; ${ }^{0} 2 \mathrm{Ch}(\mathrm{A})$, we have

$$
\begin{aligned}
& \text { 1. }!_{i j}(z)=\left(!_{i} \quad!_{j}\right)((z)) \\
& \text { 2. } p_{i ; j}=\left(p_{i} p_{j}\right) \\
& \text { 3. } i_{i j}\left(\quad\left({ }^{0}\right)\right)={ }_{i}()_{j}\left({ }^{0}\right) \\
& \text { 4. } z_{i ; j}={ }^{1}\left(z_{i} \quad z_{j}\right)
\end{aligned}
$$

Proof. The rst assertion follows directly from the de nitions; how ever, it should be noted that as an algebra isom onphism induces an isom onphism betw een the centers $Z(D(A))$ and $Z(A \quad A)=Z(A) \quad Z(A) .{ }^{121} T$ he second assertion is equivalent to the equation $\left.\left(p_{i ; j}\right)=\left(p_{i} p_{j}\right)\right)$, which by Proposition 3.4 is equivalent to

$$
e_{i ; j}={ }^{1}\left(\left(p_{i}\right) \quad S\left(\left(p_{j}\right)\right)\right)={ }^{1}\left(e_{i} \quad S\left(e_{j}\right)\right)
$$

which we have established above. R ecall in this context that we have

$$
\operatorname{Ch}\left(\left(\begin{array}{ll}
\mathrm{A} & \mathrm{~A}
\end{array}\right)_{\mathrm{F}}\right)=\mathrm{Ch}(\mathrm{~A} \quad \mathrm{~A})=\mathrm{Ch}(\mathrm{~A}) \quad \mathrm{Ch}(\mathrm{~A})
$$

by Lem ma 3.4.

The third assertion follow s from the second, because it su ces to check it in the case where $=p_{m}$ and ${ }^{0}=p_{1}$. But in view of the de nition of the class sum s, the third assertion can also be w ritten as

$$
\left({ }^{0}\right)\left(z_{i ; j}\right)=\left(z_{i}\right)^{0}\left(z_{j}\right)
$$

which im plies that $\left(z_{i ; j}\right)=z_{i} \quad z_{j}$, which is the fourth assertion. 2
10.5 In Paragraph 10.1, we have de ned the action of the G alois group by rst requiring that $: i(j)=(i(j))$ and then de ning it on $C h(A)$ by setting $:_{i}=\quad: i$ and extending linearly. T his action is also de ned in exactly the sam e way for D (A); the only di erence now is that we have indexed the corresponding quantities for $D(A)$ by pairs. In term s of these pairs, the rst equation above reads : $(i ; j)\left(\mathrm{ml}_{1}\right)=(\mathrm{i} ; \mathrm{j}(\mathrm{ml}))$.But by Proposition 10.4, th is can be rew ritten as
wherew ehave used the fact that $:(j)=(: j)$ discussed after P roposition 10.1 . This m eans that we have $:(i ; j)=(: i ;: j)$, which can be restated as follow $s:$

Proposition Themap

$$
\operatorname{Ch}(\mathrm{A}) \quad \operatorname{Ch}(\mathrm{A})!\operatorname{Ch}(\mathrm{D}(\mathrm{~A})) ; \quad{ }^{0} \mathrm{~T} \quad\left({ }^{0}\right)
$$

is $G \operatorname{al}\left(Q_{N}=Q\right)$-equivariant if $C h(A) \quad C h(A)$ is endow ed with the diagonalaction.
Proof. For $2 \mathrm{Gal}\left(Q_{N}=Q\right)$, we have

A s the characters i form a basis of Ch(A) Ch(A), this is su cient. 2

The preceding result can also be understood from the point of view of the W eddenbum decom position of the character ring, as described after Lem man10.1. A s we pointed out there, the character rings Ch_{Q} (A) as well as Ch_{Q} (D (A)) decom pose into direct sum s of sub elds of the cyclotom ic eld Q_{N}, and the G alois group preserves the W eddenbum com ponents and acts there via restriction to the corresponding sub eld. N ow is a H opfalgebra isom orphism betw een D (A) and $(A A)_{F}$, so that restricts to an isom orphism betw een the character rings and therefore m aps W edderbum com ponents to W edderbum com ponents. By Lemma.3,wehave $C h_{Q}\left(\left(\begin{array}{ll}A & A\end{array}\right)_{F}\right)=C h_{Q}\left(\begin{array}{ll}A & A\end{array}\right)$, so that the assertion now w ill follow if we can justify that the isom onphism $C h_{Q}(A \quad A)=C h_{Q}(A) C h_{Q}(A)$ is equivariant w ith respect to the diagonal action on the right-hand side.

This now follow sfrom an argum ent that is sim ilar to the one used at the end of Paragraph 10.2. Let L and M be two sub elds of Q_{N} that appear as W edderbum com ponents of $C h_{Q}(A)$, and let P be a sub eld of Q_{N} that appears as a W edderbum com ponent of $C h_{Q}$ (A A). W e then have a com m utative diagram of the form

where the left vertical arrow is the tensor product of the in jections of the W eddenbum com ponents, and the right vertical arrow is the projection to the W edderbum com ponent. The resulting m ultiplicative m ap $f: L \quad M \quad \mathrm{~L} \quad \mathrm{~m}$ ay be zero, in which case it is equivariant. If it is not zero, then $f\left(\begin{array}{ll}1 & 1\end{array}\right)$ is a nonzero idem potent in P, which im plies that $f\left(\begin{array}{ll}1 & 1\end{array}\right)=1$. Then the m ap

is a eld hom om onphism, and since G al $\left(Q_{N}=Q\right)$ preserves all sub elds and acts on them in a way that is independent of the em bedding into Q_{N}, we get that

$$
\left(f\left(\begin{array}{ll}
\mathrm{x} & 1
\end{array}\right)\right)=\mathrm{f}\left(\begin{array}{ll}
(\mathrm{x}) & 1
\end{array}\right)
$$

for all $2 \mathrm{Gal}\left(Q_{\mathrm{N}}=Q\right)$. Sim ilarly, we $\left(\mathrm{f}\left(\begin{array}{ll}1 & y\end{array}\right)\right)=\mathrm{f}(1 \quad(\mathrm{y}))$ and therefore

$$
\left.\left.\begin{array}{rl}
(\mathrm{f}(\mathrm{x} \quad \mathrm{y})) & =(\mathrm{f}(\mathrm{x} \\
\mathrm{x} & 1
\end{array}\right) \mathrm{f}\left(\begin{array}{ll}
1 & \mathrm{y}))
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{f}(\mathrm{x} & 1
\end{array}\right)\right) \quad\left(\mathrm{f}\left(\begin{array}{ll}
1 & \mathrm{y}
\end{array}\right)\right) .
$$

Pasting all the W edderbum com ponents together, we see that the isom onphism $C h_{Q}\left(\begin{array}{ll}A\end{array}\right)=C h_{Q}(A) \quad C h_{Q}(A)$ is equivariant w ith respect to the diagonal action on the right-hand side.

In Paragraph 10.3, we have transferred the action of the G alois group from the character ring $\mathrm{Ch}(\mathrm{A})$ to the center Z (A) by requiring that be equivariant. A sD (A) is also a sem isim ple factorizable H opfalgebra, this whole discussion applies to D (A) as well, so that we also have an action of $\operatorname{al}\left(Q_{N}=Q\right)$ on $Z(D(A))$. The form ulas obtained in Paragraph 10.3 then give in particular that

$$
:_{i j}=\mathrm{z}: \text { :i; }^{\prime}: j \quad:_{i j}=e^{1}: i ; \quad{ }^{1}: j
$$

where we have used the form ula $:(i ; j)=(: i ;: j)$ obtained earlier.
N ow w e have already pointed out in the proofofP roposition 10.4 that induces an isom onphism betw een Z (D (A)) and Z (A) Z (A). The above form ulas now im ply that this isom onphism is equivariant if we endow Z (A) Z (A) w ith the diagonal action of the G alois group:

Corollary For $2 \mathrm{Gal}\left(Q_{\mathrm{N}}=\mathrm{Q}\right)$ and $\mathrm{z} 2 \mathrm{Z}(\mathrm{D}(\mathrm{A}))$, we have $(: z)=$: (z).

P roof. It su ces to check that we have

$$
\left(: e_{i j}\right)=\left(e^{1}: i ;{ }^{1}: j\right)=e^{1}: i \quad e^{1}: j=e_{i} \quad: e_{j}=\left(e_{i j}\right)
$$

since the centrally prim itive idem potents form a basis of Z (D (A)). 2

11 G alois groups and indicators

11.1 B efore w e really begin, we present a little background from the theory of Frobenius algebras.W e therefore defer the discussion of the setup of th is section to P aragraph 11.2.

Recall that the ring M ($r \quad r$; K) of $r \quad r-m$ atrices is a Frobenius algebra w ith respect to the ordinary m atrix trace function tr as Frobenius hom om orphism . T he dualbasis ofm atrix units $\mathrm{E}_{\mathrm{ij}} \mathrm{w}$ ith respect to the bilinear form arising from the trace is again form ed by the m atrix units $E_{j i}, w$ ith the indices reversed. T he corresponding C asim ir elem ent therefore is
$X_{i ; j=1}^{r} E_{i j} \quad E_{j i}$
N ote that this elem ent is sym m etric under interchange of the tensorands. The follow ing lem m a states that this and its C asim ir property characterize it up to proportionality:
Lem ma Suppose that ${ }^{P}{ }_{i} A_{i} \quad B_{i} 2 M\left(\begin{array}{rr} & \\ r & K\end{array}\right)^{2}$ satis es

1. ${ }^{P}{ }_{i} A_{A} A_{i} \quad B_{i}={ }^{P}{ }_{i} A_{i} \quad B_{i} A$
2. ${ }_{i} A_{i} \quad B_{i}={ }_{i} B_{i} \quad A_{i}$

Then there is a num ber 2 K such that ${ }^{P}{ }_{i} A_{i} \quad B_{i}=P_{i ; j=1} E_{i j} \quad E_{j i}$.
Proof. This veri cation is left to the reader. 2

Ifw em ultiply the tensorands of our C asim ir elem ent together, we get a m ultiple of the unit m atrix E_{r} :

$$
X_{i ; j=1}^{X^{r}} E_{i j} E_{j i}=r E_{r}=r X_{i ; j=1}^{X^{r}} \operatorname{tr}\left(E_{i j}\right) E_{j i}
$$

M ultiplying this equation by, we see that an elem ent of the form considered in the lem m a will also satisfy this equation:

$$
{ }_{i}^{X} A_{i} B_{i}=r_{i}^{X} \operatorname{tr}\left(A_{i}\right) B_{i}
$$

N ote that this discussion applies directly to the W edderbum com ponents of an arbitrary sem isim ple algebra, where, how ever, the num ber r varies w ith the W edderbum com ponent. T he algebra that we have in m ind is the character ring $\mathrm{Ch}(\mathrm{H})$ of a sem isim ple H opf algebra, which is a Frobenius algebra. ${ }^{122}$ In this application, the elem ent A_{i} that appears in the lem m a will be the W eddenbum com ponent of an irreducible character, and $B_{i} w \frac{i 1 p}{p}$ be the W eddenbum com ponent of the corresponding dual character, so that ${ }_{i} A_{i} B_{i}$ is the W eddenbum com ponent of the character of the ad joint representation.
11.2 It is the aim of this section to discuss how the action of the G alois group relates to the action of the m odular group, and again the equivariant FrobeniusSchur indicators that we introduced in P aragraph8.1 w ill be our m ain tool. W e assum e throughout the section that $A=D: D(H)$, the D rinfel'd double of a sem isim ple H opf algebra H. Recall from P aragraph 6.1 that $R_{R}\left(u_{D}\right)=$ dim (H) is a rational num ber in this case; furtherm ore, as pointed out in Paragraph 9.3, D and H have the sam e exponent N. W e w ill use the notation of Section 10 throughout.

W e need a preparatory result about the induced m odule of the trivialm odule. A s discussed in Paragraph 7.1, the induced D m odule Ind (K) of the trivial H m odule K can be realized on the underlying vector space H, and this is the way in which we will look at it in this paragraph. If we denote its character by , the result that we w ill need is the follow ing:

Proposition For allz $2 \mathrm{Z}(\mathrm{D})$ and all $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{N}}=\mathrm{Q}\right)$, we have

$$
(z)=(z)
$$

Proof. (1) By linearity, it su ces to check this on a basis of the center, so that we can assum e that $z=e_{i}$ is a centrally prim itive idem potent. If m_{i} denotes the m ultiplicity of the sim ple m odule V_{i} in Ind (K), we have $\left(e_{1}\right)=n_{i} m_{i} . W e$ rst treat the case where $\left(e_{1}\right) \in 0$; i.e., the case in which V_{i} is really a constituent of Ind (K).
Recalll ${ }^{123}$ that

$$
\mathrm{Ch}(\mathrm{H})!\operatorname{End}_{\mathrm{D}}(\mathrm{H}) ; ~ \eta(\prime \geqslant \quad)
$$

is an algebra anti-isom onphism. Since e_{i} is central, the action of e_{i} is also a D endom onphism of H, and therefore m ust be given by right m ultiplication w ith a centrally prim itive idem potent q $2 \mathrm{Z}(\mathrm{Ch}(\mathrm{H}))$. Further discussion ${ }^{124}$ show s that $q:=\operatorname{Res}\left(p_{i}\right)$, where
Res:Ch(D)! Z (Ch(H))
is the restriction map . The fact that $e_{i}: \mathbf{'}^{\prime}=$ ' q for all' 2 H implies in particular that $\left(e_{1}\right)=\operatorname{dim}\left(\begin{array}{ll}H & q\end{array}\right)$. Furtherm ore, the general theory of endom orphism rings of sem isim ple m odules ${ }^{125}$ im plies that the W edderbum com ponent of Ch(H) corresponding to q has dim ension $\operatorname{dim}(\mathrm{Ch}(\mathrm{H}) \mathrm{q})=\mathrm{m}_{\mathrm{i}}^{2}$.
(2) Let

$$
: Z(\mathrm{Ch}(\mathrm{H}))!\mathrm{K}
$$

be the central character corresponding to q; i.e., the algebra hom om onphism from $Z(C h(H))$ to K that $m a p s q$ to 1 and vanishes on all other centrally prim itive idem potents of Ch(H).Note that we then have $i=\quad R e s . N$ ow we know from Lorenz' proof of the class equation, ${ }^{126}$ com bined w ith the discussion at the end of Paragraph 11.1, that

$$
\frac{m_{i} \operatorname{dim}(H)}{\operatorname{dim}(H \quad q)}=\frac{\left({ }_{A}^{0}\right)}{m_{i}}
$$

where ${ }_{A}^{0}$ denotes the character of the adjoint representation of H. A swe have $\operatorname{dim}\left(\begin{array}{ll}H & q\end{array}\right)=\left(e_{1}\right)=n_{i} m_{i}, w e$ can rew rite this as

$$
m_{i} \operatorname{dim}(H)=n_{i}\binom{0}{A}
$$

(3) If $2 \mathrm{Ch}_{\mathrm{Q}}$ (D), we have

$$
: i()=(i())=((\operatorname{Res}()))
$$

This showsthat :i= ${ }^{0}$ Res,where ${ }^{0}: \mathrm{Ch}(\mathrm{H})!\mathrm{K}$ arises by scalar extension of from C (H) to $\mathrm{Ch}(\mathrm{H})$. If $\mathrm{q}^{0} 2 \mathrm{Z}(\mathrm{Ch}(\mathrm{H}))$ is the centrally prim itive idem potent that corresponds to ${ }^{0}$, in the sense that ${ }^{0}\left(q^{0}\right)=1$, it follow s exactly as above that $(e: i)=\operatorname{dim}\left(\begin{array}{ll}H & q^{0}\end{array}\right) 0$. Even stronger, by applying the equation obtained in the preceding step to these idem potents and using Lem man10.1, we get

$$
\mathrm{m}:: \operatorname{dim}(H)=n: i^{0}\binom{0}{\mathrm{~A}}=\mathrm{n}_{\mathrm{i}}\left(\binom{0}{\mathrm{~A}}\right)=\mathrm{n}_{\mathrm{i}}\binom{0}{\mathrm{~A}}=\mathrm{m}_{\mathrm{i}} \operatorname{dim}(\mathrm{H})
$$

from which our assertion follows im m ediately, as we have $(\mathrm{e}:$:i $)=\mathrm{n}$:im :i= $\mathrm{n}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}=\left(\mathrm{e}_{1}\right)$ by Lemmar10.1 again.
(4) Finally, it rem ains to consider the case $\left(e_{1}\right)=0$. But then we m ust also have (e:i $)=0$, because otherw ise we can replace i by $: i$ and by its inverse in the preceding discussion to get $\left(e_{1}\right)=\left(\begin{array}{ll}e_{1} & : i\end{array}\right) \in 0$, which is obviously a contradiction. 2

In view of P roposition 10.3 , this result can be restated by saying that the character of the induced trivialm odule is invariant under the action of the G alois group:

C orollary For all $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{N}}=\mathrm{Q}\right)$, we have : = .
11.3 W e now want to relate the action of the G alois group to the equivariant Frobenius-Schur indicators that we introduced in P aragraph 8.1. R ecall that for any cyclotom ic eld Q_{m} and an integer q relatively prim e to m, we have an autom orphism q $2 \mathrm{Gal}\left(\mathrm{Q}_{\mathrm{m}}=\mathrm{Q}\right)$ w ith the property that $\mathrm{q}_{\mathrm{q}}()=\mathrm{q}^{\mathrm{q}}$ for every m th root of unity . Every elem ent of the G alois group is of this form . A lthough ${ }_{q}$ depends on the eld and therefore on m, this dependence is dim inished by the fact that when $m{ }^{0}$ divides m, so that $Q_{m} 0 \quad Q_{m}$ and q is also relatively prim e to $m{ }^{0}$, the restriction of q to $Q_{m} \circ$ coincides w ith the autom orphism de ned for this eld.

U sing this notation, we can now relate the action of the Galois group to the equivariant Frobenius-Schur indicators in the follow ing way:

Proposition C onsider an H module V, a central elem ent $z 2 Z_{Q_{N}}$ (D), and three integers m;l;q 2 Z .

1. If q is relatively prim e to N and m, we have

$$
{ }_{\mathrm{q}}\left(\mathrm{I}_{\mathrm{V}}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})\right)=I_{\mathrm{V}}\left((\mathrm{~m} ; \operatorname{lq}) ;{ }^{0}(\mathrm{q})(\mathrm{z})\right)
$$

2. If q is relatively prim e to N and 1 , we have

$$
q\left(I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})\right)=I_{\mathrm{V}}((\mathrm{~m} q ; 1) ; \quad(\mathrm{q})(\mathrm{z}))
$$

3. If q is relatively prim e to N, m, and l, we have

$$
I_{V}((\mathrm{~m} ; \operatorname{lq}) ; q: z)=I_{V}((m q ; l) ; z)
$$

Proof. (1) Recall that, by Proposition 8.4, we have $I_{V}((m ; 1) ; z) 2 Q_{N}$, so that the expressions considered are w ell-de ned. W e begin by proving the rst assertion in the case $m>0$. For this, we note that both sides of the equation are sem ilinear in the variable z, so that $w e$ can assum e that $z=e_{i}$ for som ei. T hen we have by de nition that $I_{V}((m ; l) ; z)=\operatorname{tr}\left({ }^{l} m^{l}\left(e_{i}\right)\right)$, where $=\mathrm{v} ; \mathrm{V}(\mathrm{m} \quad 1)$, properly interpreted in the case $m=1$.The endom onphism ${ }^{l}{ }_{m}\left(e_{i}\right)$ coincides w ith ${ }^{l}$ on the isotypical com ponent corresponding to e_{i} and is zero otherw ise. Since ${ }^{m N}=i d$, we see that the eigenvalues of ${ }^{l} m^{l}\left(e_{i}\right)$ are $m N$ th roots of unity, which are raised to their q-th power by the action of q. But these q-th powers are exactly the eigenvalues of lq $m\left(e_{i}\right)$, which im plies the rst assertion in the case $m>0$.
(2) The rst assertion in the case $m<0$ follow from the case $m>0$, because we then have by de nition that

$$
\begin{aligned}
& { }_{q}\left(I_{V}((\mathrm{~m} ; 1) ; z)\right)={ }_{q}\left(I_{V}\left((\mathrm{~m} ; \quad) ; S_{D}(z)\right)\right)=I_{V}\left(\left(\mathrm{~m} ; \mathrm{lq}_{\mathrm{V}}\right) ;{ }^{0}(\mathrm{q})\left(\mathrm{S}_{\mathrm{D}}(\mathrm{z})\right)\right) \\
& =I_{V}\left((\mathrm{~m} ; \operatorname{lq}) ; S_{D}\left({ }^{0}(\mathrm{q})(\mathrm{z})\right)\right)=I_{\mathrm{V}}\left((\mathrm{~m} ; \mathrm{lq}) ;{ }^{0}(\mathrm{q})(\mathrm{z})\right)
\end{aligned}
$$

where the fact that ${ }^{0}(\mathrm{q})$ and S_{D} commute follow s from the fact that S_{D} perm utes the centrally prim itive idem potents. The rem aining case of the rst assertion therefore is the case $m=0$; how ever, we leave this case open for a m om ent.
(3) Instead, we now prove the second assertion in the case $m>0$ and $q=1$. In this case, we have that $1=$ is the restriction of com plex con jugation. In view of the assertion already established, we have to show that

$$
I_{V}\left((\mathrm{~m} ; \mathrm{l}) ;{ }^{0}(\quad)(\mathrm{z})\right)=I_{V}((\mathrm{~m} ; \mathrm{l}) ; \quad(\quad)(\mathrm{z}))
$$

Replacing z by ()$^{1}(z)$, we get the equivalent assertion that
$I_{V}((\mathrm{~m} ; \mathrm{l}) ;: \mathrm{Z})=\mathrm{I}_{\mathrm{V}}\left((\mathrm{m} ; \mathrm{l}) ;\left({ }^{0}(\mathrm{r}) \quad\left(\mathrm{r}^{1}\right)(\mathrm{z})\right)=\mathrm{I}_{\mathrm{V}}((\mathrm{m} ; \mathrm{l}) ; \mathrm{z})\right.$
which follow s from the fact that $: z=S(z)$ by Proposition 10.1.
(4) From this, we now deduce the rst assertion in the case $m=0$ and $1>0$. T he condition that q is relatively prim e to $m=0$ then forces that $q=1$. As the case $q=1$ is obvious, we can assum e that $q=1$, and this reduces to the case just treated since

$$
\begin{aligned}
I_{V}\left((0 ; 1) ;{ }^{0}(\quad 1)(z)\right) & =I_{V}\left((0 ; 1) ;\left(S \quad(\quad 1) \quad S^{1}\right)(z)\right) \\
& =I_{V}\left((1 ; 0) ;\left(\left(\mathrm{S}^{1}\right) S^{1}\right)(z)\right) \\
& =1\left(I_{V}\left((1 ; 0) ; S^{1}(z)\right)\right)=\quad 1\left(I_{V}((0 ; 1) ; z)\right)
\end{aligned}
$$

(5) A s in the second step, the case of the rst assertion where $m=0$ and $l<0$ follow from the case $m=0$ and $l>0$ just established by using the antipode. It therefore rem ains to establish the rst assertion in the case where $m=1=0$. Exploiting sem ilinearity as in the rst step, we can again assume that $z=e_{i}$. N ote that in general $I_{V}((0 ; 0) ; z)$ is the trace of the action of z on the induced m odule Ind (K); in case $z=e_{i}$, this is an integer. It is therefore invariant under every G alois autom onphism, which establishes the rst assertion in this case and therefore com pletely.
(6) T he second assertion follow s from the rst by a variant of the one we have used in the fourth step:

$$
\begin{aligned}
I_{V}((\mathrm{mq} ; \mathrm{l}) ;(\mathrm{q})(\mathrm{z})) & =I_{\mathrm{V}}\left((\mathrm{mq} ; \mathrm{l}) ;\left(\mathrm{S}^{1} \quad{ }^{0}(\mathrm{q}) \quad \mathrm{S}\right)(\mathrm{z})\right) \\
& =I_{\mathrm{V}}\left((\mathrm{l} ; \mathrm{mq}) ;\left({ }^{0}(\mathrm{q}) \mathrm{S}\right)(\mathrm{z})\right) \\
& ={ }_{\mathrm{q}}\left(I_{\mathrm{V}}((\mathrm{l} ; \mathrm{m}) ; \mathrm{S}(\mathrm{z}))\right)={ }_{\mathrm{q}}\left(\mathrm{I}_{\mathrm{V}}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{z})\right)
\end{aligned}
$$

(7) By com paring the rst and the second assertion, we get that

$$
I_{V}\left((\mathrm{~m} ; \operatorname{lq}) ;{ }^{0}(\mathrm{q})(\mathrm{z})\right)=I_{\mathrm{V}}((\mathrm{mq} ; \mathrm{l}) ; \quad(\mathrm{q})(\mathrm{z}))
$$

Replacing z by $(q)^{1}(z)$, this becom es

$$
\left.I_{V}((\mathrm{~m} ; \operatorname{lq}) ; \mathrm{q}: \mathrm{z})\right)=I_{\mathrm{V}}\left((\mathrm{~m} ; \operatorname{lq}) ;{ }^{0}(\mathrm{q})\left((\mathrm{q})^{1}(\mathrm{z})\right)\right)=I_{\mathrm{V}}((\mathrm{mq} ; \mathrm{l}) ; \mathrm{z})
$$

which is the third assertion. 2

For an integer q that is relatively prim e to N, we can nd another integer q^{0} such that $q^{0} 1(m$ od $N)$, which describes the inverse of the residue class of q in the group of units Z_{N}. U sing it, we can derive the follow ing corollary, which should be view ed as a kind of adjunction relation betw een the G alois action and an action on the lattice points:

C orollary Suppose that m and lare nonzero integers. Furtherm ore, suppose that q and q^{0} are relatively prim e integers that are both relatively prim e to ml . If $q^{\circ} \quad 1(\bmod N)$, we have

$$
I_{V}((m ; l) ; q: z)=I_{V}\left(\left(m q ; l q^{0}\right) ; z\right)
$$

Proof. Since q is relatively prim e to l^{0}, it follow s from the preceding proposition that

$$
I_{V}\left(\left(m ; l q q^{0}\right) ; q: z\right)=I_{V}\left(\left(m q ; l q^{0}\right) ; z\right)
$$

As we have $q q^{0} \quad 1(\mathrm{mod} N)$ and $\operatorname{god}\left(\mathrm{m} ; \mathrm{lqq}^{0}\right)=\operatorname{god}(\mathrm{m} ; 1)$, it follow s from P roposition 1.2 that $\left(\mathrm{m} ; \operatorname{lqq^{0}}\right)$ and $(\mathrm{m} ; 1)$ are in the sam $\mathrm{e}(\mathrm{N})$-onbit, so that the assertion follow s from T heorem 8.4. 2
11.4 For integers q and q^{0} such that $q q^{0} \quad 1(m o d N)$ as above, we denote the residue classes in Z_{N} by q resp. $q^{0} . W$ ith these num bers, we have associated in Paragraph 1.4 the m atrix

$$
d(q)=\begin{array}{ccc}
q & 0 & \\
0 & q^{0} & 2 \operatorname{SL}\left(2 ; Z_{N}\right)
\end{array}
$$

Because the principal congruence subgroup (N) acts trivially by T heorem 9.3, the action of the m odular group factors over the quotient group $S L\left(2 ; Z_{N}\right)$, so that in particular the action of $d(q)$ on the center is de ned. It has the follow ing basic property:

Proposition $I_{V}((m ; l) ; q: z)=I_{V}((m ; 1) ; d(q): z)$
P roof. (1) W e rst prove this in the case where both m and lare nonzero. T he numbers q, m l 0 , and N are relatively prim e, because already q and N are relatively prim e, and therefore we get from Lem man 1.3 that there is an integer c such that $q+C N$ is relatively prim etom $1 . N$ ote that $q+C N$ is necessarily nonzero. A s the asserted equation only depends on the residue class of $q \mathrm{~m}$ odulo N , we can replace q by $q+c N$ if necessary to achieve that q is relatively prim e to ml .
Sim ilarly, since $q^{0}, m \operatorname{lq} \boxminus 0$, and N are relatively prime, we can again by Lemma 1.3 nd an integer c^{0} such that $q^{0}+c^{0} N$ is relatively prime to m lq . If necessary, we can replace q^{0} by $q^{0}+c^{0} N$ to achieve that on the one hand q and q^{0} are relatively prim e, on the other hand both of them are relatively prim e to ml l 0 。
(2) If q and q^{0} are chosen so that they have these additional properties, it follow s from C orollary 11.3 that $I_{V}((m ; l) ; q: z)=I_{V}\left(\left(m q ; q^{0}\right) ; z\right)$.T herefore, our claim w ill follow if we can establish that

$$
I_{V}\left(\left(\mathrm{mq} ; \mathrm{lq}^{0}\right) ; \mathrm{z}\right)=I_{V}((\mathrm{~m} ; \mathrm{l}) ; \mathrm{d}(\mathrm{q}): \mathrm{z})
$$

For this, suppose that $\begin{array}{lll}a & b \\ c & d\end{array} \quad S L(2 ; Z)$ is a lift of $d(q) 2 S L\left(2 ; Z_{N}\right)$. By Theorem 8.3 and Theorem 8.4, it then su ces to show that (mq;lq ${ }^{0}$) and ($a m+c l ; l m+d l$) are in the same (N)-orbit. But this follow s again from Proposition 1.2, as w e have

$$
\mathrm{t}:=\operatorname{gcd}\left(\mathrm{mq} ; \mathrm{lq}^{0}\right)=\operatorname{gcd}(\mathrm{m} ; 1)=\operatorname{gcd}(\mathrm{am}+\mathrm{cl} ; \mathrm{lm}+\mathrm{dl})
$$

and the two lattice points are by construction com ponentw ise congruent m od$u l o \mathrm{~N}$ after division by t.
(3) The case $m \in 0,1=0$ can be reduced to the case just treated by observing that the lattice points $(m ; 0)$ and

$$
(m ; m N)=(m ; 0) \begin{array}{rr}
1 & N \\
0 & 1
\end{array}
$$

are in the sam e (N)-orbit, so that we get

$$
\begin{aligned}
I_{V}((\mathrm{~m} ; 0) ; \mathrm{q}: \mathrm{z}) & =I_{\mathrm{V}}((\mathrm{~m} ; \mathrm{m} \mathrm{~N}) ; \mathrm{q}: \mathrm{z})=I_{\mathrm{V}}((\mathrm{~m} ; \mathrm{m} \mathrm{~N}) ; \mathrm{d}(\mathrm{q}): \mathrm{z}) \\
& =I_{V}((\mathrm{~m} ; 0) ; \mathrm{d}(\mathrm{q}): \mathrm{z})
\end{aligned}
$$

by T heorem 8.4. Sim ilarly, the case $m=0,1 母 0$ can be reduced to the previous case, as the lattice points $(0 ; 1)$ and

$$
(\mathbb{N} ; 1)=(0 ; 1) \begin{array}{cc}
1 & 0 \\
\mathrm{~N} & 1
\end{array}
$$

are in the sam e (N)-onbit.
(4) It rem ains to consider the case $m=1=0$. In this case, $w e$ have in view of Theorem 8.3 that $I_{V}((0 ; 0) ; d(q): z)=I_{V}((0 ; 0) ; z)$ But on the other hand, this indicator is by de nition equal to the character of the induced trivialm odule, so that the equation $I_{V}((0 ; 0) ; q: z)=I_{V}((0 ; 0) ; z)$ is exactly Proposition 11.2. 2

A special case of this proposition leads to an invariance property that w ill be im portant later. R ecall from Paragraph 5.1 that e_{1} is a norm alized integral. W e now show that it is invariant under the action of the diagonal matrices $d(q)$ considered above. B efore we derive this, note a di erence in the dualization of the G alois group and the m odular group: W hile the action of the G alois group was carried over from the character ring to the center in Paragraph 10.3 by requiring that is equivariant, the action of the m odular group on the character ring was introduced in P aragraph 9.1 by regarding the character ring as dual to the center via the canonical pairing.

C orollary If q 2 Z is relatively prime to N, we have $d(q): 1=1$ as well as $d(q): e_{1}=e_{1}$.

P roof. A s we have already used in the proof of C orollary 8.4, the indicators corresponding to the lattice points $(1 ; 0)$ are exactly the characters of the induced m odules. The regular representation of D is induced from the regular representation of H, so that we get as a special case of the above proposition that ${ }_{R}(q: z)=R_{R}(d(q): z)$. If $q^{0} 2 Z$ satis es $q q^{0} 1(m \operatorname{od} N)$, this equation, in term s of the action of the m odular group on the character ring introduced in P aragraph 9.1, reads

$$
q:{ }_{R}=d\left(q^{0}\right):_{R}
$$

where we have used Proposition 10.3 in addition. A s we have (1) $=\quad \mathrm{R}$ by construction, it follow s from Proposition 9.1 and Proposition 10.3 that ${ }_{q}{ }^{1}: 1=$ $d\left(q^{0}\right): 1 . N$ ow it follow s from Lemma 10.1 that $q: e_{1}=e_{1}$. Applying S and using Proposition 10.3, we get ${ }_{q}{ }^{1}: S\left(e_{1}\right)=S\left(e_{1}\right)$. But $S\left(e_{1}\right)=1$ by C orollary 5.2, which shows that $q^{1}: 1=1$ and establishes the rst assertion. T his equation also show s that the second assertion follow sfrom the rst by applying $S{ }^{1}$ and using the com mutation relation

$$
\begin{array}{cccc}
\mathrm{q} & 0 & 0 & 1 \\
0 & \mathrm{q}^{0} & 1 & 0
\end{array}=\begin{array}{cc}
0 & q \\
q^{0} & 0
\end{array}=\begin{array}{cccc}
0 & 1 & q^{0} & 0 \\
1 & 0 & 0 & q
\end{array}
$$

betw een s and the diagonalm atrix. 2
11.5 Proposition 11.4 can be substantially strengthened: T he follow ing theorem, which is the m ain result of this section, asserts that the tw o actions do not only give the sam e result inside the indicators, but are just equal:

Theorem Ifq2 Z is relatively prime to N, then we have $q: z=d(q): z$ for all elem ents z in the center of $D=D(H)$.

Proof. For this, it su ces to show that $(q: z)=(d(q): z)$ for all $2 C h(D)$. If we rew rite this equation in term s of the action of the G alois group on the character ring introduced in Paragraph 10.1 and of the action of the m odular group on the character ring introduced in Paragraph 9.1, it takes by Proposition 10.3 the form $q:=d\left(q^{0}\right):$, where $q^{0} 2 Z$ satis es $q q^{0} \quad 1(m o d N)$.This is equivalent to the condition

$$
\mathrm{h}_{\mathrm{q}}: ;{ }_{1} \mathrm{i}=\operatorname{hd}\left(\mathrm{q}^{0}\right): ;{ }_{1 \mathrm{i}}
$$

 the character of the induced D (D) m odule Ind $\left(V_{1}\right)$, we can by Proposition 9.2 rew rite this equation in the equivalent form

$$
{ }_{1}\left({ }^{1}\left({ }^{1}(q:) \quad{ }^{1}(")\right)\right)={ }_{1}\left({ }^{1}\left({ }^{1}\left(d\left(q^{0}\right):\right) \quad{ }^{1}(")\right)\right)
$$

A swe have ${ }^{1}(")={ }^{1} e_{1}$ by P roposition5.2, we can rew rite th is equation further in the form

$$
{ }_{1}\left({ }^{1}\left(q^{1}:{ }^{1}() e_{1}\right)\right)={ }_{1}\left({ }^{1}\left(d\left(q^{0}\right):^{1}() e_{1}\right)\right)
$$

where we have used P roposition 9.1 and P roposition 10.3. By Lem man 10.1, we have ${ }_{q}\left(e_{1}\right)=e_{1}$, which can be used together w ith the analogous equation in C orollary 11.4 to give w ith

$$
{ }_{1}\left({ }^{1}\left(q^{1}:{ }^{1}() \quad q^{1}: e_{1}\right)\right)={ }_{1}\left({ }^{1}\left(d\left(q^{0}\right):{ }^{1}() d\left(q^{0}\right): E_{1}\right)\right)
$$

stillanother equivalent version of our condition. This in tum is by C orollary 10.5 and P roposition 4.5 equivalent to

$$
{ }_{1}\left(q^{1}:{ }^{1}\left({ }^{1}() e_{1}\right)\right)={ }_{1}\left(d\left(q^{0}\right):{ }^{1}\left({ }^{1}() e_{1}\right)\right)
$$

Butaswe have ${ }_{1}\left(z^{0}\right)=I_{V_{1}}\left((1 ; 0) ; z^{0}\right)$ for all $z^{0} 2 Z(D(D))$, this is a specialcase of P roposition 11.4. 2
T his theorem has an interesting consequence for the com ponents u_{i} of the D rinfel'd elem ent that we introduced in P aragraph 5.2:

C orollary For all $2 \mathrm{Gal}\left(Q_{N}=Q\right)$, we have ${ }^{2}\left(u_{i}\right)=u$:i.
P roof. Recall that all com ponent u_{i} of the D rinfel'd elem ent are N-th roots of unity. If $=q$ and $q q^{0} 1(\mathrm{mod} N)$, it follow s from the relation

$$
\begin{array}{cccccc}
q^{0} & 0 & 1 & 1 & q & 0 \\
0 & q & 0 & 1 & 0 & q^{0}
\end{array}:_{i}=\begin{array}{ccc}
1 & q^{\infty} \\
0 & 1 & :_{i}
\end{array}
$$

by the preceding theorem that $q^{1}:\left(u^{1}{ }_{q}: e_{i}\right)=u^{q^{02}} e_{i}$, or altematively

$$
\frac{1}{u_{q^{1}}: i} e_{i}=q^{1}:\left(\frac{1}{u_{q^{1}}: i} e_{q^{1}: i}\right)=q^{1}:\left(u^{1} e_{q^{1}: i}\right)=u_{i} q^{02} e_{i}=q^{2}\left(\frac{1}{u_{i}}\right) e_{i}
$$

which establishes the assertion. 2

12 G alois groups and congruence subgroups

12.1 In this section, we leave the case of a D rinfel'd double and reconsider an arbitrary sem isim ple factorizable H opf algebra A. W e w ill use the notation introduced in Section 5, and for the double D := D (A) we w ill use the notation introduced in Paragraph 10.4. We rst consider a new quantity that w ill play an im portant role in the sequel:

De nition Forq2 Z, we de ne the H opf sym bol
w here N is the exponent of A.

The H opf sym bol generalizes the Jacobi sym bol: If we take R adford's exam ple, i.e., $A=K\left[Z_{n}\right]$, the group ring of a cyclic group of odd order n endow ed with a m odi ed R m atrix, then it follow s from the discussion in Paragraph 5.5 that

$$
\frac{q}{\mathrm{~K}\left[\mathrm{Z}_{\mathrm{n}}\right]}=\frac{\mathrm{q}}{\mathrm{n}}
$$

The H opf sym bol should be view ed as a 1-cocycle in the follow ing way: ${ }^{127}$ The G alois group G al $\left(Q_{N}=Q\right)$ acts on the m ultiplicative group Q_{N} of nonzero elem ents in the cyclotom ic eld. W ith the elem ent $R_{R}\left(u^{1}\right) 2 Q_{N}$, we can therefore associate a 1-coboundary

$$
f: \operatorname{Gal}\left(Q_{N}=Q\right)!Q_{N} ; \quad \eta \frac{\left(\mathrm{R}^{(}\left(\mathrm{u}^{1}\right)\right)}{\mathrm{R}\left(\mathrm{u}^{1}\right)}
$$

This is essentially the H opf sym bol: If q is relatively prim e to N , we have

$$
f(q)=\frac{q^{(}\left(R\left(u^{1}\right)\right)}{R\left(u^{1}\right)}=\frac{R\left(u^{q}\right)}{R\left(u^{1}\right)}=\frac{q}{A}
$$

A s a 1-coboundary, it is in particular a 1-cocycle, and therefore satis es

$$
\frac{q^{0}}{A}=\frac{q}{A} \quad q\left(\frac{q^{0}}{A}\right)
$$

A ctually, it follow sfrom a version of H ibert's theorem 90 that every cocycle is a coboundary in this situation. ${ }^{128}$

From the cocycle equation, we im m ediately obtain the follow ing:

Proposition T he follow ing assertions are equivalent:

1. The H opf sym bol is a D irichlet character.
2. $\frac{q}{A} 2 Q$ for allq 2 Z .

In this case, we even have that $\frac{q}{\mathrm{~A}} 2 \mathrm{f0} ; 1$; 1 g for allq 2 Z .
Proof. That the H opf sym bol is a D irichlet character m eans by de nition ${ }^{129}$ that we have

$$
\frac{q q^{0}}{A}=\frac{q}{A} \frac{q^{0}}{A}
$$

for all $q ; q^{0} 2 \mathrm{Z}$. N ote that this equation is satis ed autom atically if q or q^{0} are not relatively prim e to $\mathrm{N} . \mathrm{Com}$ paring this equation to the 1-cocycle equation above, we see that it is equivalent to the condition $q^{\left(\frac{q^{0}}{A}\right)}=\frac{q^{0}}{A}$. But that the H opf sym bol is invariant under the G alois group just m eans that it is a rational num ber.

If it now happens that the H opf sym bol is a D irichlet character, then its im age

$$
\mathrm{f} \frac{\mathrm{q}}{\mathrm{~A}} \quad j q 2 \mathrm{Z} ; \operatorname{god}(\mathrm{q} ; \mathrm{N})=1 \mathrm{~g}
$$

is a nite subgroup of the m ultiplicative group Q. As $f 1 ; 1 g$ is the largest nite subgroup of Q , it m ust contain all the H opf sym bols. ${ }^{130} 2$
12.2 To nd out m ore about the H opf sym bol, the rst step is to note that C orollary 11.5 still holds in this m ore general situation:

Lem ma For all $2 \mathrm{Gal}\left(Q_{N}=Q\right)$, we have ${ }^{2}\left(u_{i}\right)=u$:i.
P roof. The expansion of the D rinfel'd elem ent considered in Paragraph 5.2 takes in the case of D (A) the form

$$
u_{D}=X_{i ; j=1}^{x^{k}} u_{i j} e_{i j}
$$

In term s of these components, the equation $\left(u_{D}\right)=u \quad u^{1}$ obtained in Lem ma 3.1 takes the form
so that $u_{i j}=\frac{u_{i}}{u_{j}}$. From C orollary 11.5, we get that ${ }^{2}\left(u_{i j}\right)=u: u_{: i}: j$, which translates into

$$
\frac{{ }^{2}\left(u_{i}\right)}{{ }^{2}\left(u_{j}\right)}=\frac{u: i}{u: j}
$$

so that ${ }^{2}\left(u_{i}\right)=u: i={ }^{2}\left(u_{j}\right)=u: j$. As we have $u_{1}="(u)=1$ and $: 1=1$ by Lemma 10.1, we can insert $j=1$ into this equation to get ${ }^{2}\left(u_{i}\right)=u$:i $=1$, from which the assertion follow s im m ediately. 2

It m ay be noted that inserting for and using Proposition 10.1, we recover the fact that $u_{i}=u_{i}$, which expresses that $S(u)=u$, a fact already pointed out in Paragraph 5.1.

A s a consequence, we can derive several facts about the H opf sym bol:
P roposition TheH opfsym bolis a root ofunity. If N is odd, its orderdivides 6 and 2 N . If N is even, its order divides 24 and N . Furthem ore, we have

$$
\frac{\mathrm{q}}{\mathrm{~A}}=1
$$

if q is a square m odulo N.
Proof. (1) From Proposition5.3, we getSTSTST $\left.=R^{(} u^{1}\right) d i m(A) C^{2}$.A. C^{2} is the unit m atrix, this im plies by taking determ inants that ${ }^{131}$

$$
\operatorname{det}(S)^{3} \operatorname{det}(T)^{3}=R\left(u^{1}\right)^{k} \operatorname{dim}(A)^{k}
$$

Proposition 5.3 also yields that $\operatorname{det}(S)^{2}=\operatorname{dim}(A)^{k} \operatorname{det}(C)=\operatorname{dim}(A)^{k}$. Therefore, if q is relatively prime to N, we have $q(\operatorname{det}(S))=\operatorname{det}(S)$. If we now apply q to the above equation, we get

$$
\operatorname{det}(S)^{3}(\operatorname{det}(T))^{3}={ }_{R}\left(u^{q}\right)^{k} \operatorname{dim}(A)^{k}
$$

If we divide the tw o equations by each other, we therefore get that

$$
\frac{q}{A}^{k}=\frac{R^{(}\left(u^{q}\right)^{k}}{R\left(u^{1}\right)^{k}}=\frac{q(\operatorname{det}(T))^{3}}{\operatorname{det}(T)^{3}}
$$

Since det(T) is an N th root ofunity, we see that $\frac{q}{A}$ is a root of unity. M oreover, it is clear from its de nition that $\frac{q}{A} 2 Q_{N}$, which im plies that $\frac{q^{A}}{}{ }^{2 N}=1$, and actually $\frac{q^{A}}{}{ }^{N}=1$ if N is even. ${ }^{132}$
(2) It now follow s from the preceding lem m a and Lem man 10.1 that we have

$$
\left.R\left(u^{q^{2} l}\right)={\underset{q}{2}}_{2}^{R}\left(u^{l}\right)\right)=X_{i=1}^{X_{i}^{k}} n_{q}^{2}\left(\frac{1}{u_{i}^{1}}\right)=X_{i=1}^{X^{k}} n_{q: i} \frac{1}{u^{1}{ }_{q}: i}=R_{R}\left(u^{l}\right)
$$

D ividing this equation by $R\left(u^{1}\right)$, this shows that $\frac{l q^{2}}{A}=\frac{l}{A}$, which show S for $l=1$ that $\frac{q^{2}}{A}=1$. But the com putation also show s that

$$
{ }_{q}^{2}\left(\frac{1}{A}\right)=\frac{{ }_{q}^{2}\left(R\left(u^{1}\right)\right)}{\left.{\underset{q}{2}}_{2}^{A}\left(u^{1}\right)\right)}=\frac{R\left(u^{1}\right)}{R\left(u^{1}\right)}=\frac{l}{A}
$$

Now if is a prim itive N th root of unity, we have already show n in the rst step that we can write $\frac{1}{A}=\quad \mathrm{m}$ for som em, so that the preceding equation becom es $\mathrm{mq}^{2}=\mathrm{m}$, which implies $\mathrm{mq}^{2} \quad \mathrm{~m}(\mathrm{mod} N)$ for all q that are relatively prime to N, which m eans that N divides $m\left(q^{2} \quad 1\right)$. If N is odd, we see by taking $q=2$ that N divides 3 m , so that $\frac{1}{A}^{3}=3 m=1$ and therefore $\frac{1}{A}^{6}=1$.
If N js even, we have seen that we actually have $\frac{l}{A}=m$ for somem. If $N={ }_{i} p_{i}^{m}$ is the prim e factorization of N into pow ers of distinct prim es, we can nd by the Chinese rem ainder theorem a unit q modulo N that satis es $q \quad 3\left(m o d p_{i}^{m_{i}^{i}}\right)$ if $p_{i}=2$ and $q \quad 2\left(m o d p_{i}^{m_{i}^{i}}\right)$ if $p_{i} \in 2$. If $p_{i}=2$, we therefore get that p_{i}^{m} divides $8 m$, and if $p_{i} \in 2, p_{i}^{m}$ divides $3 m$. In any case, p_{i}^{m} divides 24 m , so that N divides 24 m , show ing ${ }^{133}$ that $\frac{1}{A}^{24}=1.2$

Itm ay be noted that this proposition asserts in particular that $R(u)=R_{R}\left(u^{1}\right)$ if 1 is a square m odulo N. If this happens, we can say even m ore about the H opf sym bol:

C orollary Suppose that $R(u)=R\left(u^{1}\right)$. Then the H opf sym bol is a D irichlet character, and we have $\frac{\mathrm{g}}{\mathrm{A}} 2 \mathrm{f0} ; 1$; 1 g for allq 2 Z .

Proof. Let $2 \mathrm{Gal}\left(Q_{N}=Q\right)$ be the restriction of com plex conjugation considered in P aragraph 10.1. U sing it, we can write the assum ption in the form $\left(R\left(u^{1}\right)\right)=R\left(u^{1}\right)$. If q is relatively prim e to N, we then also have

$$
\left.\left.\left(R\left(u^{q}\right)\right)=\left(q_{R}\left(u^{1}\right)\right)\right)=q_{q}\left(\left(_{R}\left(u^{1}\right)\right)\right)=q_{R}\left(u^{1}\right)\right)=R\left(u^{q}\right)
$$

because $G a l\left(Q_{N}=Q\right)$ is abelian. D ividing this equation by the preceding one, we obtain $\left(\frac{q}{A}\right)=\frac{q}{A}$. But since $\frac{q}{A}$ is a root of unity by the preceding result, we also have $\left(\frac{q}{A}\right)=1=\frac{q}{A} . T h e r e f o r e ~ \frac{q}{A}{ }^{2}=1$ and $\frac{q}{A} 2 \mathrm{f} 1$; 1 g. The rem aining assertions follow from Proposition 12.1. 2
W e have already pointed out that the condition $R(u)=V_{R}\left(U^{1}\right) m$ eans for the H opf sym bol that $\frac{1}{\mathrm{~A}}=1$. A D irich let character w ith this property is called even. ${ }^{134}$
12.3 W e have seen in Paragraph 9.4 that the kemel of the pro jective representation of the m odular group is a congruence subgroup of level N. H ow ever, in the case where $R(u)=R_{R}\left(u^{1}\right)$, we have also seen that this pro jective representation com es from a linear representation. T his raises the question whether in this case also the kemel of the linear representation is a congruence subgroup of level N. A s we will see now, this in fact holds. O ur reasoning is based on the follow ing lemma, which is an adaption of an argum ent by A. C oste and T.G annon to our situation: ${ }^{135}$

Lem ma Suppose that $q ; q^{0} 2 \mathrm{Z}$ satisfy $q q^{0} \quad 1(m o d N)$. Then we have

$$
\left(S \quad T^{q^{0}} \quad S^{1} \quad T^{q} \quad S \quad \hat{\mathbb{F}}^{0}\right)\left(e_{m}\right)=R^{\left(u^{q}\right) e_{q}{ }^{1} m}
$$

P roof. It follow s from Proposition [5.3 that

$$
\operatorname{STSTST}=R^{(}\left(u^{1}\right) \operatorname{dim}(A) C^{2}
$$

and C^{2} is the unit m atrix by construction. If we write this out in com ponents, it m eans that

$$
X_{j ; 1=1}^{X^{k}} \frac{S_{i j}}{u_{j}} \frac{S_{j 1}}{u_{1}} \frac{S_{l m}}{u_{m}}=R\left(u^{1}\right) \operatorname{dim}(A) i m
$$

If we apply ${ }_{q}$ to this equation, it becom es

$$
\left.X_{j ; 1=1}^{X^{k}} \frac{S_{i ; q}: j}{u_{j}^{q}} \frac{S_{q}: j ; 1}{u_{1}^{q}} \frac{S_{1 ;} m}{u_{m}^{q}}=R^{q}\left(u^{q}\right) \operatorname{dim}(A)\right)_{i m}
$$

If we replace j by $q{ }^{1}: j$ and m by $q^{1} m$, this becom es

$$
X_{j ; l=1}^{X^{k}} \frac{S_{i j}}{u^{q}{ }_{q}{ }^{1}: j} \frac{S_{j 1}}{u_{1}^{q}} \frac{S_{l m}}{u^{q}{ }_{q}{ }^{1} m}=R\left(u^{q}\right) \operatorname{dim}(A)_{i ; q^{1} m}
$$

But this can by the preceding proposition be written in the form

$$
X_{j ; l=1}^{X^{k}} \frac{S_{i j}}{u_{j}^{q^{0}}} \frac{S_{j 1}}{u_{1}^{q}} \frac{S_{l m}}{u_{m}^{q^{0}}}=R\left(u^{q}\right) \operatorname{dim}(A)_{i ; q}{ }^{1} m
$$

M ultiplying $e_{i}=n_{i}$ by this scalar and sum m ing over i, this becom es

$$
\underline{1}_{j ; 1=1}^{X^{k}} \frac{S_{j 1}}{u_{1}^{q}} \frac{S_{l m}}{u_{m}^{q^{0}}}\left(S \quad T^{q^{0}}\right)\left(\frac{e_{j}}{n_{j}}\right)=X_{i ; j ; 1=1}^{X^{k}} \frac{S_{i j}}{u_{j}^{q^{0}}} \frac{S_{j 1}}{u_{1}^{q}} \frac{S_{l m}}{u_{m}^{q^{0}}} \frac{e_{i}}{n_{i}}=R_{R}\left(u^{q}\right) \operatorname{dim}(A) \frac{1}{n_{m}} e_{q}{ }^{1} m
$$

by C orollary 5.2, and by repeating this argum ent we get

$$
\begin{aligned}
R\left(u^{q}\right) \frac{\operatorname{dim}(A)}{n_{m}} e_{q}^{1} m & =\frac{1}{2}_{l=1}^{X^{k}} \frac{S_{l m}}{u_{m}^{q^{0}}}\left(S \quad T^{q^{0}} \quad S\right. \\
& =\frac{1}{3}\left(\begin{array}{llllll}
S & T^{q^{0}} & S & e_{1} \\
n_{l}
\end{array}\right. \\
& \left.S \quad \mathbb{F}^{0}\right)\left(\frac{e_{m}}{n_{m}}\right)
\end{aligned}
$$

which gives

$$
\left(\begin{array}{lllll}
S & T^{0} & S & \mathbb{T} & \mathbb{P}^{0}
\end{array}\right)\left(e_{m}\right)={ }_{R}\left(u^{q}\right) \operatorname{dim}(A) e_{q}^{1} m
$$

after substituting m for m. Applying the antipode, which com m utes w ith S and T, we get

$$
\left(S \quad T^{q^{0}} S S \quad \mathrm{~T} \quad S \quad \mathbb{C}^{0}\right)\left(e_{m}\right)=R\left(u^{q}\right)(\quad)\left(R^{0} R\right) e_{q}^{1} m
$$

where we have used that ${ }^{2} \operatorname{dim}(A)=(u)\left(u^{1}\right)=(\quad)\left(R^{0} R\right)$, as observed in Paragraph 5.3. N ow the assertion follow s from C orollary 4.2. 2

From this lem ma, we can now deduce the result indicated above:
Theorem Suppose that $R(u)=R\left(u^{1}\right)$. Then the kemel of the representation of the m odular group on the center of A is a congruence subgroup of level N.

P roof. (1) To begin, recall that we saw in P aragraph 4.3 that the condition $R(u)=R\left(u^{1}\right)$, which for the H opfsym bolm eans that $\frac{1}{A}=1$, ensures that the representation of the m odular group is linear, and not only pro jective, so that it is m eaningful to talk about the kemel. Recall also our convention from Paragraph 9.1 that $=\frac{1}{R^{(u)}}$ in this case. Furtherm ore, we have just seen in C orollary 12.2 that the H opf sym bol is then a D irich let character and takes only the values 0,1 , and 1 .
W e have to verify the relations listed in Proposition 1.4. The relations $s^{4}=1$, $(t s)^{3}=s^{2}$, and $t^{N}=1$ that are listed there rst are clearly satis ed. Next, we verify the second relation, i.e., the relation $t^{2^{e}}\left(s t^{m} s^{1}\right)=\left(s t^{m} s^{1}\right) t^{e^{e}}$, where we have factored the exponent in the form $\mathrm{N}=2^{\mathrm{e}} \mathrm{m}$ for m odd. N ow, as $t^{e^{e}}\left(s t^{m} s^{1}\right) t^{2^{e}}\left(s t^{m} s^{1}\right) 2(N)$, we know from T heorem 9.4 that there is a scalar 2 K such that

$$
\mathrm{T}^{2^{e}}\left(\mathrm{ST}^{\mathrm{m}} \mathrm{~S}^{1}\right) \mathrm{T}^{2^{e}}\left(\mathrm{ST}^{\mathrm{m}} \mathrm{~S}^{1}\right)(\mathrm{z})=\mathrm{z}
$$

for all $z 2 \mathrm{Z}(\mathrm{A})$. Inserting $\mathrm{z}=\left(\mathrm{S} \mathrm{T}^{\mathrm{m}} \mathrm{S}{ }^{1} \mathrm{~T}^{2^{e}}\right)\left(\mathrm{e}_{1}\right)$, this becom es

$$
\left(S^{m} S^{1} T^{2^{e}}\right)\left(e_{1}\right)=T^{2^{e}}\left(S^{m} S^{1}\right)\left(e_{1}\right)
$$

Ase e_{1} is an integral, and we have $S(1)=S\left(z_{1}\right)=\operatorname{dim}(A) e_{1}$ by Corollary 5.2, this equation can be rew ritten as

$$
\left(S^{m} S^{1}\right)\left(e_{1}\right)=\frac{1}{\operatorname{dim}(A)} T^{2^{e}}\left({\left.S T^{m}\right)(1)}^{m}\right)
$$

which im plies

$$
S\left(u^{m}\right)=\left(S T^{m}\right)(1)=T^{2^{e}}\left(S T^{m}\right)(1)=T^{2^{e}}\left(S\left(u^{m}\right)\right)
$$

Because $S\left(u^{m}\right) \in 0$, we see that is an eigenvalue for $T^{2^{e}}$, and therefore an m th root of unity.

Sim ilarly, we can insert $z=\left(S T^{m} S{ }^{1} T^{2^{e}}\right)(1)$ into the above equation, which then becom es

$$
\begin{aligned}
\left(\mathrm{ST}^{m} S^{1} \mathrm{~T}^{2^{e}}\right)(1) & =\mathrm{T}^{2^{e}}\left(\mathrm{~S} \mathrm{~T}^{m} S^{1}\right)(1) \\
& =\frac{1}{\operatorname{dim}(A)} T^{2^{e}}\left(\mathrm{~S} \mathrm{~T}^{m}\right)\left(e_{1}\right)=\frac{1}{\operatorname{dim}(A)} \mathrm{T}^{2^{e}} S\left(e_{1}\right)=T^{2^{e}}(1)
\end{aligned}
$$

A pplying S^{1} to both sides and dividing by , this becom es

$$
T^{m}\left(S^{1}\left(u^{2^{e}}\right)\right)=\frac{1}{-} S^{1}\left(u^{2^{e}}\right)
$$

Therefore $1=$ is an eigenvalue for T^{m}, and therefore a 2^{e}-th root of unity. But now is both a 2^{e}-th root of unity and an m th root of unity, which can only be if $=1$,which in tum establishes our relation.
(2) The rem aining two relations involve the diagonalm atrices $d(q)$. N ow note that w ith the help of these m atrices the form ula in the preceding lem m a can be expressed as

$$
d(q): e_{m}=R^{\left(u^{q}\right)} e_{q}{ }^{1} m=\frac{R\left(u^{q}\right)}{R\left(u^{1}\right)} e_{q}{ }^{1} m=\frac{q}{A} e_{q}{ }^{1} m
$$

which show s that $(q): z=\frac{q}{A} \quad q: z$ for allz $2 Z(A)$.Thism eans that the relation $d(q) s=s d(q)^{1}$ listed third in Proposition 1.4 reads

$$
\frac{q}{A} \quad q: S(z)=\frac{1}{\frac{q}{A}} S\left(q^{1}: z\right)
$$

But as $\frac{q}{A}=1$, this am ounts to the relation $q_{q}: S(z)=S\left({ }_{q}{ }^{1}: z\right)$, which was proved in Proposition 10.3.
(3) F inally, for the fourth relation in Proposition 1.4, we have on the one hand that

$$
d(q) t: e_{j}=\frac{1}{u_{j}} d(q): e_{j}=\frac{1}{u_{j}} \frac{q}{A} e_{q^{1}: j}
$$

and on the other hand

$$
t^{q^{2}} d(q): e_{j}=\frac{q}{A} \quad t^{q^{2}}: e_{q}^{1}: j=\frac{q}{A} \frac{1}{u^{q^{2}}{ }_{q}^{1}: j} e_{q}^{1}: j
$$

B oth expressions are equal.by Lem m a 12.2 , so that all the required relations are satis ed. This proves that (N) is contained in the kemel, and that the level of the kemel is exactly N follow s as in T heorem 9.3. 2

The preceding theorem generalizes T heorem 9.3 , because in the case where $A=D(H)$ is the D rinfeld double of a sem isim ple H opf algebra H, we saw in Paragraph 6.1 that

$$
R\left(u_{D}\right)=R\left(u_{D}^{1}\right)=\operatorname{dim}(H)
$$

Applying q to this form ula, we see that also $R\left(u_{D}{ }^{q}\right)=\operatorname{dim}(H)$, so that $\frac{\mathrm{q}}{\mathrm{A}}=1 . \mathrm{W}$ e therefore see that the form ula

$$
d(q): z=\frac{q}{A} \quad q: z
$$

that we obtained in the preceding proof reduces to T heorem 11.5. H ow ever, one has to keep in m ind that all these results were used in the preceding proof.

N otes

${ }^{1}$ [10]; [60]; [41].
2 59].
${ }^{3}$ [5]; [11]; [14].
${ }^{4}$ 19]; 20].
${ }^{5}$ [16], T hm . 4.3, p. 136.
${ }^{6}$ [50]; [58]; [25]; [26]; [35]; [36]; [37].
7 [22].
${ }^{8}$ [22], C or. 2.3, p. 17; Prop. 3.2, p. 23; C or. 6.4, p. 48; T hm . 3.4, p. 26.
${ }^{9}$ [6]; [58], Sec. II.3.9, p. 98.
10 [58]; [35]; [36].
${ }^{11}$ [25]; [37].
${ }^{12}$ [22], P rop. 6.2, p. 44.
${ }^{13}$ [9], A pp. B , p. 302.
${ }^{14}[11], \times 2.3, \mathrm{Thm} .2, \mathrm{p} .7$.
${ }^{15}$ [49], P rop. 2.3', p. 542.
${ }^{16}$ [2], Sec. 2.2, Thm . 2.1, p. 28; [29], x II.2, p. 108.
${ }^{17}$ [12], x 7.2 , p. 85; [27], x II.9.1, p. 454; 38], Sec. II.1, Thm . 8, p. 53; 39], Thm .3.1, p. 108.
${ }^{18}$ [29], K ap. II, x 3, p. 116.
${ }^{19}$ [27], x II.7.5, p. 397; [28], p. 96.
20 [18], D ef. 1.4, p. 54.
${ }^{21}$ [18], Par. 1.8, E xerc. 8, p. 57.
22 [23], D ef. V III.2.2, p. 173; [40], D ef. 10.1.5, p. 180; [58], Sec. X I.2.1, p. 496.
${ }^{23}$ [23], Sec. v III.4, p. 179; 40], T hm . 10.1.13, p. 181; [58], Sec. X I.2.2, p. 498.
${ }^{24}$ [23], C hap. IX , p. 199; [40], x 10.3, p. 187; [58], Sec. X I.2.4, p. 499.
25 [25], P rop. 7, p. 366; [21], P ar. 2, p. 89.
26 [40], T hm . 10.3.12, p. 192; [46], T hm . 4, p. 303.
${ }^{27}$ [48], P rop. 3, p. 590.
28 [25], P rop. 7, p. 366.
29 [13], P rop. 6.2 , p. 337; [23], P rop.V III.2.5, p. 177; 52], Sec. 4 , p. 1896; 57], Thm . 1, p. 2.

30 [23], T hm . V III.2.4, p. 175; [40], P rop. 10.1 .8, p. 180; 58], Lem . X I.2.1.1, p. 497.
${ }^{31}$ [49], Thm . 2.9, p. 546; 52], T hm . 4.3, p. 1897; 57], T hm . 2, p. 2.
32 [23], P rop . X V .3.6, p. 376.
33 [40], D ef. 10.1.15, p. 183.
34 [23], E xerc. XV .6.1, p. 381; 52], p. 1897.
${ }^{35}$ [13], P rop. 3.3, p. 327; see also [15], Lem . 1.1; p. 192; 52], Thm . 2.1, p. 1892.
${ }^{36}$ (40], D ef. 10 .3.1, p. 188.
37 [23], T hm . V III.2.4, p. 175; [40], P rop. 10.1 .8 , p. 180; 58], Lem . X I.2.1.1, p. 497.
38 [13], P rop . 3.3, p. 327; 25]; Lem . 2, p. 362.
39 [13], P rop • 3.2, p. 327; 40], T hm . 10.1.13, p. 181.
40 [13], P rop . 3.4, p. 328.
${ }^{41}$ [49], Thm . 2.9, p. 546; 52], Thm . 4.3, p. 1897.
42 [49], D ef. 2.1, p. 543; see also [15], Lem . 1.1, p. 192; [52], p. 1892.
43 22], Par. 6.2 , p. 44.
44 47], Prop. 3, p. 224 ; 52], R em . 4.4, p. 1898.
45 [48], T hm . 3, p. 594.
46 33], P rop. 1, p. 269.
${ }^{47 \text { 55], P rop } .4 .4, ~ p . ~} 639$.
48 1], T hm . 3.4, p. 488.
49 [52], Lem . 2.2, p. 1893; 48], P rop. 3, p. 590.
50 40], T hm . 2.1.3, p. 18.
51 52], Lem . 2.2 , p. 1893.
${ }^{52}$ See also [36], D ef. 6.2 , p. 320; [37], T hm . 1.1, p. 507.
53 [58], Sec. X I.3.1, p. 500 ; note the di erence to [23]], D ef. X IV .6.1, p. 361.
54 [23], C or. X IV .6.3, p. 362.
55 [25], P rop. 13, p. 372; 36], T hm . 6.5, p. 321; 37], Eq. (1), p. 507.
56 [40], Prop. 10.1 .4 , p. 179; 58], Sec. X I.2.2, Eq. (2.2 .c), p. 498; 23], P rop.V III.4.1, p. 180.
57 47], C or. 2, p. 226.
58 [48], P rop. 3, p. 590.
59 40], P rop. 10.1.14, p. 183.
60 [3], R em . 3.1.9, p. 52; [8] , Sec. 4, p. 34 .

61 [33], T hm . 3.3, p. 276 ; 32], T hm . 4, p. 195.
62 [17], Thm . 1.11, p. 40.
63 33], P rop. 2.4, p. 273.
${ }^{64}$ [13], P rop. 6.2, p. 337; 40], P rop. 10.1.14, p. 183; see also [15], Eq. (3), p. 192.
65 63], Lem . 2, p. 55 ; 22], P rop. 6.2, p. 44.
${ }^{66}$ [54], Prop. 3.3, p. 208.
${ }^{67}$ 62], Eq. (4.1), p. 888.
68 [54], Subsec. 3.3, p. 208.
${ }^{69}$ [54], P rop. 3.5, p. 211.
70 [40], P rop. 10.1 .4 , p. 179 ; 58], Sec. X I.2.2, Eq. (2.2 .c), p. 498 ; 23], P rop. V III.4.1, p. 180.
${ }^{71}$ [58], Lem . X I.3.3, p. 501 ; 23], P rop. X IV .6.4, p. 363.
72 [58], Sec. II.3.9, p. 98.
73 [58], Sec. II.1.4, p. 74; note the di erence to [15]], p. 192 and [52], Rem . 3.4, p. 1895.
${ }^{74}$ [3], Eq. (3.1.3), p. 48; 52], Rem . 3.4, p. 1895; 58], p. 74f, p. 90.
75 [58], Sec. II.3.9, p. 98.
${ }^{76}$ [15], Lem . 1 .2, p. 193; 52], Rem . 3.4, p. 1895; 58], Sec. II.3.8, Eq. (3.8.a), p. 97.
77 [58], Sec. II.3.8, Eq. (3.8.c), p. 97.
${ }^{78}$ [15], T hm . 1.4, p. 193; 52], Thm . 3.2, p. 1894; 55], Thm . 5.7, p. 641; 57], T hm . 3, p. 5.
79 45], Sec. 3, p. 10 ; 47], Sec. 2.1, p. 219 .
80 [47], Sec. 2.3, p. 227.
81 47], Sec. 1.1, p. 210.
82 [47], Sec. 1.1, p. 211; Sec. 2.1, p. 219; Sec. 2.3, p. 227.
${ }^{83}$ [42], C hap. V , E xerc. 122, p. 187; 44], C hap. 11, Thm. 38, p. 93.
84 [30], C hap. I.V I, T hm . 91, p. 66; 42], C hap. IV , Sec. 42, p. 146; 44], C hap. 11, p. 91.
85 [30], C hap. IV .V I.2, p. 208; 44], C hap. 11, Eq. (11.7), p. 88.
86 48], P rop. 1.e, p. 587; Prop. 2.c, p. 589.
87 [33], Lem . 1.2, p. 270.
88 48], p. 588.
89 33], Lem . 1.2, p. 270.
90 [22], Par. 6.4, p. 47.
91 [40], Thm . 2.1.3, p. 18.

```
92 [33], Lem . 1.2, p. 270.
93[33], P rop. 5.4, p. 282.
94}P\mathrm{ rivate com m unication, C hicago, 2007.
95 [23],T hm . X III.5.1 , p. 333.
96 31], C hap. X V III, x 7, p.689.
97 [23], P rop. X IV .2.2b , p. 343f.
98 [23], D ef. X III.4.1, p. 330.
99 [23], D ef. X III.1.1, p. 315.
100 [23], P rop. X IV .2 .2c, p. 343f.
101 [23], T hm . X III.4 .2, Eq. (4.4), p. 330.
102 [22], D ef. 2.3, p.15.
103 [40], x 1.7, D ef. 1.7.1, p.13.
104 [22], Par. 2.3, p. 17.
105 22], C or. 2.3, p. 17.
106 [22], P rop. 2.3, p. 17.
107 48], P rop. 3, p. 590; T hm . 3, p. }594
108 [33], Lem . 1.2, p. 270.
109 [16],T Tm . 2.5, p. 133.
110 [16], T hm . 4.3, p. 136; 19], p. 1261; 20], p. 159.
111 [22], P rop. 6.2, p. 44.
112 [46], P rop. 6, p. }302
113 54], P ar. 3.5, p. 211.
114 [31], C hap. X V III, x 7, p. 689.
115 [20], Sec. 3, T hm . 3.4, p. 170; [16], C or. 3.4, p. 135.
116 [22], P rop. 6.2, p. 44.
117 [17],T hm . 1.11, p. 40.
118 [22], P rop. 6.2, p. 44.
119 7], x 6, c or. 6.2;43], Sec. 2, Rem. 11, p.1088;62], Sec. 3, P rop. 3.1, p. 885.
120 [17], C hap. 4, E xerc. 30, p. 140.
121 [17], C hap. 3, E xerc. 22, p. }103
122 [54], P rop. 3.5, p. }211
```

123 [22], Par. 6.3, p. 45.
124 [22], P ar. 6.3, p. 46.
125 [7], P rop . 1.8, p. 36.
126 [34], p. 2843.
127 [53], C hap. V II, x 3, p. 113.
128 53], C hap. X , x 1, Prop. 2, p. 150.
129 61], C hap. 3, p. 19.
130 30], C hap. II.III.2, D ef. 25, p. 114.
131 [3], Thm . 3.1.19, p. 57f.
132 61], E xerc. 2.3, p. 17.
133 [1], x 2.4 , Prop. 3 .b, p. 9.
134 61], C hap. 3, p. 19.
135 [11], x 2.3, Thm . 2, p. 7.

B ibliography

[1] E.A ljade /P.Etingof/S.G elaki/D.N ikshych: On tw isting of nite-dim ensional H opf algebras, J. A lgebra 256 (2002), 484-501
[2] T . M . A postol: M odular form s and D irichlet series in num ber theory, 2nd ed., G rad. Texts M ath., Vol. 41, Springer, B erlin , 1990
[3] B . B akalov/A .K irillov Jr.: Lectures on tensor categories and m odular functors, U niv. Lect. Ser., Vol. 21, Am . M ath. Soc., Providence, 2001
[4] P. Bantay: The Frobenius-Schur indicator in conform al eld theory, Phys. Lett. B 394 (1997), 87-88
[5] P. B antay:T he kemel of the m odular representation and the G alois action in R CFT, C om m un. M ath. Phys. 233 (2003), 423-438
[6] P. B antay: G alois currents and the pro jective kemel in rational conform al eld theory, J. H igh Energy Phys. 3 (2003), 1-8
[7] A. B eauville: C onform alblocks, fusion rules and the Verlinde form ula. In : M. Teicher (ed.): P roceedings of the H irzebruch 65 conference on algebraic geom etry, Isr.M ath. C onf. P roc.,Vol. 9, B ar-Ilan U niv., R am at-G an, 1996,75-96
[8] F.R.Beyl: The Schur multiplicator of SL (2; Z=m Z) and the congruence subgroup property, M ath. Z. 191 (1986), 23-42
[9] J. de Boer/J. G oeree: M arkov traces and $I I_{1}$ factors in conform al eld theory, C om m un. M ath. Phys. 139 (1991), 267-304
[10] J. L. C ardy: O perator content of tw o-dim ensional conform ally invariant theories, N ucl. Phys. B 270 (1986), 186-204
[11] A. C oste/T. G annon: C ongruence subgroups and rational conform al eld theory, P reprint, m ath .Q A /9909080, 1999
[12] H. S.M . C oxeter/W . O. J. M oser: G enerators and relations for discrete groups, 4th ed., E rgeb.M ath. G renzgeb., Vol. 14, Springer, B erlin, 1984
[13] V. G . D rinfel'd: O n alm ost cocom m utative H opf algebras, St. Petersbg. M ath.J. 1 (1990), 321-342
[14] W . Eholzer: On the classi cation of modular fusion algebras, Com m un. M ath. Phys. 172 (1995), 623-659
[15] P.Etingof/S.G elaki:Som eproperties of nite-dim ensionalsem isim ple H opf algebras, M ath. Res. Lett. 5 (1998), 191-197
[16] P.Etingof/S. G elaki: O n the exponent of nite-dim ensionalH opfalgebras, M ath. Res. Lett. 6 (1999), 131-140
[17] B . Farb/R. K . Dennis: N oncomm utative algebra, G rad. Texts M ath., Vol. 144 , Springer, Berlin , 1993
[18] N . Jacobson: B asic algebra I, W . H . Freem an, San Francisco, 1974
[19] Y. K ashina: O n the order of the antipode of H opf algebras in ${ }_{H}^{H} Y$ D , C om m un. A lgebra 27 (1999), 1261-1273
[20] Y. K ashina:A generalized powerm ap for H opfalgebras. In: S. C aenepeel/ F. van O ystaeyen (ed.): H opf algebras and quantum groups, Lect. N otes Pure A ppl. M ath., Vol. 209, D ekker, N ew York, 2000,159-175
[21] Y. K ashina/Y. Som m erhauser/Y. Zhu: Self-dual m odules of sem isim ple H opf algebras, J. A lgebra 257 (2002), 88-96
[22] Y. K ashina/Y . Som m erhauser/Y. Zhu: O n higher Frobenius-Schur indicators, M em .Am .M ath.Soc.,Vol.181,N o.855,Am .M ath.Soc., P rovidence, 2006
[23] C . K assel: Q uantum groups, G rad. Texts M ath.,Vol. 155, Springer, B erlin , 1995
[24] L. K au man/D. E. R adford: A necessary and su cient condition for a nite-dim ensionalD rinfel'd double to be a ribbon H opf algebra, J. A lgebra 159 (1993), 98-114
[25] T . K erler: M apping class group actions on quantum doubles, Com mun. M ath. Phys. 168 (1995), 353-388
[26] T . K erler/V . Lyubashenko: N on-sem isim ple topologicalquantum eld theories for $3-\mathrm{m}$ an ifflds w ith comers, Lect. N otes M ath., Vol. 1765, Springer, Berlin, 2001
[27] F . K lein/R. Fricke: Vorlesungen uber die Theorie der elliptischen M odulfunktionen, 1. B and, T eubner, Stuttgart, 1890
[28] M . I. K nopp: A note on subgroups of the m odular group, P roc. Am . M ath. Soc. 14 (1963), 95-97
[29] M . K oecher/A . K rieg: E lliptische Funktionen und M odulform en, Springer, Berlin, 1998
[30] E. Landau: Elem entary num ber theory, 2nd ed., C helsea, N ew Y ork, 1966
[31] S.Lang:A lgebra,R ev.3.ed.,G rad.TextsM ath.,Vol. 211 ,Springer, B erlin, 2002
[32] R.G . Larson/D .E.R adford: Sem isim ple cosem isim ple H opfalgebras, Am . J.M ath. 109 (1987), 187-195
[33] R . G . Larson/D . E. R adford: F inite dim ensional cosem isim ple H opf algebras in characteristic 0 are sem isim ple, J. A lgebra 117 (1988), 267-289
[34] M. Lorenz: On the class equation for Hopf algebras, Proc. Am . M ath. Soc. 126 (1998), 2841-2844
[35] V . Lyubashenko: Tangles and H opf algebras in braided categories, J. P ure A ppl. A lgebra 98 (1995), 245-278
[36] V . Lyubashenko: M odular transform ations for tensor categories, J. P ure A ppl. A lgebra 98 (1995), 279-327
[37] V . Lyubashenko/S .M a j̈d:B raided groups and quantum Fourier transform, J. A lgebra 166 (1994), 506-528
[38] H. M aa : Lectures on m odular functions of one com plex variable, Lect. M ath. Phys., M ath., Tata Inst. Fundam . R es., Vol. 29, B om bay, 1964
[39] W .M agnus: N oneuclidean tesselations and their groups,P ure A ppl.M ath., Vol. 61, A cadem ic Press, N ew York, 1974
[40] S.M ontgom ery:H opfalgebras and their actions on rings, 2nd revised printing, Reg. C onf. Ser. M ath., Vol. 82, A m . M ath. Soc., P rovidence, 1997
[41] G.M oore/N . Seiberg: C lassical and quantum conform al eld theory, C om m un. M ath. Phys. 123 (1989),177-254
[42] T . N agell: Introduction to num ber theory, C helsea, N ew York, 1964
[43] W . D . N ichols/M . B . R ichm ond:The G rothendieck algebra of a H opfalgebra I, C om m un. A lgebra 26 (1998), 1081-1095
[44] H. R adem acher: Lectures on elem entary num ber theory, B laisdell, N ew York, 1964
[45] D. E . R adford: O n the antipode of a quasitriangular H opf algebra, J. A 1gebra 151 (1992), 1-11
[46] D . E. R adford: M inim al quasitriangular Hopf algebras, J. A lgebra 157 (1993), 285-315
[47] D. E. R adford: On K au man's knot invariants arising from nitedim ensionalH opfalgebras. In: J.B ergen/S.M ontgom ery (ed.):A dvances in H opf algebras, Lect. N otes P ure A ppl.M ath.,Vol. 158, D ekker, N ew Y ork, 1994, 205-266
[48] D .E .R adford:T he trace function and H opfalgebras, J. A lgebra 163 (1994), 583-622
[49] N. R eshetikhin/M. Sem enov-T ian-Shansky: Q uantum R m atrices and factorization problem s, J. G eom . Phys. 5 (1988), 533-550
[50] N. R eshetikhin/V . G . Turaev: Invariants of 3-m anifolds via link polynom ials and quantum groups, Invent. M ath. 103 (1991), 547-597
[51] H .J. Schneider: Lectures on H opf algebras, U niversidad de C ordoba Traba jos de M atem atica, Serie \B " , N O. 31/95, C ordoba, A rgentina, 1995
[52] H .J. Schneider: Som e properties of factorizable H opf algebras, Proc. Am . M ath. Soc. 129 (2001), 1891-1898
[53] J. P. Serre: Local elds, G rad.Texts M ath.,Vol. 67, Springer, Berlin , 1979
[54] Y. Som m erhauser: O n K aplansky's fth con jecture, J. A lgebra 204 (1998), 202-224
[55] M . Takeuchi:M odular categories and H opfalgebras, J. A lgebra 243 (2001), 631-643
[56] Y. T sang: O n the D rinfel'd double of a sem isim ple H opf algebra, M aster's thesis, H ong K ong, 1998
[57] Y. T sang/Y. Zhu: On the D rinfeld double of a H opf algebra, P reprint, H ong K ong, 1998
[58] V. G. Turaev: Q uantum invariants of knots and 3-m anifolds, de G ruyter Stud. M ath., Vol. 18, de G ruyter, B erlin , 1994
[59] C . Vafa: T ow ard classi cation of conform al eld theories, Phys. Lett. B 206 (1988), 421-426
[60] E. Verlinde: Fusion rules and m odular transform ations in 2d conform al eld theory, N ucl. Phys. B 300 (1988), 360-376
[61] L. C. W ashington: Introduction to cyclotom ic elds, G rad. Texts M ath., Vol. 83, Springer, Berlin, 1982
[62] S.J.W itherspoon:T he representation ring and the centre of a H opfalgebra, C an.J.M ath. 51 (1999), 881-896
[63] Y. Zhu: H opf algebras of prim e dim ension, Int. M ath. Res. N ot. 1 (1994), 53-59

