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Abstract
We predict pp elastic differential cross sections at LHC at c.m. en-
ergy 14 TeV and momentum transfer rangejtj= 0 – 10 GeV2 in a
nucleon-structure model. In this model, the nucleon has an outer cloud
of quark-antiquark condensed ground state, an inner shell of topolog-
ical baryonic charge (r ’ 0:44F ) probed by the vector meson!, and
a central quark-bag (r ’ 0:2F ) containing valence quarks. We also
predictd�=dt in the Coulomb-hadronic interference region. Largejtj

elastic scattering in this model arises from valence quark-quark scat-
tering, which is taken to be due to the hard-pomeron (BFKL pomeron
with next to leading order corrections). We present resultsof taking
into account multiple hard-pomeron exchanges, i.e. unitarity correc-
tions. Finally, we compare our prediction of pp elasticd�=dtat LHC
with the predictions of various other models. Precise measurement of
pp d�=dtat LHC by the TOTEM group in thejtjregion 0 – 5 GeV2

will be able to distinguish between these models.

High energy pp and�pp elastic scattering have been at the forefront of accelerator research
since the early seventies with the advent of CERN Intersecting Storage Rings (ISR) and mea-
surement of pp elastic differential cross section in the c.m. energy range

p
s= 23 – 62 GeV and

momentum transfer rangejtj= 0.8 – 10 GeV2 [1]. This was followed by the Fermilab acceler-
ator where pp elastic scattering was measured at c.m. energy

p
s = 27.4 GeV in a fixed target

experiment at large momentum transfers:jtj= 5.5 – 14 GeV2 [2]. Next came the CERN SPS
Collider, where�pp elastic scattering was measured at c.m. energies 546 GeV and630 GeV – a
jump of one order of magnitude in c.m. energy from ISR [3–5]. The Fermilab Tevatron followed
next where�pp elastic scattering was measured at c.m. energy 1.8 TeV, but in a rather small mo-
mentum transfer range:jtj= 0 – 0.5 GeV2 [6, 7]. We are now at the threshold of a new period
of accelerator research with the LHC starting up soon and with the planned measurement of pp
elastic scattering by the TOTEM group at c.m. energy 14 TeV and momentum transfer range
jtj’ 0 – 10 GeV2 [8,9].

My collaborators and I have been studying pp and�ppelastic scattering since late seventies.
From our phenomenological investigation, we have arrived at two results: 1) a physical picture
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of the nucleon, 2) an effective field theory model underlyingthe physical picture [10]. The
physical picture shows that the nucleon has an outer cloud, an inner shell of baryonic charge,
and a central quark-bag containing the valence quarks (Fig.1). The radius of the shell is about
0.44 F and that of the quark-bag is 0.2 F. The underlying field theory model turns out to be a
gauged Gell–Mann–Levy linear�-model with spontaneous breakdown of chiral symmetry and
with a Wess–Zumino–Witten (WZW) anomalous action. The model attributes the outer nu-
cleon cloud to a quark–antiquark condensed ground state analogous to the BCS ground state in
superconductivity– an idea that was first proposed by Nambu and Jona-Lasinio. The WZW ac-
tion indicates that the baryonic charge is geometrical or topological in nature, which is the basis
of the Skyrmion model. The action further shows that the vector meson! couples to this topo-
logical charge like a gauge boson, i.e. like an elementary vector meson. As a consequence, one
nucleon probes the baryonic charge of the other via!-exchange. In pp elastic scattering, in the
small momentum transfer region, the outer cloud of one nucleon interacts with that of the other
giving rise to diffraction scattering. As the momentum transfer increases, one nucleon probes the
other at intermediate distances and the!-exchange becomes dominant. At momentun transfers
even larger, one nucleon scatters off the other via valence quark-quark scattering.

Our calculated pp elasticd�=dt at c.m. energy 14 TeV is shown in Fig. 2 by the solid
line that includes all three processes: diffraction,!-exchange, and qq scattering. The dotted
curve showsd�=dtdue to diffraction only. We see that diffraction dominates in the smalljtj
region, but falls off rapidly. The dot-dashed curve showsd�=dtdue to!-exchange only and
indicates that!-exchange dominates in thejtjregion 1.5 – 3.5 GeV2. Beyond that, the valence
quark-quark scattering takes over. The dashed curve forjtj> 3.5 GeV2 representsd�=dtwith
single valence quark-quark scattering, whereas the solid curve representsd�=dtwith all multiple
valence quark-quark scattering.

Let us next examine how the three processes are described in our calculations [10]. Diffrac-
tion is described by using the impact parameter representation and a phenomenological profile
function:

TD (s;t)= ipW
R1
0
bdb J0(bq)�D (s;b); (1)

q is the momentum transfer (q =
p
jtj) and�D (s;b) is the diffraction profile function, which is

related to the eikonal function�D (s;b): �D (s;b)= 1� exp(i�D (s;b)). We take�D (s;b)to be
an even Fermi profile function:

�D (s;b)= g(s)[ 1

1+ e(b� R )=a)
+ 1

1+ e� (b+ R )=a
� 1]. (2)

The parametersR anda are energy dependent:R = R 0 + R 1(lns�
i�

2
), a = a0 + a1(lns�

i�

2

); g(s)is a complex crossing even energy-dependent coupling strength.

The diffraction amplitude we obtain has the following asymptotic properties:

1. �tot(s)� (a0 + a1lns)
2 (Froissart-Martin bound)

2. �(s)’ �a1
a0+ a1 lns

(derivative dispersion relation)

3. TD (s;t)� is ln
2
sf(jtjln2s) (Auberson-Kinoshita-Martin scaling)

4. T �pp

D
(s;t)= T

pp

D
(s;t) (crossing even)

Incidentally, the profile function (2) has been used by Frankfurt et al. to estimate the ab-
sorptive effect of soft hadronic interactions (gap survival probability) in the central production of
Higgs at LHC [11].



The!-exchange amplitude in our model has the form

T!(s;t) � exp[i�D (s;0)]s
F 2(t)

m 2
!
� t

. (3)

where the factors shows that! is behaving like an elementary spin-1 boson. The two form
factors indicate that! is probing two baryonic charge distributions – one for each nucleon. The
factorexp[i�D (s;0)]represents the absorptive effect due to soft hadronic interactions.

We view largejtjelastic scattering as a hard collision of a valence quark from one proton
with a valence quark from the other proton (Fig. 3). Since this process involves high energy
quark-quark scattering at large momentum transfer, one would expect that it should be described
by perturbative QCD. In fact, in perturbative QCD, the two quarks would interact via BFKL
pomeron, that is, reggeized gluon ladders with rungs of gluons that lead to a fixed branch point in
the angular momentum plane at�BFK L = 1 +!. The value of! in next to leading order lies in the
range 0.13 – 0.18 as argued by Brodsky et al. [12]. We refer to the BFKL pomeron with next to
leading order corrections included as the “hard-pomeron”.In our calculations, we approximate
the hard-pomeron by a fixed pole and take the corresponding qqamplitude as [13]

T̂1(̂s;t)= iqq ŝ

�

ŝ e� i
�

2

�!
1

jtj+ r
� 2

0

, (4)

whereŝ is the square of the c.m. energy of qq scattering.

Our pp elasticd�=dtcalculation at 14 TeV reported earlier [10,13] included only a single
hard-pomeron exchange in qq scattering. However, Eq. (4) shows that the hard-pomeron predicts
a qq asymptotic total cross section�̂tot(̂s)/ ŝ! , i.e.�̂tot(̂s)grows like a power of̂sand therefore
violates unitarity and the Froissart-Martin bound. To restore unitarity in the qq channel, we use
the eikonal representation and write the full qq scatteringamplitude as

T̂ (̂s;t)= îpŴ
R1
0
bdb J0(bq)

h

1 � ei�̂(̂s;b)
i

. (5)

Taking T̂1(̂s;t)in Eq. (4) as the Born or single-scattering amplitude, we obtain by inverting it

�̂(̂s;b)= 2 iqq

�

ŝ e� i
�

2

�!
K 0(

b

r0
). (6)

Expanding the exponential in (5), we get

T̂ (̂s;t)= � ip̂ Ŵ
R1
0
bdb J0(bq)

h

i�̂ �
�̂2

2!
� i

�̂3

3!
+

�̂4

4!
+ :::

i

. (7)

Thenth term in the series is

T̂n(̂s;t)= � i
(� 1)n 2n� 1

n!
nqq ŝ

�

ŝ e� i
�

2

�n! R1
0
bdb J0(bq)K

n

0

�
b

r0

�

. (8)

Now, ŝ’ xx0s, wherexandx0are the longitudinal momentum fractions of the protons carried by
the valence quarks (Fig. 3). This leads to the following pp elastic amplitude due to qq scattering:

Tqq(s;t)= T̂1(s;t)F
2
1(q? )+ T̂2(s;t)F

2
2(q? )+ :::+ T̂n(s;t)F

2
n(q? ); (9)

F1; F2 ;:::Fn are the structure factors that take into account momentum distributions of the
valence quarks inside the proton. Our earlier calculation kept only the first term in Eq. (9). Fig.
2 shows that the effect of multiple hard-pomeron exchange inpp scattering is to decreased�=dt
at largejtjcompared tod�=dtdue to single hard-pomeron exchange (dashed line in Fig. 2).For
jtj< 3.5 GeV2, there is little effect due to multiple scattering, i.e. unitarization.

Results of some of our quantitative calculations are shown in Figs. 4–7. The solid curve in
Fig. 4 represents our calculated total cross section as a function of

p
s. Dotted curves represent

the error band given by Cudell et al. [14]. In Fig. 5, solid anddashed curves represent our
calculated��pp and�pp respectively(� = Re T(s;0)=Im T(s;0)). Dotted curves, as before,



represent the error band given by Cudell et al. At
p
s=14 TeV, our values of�tot and�pp are

109.4 mb and 0.12 respectively. Fig. 6 shows our calculatedd�=dt for �pp elastic scattering
at
p
s = 541 GeV in the Coulomb–hadronic interference region usingthe Kundrát–Lokaj́ı�cek

formulation (upper curve) and West–Yennie formulation (lower curve). Experimental data are
from Augier et al. [15]. Fig. 7 shows our predictedd�=dt for pp elastic scattering at

p
s= 14

TeV in the Coulomb–hadronic interference region. Finally,in Fig. 8, we compare our predicted
pp elasticd�=dtat LHC with the predictions of other models proposed by various groups: Avila
et al. [16], Block et al. [17], Bourrely et al. [18], Desgrolard et al. [19], and Petrov et al. (three
pomeron) [20].

Conclusions
1. Precision measurement of pp elasticd�=dtat LHC by the TOTEM group in the regionjtj= 0
– 5 GeV2 will be able to distinguish between various proposed models(see Fig. 8).
2. In our nucleon-structure model, the qualitative saturation of the Froissart-Martin bound is due
to soft hadronic interactions.
3. Largejtjelastic scattering in our model is due to valence quark-quark scattering. This has
been described by us as due to the exchange of a hard-pomeron (BFKL pomeron plus next to
leading order corrections).
4. Unitarization of the hard-pomeron exchange leads to a decrease ofd�=dtat largejtj, but has
little effect on forwardd�=dt.
5. The nucleon structure that we find embodies salient features of many leading models– such
as Nambu-Jona-Lasinio model, Skyrmion model, nonlinear�-model, chiral-bag model– but, at
the end, it presents a unique description of the nucleon.
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