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Introduction 

The word 'fractal' has become a familiar term in the world's scientific 
vocabulary in the last 10-15 years following the pioneering work of Benoit 
Mandelbrot and others. Mandelbrot and his followers effectively opened 
the world's eyes to something that others had noticed before but had not 
proceeded to explore in such depth nor to publicize with such conviction 
-this is the fact that many patterns in the natural world are not 'measur­
able' in the normal sense of the word. These patterns have an underlying 
spatial structure of considerable complexity based on a principle of great 
simplicity known as 'self-similarity'. On the theoretical front, fractals are 
now studied in many disciplines and work in the inter-related areas of non­
linear dynamical systems theory, fractals, and chaos is now providing some 
of the most exciting advances this century both in mathematics and in our 
understanding of geophysical processes. But to a large extent, fractals are 
still associated by many people with exotic forms of computer-generated 
art and there is a large gap between studying pure fractal patterns in them­
selves and actually applying our understanding of them to real practical 
problems. Slowly it is being realised that in fact there are many uses for 
fractals in scientific applications especially when shapes, forms and patterns 
are being studied -and particularly when these shapes, forms and patterns 
come from nature itself. 

Remote sensing is a discipline which concerns itself with the observation 
and monitoring of the state of the planet. In many cases, what is actually 
being observed consists of natural patterns in the spatial and temporal do­
mains. Moreover, these patterns are often observed at a variety of different 
space scales. It is inescapable therefore that fractals could have much rele­
vance for remote sensing. But so far, the number of practitioners in remote 
sensing who have tried, successfully or otherwise, to apply fractal analysis 
techniques to their data sets is extremely small. This is clearly a situation 
of some concern. 

L. F. Richardson is credited with asking the question 'How long is the 
coastline of Britain?' to which it is now appreciated there can be many 
answers -it all depends on how you make the measurement. In operational 
remote sensing, the measurement of the area of natural features of the 
landscape can be the equivalent of measuring the coastline of Britain -but 
in a higher dimension (i.e. area instead of length). 

One of the interesting problems in remote sensing is that two teams of 
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researchers supposedly measuring or mapping the same thing from space 
rarely come up with the same answers. Quantities such as total biomass, 
total area of forest, and net global albedo all fall into this category. This 
lack of precision or uncertainty is often seized upon by politicians who wish 
to stall efforts at changing the way we manage the planet. If fractal aspects 
of nature are in any way responsible for some of these uncertainties then it is 
clear they deserve much greater attention than hitherto in remote sensing. 
Hopefully further study of fractals will not only enable us to remove some 
of the uncertainties inhérent in remote observation of the planet but will 
actually help us to integrate the massive volumes of data generated by 
different sensors and satellites at a wide range of different spatial scales. 
Indeed it is in this latter area that we might expect the most significant 
contributions of fractals to be. 

Although on the ground a forest seen by the Landsat Thematic Mapper 
may be the same thing as the forest seen by the NOAA AVHRR instru­
ment, or in the near future by the MODIS or MERIS instruments to be 
flown on the next generation of satellites, the actual observable and 'mea­
surable' quantities that describe that forest are very different for the various 
sensors. Indeed it is not at all clear how measurements at such different 
spatial scales should be integrated. Perhaps the answer does in fact lie with 
fractals, although this view is not universally accepted. Interestingly, as 
this volume was being prepared for publication, a special issue of the Inter­
national Journal of Remote Sensing (Vol. 15, no. 12) appeared devoted to 
the topic of scaling in remote sensing. That particular issue was edited by 
one of the authors who has contributed to this volume. In that issue, frac 
tals were dismissed as a tool for the analysis of scale change in contradiction 
to many of the chapters which appear here. We seem to have arrived at 
a point where scale change issues are now being taken very seriously but 
a major argument appears to be emerging over which mathematical tools 
are needed to deal with them. Hopefully this volume will make a useful 
contribution to the growing debate. 

The chapters which follow in this volume are all based on a small Ex­
pert Meeting on the subject of 'Fractals in Geoscience and Remote Sensing' 
which was held at the Joint Research Centre in April 1994. The objective of 
this meeting was to gather together an international group of experienced 
researchers in the application of fractals to remote sensing and related dis­
ciplines and to give them a free hand to show their results, and share their 
experiences and ideas. Since the Joint Research Centre's own Institute for 
Remote Sensing Applications is now the largest institute dedicated to ap­
plying remote sensing in Europe and has responsibility for many large scale 
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international projects concerned with observing the environment both lo­
cally (in Europe) and globally, it was felt that this was the correct venue 
for this meeting. 

Although the improved understanding and analysis of remote sensing 
data was the driving force behind the meeting, a few of the authors invited 
to the meeting and whose work has been included here have not worked in 
remote sensing. One of the reasons for this is that research on the use of 
fractals in describing or characterizing aspects of the natural world, such as 
surface topography, is relevant to remote sensing or at least might become 
so in the future. Hence some of the papers are concerned with topics which 
we have chosen to include under the generic name 'geoscience' in the title, 
even though our emphasis and objectives are very much concerned with the 
future of remote sensing. The reader will also notice that the chapters in this 
book have different styles and represent different mathematical approaches. 
It was felt when the meeting was set up that (a) the number of remote sens­
ing specialists who use, understand, and value fractal methodologies is very 
small and (b) there is still little consensus on what analytical approaches 
to use. For this reason the authors were given the freedom to write in the 
style which they preferred and the results are here for the reader's perusal. 
Each chapter has been edited to ensure general conformity to the structure 
of the book, and in some cases chapters have been shortened by the editors 
to ensure a balance between the different sections, though we hope that we 
have succeeded to retain the full essence of the contributions of each of the 
authors whose expertise and depth of knowledge are represented here. 

Interestingly, the expert meeting itself became extremely stimulating 
with some intense arguments. What rapidly became clear is that even 
amongst the people who have considerable experience of fractal techniques, 
there are still major differences of opinion about how to use them correctly 
or even about whether we should use them at all given the existence of 
other mathematical approaches for dealing with the same problems. One 
of the main conclusions which emerged was that modelling the natural 
world by single or 'mono' fractals was mostly not sufficient and that if we 
are going to use fractals in real applications then emphasis should now be 
given to 'multi ' fractals. Overall it is clear that there are many problems 
still to be tackled in the application of fractal techniques to remote sensing, 
but they may have a key role in helping us to understand exactly what 
measurements from space really mean. Hence there is clearly a need to 
devote more research to the topic of fractals in remote sensing, primarily 
to decide if they have a real practical use, or if they should be more or less 
forgotten about whilst we concentrate on other more usable methodologies. 



If this volume leads to more people (a) accepting that we can not simply 
ignore fractals in remote sensing (at least for the time being) and (b) taking 
up the challenge of trying to apply them, then it will have served its main 
purpose. 

Finally, the opportunity is taken to inaugurate with this book the first 
volume of the Image Understanding Research Series. The idea of this series 
is to present state of the art reports at regular intervals on mathemat­
ical methodologies, emerging computational techniques and technological 
innovations, primarily in the European context, which hold promise for im­
proved analysis and understanding of images acquired by remote sensing. 

The Editors 
Ispra, September 1994. 
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Chapter 1 

Standard and Advanced Multifractal 
Techniques in Remote Sensing 

Daniel Schertzer*and Shaun Lovejoy^ 

1 Failure of classical approaches and the 
nonlinear variability of geophysics 

Remote sensing of the Earth has often been considered as a very applied 
domain where no fundamental problems were expected, and where brute 
force applications of standard methods were expected to be quite adequate 
for handling the noisy geophysical signals. However, the failures of this 
approach are impressive: seemingly obvious notions such as "cloud cover *" 
and the accepted value of the albedo of the Earth turn out to be satellite 
resolution dependent, the water budget is "officially" known to no better 
than a factor of ten, "nowcasting" is more of field of research than an 
operational reality. . . Nowhere - even in its original field of map making -
has it even approached its potential. Without a doubt, these troubles are 
related to a fundamental characteristic of geophysical fields: their extreme 
variability. 

One obvious aspect of this extreme'variability is that it is often asso­
ciated with catastrophic events: earthquakes, tornadoes, flash floods, ex­
treme temperatures, volcanic eruptions, etc. A fundamental characteristic 
of this variability - which turns out to be its major cause - is that it occurs 
over a very large range of scales. This range often extends from 10,000 
km to 1mm in space, and from geological scales to milliseconds in time: 

'Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Paris 
^Physics Department, McGill University, Montréal, Canada 
xSee the accompanying paper Lovejoy and Schertzer 1994 
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typical scale ratios are at least 109, and for geophysical flows the corre­
sponding Reynolds Number is typically of the order of 1012 — so large that 
without any doubt the dynamics are all turbulent. Indeed, all geophysical 
processes show abundant evidence of nonlinear variability resulting from 
strong nonlinear interactions between different scales, different structures, 
and different fields. Standard approaches which invariably hypothesize ho­
mogeneity at the scale of observation are totally inadequate to deal with 
such a variability. 

Over the last fifteen years, a whole new series of analysis and modelling 
techniques - at first fractal, then multifractal - have been developed for deal­
ing with this variability. Many of these - such as box-counting or partition 
functions - have become quite standard and are already powerful enough 
that they are often considered adequate. After first discussing some of these 
"standard" techniques, we go on to insist on their limitations. From the 
point of view of geophysical and remote sensing, a basic limitation is the 
restriction of the techniques to treating single positive scalar fields whereas 
the physics involves many interacting fields each of which can be vector or 
tensor. However, even within the framework of positive scalars, the stan­
dard techniques are in a sense too general; they at tempt to determine an 
infinite number of parameters (e.g. the entire dimension/codimension func­
tion). We shall show that the problem can be made tractable by exploiting 
the recent discovery of multifractal universality classes and by using es­
pecially designed analysis techniques. This paper is complementary to the 
accompanying Lovejoy and Schertzer 1994 chapter (designated LS94 below). 

2 The scalar multifractal framework 

2.1 Fractals and mult ifr act als 
Without any doubt, Fractal Geometry (Mandelbrot 1983) provides the sim­
plest non-trivial example of scale invariance, and is appropriate for dealing 
with fractal sets. Unfortunately in geophysics we are much more interested 
in fields (e.g. temperature, wind, radiances etc.) and are rarely interested 
in geometrical sets. In order to illustrate the need to consider multifractal 
fields rather than Fractal Geometry we will consider the rain field, which 
is often of prime importance in geophysical remote sensing. Let us start 
by recalling the notion of fractal dimension by considering the number of 
occurrences of a given phenomenon over a wide range of scales. We will 
question below whether this notion of occurrence is in fact well posed and 
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relevant. If it is, and if the phenomenon of interest is scaling, then the 

number of occurrences (NA(1)) of an event at resolution scale / (in space 

and/or time) follows a power law2: 

NA(1)*(J)­DF (1) 

DF being the (unique) fractal dimension, generally not an integer, and L the 

(fixed) largest scale. For instance, Fig. 1 shows the records of rain events 

during the last 45 years in Dedougou (Hubert and Carbonnel, 1989). These 

authors show that the occurrence of rainy days during a certain time scale 

Τ is fractal, having a dimension Dp ~ 0.8, which accounts for the fact that 

the rain events on the time axis form a Cantor­like set. Amusingly, the wet 

season is often considered to last 7 months per year, and 0.8 ~ log 7/ log 12 

(recall that the standard Cantor set is obtained by iteratively removing the 

(closed) middle section of the unit interval and has dimension log 2/log 3). 

Numerous similar (mono­) fractal results can be obtained on different 

fields. However fields having different levels of intensity do not reduce to 

the oversimplified binary question of occurrence or non­occurrence of an 

event. For instance, in the case of rain we have to address the fundamental 

question: what is the rain rate at different scales? What is a negligible 

rainrate? Generalizations of fractal/scale invariance ideas well beyond ge­

ometry were desperately needed and appeared in 1983 when the dogma of 

a unique dimension was finally abandoned (Henstchel and Procaccia 1983, 

Grassberger 1983, Schertzer and Lovejoy3 1983). 

However, it is already important to note that the notion of codimension 

(c) (usually defined by c = D —Dp, where D is the dimension of the embed­

ding space) can be considered to be at least as fundamental as the notion 

of fractal dimension Dp. Indeed, c can be directly defined as measuring the 

fraction of the space occupied by the fractal set A of dimension DF. This 

can be seen by considering that a (randomly placed) ball B¡ of size / has 

the following probability of intersecting A: 

P(Bi η A) » M ) = i­c (2) 

where Ν (I) ~ l~D is the number of balls of size / necessary to cover the 

D­dimensional space in which the set A is embedded. 

2 Here and below the sign AÍ means equality within slowly varying and constant factors 
3 T h e former references treated self­similar (isotropic) multifractals, while the latter 

treated the more general case of anisotropic multifractals using elliptical dimensions (see 

below) 
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1922 

• * · · M « I l — · — —· · 

1966 

Figure 1: 45 years of daily rain rates in Dedougou (Burkina Fasso). Each 
line corresponds to one year of observation, and each black dot to a rainy 
day (Hubert and Carbonnel 1990). The rain events form Cantor-like 
sets of dimension Dp « 0.8. (The standard Cantor set is of dimension 
log(2)/log(3)). 
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In fact, for multifractal fields, codimensions will be more fundamental 
and useful than dimensions, since they give intrinsic characterizations of 
the multifractal process. We will therefore use a codimension formalism 
(Schertzer and Lovejoy 1987, 1992) rather than the more popular dimen­
sion formalism developed for strange attractors (e.g. Halsey et al. 1986). 
One may note that the need of a codimension formalism has recently been 
implicitly acknowledged by Mandelbrot4 (1991). 

2.2 The extension to scalar multifractals 
One obtains much more information about rainfall by looking not simply at 
its occurrence, but at its rate: a 1 mm daily rain rate is negligible compared 
to a 150 mm daily rain rate! For instance an analysis of the rain rate at 
Nimes (France) during a few years, and averaged over varying scales Τ 
(from a day to a year) shows great intermittency. Most of the time the rain 
is negligible, while sometimes it reaches 200 mm (228 mm in few hours, for 
the famous October 1988 catastrophe!) - in comparison the daily average is 
«2.1 mm. The variability was found to be so significant in this time series 
that Ladoy et al. (1991) found some evidence of the divergence of moments 
(a subject we will discuss more below) -especially considering the 1974— 
1988 Nimes time series (Ladoy et al. 1993). Qualitatively this variability is 
analogous to that of the energy flux cascade in turbulence (as displayed in 
fig. 2), an analogy which turns out to be quite profound. 

2.3 Multiplicative cascade processes 
It has become clear that the process transferring energy from larger to 
smaller scales in turbulence is a multiplicative process (Kolmogorov 1962, 
Obukhov 1962, Yaglom 1966, Novikov and Stewart 1964, Mandelbrot 1974): 
a random factor determines the fraction of the rate of energy transferred 
from one large eddy to one of its sub-eddies (as shown on fig. 4 for a two 
dimensional cut), larger structures are thus multiplicatively modulated by 
smaller ones. Consider iterating this construction and denote the scale ratio 
A (= L/l where L is the larger scale and / the smallest resolved scale which 
corresponds to the spatial resolution of our field). As λ —> co, we observe 
singularities: at some points the field diverges (a singularity), whereas over 
most of the space it goes to zero (a regularity; for convenience we collectively 
call both types of behaviour "singularities"). 

4The codimension function is essentially the same as the "Cramer function' 
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Figure 2: A schematic diagram showing a two-dimensional cascade process 
at different levels of its construction to smaller scales. Each eddy is broken 
up into four sub-eddies, transferring a part or all of its energy flux to the 
sub-eddies. In this process the flux of the field at large scales multiplica-
tively modulates the various fluxes at smaller scales, the mechanism of flux 
redistribution is repeated at each cascade step (self-similarity). 
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The simplest multifractal model of this genre is the α-model (Schertzer 
and Lovejoy 1983, Levich and Tzvetkov 1985, Bialas and Peschanski 1986, 
Levich and Shtilman 1991...) obtained with a random two-state multi­
plicative factor: the only restriction is conservation of the ensemble aver­
age. If after n iterations of the multiplicative process, tn is the value of the 
field (for example, the energy flux to smaller scales), we have the relation 
e„ = /ieen_i, where μβ is a random variable which can have two values with 
the probabilities : 

Pr(/ie = λ7 ) = A~c strong sub-eddies(7+ > 0) 
Ρτ·(μβ = X'r) = 1 - A~c weak sub-eddies^/" < 0) 

7 + , 7~, c are constrained so that the ensemble average < με > = 1 (ensemble 
average conservation of e). The (monofractal) /3-model (Frisch et ai. 1978) 
is obtained when η~ = —oo,7+ = c: the sub-eddies are dead or alive, 
c is the codimension of the (unique) support of turbulence of dimension 
Dp = D - c. 

2.4 Bare and dressed quantities 
Figures 3 and 4 show an example of an «-model developed from a large scale 
to a small homogeneity scale: this is the "bare" cascade, which develops 
singularities when the homogeneity scale goes to zero. But our sensors 
(e.g. satellites) have not such a small resolution (the homogeneity scale is 
perhaps of the order of millimeters), and what we observe is an averaged 
field; these are the "dressed"5 quantities in the sense that the observation 
hides or dresses the activity occurring on scales smaller than that of obser­
vation. On the contrary, in the same sense, a cascade whose development is 
limited to the scale λ is "bare" on this scale of observation: no smaller scale 
activity is hidden. Figs. 3 and 4 (especially 4) show that the small scale 
singularities which appear when we develop the cascade to the homogeneity 
scale may give overwhelming contributions to the larger scale fluctuations of 
the dressed quantities. These contributions can be so important that as we 
will see later, they may imply divergence of high order statistical moments, 
corresponding to "hard" multifractal behaviour. 

2.5 Multifractal fields 
In the α model, pure singularities 7 + , 7 ~ (note: only when 7 > 0 we ob­
tain singularities, otherwise they are regularities, but for convenience all 

The jargon "bare" and "dressed" are borrowed from the renormalization literature. 
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Figure 3: Illustration of the 'bare' and 'dressed' energy flux densities. The 
left hand side shows the step by step construction of a 'bare' multifractal 
cascade (the α-model) starting with an initially uniform unit flux density. 
The vertical axis represents the density of energy e\ flux to a smaller scale 
with its ensemble average conserved (e,\) = 1. At each step the horizontal 
scale is divided by two. The developing spikes are incipient singularities of 
various orders (characteristic of multifractal processes). 
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the 7 are called "singularities") give rise to an infinite hierarchy of mixed 
singularities (7" < 7 < 7 + ) {11th step): 

ηΎ + η — 1~ 

7 = -

n + + n~ = n: 
η 

Pr(n+ = k) = C*\-Ck(l - \-c)n~k (4) 

The probability density of the resulting field is given by : 

Pr{en > {Χη)Ί) « (An)-C" (7 ) (5) 

When η ^> 1 : cn(j) ~ 0(7), a function independent of n, and the 
probability density of the multifractal turbulent field e,\ (the field e at scale 
λ) is given by (Schertzer and Lovejoy 1987): 

Pr{ex > λ7) « A-c(7) (6) 

When c(-) ) < D (D being the space dimension), as already discussed (eq. 
2). c(~)) is the (geometrical) codimension c(j) = D — Ό(η) corresponding 
to the (geometrical) fractal dimension 0 (7 ) of the support of singularities 
whose order is greater than 7. 

In the most interesting cases 0(7) > D the function 0(7) remains a (fi­
nite) codimension on an (infinite dimensional) probability space, see below. 
The multiple scaling behaviour of this field e at scale ratio λ can be also 
characterized by the corresponding law for the statistical moments (via a 
Laplace transform): 

(e{) « \K{qî (7) 
The relations between the turbulent notation used here and the strange 

attractor /D{&D) and Tr)(q) notation (the subscript D explicitly empha­
sizes the dependence of a, ƒ, τ on the dimension of the observing space D) 

is: ¡DÍCÍD) = D ­ c(7) and rD(q) = K{q) ­ (q ­ l)D with aD = (D ­ 7). 

The turbulence notation used is necessary when dealing with stochastic pro­

cesses because 7, c, Κ are intrinsically contrary to « D , / D , TD which diverge 

with D —> co, it also avoids introducing negative ("latent" dimensions when 

c(7) > D (Mandelbrot 1991). 

Just as f (a) is the Legendre transform (Parisi and Frisch 1985) of r (ç) , 

so c(j) is the transform of K(q): 

K(q) = max7(ç7 ­ c(7)) 

(8) 
c(7) = max?(</7 ­ K{q)) 
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These relations establish a one to one correspondence between orders of 
singularities and moments (q = c (7), 7 = A' (<"/)). 

2.6 Some basic properties of multifractal fields 
Multifractal fields, contrary to (mono-) Fractal Geometry, involve an infi­
nite hierarchy of 7's corresponding to an infinite hierarchy of 0(7). Indeed, 
according to eq. 5, the hierarchy of codimensions may be obtained by thresh­
olding the field and computing the fractal codimension of values greater 
than this threshold A7 (see fig 5). The codimension function α(η) must 

c 
4 ^ 

Figure 5: The importance of the threshold in analyzing a multifractal field: 
if 71 < 72, D(li) > D(j2), and c(-,i) < 0(72): the codimension is an 
increasing function. 

satisfy only a rather weak constraint (see fig. 6): not only should it be ob­
viously an increasing function of 7 (if ji >72,Pr(e . \ > A71) < Pr(t\ > A72), 
thus c(7i) > c(72) ), but with K(q), it must also be convex (Feller 1971). 
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Figure 6: With larger and larger number of samples Ns, the maximum 

reachable singularity 7S increases (Ns = XDs; c(js) = D ­f Ds; Schertzer and 

Lovejoy, 1989). 

2.7 The sampling dimension Ds 

Here we point out the utility of the notion of sampling dimension Ds. As we 

are always compelled to analyze finite samples, it is rather obvious that the 

highest singularities will rarely be present in a given sample. More precisely 

speaking, some of the singularities will almost surely not be present in a 

finite sample. Indeed, when we analyze only one sample/realization of the 

field on a dimension D at resolution A, the largest singularity 7S we can 

reach is given by c(7s) = D. More generally, if we are studying Ns samples, 

we can introduce the sample dimension Ds φ 0 (at resolution A) defined as 

Ns « ADs (Schertzer and Lovejoy 1989, Lavallée 1991, Lavallée et al. 1991). 

This largest singularity increases with Ds, since its order is then given by 

c(7s) « D + Ds (see fig. 6), it corresponds to a moment of order qs = 

c (7s) where K(q) becomes (spuriously) linear. The sampling dimension 

Ds gives us a quantitative way to describe how larger samples enable us to 

explore more and more of the probability space, eventually attaining the 

rare singularities responsible of the wild behavior of experimental fields. 
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2.8 Classification of multifractal fields 
Unfortunately most of the theoretical and corresponding empirical studies 
presuppose very restrictive calmness and regularity assumptions on multi-
fractal fields. Such a limited view of multifractals is quite misleading. It is 
therefore a matter of some importance to reveal the full diversity of mul-
tifractality and classify the different types of possible multifractal fields. 
Indeed a purely geometric approach (without any reference to a stochastic 
process: Parisi and Frisch 1985, Paladin and Vulpiani 1987), presupposes 
that the singularities are bounded by 7^] x , the upper bound of geometrical 
singularities, with c(7^]x) = D and 7 ^ x < D. Stochastic processes are 
generally capable of having singularities of all orders (i.e. c(7) > D and 
7 > D). However, conservation of the flux (e.g. energy flux in turbulence) 
may introduce a new constraint, which will depend on the type of conserva­
tion involved. If we assume microcanonical conservation (i.e. conservation 
on each realization, see: Benzi et al. 1984, Pietronero and Siebesma 1986, 
Meneveau and Sreenivasan6 1987, Sreenivasan and Meneveau 1988), then 
the singularities are bounded above by 7 ^ = D (the superscript m corre­
sponding to "microcanonical" -this bound is reached only for the extreme 
case in which for each step all the density of the flux is concentrated on a sin­
gle subeddy (of volume A _ D ) , we may say that singularities remain "calm" 
and "soft". As soon as we leave this restricted microcanonical framework 
to canonical conservation (i.e. ensemble conservation) we have some "wild" 
singularities -, > ")^'JX, which can even be "hard" in the sense they are 
responsible of the divergence of moments -see below). 

2.9 Divergence of moments, multifractal phase tran­
sitions and self-organized criticality 

It is possible to show (Schertzer & Lovejoy, 1987) that the integration of 
t\ over a set of dimension D diverges (for A —> 00) when q> qo\ qo given 
by: K(qo) = {qo — ^)D;qp > 1· More precisely, consider the flux over a 
volume element B\ (scale ratio A): 

Π(£Λ) = / 
JBX 

tdD* (9) 

where e = limA-.co £λ· If we now consider t\tu — li(B\)/Volume(B\) as a 
(dressed) estimate of the (bare) t\ over the Z)-dimensional ball B\\ the two 

6Their well known "p model" is in fact nothing more than a microcanonical restriction 
of the a model discussed earlier 
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will have totally different statistical properties: 

( e A ) < o o V 9 ; (eA,£«) = oo, </ > qD(> 1) (10) 

This is the fundamental difference between the two quantities bare e,\ 

anddressed e\tD­ One may note that the singular statistics (of dressed quan­

tities) has been taken as a basic feature of Self Organized Criticality (Bak 

et al. 1987). 

Divergence of moments of a random variable X((Xq) = oc for q > q D) 

corresponds to a "hyperbolic" (algebraic) fall­off of the probability distri­

bution: 

Pr(X > s) » s­QD (s > 1) <S> {X'1) = oc for? > qD (11) 

The probability density obtained by differentiation is also hyperbolic, 

but with an exponent qp> + 1. The physical significance of divergence of 

moments is that when q < qo the dressed moments are macroscopically 

determined whereas for q > qrj the moments will be microscopically de­

termined depending crucially on the small scale details. It is possible to 

make a formal' analogy between conventional thermodynamics and multi­

fractals; for example, the entropy corresponds to c{~,) and the temperature 

to l/q, the Massieu potential (the free energy divided by temperature), to 

K(q). Therefore, this qualitatively new behaviour for q > qr> (low temper­

atures) can be considered as discussed in Schertzer and Lovejoy (1987) and 

Schertzer et al. (1993) Schertzer and Lovejoy 1994a: this corresponds to a 

first order multifractal phase transition, where the thermodynamic poten­

tial K{q) has a first order discontinuity at the critical temperature analog 

951· 

2.10 T h e t h r e e fundamenta l exponen t s : H.C\.a 

It is already important to note that three parameters are sufficient to lo­

cally characterize (around the mean singularity) the infinite hierarchy of 

fractal codimensions 0(7). Furthermore, this characterization turns out to 

be global under certain general hypotheses of universality we discuss in the 

next section. The three fundamental exponents are the following: 

­ H describes the deviation from conservation of the flux: (c\) % \~H. 

H = 0 for conservative fields (for instance the energy flux in turbulence. 

(e,\) independent of A) whereas according to the Kolmogorov relation in 

real space Av\ R¿ eA1 '3* ­ 1 '3 (where Δυ.\ is the wind shear amplitude |r(.r + 

'Only formal since we here considering systems out of equilibrium 
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A - 1) — v(x)\ a,t scale ratio A), the wind shear is a non conservative field 

(H — 1/3). When H > 0 it is also a measure of the non-stationarity 

(statistical translational invariance) of the process8. 

- Cjdescribes the mean inhomogeneity as it is the codimension ol the 

mean singularity: C\ = c(C\ — H), in the case of conservative fluxes it is 

also the order of the mean singularity (and simultaneously the fixed point 

o fc ( 7 ) ) . 

- ex represents the degree of multifractality measured by the convexity 

of c(Ci) around the mean singularity (C\ — //) measured by the radius of 

curvature: Rc("/ = C\ — H) — 23/,2aC'i which increases with the range of 

singularities (starting from zero with the monofractal 6-model). As shown 

below, in case of universal multifractals, a is also the Levy index of the 

generator and 0 < α < 2. 

2.11 Universality by mixing of multifractal processes 

The particularities of discrete models (based on integer scale ratios, e.g. 

the α-model, ρ model) remain as the cascade proceeds to its small scale 

limit, if we simply iterate the model step by step with a fixed ratio of 

scale A, we indefinitely increase the range of scales Λ —■*■ oc which already 

poses a non trivial mathematical problem (weak limit of random measures, 

see Kahane 1985). On the contrary, keeping the total range of scale fixed 

and finite, mixing independent processes of the same type, (by multiplying 

them, preserving certain characteristics, e.g. variance of the generator). 

and then seeking the limit Λ —> oc: a totally different limiting problem is 

obtained] For instance, this may correspond to densifying the excited scales 

by introducing more and more intermediate scales, and seeking thus the 

limit of continuous scales of the cascade model. Alternatively, we may also 

consider the limit of multiplications of i.d.d. discrete cascades models. 

In both cases, multiplying processes corresponds to adding generators: 

e,\ ~ βχρΓλ where e,\ is the process and Γ.\ is the generator. If we seek 

generators which are stable and attractive under addition, (using the results 

on the second Laplace characteristic function I\(q) equivalent to the free 

energy), we must consider (Schertzer and Lovejoy. 1987. 1989, Schertzer et 

al 1988, Fan, 1989) stable extremal Levy noises with 1 / / spectra, which 

are characterized by a Levy index α : Pr( — Γ > s) % ϋ~α (s >· 1) = > 
any q > a : (( Γ)9) = οο. Except for the gaussian exception o = 2.o is the 

8This should not be confused with the more restricted notion of'2nd order stationarity 
which depends only on the spectral exponent and which lias no special significance for 
multifractal processes 
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order of divergence of moments of the generator. These generators yield 
the following universal expressions for the scaling function of the moments 
of the field f\(cj) and of the codimension function 0(7 — / / ) : 

ΛΊ-Η) = C.í^r + ff αφί 
φ , -ƒƒ ) = d e x p f ø ­ l ) ) ο = 1 

K(q)­Hq = ^(qa­q) α φ 1 : 

K(q)­Hq = C\qìog(q) a = 1 : 

(12) 

(13) 

where ( ­ + Λ = 1. and for q = dc/d'y > 0) and Cj is related to the coefficient 

C of the canonical Levy measure dF by: 

C i = c r ( 3 _ ­ o ) . dF = lx>0C(2­a)x­°— (14) 
Q .ï 

(here Γ is the usual gamma function and should not be confused with the 

generator. Figure 7 shows universal K(q) and 0(7) curves, with a varying 

from 0 to 2. 

The two functions K{q) and 0(7) are analytic, and depend only on the 

three parameters H, C\ and a. The knowledge (either by measurements 

or from theoretical considerations) of these parameters is then enough to 

compute all the statistical properties of the field. The implicit hypothesis 

is that this field results from a universal process, hence these parameters 

are universal. The first, H, is often known theoretically and experimen­

tally, and is therefore already recognized to be universal for many fields. 

The second, C\, may perhaps slightly fluctuate with time and location (e.g. 

Tessier et al. 1993). In fact the most important parameter, the Levy index 

Q, which is fundamental for the classification of the fields (see table 1) is 

the most likely to be universal. Some experimental results tend to confirm 

this assumption: at least for the temporal rate rain: five different exper­

iments (Hubert et al. 1993) have (independently) estimated on different 

time periods, geographical locations, and for both rain gage accumulations 

and radar measurements the value a = 0.5 ± 0.05 (see also Lovejoy and 

Schertzer, 1991, 1994). 

2.12 Scaling anisotropy and Generalized Scale In­

variance (G SI) 

The standard picture of atmospheric dynamics is that of an isotropic 2­

D large scale and an isotropic 3­D small scale, the two separated by a 
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c(gamma)/Cl versus gamma/Cl 
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Figure 7: Universal (bare) singularities, codimension c(~/)/Ci corresponding 
to the five classes: from left to right o = 2,1.5,1,0.5,0. 

"meso-scale gap". Mounting evidence now suggests that, on the contrary, 
atmospheric fields, while strongly anisotropic, are nonetheless scale invari­
ant right through the meso-scale. The idea of generalized scale invariance 
(GSI). is to leave the artificial 2D/3D dichotomy and to postulate first scale 
invariance and then study the (unusual) remaining symmetries. The result 
is the "unified scaling model" of atmospheric dynamics (Lovejoy et al 1993) 
which is anisotropic but scaling throughout. 

The specification of GSI requires a generator (G) which can be a non­
linear function (varying from point to point): data sets with very large 
ranges of scale will be needed, and even then, some simplifying approxima­
tions will be necessary. As a result of these difficulties the first empirical 
tests were studies of the compression (stratification) part of GSI associ­
ated with the trace of the generator (the elliptical dimension Dei). The 
studies have specifically avoided the difficult differential rotation problem 
(see below) by concentrating on the vertical stratification (Schertzer and 
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Data 

Type: 

Location: 

No. of 

stations: 

Duration: 

a: 

C
l

: 

V 

Reference: 

Gauge: daily 

accumulation 

Global 

network 

4000 

1 year 

0.5 

0.6 

0.84 

Tessieret al. 

1993 

Gauge: 

6 minutes 

resolution 

Réunion 

Islands 

1 

1 year 

0.5 

0.2 

0.36 

Hubert et 

al.* 

Gauge: daily 

accumulation 

Nîmes 

(France) 

1 

I year 

0.45 

0.6 

0.83 

Ladoy et al. 

1993 

Gauge: daily 

accumulation 

Dédougou 

(Burkina 

Fasso) 

1 

45 years 

0.59 

0.32 

0.57 

Hüben et 

al.* 

Gauge: 15 

minutes 

resolution 

Alps 

(France) 

28 

4 years 

0.50 

0.47 

0.72 

Desurosne 

et al.* 

Mean and 

standard 

deviation 

¡iiiillilliil 

¡illiillliili 

0.51 ±0.05 

0.44±0.16 

0.66±0.18 

Table 1: A comparison of various gauge estimates of a.C\. ­;U. ­,., over vari­

ous time scales. Parameters were mostly estimated from PDMS (Probabil­

ity Distribution/ Multiple Scaling) and the DTM (Double Trace Moment) 

techniques [Lavallée, 1991; Lavallée et al.. 1991: Lovejoy and Schertzer. 

'1991; Schertzer and Lovejoy, 1991. *=Private Communications 

Lovejoy 1983, 1985) who estimated Dei = 23/9 = 2.555.. . for the horizon­

tal wind field, De¡ = 2.22 ± 0.07 for the vertical stratification of rain, and 

DPj = 2.5 ± 0 . 3 in space/time for the rainfield (Lovejoy et al. 1987. Lovejoy 

k Schertzer 1991). 

To go from one scale to another, we only need to specify the scale ratios 

(see LS94 for examples). We can here define a (semi) group of scale changing 

operators T,\ = \~G (G being the generator) which reduces the scale of 

vectors by scale ratio λ : B\ = T\(B\) is the ball of all vectors at scale Λ 

(where the unit "ball" Bi defines all the unit vectors). Virtually the only 

other restriction on T\ is that the B\ are strictly decreasing' (B\ D Βχ': Λ < 

λ ), hence the real parts of the (generalized) eigenvalues of G are all > 0. 

Approximating G by a matrix leads to Linear GSI: when there are no 
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off-diagonal elements we obtain only differential stratification: "self-affine" 
fractals/multifractals. Off diagonal elements are associated with differential 
rotation and can be empirically estimated (for example, on cloud satellite 
images) with the help of the Monte Carlo Differential Rotation Technique 
(Pflug et al. 1993). and more recently, with the Scale Invariant Generator 
technique (Lewis 1993). For more discussion, see LS94. 

3 Multifractal and multichannel radiance fie­
ld: beyond scalar analysis and modelling 

3.1 Motivations 
In remote sensing, one is primarly interested in obtaining information from 
radiances at different wavelengths on the global structure of the radiance 
field rather than studying the structure at each wavelength in isolation, 
the latter giving no information on the cross-scaling inter-relations. The 
corresponding multifractal multichannel analyis (implicitly considering each 
channel as a component of a radiance vector) is beyond the multifractal 
scalar framework discussed up until now. On the physics and modelling 
levels there is a corresponding need. Indeed, up until now the multifractal 
analysis and modelling of rain has relied on the simplifying hypothesis that 
the interaction between rain and the dynamics can be reduced to a scalar 
relationship (namely between their respective fluxes); this is fundamentally 
the reason why up until now, multifractal results have always been expressed 
in terms of scalar fields. Theoretically however, even in the simplest case of 
passive advection this relation is vectorial (the velocity field coupled with 
the concentration field via the gradient of the latter9). This situation is in a 
way paradoxical: classical methods, such as those used in GCM modeling, 
deal easily with this vectorial interaction but on a very limited range of 
scales, whereas scaling models readily deal with an infinite range of scales 
but avoid treating this vectorial interaction. 

Below, we point out how the rather general framework of "Lie cascades" 
(Schertzer and Lovejoy 1993, 1994) allows us to analyze and generate mul­
tiplicative processes for vectorial and tensorial fields, and more generally 
rather abstract fields admitting a Lie group of symmetries. For remote 
sensing, it opens up the possibility of multifractal multichannel analysis by 

Jand not by a scalar relationship between their respective fluxes, as done for multi-
fractal scalar cloud modelling (Wilson et al. 1991, Pecknold et al. 1993) 
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considering the multichannel field of radiance, i.e. the set of radiances in 

different wavelengths. Concerning the modelling, it opens a scaling and 

vectorial alternative to GCM techniques, since we then may consider the 

generator of the joint field (v,R.I,...), (= velocity, rain rate, radiance, 

etc.) which generates not only each component field, but also their (vecto­

rial, tensorial, etc.) interrelations. 

Before solving this problem, let us point out the difficulty. The main 

problem with a real cascade with alternating sign is that the set of real 

numbers is not algebraically closed, i.e. it doesn't satisfy the d'Alembert 

theorem; in particular positive numbers have 2 real square roots, negatives 

none. A rule related to this is the sign of products: products of the same 

sign give positive numbers, products of two opposite signs give negative re­

sults. As a consequence if we allow negative multiplicative factors, there are 

obviously some non­trivial problems in renormalizing a discrete real cascade 

by a factor 2 and conversely to introduce intermediate scales... More funda­

mentally, and especially when one considers a continuous process, a series 

of multiplications corresponds to an exponentiation of a sum. unfortunately 

an exponential of any real number is a positive number! 

3.2 Complexification of a cascade as an example 

By considering the algebraic closure of the real numbers (i.e. the set C of 

the complex numbers) we should already be able to solve the above men­

tioned difficulties. For instance, the image of C under exponentiation is 

C itself. On the other hand, complex multiplication (with r ( = ,i­i + ixo)) 

corresponds to a particular linear transformation on R2. i.e. the conformai 

transformation which is a particular subgroup of (the set of all linear trans­

formations on 3Î2 : L(!R2,­β2)) which can be identified with the product of 

rotation (angle Θ) and dilation (ratio r) (v = re ) . 

v\ = exp(r,\)ui where 'v\,V\ G C : Γ.\ G C (15) 

The significance of TR^ = Re[T\) and Γ/,Λ = Im(T\) are obvious: Γ/}..\ 

generates a non negative cascade process which modulates the amplitude 

of the modulus of v\, whereas Γ/„\ gives the rotation of v\. hence the sign 

of its real part. We may specialize to the case where Γ/?..\ and /T/,\ are in­

dependent stochastic processes with corresponding characteristic functions 

KR(q),Kl{q): 

(vxq) = (ex?(qTRA))(exp(iqTItX))(ihq) = AA'*<»UA''<»> = λΛ'(9) (16) 
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The characteristic function I\(q) of the complex process is therefore 

simply: 

K{q) = KR(q) + KI(q) (17) 

It is important to note that whereas KR(q) is real for any real q, K¡{q) is 

complex, being in general neither real nor pure imaginary. The condition of 

conservation ((¡\\) = 1) still corresponds to Λ'(1) = 0, but not to A'/(l) = 0, 

i.e. YR generates a non conservative process for the vector modulus. Let 

us consider as an example (Brethenoux et al. 1992) and as an illustration 

the discrete (Ao being the fixed step scale ratio) so­called "lognormal" case, 

more properly speaking a Gaussian generator; where the real and imaginary 

exponential increments are YR,\0 and Γ/,.\0 respectively will be Gaussian 

variables with variance σ\ and mean nipt (respectively σ\ and m¡ for the 

imaginary case) which lead to a generalization of the scalar universal scaling 

function (with o = 2): 

KR(q) = CUR{(j2 ­ q) + HRq 

Kj[q) = ­CltI(q
2 ­ q) + Hiq 

K(q) = Cl(q
¿­q)+llq 

C i.R = 

n2 

Cu = f (18) 

C\ = C\tR — C\j 

HR = m Ft — C\yR 

H¡ = ¿?7i/ + C\j 

H = HR + Jl! 

A conservative field is obtained with mR =■ —C\ (i.e. φ —C\iRì as re­

quired to obtained a conservative cascade of modulus), mj = 0. Figs. 8(a)­

(d) give the first steps of the corresponding complex cascade. One may 

note that Λ'(^) remains of the standard universal form even for complex q. 

Similar properties hold for Levy processes when Γ/^Α and Γ/,Α are indepen­

dently identically distributed. However, Γπ,,χ and Γ/,Α need not have the 

same a and there is no longer a requirement that Γ/,Α should correspond to 

an extremal Levy process, since K¡(q) for real q is the Fourier characteristic 

function of Γ/,Α whereas KR(q) remains the Laplace characteristic function 

of Γβ,Α, and admits the usual the scalar universal form (eq. 13, with respec­

tively HR. C\tR, aR instead of H, G\, a). The rather more general universal 
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Figure 8: An example of a complex cascade with Gaussian generator (o = 

2). (a) the (bare) field obtained at the first step, (b) the corresponding 

(complex) singularities, (c) the (bare) field obtained at the third step, (d) 

the corresponding (complex) singularities. 
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form 10 of K¡(q) is defined for all q (the ± is the sign of q). Note that β 

is the asymmetry parameter of the Levy process Γ/,Α and β = — 1 for an 

extremal Levy process such as YR>\: 

Ki(q)­HIq = ­^±U­(\q\°» ­ q); ( o / l ) ; 

K,(q)­HIq = ­ C ± 1 / | 9 | log | 9 | ( α = 1 ) (19) 

C±u = C ; { c o s ( f ) ± ¿ / í s i n ( f ) } r ^ (± = s</n(çr)) 

C/ being the coefficient of' the canonical Levy measure dF defining Yi,\. 

Fig. 9 shows the complex scaling analysis for a visible and infra red satellite 

image pair (i' = Iy + HR, Iv and IR being respectively the visible and infra 

red radiances. 

3.3 Vectorial processes and beyond: Lie algebra of 

generators 

In the previous subsection, we extended scalar cascades to two component 

vector cascades by complexifying the cascade. Considering the linear trans­

formations of the plane, we need not restrict our attention to conformai 

ones, which correpond to complex multiplications. More generally, we may 

consider non positive cascades as being components of more or less straight­

forward vectorial extensions of positive real processes: 

¡Ά exp(rÀ)t;i; vx,Vl G iïd,Tx G Ltf?,®?) (20) 

the u's being vectorial fields from 3£d to $td, V\ being a homogeneous vectorial 

field (e.g. in the strictest sense: Vy G 3?d V\(x + y) = Vi(x)). Just as in 

the positive scalar case, in order to obtain multiple scaling of the moments 

ΓΑ should be some band limited ! / ƒ noise although now we have a tensor 
scaling function K{q): 

VA > 1 : (exp(qYx)) « λ Λ ' ^ ; K(q) G L{ïïd,ïïd) (21) 

and introducing the vectorial singularities 7 and their codimensions 0(7): 

V7 G Kd, S 'A(7) = K ïïd,Vi > A"1" :} Pr(vx G 5 λ (τ ) ) ~ λ~Φ) (22) 

io which can be obtained with the help of appendix A of Schertzer and Lovejoy 1991. 
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Figure 9: The moment scaling functions for a visible and infra­red satel­

lite image pair {Kv(q), I<m{q) respectively) at 8km resolution taken over 

the Montreal area as part of the RAINSAT automated satellite rain al­

gorithm (each image is of 256 χ 256 pixels). Also shown is the KR{q) 

function described in the text which is obtained by considering the multi­

scaling of the modulus of the vector (visible, infra­red). This gives partial 

information about the scaling interrelation between the two fields. Using 

the double trace moment (Lavallée 1991, Lavallée et al. 1993. we obtain 

av = 1.7, α/Λ = 1.75, aR = 1.73, C ^ = 0.22, CUR = 0.20,. CuR = 0.25 

­accuracy of the estimates is ±0.2). From Schertzer and Lovejoy. 1994b. 
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for conservative processes, we still have the same type of conservation law11: 

(vx) = (Vl)- i.e. Λ'(1) = 0 G (3^) (23) 

In fact, independently of the representation of the υ field and of the Βχ 
balls (as discussed about GSI), we are only using the (multiplicative) group 
properties related to the basic fact that scale ratios simply multiply. Such 
one-parameter groups can be obtained as the results of stochastic flows 
obtained from stochastic integrations (more precisely from Stratatovich in­
tegrations as discussed in Schertzer and Lovejoy, 1993) over infinitesimal 
(random) generators dY and dG. For instance, quaternions and Clifford 
algebra have been considered which yields already a richer structure than 
the conformai group. Originally (Schertzer and Lovejoy. 1991) such an in­
tegration was proposed only on TA in the case of the so-called nonlinear 
(random) GSI (Generalized Scale Invariance). Corresponding to the group 
property of the transformation of the field or of the space, there is a Lie 
algebra structure for the generators, i.e. there is a skew and distributive 
product [,] called the Lie bracket. The group properties of the statistical 
moments of the field or scale transformations correspond to the fact that 
the second characteristic function (cumulant generating function) A'X(q) 
generates (for the different values of q) a Lie sub-algebra. 

We now can study a remotely sensed data set which is invariant under 
different symmetries, not only scaling symmetries, by considering the Lie 
algebra of the generators. We are naturally lead to look for some univer­
sality properties, i.e. a kind of classification of the possible algebra. The 
answer is partially affirmative (Schertzer and Lovejoy 1994): the part cor­
responding to non scaling symmetries enters in the classical and universal 
Cartan classification (e.g. Sattinger and AVeaver 1985) whereas the part 
corresponding to scaling symmetry is outside the classification and on the 
contrary admits a factorization. 

4 Conclusions 
In Schertzer and Lovejoy 1987, it was proposed that in many geophysical 
applications that scaling symmetries can be used as dynamical constraints 
in place of coupled nonlinear partial differential equations. This is the usual 
physical notion that a system is totally determined once all its symmetries 

nwhich is a consequence of the Martingale property of the process (the conditional 
expectation at resolution scale λ of υλ '(λ > λ) is υχ) see Kahane, 1985. 
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are known. Since scaling arguments are so general and the phenomena so 
prevalent, it has become urgent to develop a formalism for handling scaling 
for coupled multifractal processes (e.g. vector cascades) as well as to restrict 
the generator of the scaling symmetries using additional symmetries. Both 
goals require the formalism of Lie cascades discussed here. 

Not only have we shown that there is no fundamental reason to restrict 
cascade processes to positive (real) quantities, but there are very wide pos­
sible generalizations to rather abstract processes. As a consequence, it 
restates in a new way a potentially wider unity of Geophysics, as well as 
its remotely sensed analysis. At the same time it points out a quantitative 
way to classify the wide diversity of phenomena occurring over wide ranges 
of scale with the help of the classification of the corresponding Lie algebra. 
This classification will also enable us to discover new types of nonlinear 
interactions. 

Immediate applications of the ideas discussed here include multifractal 
multichannel remote sensing analyis and the corresponding simulation of 
vector multifractals, and the scale invariant characterization of the interre­
lations of rain, cloud radiance and other fields. We gave a first example of 
the latter by analyzing the multiscaling of the vector moments of the joint 
visible and infra red cloud radiance fields from GOES satellite data. AVhen 
this is extended to radar reflectivities of rain and rain gauge measurements, 
this resolution independent characterization of their interrelation can form 
the basis of resolution independent satellite rain algorithms, as well as for 
the resolution independent calibration of radars from rain gauges. 
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Chapter 2 

An Evaluation of the Contribution of 
Fractals to Remote Sensing Problems 

Marcel Raffy* 

1 Introduction 
More than 100.000 papers using fractal ideas have been published to date. 
For this evaluation of prospective ideas it is thought to be of little use 
to present yet another discourse on the subject, but rather to evaluate the 
relevance of the theory to progress on the problems posed by remote sensing 
of the Earth. 

For such an evaluation, it is necessary to consider the problem of fractals 
from outside of its own conceptual frame. Therefore we must not discuss, 
for example, the comparison between simple fractals and multifractals to 
represent an object but the status of fractals within the framework of mod­
elling activities in general. 

The first part of this chapter concerns the definition of what should 
be required from a model. The notion of model is considered in many 
different ways in the scientific literature. In [1] for example, a model is 
a set of equations or inequalities which describe the state of a system. 
This definition is too restrictive for our topic since it does not allow the 
possibility to discuss the merits of the actual statement of equations in 
itself but only the merits of one set of equations compared to another one 
for the description of a process. We adopt the point of view of R. Thorn [2] 
and J. L. Casti [3] which is general enough for our purpose. 

The discussion in section 2 leads to various criteria required for a relevant 
modelling activity. Then, we evaluate these criteria with respect to the 
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fractal fields close to the topic of remote sensing and we look at the main 
problems posed by remote sensing today. 

2 The modelling activity 
"At the beginning was inquisitiveness", says Asimov [4]. This can be the 
foundation of Science. Let us consider a 'thing' Τ which presents us with 
some sort of mystery. In other words, we have one or a set of questions 
Q about it. Consequently, we are interested in the answer(s) A to these 
questions (Fig. 1). If A is not obvious then we must simplify the system 

Translation of A Translation of Q 

Answer of 
the model 

A -*-

Model 

M(T) -*-

Question 
to M(T) 

— Q 

Figure 1: The schematic role of a model 

composed of T, Q and A, in such a way.as to reduce our degree of inquisi­
tiveness about T. The necessity of modelling comes from the fact that we 
need to have an answer through a schematic description of T that can be 
processed by our brain (and our mind). This schematic description M(T) 
of T must be built in such a manner that the question Q will have a relevant 
translation Q on the image (or model) M(T) of T. 

This scheme is very general since T can be any object which can be 
observed: a person, a group of persons, and in particular, any object con­
sidered as "scientific". Let us remark that the latter type is not so easy 
to distinguish from the "non-scientific" objects without cultural arguments 
[2], [5]· 
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Example 1: The thing Τ is the error in the transmission of a computational 
message on a line. The question Q arises: "Is it possible to have a predictible 
irregularity in relation to the physical support of the transmission line ?". 
The model M(T) proposed by Berger and Mandelbrot [6] is the "hyperbolic 
distribution" Prob(U > u) = u~D of the successive intervals of size U > u. 
This model is a good analogue of the actual observation T of the errors. On 
the basis of' the morphological analogy between a set of actual intermissions 
and the simulated one given by the hyperbolic distribution, the hope is to 
link the constant D to a particular characteristic of the line. Thus, the 
question Q to the model would be: "what is the value of ƒ_)?" and A: "we 
therefore have such a physical property of the line". 

Let's first remark that D does not lead to A but can help to give A on 
the basis of good simulations provided by M(T). Furthermore, we remark 
on the \-ery strong morphological analogy between T and M(T), even if the 
analogy is not an easy concept to define with accuracy. 

The general concept of analogy is not in fact easy to define with accuracy. 
Nevertheless, one can imagine that if the computer simulation M(T) of' the 
physical frequencies of the errors is a good (symbolic) analogue of T, then 
we can lean on this analogy to give us an accurate translation of A. This 
is a very general analysis. A systematic analogy between T and M(T) is 
given by demonstration models, so often used in physics. 

A high degree of analogy between T and M(T) is nevertheless not suf­
ficient an argument for the efficiency of the model to lead to A, as example 
2 below will show. 

Example 2: In primitive populations, M(T) was a fetish doll representing 
an enemy T. On the basis of this (symbolic) analogy, the witch-doctor car­
ried out various actions on the doll, with the aim of weakening or destroying 
the enemy. The analogy is symbolic, as is the computer simulation of the 
errors in transmission lines. 

As in example 1, the role of morphological analogy is strong. Never­
theless, the ability of the model to give A is not measured by the analogy 
between T and M(T), but by the experimental validation of M to lead to 
A. If an experiment on T leads to a confirmation of the answer A, then the 
model M works for the question posed (Fig. 1). 

Hence, the morphological analogy between T and M(T) is not sufficient. 
Furthermore it is not necessary at all in the modelling activity. 

Example 3: As a particular case of the previous scheme, there is the 
concept of models as a set of equations or inequalities, generally considered 
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by physicists. Let us consider the dynamics of a fluid as Τ. The model 
M(T) of the Navier-Stokes equations leads to the answer A to the question 
Q: "what is the state of Τ at a time t, at a point Ρ within the fluid?". 
In this case Q is: "what are the initial and boundary conditions?". The 
strength of this model, always confirmed by experience, does not take its 
relevancy from any analogy between T and M(T) but from the physical 
analysis of the process and its mathematical expression. 

While the morphological analogy between T and M(T) is not necessary 
to have a relevant model, the following principle is necessary: The question 
must be prior to the model. A model has a sense only with respect to a 
question. Indeed a model can be good for one question, it can be bad for 
another one. 

E x a m p l e 4: The fractional Brownian motion (FBM) is a good model 
for the question of' realistic computer simulations of the Brownian walk 
at any scale. The morphological analogy between T and M{T) is strong, 
nevertheless the FBM model is totally irrelevant in answer to the question 
of the energy required for the Brownian walk, since we obtain an infinite 
energy for a particle to follow a nowhere differentiable path. 

To conclude this section, we observe that: 

a- The scheme of figure 1 is a very general frame to interpret the modelling 
activity. 

b- The main principle is that the question must determine the model and 
not the other way round. 

c- The morphological analogy between T and M{T) is neither sufficient 
nor necessary to be efficient. The model can have a very high degree 
of morphological analogy with T or a very low one. 

3 Quality of a model; Fractal models 
For a given thing and question Q about it, a model M(T) will be called 
efficient if the scheme of figure 1 is satisfied with an acceptable experimental 
validation. For a given question Q the set MQ of efficient models can be 
empty, have one element, a finite or an infinite number of elements. Within 
MQ, we may distinguish various classes and, if necessary, we may have to 
select one of them. This can be the case for economic considerations, for 
example. 
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We will consider another classification of models based on their "quality" 
which can be defined as follows. 

A first natural idea is to consider that a model of the Set MQ is good if 
its answer is in good agreement with the experiment, For a given degree of 
accuracy of this agreement, we may have a certain number of models. For 
example, for the study of the heat diffusion in a homogeneous medium, we 
may propose a demonstration model M\ of the medium with sensors leading 
to the temperature evolution within the medium and the heat equations M-2-
They may have the same accuracy. Now, to compare these two models, one 
may propose the "degree of surprise" as a quality criterion. This is exactly 
the opposite to the degree of analogy detailed in section 2. Flere, the degree 
of surprise of 37-2 is much greater than that of' Mi. 

Example 5: Let us suppose that we are interested in Τ = the agressivity 
of a dog. We want to know how both anger and fear operate. Zeeman [7] 
proposes for M(T). the study of a path in a folded surface. The degree of 
analogy is very low for this model. Therefore, the degree of' surprise is high. 

Example 6: For the study of the reflectance of vegetation, various teams 
in remote sensing work on ray-tracing methods over some plants morpho­
logically simulated by the computer. The degree of analogy of these models 
is very high, while their degree of surprise is very low. 

Finally, we can define the quality of a model by the following parameter: 

P=- (1) 
a 

where: e = degree of agreement with experiment, a = degree of analogy 
between Τ and M(T). 

Despite its mathematical form, ρ cannot be numerical. Indeed while we 
can imagine a numerical value for e, such as the difference between A and 
the experimetal values, a is certainly not easy to quantify. Nevertheless, ρ 
can be a good tool for the definition of large classes of models. 

4 Fractal models 
Giving a global view of fractals in a few words poses an immense problem. 
There is no doubt that this section will be partial and subject to debate, 
but its relation with the previous section is nethertheless clear. Let us first 
describe the large classes of applications of fractal ideas. 
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(a) Mathemat ica l aspects: 

These works follow mainly the notions developed by Hausdorff [8], (for 
example, [9] to [12] ). One of their important effects can be interpreted as 
the geometrical point of view of measure theory, as opposed to the topolog­
ical one developed by Lebesgue. A new interest for iteration processes and 
attractions appeared (for example, [13],[14]) relative to point (b)-I below. 
In connection with 6', iteration processes have also been developed by M. 
Barnsley [15]. 

Some mathematical aspects of Navier-Stokes equations have been devel­
oped around the Hausdorff dimension of attractors. [16] 

(b) Physical aspects: 

(b)-I -Self-similarity is not new to physics. The study of critical proper­
ties of phase transitions and the formulation of the renormalization group 
approach has essentially covered this question [17]. [18]. Fractals bring to 
this field a new geometrical point of view. Fractal dimensions are not just 
critical exponents but very strongly related to them. 
(b)-II-For phase transitions and percolation problems, geometrical aspects 
and probabilistic ones have often been studied (for example. [19] to [23]). 
(b)-III -Chaotic phenomena gain geometrical points of view with the fractal 
properties of (strange) attractors in the space phase (for example. [24] to 
[28]). 
(b)-IV -Diffusion processes simulated by random walks of particles situated 
on discrete lattices give fractal fronts in good agreement with observations 
[28], [29]. 
(b ) -V -From Mandelbrot [30], [31] and Frish and Parisi [32]. problems of 
turbulence and fluid motion are at the origin of many papers on fractals 
(for example [33],[34]). 

Let us remark that the problems encountered in (b)-III and (b)-IY are 
well modelled by the diffusion and Navier-Stokes equations. This supposes 
a degree of smoothness of' the solutions which must satisfy these partial 
differential equations. So, fractals could be presumed to be a poor tool for 
these problems. 

The success of fractals in diffusion processes appears at the very small 
scales where particles, submitted to random walks interact with the irreg­
ularities of the medium. AVhile the diffusion equations take into account 
global mean values, the fractal description links probability and potentials. 
Here, as in example 1, this success is due to the high degree of morphological 
analogy between Τ and M(T). 
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For fluid problems, fractals are related to the singularities of the Navier-
Stokes equations which can define what is turbulence. The success of frac­
tals is mainly based on the fact that in this field, any geometrical informa­
tion is interesting, since little is known about these singularities. 
(b) -VI -Growth processes. This field which contains the older field of 
aggregate processes [35] leads to this new general concept very strongly 
based on computer simulations of random walks [36]. 
(b)-VII-Chemistry of heterogeneous media approached in [37] and surfaces 
in colloids in [38]. 

(c) Images and computing: 

The strong support for any use of fractals is the computer. The ex­
pansion of the ideas on fractals would not have been possible twenty years 
ago. even with the great talent of B. Mandelbrot. Let us note here that 
while the computer is necessary for the development of' most of these ideas 
in many fields, it is also the origin of many papers specific to computer 
representation of objects. 

In the field of images new techniques have appeared for the simulation 
of natural morphologies. The important "Collage theorem" of Barnsley [15] 
leads to a lot of algorithms for landscapes [39] vegetation, [40] and connects 
attractors to images. The artistic aspects of fractal images is pointed out 
by many authors [41], [42]. 

(d) Applications: 

By application we mean all relevant subject matters encountered other 
than those fields previously mentioned in paragraphs a, b, c, such as geol­
ogy [43]. geography and botany ([31], [44], [45], [46]), oceanography [47], 
meteorology ([33], [48]), urbanism, [49], psychology [50], music [51], etc... 
Few have not been reached by the attractive 'fractal speak'. 

Remark: This attractiveness in itself is an interesting study of the sociol­
ogy of scientists and its evolution due to the pressure of publishing. This 
aspect, apparently outside of the scope of our topic must be pointed out, 
since the very great number of papers on a subject can, at first glance, 
over-estimate the depth of the subject while it can just be due to a greater 
accessibility to paper production. 

Scientific productivity in applications is much larger than the previous 
sections. The domains currently related to remote sensing are essentially 

• Geology: roughness, relief and dimension, breaks in direction and size 
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• Geography: many various fields where hydrology is an important one 
for structure studies 

• Oceanography, meteorology: often related to turbulence aspects, the 
fractal approach in these domains is often distinguishable from others 
by the similarity to the paragraph (b)-IV type approach 

• Urbanism: shapes with aggregate simulations 

• Botany: plant morphology 

5 Fractal models in applications 
We have mentioned the well known exceptional activity arising from the use 
of fractals in applications (the term applications has the same meaning in 
this section as in point (d) above). This activity confirms the great intuition 
of Mandelbrot and a few others before him, mainly developed by himself, 
that the Hausdorff dimension is omnipresent in nature, if we observe this 
activity with respect to the scientific modelling activity, two points appear. 

5.1 The principle b of modelling (section 2) is very 
often not respected 

On page 404 of [31], Mandelbrot presents a drawing of Jean Effel which 
shows president De Gaulle in front of journalists at a press conference. He 
says: " Please, Mr. journalists, pose your questions to my answers". This 
drawing presented as a joke by Mandelbrot (and Effel!) has unfortunately 
become a reality in many cases, in the applications of' fractals. In other 
words, the questions appear after the model, when the question must select 
the appropriate model. The consequences, at least, are that the relevance 
of the question is quite random with respect to the topic and the coherency 
of the system (T, Q, M{T)) is suspect. 

In many cases, the scheme of figure 1 is reduced to that in figure 2. The 
model is just an algorithm built to deliver a dimension. So what? Where 
is the question? Where is the thematic progress? 

If one doesn't want to analyse the production on the subject, then there 
is an external proof of the weakness of the use of fractals in the applications. 
Let us suppose that fractals have suddenly, since 1975, led to many solutions 
of thematic problems in applications. So, how is it possible to understand 
that so many researchers in all the disciplines, were blocked, until a simple 
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τ 
Morphological analogy 

τ 
Ã: The dimension ¡s D=... ■+ M(T) 

Figure 2: Scheme of the unsatisfactory behaviour in many modelling activ­

ities 

log­log plot solved their problems ? The answer is certainly contained in 

figure 2 and the remark of section 4(d). 

5.2 The quality ratio ρ is weak. 

The degree of surprise defined by equation (1) which is the modelling in­

crease of value towards the answer, is in general very weak. The main reason 

is the high degree of the morphological analogy between Τ and M{T) in 

the applications of fractals. 

Remark: Let us recall that the morphological (generally computer) copy 

of an object is not the understanding of a process involving the object (see 

examples given previously, especially number 4). In most cases, the actual 

thematic problems lie in most cases in the understanding of the processes, 

as will be detailed for remote sensing, in the following section. 

For example, the fractal perimeter­area dimension of 1.35 ± 0.05 com­

puted for rain fronts is far from any meteorological explanation of the reason 

for this value. In many regions, the geologists have calculated dimensions 

of the relief. From what geological processes are these dimensions issued? 

The examples are plentiful. 

Even if the imitation of a shape can help us to progress in the mod­
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elling of the process, the work involved seems much too laborious a routine 
of programming work than of research work, and finally the result is the 
morphology which was anticipated (see example 6). 

6 The fundamental questions of remote sens­
ing 

The pluri-disciplinary questions encountered in remote sensing of the Earth 
are mainly based on the important fact that the observed processes tak­
ing place at the Earth's surface do not have the same description in situ 
and from space. The principal questions are orientated around the follow­
ing fields in which we do not take directly into account the fundamental 
problems posed by instrument progress. 

A- The energetic equilibrium of our planet 

B - The understanding of vegetation dynamics 

C- The prospection of natural resources 

D- The understanding of the density of human occupation of the surface 
and its equilibrium with the surroundings. 

These questions lead to an infinite number of questions and sub-questions. 
Each of them has a great number (finite or not) of associated models. Nev­
ertheless, it is possible to list a few examples of the types of question referred 
to. However, fractals do not seem to be the obvious direction to take first 
in any case. 

Point A: The energetic equilibrium of our planet. 

Q: Is it possible to obtain separately (hourly, daily, monthly,...) the dy­
namics of the sensible and latent heat fluxes at the earth's surface 
from space measurements and standard meteorological measurements 

Sub-Ql How do we obtain the global surface temperature? (What is the 
global emissivity ?) 

Sub-Q2 Is radar measurement useful for the determination of the latent 
heat flux? 
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Sub-Q3 Is it possible or necessary to have models for the surface roughness 
(aerodynamic or thermal) at large scale for the previous problem? 
(Here, fractals can be useful, but one can also evaluate the distance 
to go from the fractal models of roughness to answer such questions.) 

Remarks: 
These questions have not been yet resolved, even on surfaces without 

crop cover. The important difficulty is the experimental validation of any 
modelling in this field. 

Point B: The understanding of vegetation dynamics. 
The main questions concern two points: desertification and yield. 

Q l : Is it possible to detect from space indices of' desertification? 

Sub-Ql How do we optimise the high frequency low resolution data and the 
low frequency high resolution data to answer the previous question? 

Q2: Is it possible to quantify from space the biomass and its dynamics? 

Sub-Ql Is it possible to link satellite measurements to the density of cover 
(cultivated types, natural types)? 

Remarks: 
Progress is being made in finding the solutions to these questions, nev­

ertheless, two difficulties remain: 

• The progress concerns species type by type and cannot be applied to 
large scale regions. 

• The difficulty of validation remains. 

Point C: The prospection of natural resources. 

Q: Is it possible to identify minerals in place and quality? 

Sub-Ql Are there optimal spatial resolutions for the various minerals ? 
Same question for spectral resolution. 

Sub-Q2 Is the relief (combined with present satellite data) able to define 
preferential zones for such and such type of minerals? 
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Sub-Q3 What instrumental propositions is it possible to make with respect 
to radar developments? 

Sub-Q4 Is the thermal band useful via the thermal inertia of the surface? 
How do we obtain this parameter from surface temperature dynamics? 

Point D: The understanding of the density of human occupation of the 
surface and its equilibrium with the surroundings. 

Q: Is it possible to manage human behaviour from space as we hope to do 
with vegetation? 

Sub-Ql How to obtain the density of population? What are the best sensors 
for that? 

Sub-Q2 What socio-economic parameters are obtainable from space? 

Remark: 
These questions have not yet been seriously approached. 

7 Conclusion 
Remote sensing is in need of modelling. A great number of surface pro­
cesses must be understood especially with respect to the very considerable 
range of scales between in situ description and space observation. Even 
if in some fields closely related to turbulence phenomena or to vegetation 
cover, (multi-) fractals can be an interesting geometrical description, the 
work done with fractals is still far from modelling the process involved in 
remote sensing. The main reason is that too much importance is given 
in these activities to the computer morphological simulation of the objects 
often taken as an aim. We consider that, if in some sense, clouds, ocean, 
vegetation.. . present fractal properties in their geometry, the physics of 
such geometrical objects is yet to be understood. The physics of electro-
magnetism, thermodynamics, fluid mechanics, which are the bases of the 
processes in remote sensing are known classically in homogeneous media. 
What happens in fractal media? For example what is the behaviour of the 
electromagnetic field in a fractal cloud? Such are the questions where frac­
tals can play a role in remote sensing. The fascination of' computer image 
production has often diverted the community away from the summits which 
it needs to climb. Physics is not contained in geometry. 
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Chapter 3 

Fractal and Multi-resolution Techniques 
for the Understanding of Geo-Information 

Mihai Datcu*and Klaus Seidell· 

1 Introduction 
The high complexity of remotely sensed images and measurements pro­
vided by the last generation of sensors demands new techniques for scene 
understanding and analysis. The similarity of fractal and real world ob­
jects was observed and intensively studied from the very beginning. Fractal 
geometry became a tool for computer graphics and data visualization in 
the simulation of the real world. In order to perform visual analysis and 
comparisons between natural and synthetic scenes several techniques have 
been developed. After a period of qualitative experiments fractal geome­
try began to be used for objective and accurate purposes: modelling image 
formation processes, generation of geometrically and radiometrically accu­
rate synthetic scenes and images, evaluation of the characteristics of relief, 
determination of the surface roughness, analysis of textures. The recent 
progress in the mathematical formulation of the behaviour of 1/f processes, 
in utilization of wavelets to make evidence of scale dependent features of 
nonstationary processes and the developments in hierarchic stochastic pro­
cesses open a new perspective for the processing and interpretation of a 
large class of non-stationary multi-dimensional signals. 

'German Aerospace Research Establishment (DLR), Oberpfaffenhofen, D-82234, 
Wessling, Germany [On leave from Polytechnic University, Bucharest, Romania] 

t Swiss Federal Institute of Technology, ΕΤΗ, Institute for Communication Technol­
ogy, CH-8092, Zurich, Switzerland 
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2 Elements of fractal geometry 
A discussion of the field of fractals obviously embraces an enormous field 
[1]. The primary concern of this chapter is thus with the presentation of the 
elementary ideas necessary to understand applications of fractal geometry 
in geo-processing [2]. Fractal geometry deals with the behaviour of sets of 
points S, in the n-dimensional space Rn. 

S C Rn (1) 

For the addressed applications S is a curve, a surface or an image intensity 
field. Therefore n is restricted to 1, 2 or 3. But several applications, such 
as multispectral data analysis, ask for representation of data in a higher 
dimensional space [3]. 

2.1 Self-similarity and self-affinity 
Mandelbrot defined a fractal as a shape made of parts similar to the whole 
in some way [4]. The definition is qualitative, but not ambiguous, as it looks 
at first glance. The main characteristic of a fractal is its self-similarity [5]. 
A set is called self-similar if it can be expressed as a union of sets, each of 
which is a reduced copy of the full set. More generally a set is said to be 
self-affine if it can be decomposed into subsets that can be linearly mapped 
into the full set. If the linear mapping is a rotation, translation or isotropic 
dilatation the set is self-similar. Self-similar objects are particular cases of 
self-affine ones. 

{SELF-AFFINE} D {SELF-SIMILAR} (2) 

A fractal object is self-similar or self-affine at any scale. If the similarity is 
not described by deterministic laws stochastic resemblance criteria can be 
found. Such an object is said to be statistically self-similar. Natural fractal 
objects are statistically self-similar. A statistically self-similar fractal is by 
definition isotropic. To have a more precise, quantitative, description of the 
fractal behaviour of a set, a measure and a dimension are introduced [6]. 
The rigorous mathematical description is done by the Hausdorff measure 
and dimension [7,8]. 

2.2 Hausdorff dimension 
Let S be a set of points in the n dimensional space Rn. The topological 
dimension of the space is n, where n is an integer. Choose also a real 
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number r inferior to n. 

S C ¿F; 0 < r < n (3) 

Consider further the cover H¡ of the set S with sets U¡ of limited diameter 

|t/|: 

(4) H¡(S) = m{ÍS2\Ui\
r/0<\Ui\<o\ 

\U\=sup{\x­y\/x,y£U} (5) 

The infimum is evaluated over all coverings of S by a collection of sets with 

diameters at most δ. The set {L/¿} is countable or finite. H¿ increases 

as δ decreases to zero. By decreasing δ the restrictions on the allowable 

coverings of the set S are increasing. The r­dimensional Hausdorff measure 

Hr(S) of the set S is defined: 

IT(S) = hmH¡(S) (6) 
o—+-U 

To exemplify: if S is a smooth curve, U{ can be a linear stick of length δ and 

i/1(5') is the length of the curve, if S is a smooth surface, U{ can be a disk 

of diameter δ and H2(S) is the area of the surface. The Hausdorff measure 

generalizes the definition of length, area, volume. H¿(S) gives the volume 

of a set S as measured with a ruler of δ units. A figure with finite length 

will have zero area, and a finite area will be covered by a curve of infinite 

length. Based on these observations and particular cases, two properties of 

the Hausdorff measure will be introduced. If the r­dimensional Hausdorff 

dimension of the set S is higher than zero, then the p­dimensional Hausdorff 

measure of the set S is infinite, for ρ less than r. If the r­dimensional Haus­

dorff measure of the set S is bounded, than the p­dimensional Hausdorff 

measure of the set S is zero, for ρ greater than ?'. The value of the parame­

ter r for which the r­dimensional Hausdorff measure of the set jumps from 

zero to infinite is called the Hausdorff dimension, dirndl of the set S. 

f / P ( S ) > 0 ; V p < r ; i P ( S ) = oo 

\ Hr(S) <oo;Vp>r;HP{S) = 0 [ i 

( dimnS = sup{r/HT(S) = oo} , . 

dimHS = mî{r/Hr{S) = 0} { } 

A set is said to be fractal if its Hausdorff dimension strictly exceeds its 

topological dimension: 

dimHS > η (9) 
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Numerical evaluation of Hausdorff dimension is difficult because of the ne­

cessity to evaluate the infimum of the measure over all the coverings of the 

set of interest. That is the reason to look for another definition for the 

dimension of a set. 

2.3 Minkowski dimension 

The Minkowski dimension [6] allows the evaluation of the fractal feature of 

a set. First the parallel set Es{6) of the set S is introduced: 

Es{8) = {x€ir/d(x,S)<S} (10) 

The parallel set Εβ{δ) of the set S is the set including all the points of the 

space that are closer than a given constant δ to the points of the set S. The 

Minkowski dimension of the set S, is: 

»t \ r ! l°eK(£s(¿))l n n 

ì\(s) = lim sup < η ■—— > (11) 
1 ί-ο Ρ \ log(¿) J l ; 

Vn represents the volume in the η dimensional space Rn. In contrast to 

the box counting dimension or the Hausdorff dimension, to compute the 

Minkowski dimension one must not search for an optimal cover of the set 

s. 
Computing the volume of the parallel sets for different values of the 

radius d, and plotting these values in log­log coordinates, one will obtain a 

straight line if the set has fractal behaviour. The Minkowski dimension is 

computed as the topological dimension of the space, η minus the slope of 

the straight line. The similarities in the structure of the set S are detected 

by evaluating the volume of the associated parallel set for different scales 

defined by d. 

2.4 Box counting dimension 

The box counting dimension allows the evaluation of the dimension of sets of 

points spread in an n­dimensional space and also gives possibilities for easy 

algorithmic implementation. Given a set of points S, in an n­dimensional 

space Rn and Ns is the least number of sets of diameter at most δ that 

cover S, the box counting dimension, dims, is defined as: 

logos ') 
dirriBD — h m — ; — ­ — ­ (12) 

5_o ­ log (¿ ) 
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Depending on the geometry of the box and the modality to cover the set, 
several box counting dimensions can be defined: 1) the least number of 
closed balls of radius δ that cover S, 2) the least number of sets of diameter 
at most δ that cover 5', 3) the least numbers of cubes of side δ that cover S, 
4) the number of cubes of the lattice of side δ that intersect 5', 5) the largest 
number of disjoint balls of radius δ centered in 5' [8]. The equivalence of 
these definitions was proved. Also it was proved that these dimensions are 
inferior bounded by the Hausdorff dimension [7]. 

The relation of the scale properties of a fractal to the box counting 
dimension's definition can be seen from an example. Consider a fractal 
self-similar contour f(x,y), f (ax, ay) is statistically similar to f(x,y): a is 
the scaling factor. The number of boxes of dimension δχ,δυ necessary to 
cover the set represented by the points of f(x,y) is Ν , and the number 
of boxes of dimension αδχ,αδυ required to cover the set is NQ. If the set 
is self-similar, as previously supposed, the ratio Na/N will be a constant. 
The logarithm of this constant is proportional to the fractal dimension of 
the set. 

If a statistically self-affine fractal is considered it will be non-isotropic. 
At different scales f(x,y) will be statistically similar to f{ax.aHy). Η is 
the Hausdorff dimension, and a is the scaling factor. The boxes must be 
scaled differently in the χ and y directions, with a and aH respectively. 
The ratio Na/N is also a constant proportional to the fractal dimension of 
the set. 

2.5 Other dimensions 
Several further definitions for the dimension of a set have been introduced. 
All these definitions, as the previous ones, have a common goal: to show 
the self-similarity or self-affinity of the set. As an immediate consequence 
all definitions are based on a multiscale evaluation of a certain measure. 
For example: 

the P(m,L) d imension [9], is the probability to have m points within 
a box of size L. The expected number of boxes to cover the set N(L) is: 

N(L)=Z^P(m,L) (13) 
m=\ m 

and the regression of Ν versus L in log-log plot gives a straight line if the 
set is fractal. The slope of the line is the fractal dimension of the given set. 

Space scale filtering, the self-similarity or self-affinity properties of 
sets are scale relative, that is why one can deal with the change of the scale 
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of the set instead of the change of magnitude of the 'stick' used for the 

estimation of the dimension. For evaluation of the fractal dimension of a 

signal, φ, a multi­resolution approach is used [10]. The signal is smoothed 

using a bank of Gaussian filters having different variance σ. 

t°° /­\ 1 (J­*)2 ­
Φ(χ,σ) = / φ (ξ) ——e­^­di (14) 

J­co v ' ay ¿τ 

The regression of the 'length' of the signal, Φ measured with a fixed 'stick', 

plotted in log­log as a function of the variance of the applied filter will be 

a straight line. The slope of the line gives the fractal dimension. 

Covering­blanket m e t h o d , is used for· the estimation of the fractal 

dimension of contours, surfaces or image intensities [11]. The concept of 

the covering­blanket is based on the analysis of a multiscale construction. 

For a surface, as an example the upper, and lower bounding surfaces are to 

be generated. The covering­blanket is defined by the band of thickness 2ε, 

created by the two secondary functions. The multiscale analysis will be done 

for different values of ε. The estimation of the fractal dimension involves 

taking the logarithm of the difference of the upper and lower bounding 

surfaces divided by the scale factor ε, and fitting a line to it in a log­log 

plot, as a function of scale. 

Power­spectrum method , is based on the property of fractal func­

tions to have a negative power­low shaped power­spectrum function [12]. 

The Fourier transform is used to derive the power­spectrum and a linear 

regression is used in log space to derive the fractal dimension. 

Wavelet transform of fractals. Both fractals and wavelets, as a main 

characteristic, allow scale to be made explicit [13]. The wavelet transform 

Wf of a function f(x) is its decomposition on an orthogonal basis of func­

tions. The basis functions are generated from a parent function y using 

dilatations of factor a, and translations with vector b [14]. 

/

oo 

/(α;)ναΦ(φ ­ b))dx (15) 
­co 

The wavelet transform encodes patterns occurring at different scales in a 

uniform way. It means that by considering a fractal and computing its 

wavelet transform one can derive the fractal dimension [15]. 
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3 Fractals synthesis 

3.1 Brownian process 

To generate fractal objects several techniques have been developed: de­

terministic fractals are synthesised using iterative equations, cellular au­

tomata, or L­systems; stochastic fractals are obtained by Brownian pro­

cess simulation, using 1/f filtering methods, random­midpoint displace­

ment or modified L­systems. Natural landforms are well represented by 

fractals derived from the Brownian process description [16]. Consider, in 

the one­dimensional case, a random process X(t). If the Probability Den­

sity Function PDF, of the consecutive sample is Gaussian the process is 

called Brownian. 

X[tn+l) — X(tn) — X\tn) tn+l ~ tn = t 

* . ' ) ­ 7 * * « p ( ­ Ã ) ' > 

The Brownian motion describes as Gaussian the displacement of a particle 

in one time interval [17]. The displacement is an independent variable. S 

is a constant: the diffusion coefficient, it models the 'spread' of a particle 

trajectory in Brownian motion. To study the scale behaviour, the Brownian 

process will be sampled at intervals Θ = kt. The PDF of the consecutive 

samples difference, for the new process, will be derived. 

e = kt;( = ts/k ρ(ζ.Θ) = ­^p(xJ) (17) 

The newly derived PDF at the scale Θ = kt is also Gaussian and differs 

by a constant from the original process PDF. The Brownian process is 

statistically self­affine. The affinity is in the statistic of the differences of 

consecutive samples at any scale. Wiener introduced a random function to 

describe the displacement of particles in Brownian motion. The difference 

of consecutive samples is extracted from a Gaussian distribution and is 

proportional to a power function of the sampling period [4]. 

X(tn+1) ­ X(tn) « grv \tn+l ­ tn\" (18) 

Where grv is a Gaussian Random Variable, and Η — 1/2. The process is 

self­affine. Mandelbrot generalized the random function of Wiener and in­

troduced the concept of fractional Brownian motion, changing the exponent 

Η to be any real number in the interval (0,1). The new random function 

was denominated BR(t). The previously presented random functions give a 
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basis for the generation of fractals in one dimension or in an n-dimensional 
space. The random functions can be represented in η-dimensions simply by 
the substitution of time in a space η-tuple of coordinates [18]. Voss intro­
duced the successive random addition algorithm [16]. In order to generate 
a fractional Brownian curve the variance of the increments of the position 
must be: 

V(t) = E[X(t) - X(0)f = | ί | 2 "σ 2 (19) 

In the first iteration the increments of the process are to be extracted from a 
Gaussian distribution of' variance σ = 1. In the n-th iteration the displace­
ments (midpoints) are interlaced between the previous step points, and are 
extracted from a Gaussian distribution of variance: 

2 __ / ± \ ji o~„ = 
IH 

<-i (20) 

3.2 Spectral method 
The power spectral density S, of a self-affine fractal is a negative power law 
shaped function [19]. 

S(f)~l/f
ß
 (21) 

The fractal dimension D is related to the β coefficient [16]: 

D = T+{3­ß)/2 (22) 

where Τ is the topological dimension. As a direct consequence of this prop­

erty the Fourier transform is one of the main tools for the generation of 

fractal objects. 

3.3 L­systems 

The three dimensional structure of plants is probably most realistically 

modelled using L­systems [20]. A formal set of rules specify how the plants 

develop in different stages. It is important to develop algorithms which 

by means of a reduced set of parameters can control the variability of 'syn­

thetic' vegetation. The L­system is constructed starting with a string called 

an axiom, and in the first step substituting every symbol of the string in 

accordance to a given set of rules. The process is repeated iteratively. It is 

essential to note that all the symbols in the string are changed simultane­

ously. This is a major difference compared with a formal language where the 

parser is applied sequentially. Applying the previous procedure the defined 
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object grows preserving the same structure at larger scales. More generally 

than plant modelling, the L­systems can describe almost any fractal ob­

ject or at least their finite approximations. The work of Lindermayer was 

oriented mainly to graphic representation and considering the evolution of 

the field this issue was continued. The theory of L­systems developed into 

several new techniques: bracketed L­systems, graph theoretic trees using 

strings with brackets [21]; data base amplification [2], simulation of devel­

opment of real plants; .the axial tree [23], a notion which complements the 

graph­theoretical concept and makes it closer to natural vegetation models; 

context­sensitive L­systems, that model the possible interaction of compo­

nent elements. The techniques for plant models generation was enhanced 

using combined methodology of L­systems and iterated function systems 

IFS [24]. 

4 Multiresolut ion analysis and synthesis of 

1 / / fractal processes 

A large diversity of fractal processes can be defined. One of the most im­

portant class of random fractals is considered to be Iff processes [25. 26]. 

These processes model a huge spectrum of natural and man­made phenom­

ena. The recently developed mathematical methods for the representation 

of 1/f processes increased their impact in applications such as signal and 

image processing. 

Several models describe the 1 / / process. One class, exemplified by frac­

tional Brownian motion, is based upon a fractional integral formulation. 

Other models are in the category of' infinite order ARMA processes class. 

Recently stochastic multiscale and scale recursive models have been devel­

oped [27, 28]. The power spectrum of the 1/ f processes is 

2 

S(u) = f­ (23) 

for a given range of the 'gamma' parameter. In terms of spectral analysis 

Equation 23 is not integrable and actually does not represent a valid power 

spectrum [29]. The l/f random processes are self­similar, (Eq. 24 and 25): 

x(t) = a­Hx{at) (24) 

S {ω) = ¡apSiau) (25) 
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characterized by a long term correlation structure with polynomial decay 
that can not be represented by classical time series models. An example is 
the correlation function of fractional Brownian motion: 

R(t, τ) = ^f(\t\2H + M2" - \t - T\2H) (26) 

σ2
Η = Y{l-2H)cos(^- (27) 

TTH 
The processes are generally non-stationary but stationary when passed 
through time invariant linear filters. The non-stationarity of the process 
is related to the time dependent analysis, and the self-similarity is related 
to the scale-dependent analysis [30]. In terms of frequency characterization 
a 1/f process when filtered by an ideal bandpass filter yields a wide-sense 
stationary random process with finite variance and having a power spectrum 
as in Equation 23, with 

7 = 2Η - 1 
This gives the mathematical frame to justify and accept former frequency 
synthesis methods for fractal synthesis with the natural bandpass assump­
tion: the available data length limits the knowledge at low frequencies and 
the sampling interval limits the access to details at high frequencies. Sample 
functions of fractional Brownian motion have fractal behaviour for 

0 < ƒ/ < 1 1 < 7 < 3 

being characterized by the Hausdorff-Besicovitch dimension D = 2 — H (for 
one dimensional case). A limitation of the fractional Brownian motion is 
that it does not provide models for 1/f processes with 

7 < 1 7 > 3 7 = 1 

The multi-resolution approach considers a decomposition of the signal space 
in nested sequences of approximation spaces [31]. The wavelet based multi-
resolution is characterized to have similar resolution approximation in all 
time intervals and at all scales. Because 1/f processes simultaneously ex­
hibit both statistical scale invariance and a particular time invariance be­
haviour the wavelet transform constitutes a natural analysis and synthesis 
tool for these processes. 

The importance of the wavelet transform in the field of non-stationary 
1/f processes can be compared with the importance of the Fourier trans­
form in the field of stationary process. The wavelet transform applied to 
the 1/f processes has the same role as a Karhunen-Loeve expansion [15]. 
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Figure 1: Interrelationships between fractals and wavelets 

As a generalization a nearly 1/f process was introduced via wavelet 
based synthesis [15,25]. The process x(t): 

*(*)=ΣΣ*η*£(<) (28) 

Pr<s(»)<pr-
\ωρ \ω\Ί 

(29) 

is obtained from a collection of mutually uncorrelated zero-mean random 
variables x, of variance 

var « ) = σζ2~Ίτη (30) 

for any orthonormal wavelet basis with a given degree of regularity and 5 
the time averaged spectrum. In figure. 1 the interrelations between frac­
tals and wavelets are shown. As a result referring to the analysis of 1/f 
processes it was shown that the orthonormal wavelet expansion of such a 
process produces coefficients weakly correlated in contrast with the strong 
correlation of the original process. The wavelet coefficients are in a wide 
sense stationary at each scale and an 'across scale stationarity' is also ver­
ified. For a fractal process the ratio of the energy of the detailed signal at 
different scales is a constant, logarithmically related to the fractal dimen­
sion. 

The wavelet transform defines a bridge between the rich class of multi-
scale stochastic processes and the fractional Brownian process. An isotropic 

66 



stochastic process is indexed by the nodes of an homogeneous tree. The ho­
mogeneity is related to the 'across scale stationarity'. A horizontal level in 
the tree is associated to a fixed scale resolution. The multiscale stochas­
tic processes are described by a scale recursive model. The model can be 
interpreted as a generalization of the midpoint displacement technique for 
generation of Brownian motion. The technique assumes a dyadic partition 
of the unit interval and adding samples extracted from a random num­
ber generator according to the joint probability distribution implied by the 
Brownian motion model. 

The construction can be further modelled as a sequence of interpolations 
at a scale to the power of 2. For a linear spline interpolation the process can 
be interpreted as nonorthogonal multiscale approximation using the trian­
gular 'hat ' functions which are the integral of the Haar wavelet. At any level 
in the multi-resolution representation each state is a linear combination of 
its parents plus an independent noise. The latter advances in the description 
of 1/f noise, hierarchic stochastic processes and multi-resolution represen­
tation give a new perspective in the analysis and synthesis of a large class 
of non-stationary signals. The diagram in figure 2 presents the direction of 
possible further developments. 

5 Applications 

5.1 Incomplete data simulation 
To deal with incomplete data, in the image formation process, fractal geom­
etry can be used when models are unknown. The proved self-similarity or 
self-affinity of the landforms and land cover structures are used. In figure 
3 the synthesis technique is shown. The lack of geometric data encoded 
in Digital Elevation Models (DEM) and radiometric information is supple­
mented using fractal objects. The data fusion from real satellite images 
with synthetic images creates a new approach in model based image under­
standing. The model is expressed in terms of the geometry and radiometry 
of the synthetic images. The concept of identity declaration by physical 
modelling is considered. 

Many of the early applications of fractal geometry were involved in find­
ing methods for the generation of pleasant visual aspect images for com­
puter graphic representations. More recently realistic looking landscapes 
have been synthesised for flight simulators or relief visualization of other 
planets [1, 26], and more precise simulations of the landforms are derived 
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SYNTHESIS 

DESCRIPTION DESCRIPTION 

Figure 2: Direction of possible further developments 

with the aim to build models to be used in feature evaluation for further 
correlation with characteristics of the natural relief [32]. Geomorphology 
and soil science require terrain models with peculiar characteristics for other 
simulations: water erosion process, drainage basin topology, surface water 
flow, river course erosion, wind mass transport effects, deforestration. vol­
canic lava flow [33, 34]. One of the benefits in cartography from fractal 
simulation is the possibility to generate synthetic digital elevation mod­
els at a variety of scales and terrain roughness which can be used as test 
areas for the performance of the algorithms for digitizing simulated car­
tographic maps [35]. The techniques frequently used for the generation of 
synthetic DEMs are the 'mid point displacement', and the simulation of the 
1/f noise. A Gaussian white noise is filtered using a 1/ƒ ô shaped trans­
fer function. The output signal is a self-affine fractal having the fractal 
dimension D = Τ + (3 — β)/2. Τ is the topologie dimension of the space 
[36]. Figure 4 shows two synthetic DEMs having different fractal dimension. 
The surfaces are presented as Lambertian surfaces illuminated from the S-E 
direction. The left hand image, 6a, due to the fractal behaviour, can be 
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c SCENE INTERPRETATION J 

Figure 3: Incomplete data simulation 

considered as any rescaled subwindow from the right hand image, 6b. The 
surface is self-affine, in the statistical sense. The 'lakes' in the right hand 
image are obtained from the intersection of' a plane with the surface. The 
contours of the lakes are fractal lines having the fractal dimension D — 1 
[37]. 

Available DEMs are generally limited in resolution. The resolution is 
given by the constant of the support grid for the height data. Applications 
such as: relief visualization, image formation modelling for remote sensors, 
high resolution contour mapping etc. require accurate DEMs. A higher 
resolution can be obtained by a resampling process: to add new samples 
in a higher resolution grid. If functional resampling is used the resulting 
DEM has an unrealistic smooth aspect. It has been experimentally proved 
that natural relief has fractal behaviour for a certain range of scales [33, 38]. 
The fractal resampling process uses this prior information: the similarity of 
landforms for several spatial scales. The fractal resampling is accomplished 
in two steps: the analysis of the real DEM for evaluation of the fractal 
dimension and local variance of the height field, and the fractal interpolation 
[39]. The fractal interpolation increases the resolution of the DEM in steps 
of 2. The statistical resemblance of the synthesised samples is obtained 
using the random addition method of Voss [16]. An example is presented 
in figure 5: a 100m. resolution DEM resampled to 50m. The surface 
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Figure 4: Synthetic fractal DEMs presented as Lambertian surface illumi­
nated from the south east direction 

is presented as a Lambertian one, lit from the south-east direction. The 
visual appearance is more realistic. The generation of synthetic images 
with the aim of enhancing the performance of classification of remotely 
sensed images is one of the topics of interest [40]. The fractal resampling 
can not be applied below a given scale. Gravity and diffusion processes or, 
vegetation cover break the continuity in similarity, and other models must 
be applied [41]. 

5.2 Multiresolution approach in image synthesis 
Surface visualization is limited in accuracy for at least two reasons: the 
limited resolution of the geometrical description, incomplete knowledge and 
imperfect simulation of the light scattering process. For surfaces having 
fractal behaviour any 'facet' or interpolated representation means a cut in 
the similarity. A multi-resolution approach is used to derive an accurate 
model [42]: 

1. At the macro-scale the scene is described by the knowledge of the 
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Figure 5: DEM, (a) 100m. resolution, (b) 50m. resolution -fractally resam-
pled 

surface geometry. 
2. A meso-scale is introduced relative to the spatial resolution of the 

sensor. The pixel intensity is dependent on the local geometry, on the local 
roughness of the surface at a resolution higher than the sensor's geometrical 
resolution, and on the reflectance behaviour of the surface at the next finer 
scale. Thus the sensed intensity is the result of a nonlinear spatial operator. 
This spatial operator models the image formation process of the specific 
sensor. 

3. At the micro-scale the facets of the surface are characterized by 
reflectance functions. They are generally obtained by statistical, experi­
mental or on a heuristic basis. The realism and accuracy of the synthetic 
images is determined by the model of local light scattering. A general scat­
tering function for unpolarized light is a function of four variables and the 
Bidirectional Reflectance Function, BRF [43]. 

At the micro-scale the BRF can be approximated from simple models 
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of light scattering. The model is dependent on three physical parameters 

describing the surface appearance: diffuseness, specularity and interreflec­

tion characteristics. At the meso­scale the previously presented models and 

the sensor description are considered. The image formation process is sim­

ulated. The sensor is represented by a non­linear spatial operator. In the 

usual case the operator is a spatial convolution of the surface reflectance 

with the point spread function of the sensor followed by a non­linear trans­

form. 

If the sensor resolution is lower than the resolution of the surface, the 

intensity of one pixel is modelled by the integral of all scattered intensities 

of the microfacets weighted by the sensor's point spread function. A virtual 

radiometric experiment can be carried out for a given sensor and micro­

geometry of the surface. In figure 6a the imaging geometry for a rough 

surface is presented. Each microfacet is characterized by the surface optical 

attributes and its geometry, the local normal vector ñ. The sensor and 

light source positions are specified respectively by the vectors f and /. An 

area of 32 χ 32 microfacets was imaged from a sensor placed at the nadir 

with variable incident illumination. The resulting images are displayed 

in figure 6b. The last scene is a perspective view of the imaged surface 

(3D). Using the information from these images the albedo and BRF ha\­e 

been computed, and with prior knowledge of the sensor characteristics the 

accurate pixel intensities have been modelled. The experiment explains the 

difference in radiometry of the images in figure 3. After fractal resampling 

the local roughness increases and the BRF is modified. The experiment was 

applied for vegetation cover radiometric evaluation. A three dimensional 

plant model was developed using generalized L­systems [44]. 

To take into account the exact surface roughness and to calculate the 

actual scattering cross­section the Kirchoff solution must be found. The 

validity of the Kirchoff solution was intensively studied [45]. In the solu­

tion of scattering from fractal surfaces, the wavelength is considered as a 

yardstick. The solution is derived for relative space­scale to wavelength ra­

tios [45]. The results find applicability to synthetic aperture radar (SAR) 

imagery of sea surface or rough terrain. 

The intrinsic similarity of fractal surfaces for an infinite range of scales 

makes an accurate visualization impossible. Applying the previously pre­

sented models, and using the knowledge of the surface geometry at the 

meso­scale and the sensor model, complex and more accurate reflectance 

functions have been obtained. The virtual radiometric experiment was ap­

plied for fractal surfaces. 

Figures 7 a, b, and c show the dependence of the sensed intensity on 
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sensor 

Figure 6: Imaging geometry, rough surface imaged for different incident 
light positions; 0, 15, 30, 45, 60, 75, 90 degrees, and 3D view 

the roughness, 7, and on the incidence light angle, a, for three different 
assumptions of the micro-scale facet appearance: diffuse (a), diffuse and 
specular (b), and diffuse, specular, and interreflections (c). Note the highest 
roughness is given for low values of 7 (highest fractal dimension). In figure 
8 fractal surfaces are shown in macro-scale representation with diffuse and 
specular appearance. Figure 8a is generated with the appearance of the 
microfacets described by the diagram in figure 7a, and image 8b with the 
reflectance function as shown in figure 7b. 

5.3 Application in understanding remotely sensed 
scenes by optical sensors 

Data fusion in synthetic images, and the modelling of incomplete knowledge 
using fractal objects, is further demonstrated in a remote sensing applica­
tion. The aim is to segment the snow covered areas in rough mountainous 
regions. This results in a new method for the rejection of topographic 
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Figure 7: Reflectance functions 

influences in the radiometry. The importance of topographic effects on 
the radiometric behaviour of the remotely sensed imagery increases for at 
least two reasons: the higher spatial resolution in the latest generation of 
satellite sensors, and the extension of remote sensing applications to rough 
mountainous areas. The higher spatial resolution of aerial imagery makes 
the analysis more sensitive to local terrain roughness. Interpretation of 
mountainous regions, faces one with difficulties during classification due 
to shadow areas and diffuse and indirect secondary lighting. The existing 
methods for the alleviation of topographical effects are based on models for 
light scattering that are local, implying that the model does not take into 
account the spatial resolution of the sensor, and the DEM resolution. 

The previously deduced results in the virtual radiometric experiments 
have been used as a basis for a physical model for multisensor image and 
data fusion. Digital Elevation Models of adequate resolution are available. 
This makes attractive the idea of geometrically modelling of the satellite 
images. Modelling refers to the geometry, to the radiometry of the imaged 
scene, and the simulation of the image formation process, the sensor and 
illumination models [46]. 
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Figure 8: Fractal surface visualization: (a) Lambertian BRF (b) BRF em­
bedding multiscale information 

To alleviate the influences of the topography in a satellite image of a 
rough mountain area, synthetic images have been generated. For this ex­
periment a Landsat-TM scene, band 4 (figure 9), was used. The spatial 
resolution of the sensor is approximately 30m. The data and knowledge 
fused in the synthetic image are: the geometry of the terrain, the sensor 
model, the sun position and an illumination model, and the multi-resolution 
assumption in image formation. The geometry is described by a Digital El­
evation Model known on a 10m. rectangular grid. The sensor was modelled 
by a convolution operator. The sun elevation and azimuth at the date 
and time of image acquisition are used. The illumination model is defined 
for directly lit and shaded areas. Parallel illumination, illumination by in-
terreflections, and diffuse light are considered. At the micro-scale, 10m. 
resolution, the surface is assumed to be described by diffuse, specular re­
flections and interreflections. At the meso-scale, 30m. resolution, the sensor 
model was used to deduce the pixel intensity. In figure 9 are shown: (a) 
the perspective view of the DEM, (b) the synthetic image modelling the 
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Figure 9: (a) DEM, perspective view, (b) synthetic image (c) Landsat TM 
image (d) radiometric correction of topography influences 
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snow cover, this image can be interpreted as a visualization of the fused 
data, (c) the Landsat-TM band 4 scene, and (d) the segmentation of the 
snow cover in the previous image. The radiometry of the synthetic image 
models rough surfaces covered by snow. Due to the more complete model 
specification, the accuracy obtained in snow cover segmentation is superior 
to other methods [47]. The presented algorithm describes the image for­
mation process for directly lit and shadow areas, using the multi-resolution 
approach. 

5.4 Applications in Synthetic Aper ture Radar image 
processing 

The rough structure of many natural surfaces is reflected in a corresponding 
roughness of' the pixel intensity of the imaged scene. The image is textured. 
If' the surface is a fractal one, its image (the set of pixel intensities) will be 
also a fractal having the same dimension [18]. The idea is to use fractal 
geometry, the fractal dimension, as a feature to characterize the textures. 
A fractal transform is defined: an image is mapped into another image that 
has as pixel intensity the values of the fractal dimension derived for a mov­
ing window overlapped on the original picture. It is necessary to state here 
several observations: one can derive a large class of very different objects 
having the same fractal dimension, real structures have fractal behaviour 
for several ranges of scale, and it could be possible that the similarity is 
respected only for a very low number of scales, the natural scenes when 
imaged are very often corrupted by strong noise, the sampling and quantifi­
cation process destroy the scale invariant patterns. Several algorithms have 
been derived to enhance the discriminatory power of the fractal transform: 
multiple resolution techniques [48], lacunarity [49], local fractal dimension 
[10], dendritic analysis [50]. 

The rough aspect of the Synthetic Aperture Radar (SAR) images rises 
difficult problems in scene segmentation. The presence of the speckle phe­
nomenon affects the performance of the algorithms for texture classification. 
In the mean time the filters applied to reduce the speckle noise change the 
texture features. The fractal dimension seems to be a promising global pa­
rameter for the classification of SAR images [51, 52, 53]. In figure 10, a SAR 
(ERS-1) image and its fractal transform are presented. The fractal trans­
form was locally evaluated using the P(m,L) definition of the dimension. 
The urban area is segmented. Taking into account the previous observations 
referring to the difficulties to interpret the values of the various dimensions, 
the fractal transform is generally used as a feature in connection with other 
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parameters. Better results on the application of the fractal transform are 
reported in the segmentation of images obtained from optical sensors and in 
the classification of the terrain roughness and geological features [55,56,57]. 

Figure 10: Fractal transform: urban area segmentation in SAR scene 

The fractal random process models have been used in synthesis [58]. 
analysis and segmentation of clutter in high resolution polarimetrie syn­
thetic aperture radar (SAR). The fractal dimension of a preprocessed SAR 
image was evaluated using the power spectrum scaling algorithm. The clus­
ters have been separated by a Maximum Likelihood classifier based on a 
Gaussian assumption applied to the fractal transformed image [59]. 

5.5 Miscellaneous 
The algorithms derived in the previously presented results exploit the prop­
erty that the coefficients of a suitable wavelet transform can be modelled as 
sets of mutually independent random variables having a specific geometric 
scale to scale variance progression. The algorithms implemented in this as-
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sumption are performance and compositionally efficient. Results have been 
obtained in implementing a whitening filter for 1/f processes, Bayes de­
tection, Maximum Likelihood parameter estimation, and smoothing of 1/f 
processes corrupted by Gaussian stationary noise [60]. A fractal deconvo-
lution method was implemented for the analysis of aeromagnetic data. An 
iterative deconvolution procedure are used to recover the fractal innovation 
from data [61]. 

Particular topics in signal and image processing are the interpretation 
of undersampled periodicities, sampling with unevenly spaced intervals and 
noisy sparse data. Such data sets are difficult to process using conventional 
methods. Fractal algorithms derived from the theory of dynamic systems 
and chaos provide an alternative to classical techniques [62]. Several of 
the experimental algorithms are: analysis of Poincaré sections, analysis of 
multi-dimensional phase space object using the Radius of Gyration Expo­
nent (ROGE), the Artificial Insymetration Patterns (AIP), the Lyapunov 
Spectra, the R/S analysis and the Maximum Entropy method. These meth­
ods do not require any physical background of the analysed data set, but 
if such a foundation of the signal generator process exists, this is a strong 
premise to guarantee the robustness of the analysis. These techniques could 
be classified as 'model based'. Fractal signal coding is a field that gives 
promising results and could be a basis for a further perspective develop­
ment for the representation of geo-information. The premises are in the 
fractal similarity of natural scenes and in the necessity to store or transmit 
huge volumes of data generated in geosciences. 

Fractal signal coding aims at the identification of a fractal or a set of 
fractals that are a best fit for a given signal and are represented in fewer 
bits than the original data. The fractal coding can be a feature extraction 
method but the main goal is data compression [63]. The mathematical basis 
for the fractal signal compression is in the theory of Iterated Function Sys­
tems (IFS) and the Collage Theorem. The principle of the algorithms lies in 
the field of block coding and vector quantization. The implementations, due 
to their high computational complexity demand fast searching algorithms 
and recently the use of Genetic Algorithms (GA) has been considered. 

6 Conclusions 
The field of fractals developed as an interdisciplinary area between branches 
of mathematics and physics and found applications in different sciences and 
engineering fields. In geo-information interpretation the applications devel-
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oped range from simple verifications of the fractal behavior of natural land 
structures, to simulations of artificial landscapes and classification based 
on the evaluation of the fractal dimension, to advanced remotely sensed 
image analysis, and scene understanding and to accurate geometric and ra­
diometric modelling of land and land cover structures. The multi-resolution 
signal analysis and synthesis, mainly based on the theory of wavelets has 
created a new perspective in the understanding of the stochastic fractals. 
The advances in modelling non-stationary and self-similar 1/f processes has 
opened a new direction in signal processing. The hierarchical representa­
tion of stochastic processes come as an algorithmic support creating a bridge 
connecting the statistic and determinisc approaches in analysis and synthe­
sis. The models provide efficient scale recursive techniques for statistical 
signal processing allowing a trade-off between accuracy and complexity. 

Referring to the computational effort, fractal analysis generally asks 
high complexity algorithms. Both wavelets and hierarchical representation 
now allow implementation of 'fast' algorithms or 'parallel' ones. As a conse­
quence new operational applications can be expected. Another application 
direction is developing from the multi-resolution approach applied to ac­
curate image synthesis. The physical model based method can be used 
for the simulation of unknown data. Prior parametric radiation scattering 
models and fractal geometric assumptions are encapsulated in the model 
at a sub-pixel scale. The results obtained for the modelling of vegetation 
and snow cover are promising and the research is directed towards model 
refinements and algorithmic improvements. The topic is in the frame of 
data fusion applied for remotely sensed image understanding. The archiv­
ing and transmission of remotely sensed images demand high performance 
compression algorithms. Data compression can benefit from the theory of 
fractals through signal and image representation using IFS. 

Two topics in data fusion have been presented, the utilization of fractal 
geometry for the simulation of incomplete data, and the data and knowl­
edge fusion in synthetic images. The method introduced is an extension 
of the physical model inference in data fusion. The scene identification is 
accomplished by a second level of fusion of real and synthetic images. The 
multi-resolution approach in image synthesis is used to accurately represent 
and visualize surfaces with fractal nature. The similarity of fractal and real 
worlds is used as a basis for incomplete knowledge modelling, and the re­
sults are applied for remotely sensed image processing. Better results have 
been obtained in the alleviation of the radiometric effects induced by the 
topography in the imagery of rough terrain regions. 
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Chapter 4 

Multifractal Analysis of Remotely Sensed 
Images 

Jacques Lévy-Véhef 

1 Introduction 
Images of the earth obtained through SPOT or SAR sensors often exhibit 
irregularities at all scales, due to the presence of both texture information 
and different kinds of correlated noise. It is known that, in such contexts, 
fractal analysis may provide interesting insight into the fine structure of' the 
studied phenomena. More precisely, multifractal tools can be successfully 
used to process the complex repartitions of the measures given by remote 
sensors. Several problems may be (partially) solved: 

• image restoration: noise removal algorithms can be designed based 
on the fact that certain types of noise have well defined multifractal 
spectra 

• edge based image segmentation: the local Holder exponents associated 
with certain types of measures react very differently when computed 
on edges and on smooth or slightly textured zones 

• textured based image segmentation: when strongly textured regions 
are present in the image, a more robust approach is to compute global 
multifractal parameters based on a partition function 

We thus have available several tools which, when used in conjunction, 
allow a semi-automatic processing of images, and make it possible to detect 
various features such as edges, homogeneous textured regions, or to perform 

"INRIA, Rocquencourt, France 

- 85 



global tasks such as the detection of certain kinds of changes in an image. 
We present here mostly the method for singularity detection, and show 
some results using edge based or texture based segmentation. 

2 Classical approach to image segmentation 
We restrict ourselves here to the problem of image segmentation: segmen­
tation means that we want to extract from the image a compact description 
in terms of edges and/or regions. Thus, we do not tackle the problem of 
higher level interpretations such as recognition for instance. 

Essentially, image segmentation consists in finding all the characteristic 
entities of an image: these entities are either described by their contours 
(edge detection) or by the region where they lie (region extraction). These 
two approaches are dual, but their algorithms are very different, and, un­
fortunately, most of the times lead to different segmentation results. 

2.1 Edge detection 
It is by far the most widely used approach. The crux of most classical 
methods is the assumption that edges usually corresponds to local extrema 
of the gradient of the grey levels in the image. In this setting, one then 
has to tackle the problem of computing some kind of 'derivative' of a noisy 
discrete signal. 

Let I(x,y) be the image (noisy) signal. An edge is defined by its type: 
a step edge is a 0 -order discontinuity of / , a roof-edge is a 1 -order 
discontinuity of I, . . . Let G(I) be the gradient of I. The problem reduces 
to the determination of a filter yielding a good approximation of G. Under 
some assumptions on the nature of the noise, it may be shown that the 
problem is equivalent to that of finding an optimal linear filter ƒ such that: 

G=(I*f)' = I*f' 

In order words, we start by smoothing the discrete image data I by con­
volving it with ƒ, and then compute the gradient by differentiating the 
smoothed signal. Edge points are then defined to be the local maxima of 
the gradient's norm in the gradient's direction. Using additionnai criteria, 
one can derive expressions for optimal filters. A frequently used one is: 

f(x) = — ce~a^ sin(wx) or f(x) = —cæe~a'x' (Canny-Deriche filter) 
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It is also possible to refine the method using a multiresolution scheme: the 

original image undergoes a series of successive smoothings, and, at each 

step, some characteristic points (maxima of the transform) are computed. 

These points are then used in collaboration through a propagation method 

to describe more robustly and accurately the edges [12]. 

2 . 2 R e g i o n e x t r a c t i o n 

The idea here is to separate the image into regions that verify a given 

uniformity criterion. If we are dealing with very simple images, the criterion 

might just be that all points belonging to a certain region must have the 

same grey level. However, in general, images include textured zones, and 

one has to solve the much harder problem of texture discrimination. For 

more complete discussion, see [15, 11]. 

3 Basics of the multifractal theory 

We define here our notations and briefly recall some basic facts about the 

multifractal theory [1, 2, 3, 4, 13, 14]. 

Let μ be a Borei probability measure on [0,1] x [0,1]. Let un be an 

increasing sequence of positive integers, and define: 

3 j + l' 
*i,3,n 

l Î + 1 

l/n ' V„ 
X 

We consider the following quantities: 

Tn(q)=r
i— l o g £ * E X ^ n ) ? 

t ° g Vn i j 

where Σ* means that the summation runs through those indices (i,j) such 

that μ(Ιί,ί,η) φ 0. When the limit exists,'we set: 

lim Tn(q) = r(q) 
η—κχ) 

We then define fi(a) as the following Legendre transform of r(q) : 

ƒ/(«) = inf (<xq - r(q)) 

On the other hand, we consider the sets: 

^ = {(x,S)€[0,l[x[0,l[/lim!^iMMi)=a) 
I "^°° logi/„ J 
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with 

In{x,y) = {Ii,j,n/(x,y) G 4 J > } 

α is the local Holder exponent at point (x,y), and we define fh(a) as the 

Haussdorff dimension of Ea. 

Finally, we consider the following double limit: 

t( \ V V ÌOèNn(a) 
foia) = lim lim —: 

ε­O η­oc log Vn 

where: 

Νε
η(α) = card{/¿j i n/an(7¿ J i7 l) G [a­ ε,α + ε[} 

and an is the coarse grained Holder exponent of μ at / , j , n : 

Λ / r . Λ _ l o ë M 4 j > ) 

logi/„ 

A central concern of the multifractal theory is to compare the three de­

scriptions of the singularities of the measure, namely the 'spectra' (a, f ¡(a)), 

(a, f g (a)) and (a,fh(a)). This has important applications. Indeed, r(q), 

and thus fi(a), is usually much easier to compute on experimental data than 

the other spectra: r(q) is obtained by averaging over many 'boxes' and then 

taking the limit. fg(a) is more difficult to evaluate, both theoretically and 

practically, especially on real noisy data, since pointwise computations are 

necessary. As for fh(a), it is even much more complex, since the computa­

tion of a Hausdorff dimension is typically very involved. 

Under very general assumptions, it has been proven that [1]: 

fh(a) < ƒ,(«) 

It is also possible to prove that in general [8]: 

ƒ » < Ma) 
For certain special classes of measures, including multinomial measures, we 
have an equality: 

fn(a) = ƒ,(«) = ƒ,(<*) 
when all quantities are the same, we simply denote them f (a). 

In the case of multinomial measures, f (a) is a bell-shaped curve. This 
shape is also observed for a number of natural phenomena. However, this is 
in no way a general property, as one can prove that any ruled function can 
be the spectrum of a multifractal function (see [5]), or capacity (see [8]). 
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Other 'special' features of ƒ may appear depending on the construction 
of the measure, as for instance negative values (see [13]). In general, it is 
easy to construct a measure for which fi(a) is strictly greater than fg(a) 
and fh(a). We shall call the assumption that fg = fh = f ι the 'strong 
assumption', and the assumption that fg = fh the 'weak assumption'. 

4 Application to image analysis 

4.1 Definition of the measures 
Though fractal geometry was introduced a long time ago in image analysis, 
it is not yet used extensively [16, 10]. 

Some authors have used the fractal dimension to perform texture classi­
fication and image segmentation, others have used higher order dimensions 
or measures, such as correlation or lacunarity [6, 9], to refine the results and 
have obtained some interesting results. Very few papers have been devoted 
to the use of multifractals in image analysis [11], although we believe that 
approaches based on the computation of the fractal dimension are largely 
unfounded. This approach assumes that the 2D grey level image can be seen 
as a 3D surface, or, equivalently, that the grey levels can be assimilated to a 
spatial coordinate on the z-axis. This assumption has no theoretical basis, 
since the scaling properties of the grey levels are generally different from 
those of the space coordinates. Instead, we should look at the grey levels 
as a measure, laid upon a generally compact set, totally inhomogeneous to 
space coordinates. This leads to a multifractal analysis. 

A natural choice is to define the measure μ as the sum of intensities of 
pixels in the measured region. This measure will be useful, but it will not be 
sufficient for a fine description of the image. One possibility is then to define 
other types of functions of the grey levels, and to apply the multifractal 
analysis to them. Since the notion of resolution is of' great importance 
in image analysis, we find it more appropriate to work with set functions 
than with point functions. However, it occurs that those functions that 
are relevant in our field are not in general measures, but rather capacities. 
Lack of space prevents us from presenting the extension of the multifractal 
analysis to capacities, thus we refer the interested reader to [8] and just 
define the capacities that we will need. 

We introduce 'max1, imin'> and '¿so' capacities of a region Ω. If Ω* is 

the subset of Ω where intensity is non­zero, and p(i) is the intensity of the 

point i, we define: 
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/ίτηαχ(Ω) = maxieiìp(i) and μ„ηη(Ω) = rninieQ*p(i) (1) 

If G(iì) is the geometrical centre of Ω, we define: 

/χ,·βο(Ω) = Card{¿ G Ω/ρ(ΐ) = ρ((?(Ω))} (2) 

The exponents computed with those capacities give different information on 
the singularities encountered: amax and am¿„ only depends on the height 

of the singularity, o,­so only depends on the kind of singularity, and asum 

depends on both height and kind of the singularity. 

4.2 Edge detection using multifractal characteriza­

tions 

4.2.1 Introduction 

The approach here is, in some sense, inverse to the classical one explained 

in section 2: instead of smoothing the discrete data in order to be able 

to compute some derivatives, we stay with our initial discrete values and 

quantify the singularity around each point; we then characterize an edge 

point as a point having a given value of singularity. 

This procedure is based on the idea that, in some cases, it might be im­

possible to recover an underlying continuous process from the discrete data 

(if such a process exists . . . ). Thus it seems more natural to directly model 

the sampled signal. The advantage is that we do not loose or introduce 

any information by smoothing. The drawback is that we may well be much 

more sensitive to noise. This is why we have to define several capacities. 

Using jointly the local information provided by a and the global one con­

tained in f (a), we are able to construct an operator on the image whose 

main features are the following ones: it is idempotent (it detects its own 

result), it reacts differently to different types of singularities (provided that 

the noise is not too important), and no tuning parameters are needed, as 

soon as the type and the amplitude of the noise are known. As a drawback, 

since a more complex analysis of the image is made, the computations are 

not as fast as with gradient­based edge detectors. A few minutes ai­e needed 

to analyse a 512 χ 512 image. 

4.2.2 Computat ion of the singularity exponents 

We study the behaviour of the singularity exponents for sum, max, min 

and iso capacities on simplified models of step­edge, corner, line and plane. 
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M Pi 

χ = 6pj+ 3ρ2 χ = 3ρ1+ 6ρ2 

Ρ2 

1 
■ I l 

x = 3pj+6p 2 χ = 5pj+ 4p2 

Figure 1: Step­edge, line, corner line, and corner models. Note that the 

line and the corner line model give the same capacity so they will not be 

distinguished­further 

Figure 1 describes those singularities. There are only two values for the 

gray levels: p\, the level of the point of interest, and p2 , the level of the 

background. We will denote V(i) the i χ i squared neighbourhood centred 

on the pixel of interest, and V*(i) as V(i) minus the pixel of interest. 

We stress a very important point here: it is obvious that the objects we 

consider are far from being 'fractals', or even 'multifractals'. However, our 

approach does not at any point make such an assumption. All we do is sup­

pose that the defined capacity does have a Holder exponent at each point (a 

rather weak assumption). This makes it possible to compute a multifractal 

spectrum, whether the capacity is multifractal or not. Of course, strictly 

speaking, the spectra corresponding to all of our models reduce to the point 

(2,2), thus we do not have multifractal behaviour. The fundamental idea 

here is that we are not interested in getting the 'real' spectrum, but rather 

to verify that, if we use a certain procedure of' estimation, the 'spectrum' 

associated with a typical image will allow a description of the local singu­

larities. In other terms, we are not interested in absolute quantitites (the 

' true' spectrum), but rather in evidencing differences between estimated 

spectrum associated with different sets of images. 

a is computed as the estimation of the slope of logμ(V(i)) versus logz, 

with i = 2n + 1, η = 0 . . . . The maximal size of neighbourhoods is related 

to localization of computation. If we use little neighbourhoods, for instance 
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i < 3, a will react to localized singularities, if we use larger neighbourhoods, 

a will react to more widespread singularities. If we consider a computing 

neighbourhood V(3), it is possible to derive explicitely the probability law 

of a in some cases, for instance when the noise is additive gaussian or 

uniform. The calculations are simple but rather tedious, and the formulas 

are quite long, thus we only give here one for information: 

Law of a ( sum measure) , for a gaussian addit ive noise of vari­

ance σ: the singularity is characterised by η (η equals 9 for a smooth 

region, 6 for a step, 4 for a corner, 3 for a line), and s\ = ^~ et S2 — ^­' 
σ ■ 

Λ(α) = g (3 2 a ­ 2 3° + 9) 

S (η) = η θ! + (9 ­ ns2) 

¡2(a) = ­p(n)r + ^(S(n) + 3as1)­2s1 

6\/21og3 3a ( 1 2 9 2 , 1 
Uà) = ν ­ f ­— exp S2 sf + ­S(n)Sl x 

ττ/ι(α) F V 16 16 1 8 V ; V 

8 0 F / 2 ( a ) (9f2(a)2\ ­ ( 3f2(a) ) 
exp ———­ ert 9 3y/Ma¡ V64/i(or); \Sy/Ma¡¡ 

Observation of plots of different laws show that there is nearly no chance 

of confusion between the different types of singularity when the amount of 

noise is not too large, and that the max and min capacities are more robust 

to uniform noise. 

4.2.3 Resul ts 

Edges detected by Canny­Deriche filtering can be irregular, and edges de­

tected by the multifractal exponent are far less sensitive to noise. In figure 

2, we can see the detection of a line blurred with uniform noise. The line 

is detected with a fair accuracy by the multifractal exponent, and not at 

all by Canny's filter: we should here have used a specific filter for lines. 

However, the same multifractal exponent is able to detect both step­edge 

and line. 

Figure 3 shows a comparison on a natural scene. It can be seen that the 

multifractal exponent is able to detect small details accurately. The most 

remarkable aspect is the accuracy of the detection of the corners of the 
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Figure 2: Comparison of Canny edge detection approach and multifractal 
exponent approach. From left to right: blurred line; Canny edge result with 
large bandwidth; Canny edge result with small bandwidth; edge detected 
with iso capacity 9 grey levels on V(3) 

door and of the limits of the bush, when Canny's edge method only gives 
good results in the presence of a step. Finally, figure 4 shows the result of' 
using the multifractal method on a SPOT image of a region of France. The 
remarkable feature here is that all lines are detected even when the contrast 
is very low (see for instance the part of the river passing through the town). 

4.2.4 Use of f (a) 

In the images presented so far, the use of a computed with well chosen 
capacities has proven to be sufficient. However, this will not always be the 
case. In this section, we indicate how the use of f [a) can help us refine our 
image description. Let us consider figure 5. 

On the left, anyone would see three edges, that are easily detected by 
any edge detector. On the right, we have done nothing else than triple 
the number of lines in the image. Of course, it is still possible to interpret 
this image as being composed of nine edges, but most people would prefer 
to talk of a binary texture. However our local computation of exponent a 
would be the same in both situations. 

Here appears another characteristic feature of an edge: an edge does 
not only correspond to a certain type of singularity in the images, or to an 
extremum of the gradient (local characterization), but also to a 'rare' event, 
in some sense that has to be defined. In other words, if too many 'edges' are 
detected in a portion of an image, then the human visual system will have a 
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Figure 3: Comparison of' Canny edge detection approach and multifractal 

approach on natural scene. From left to right: original image; Canny edge 

detection result; multifractal exponent computed with min capacity on 

V'(3) 

tendency to talk of a textured zone, rather than of a concentration of edges. 

This is where we can use the f ¡¡(a) characterization. Remember that fg(a) 

measures, loosely speaking, how rare or frequent an event of singularity a 

is. 

Now if we assume that fg(a) and fh{a) are equal (weak assumption), 

we may assess how 'rare' a smooth edge is, because a smooth edge point 

will belong to a set Ea whose dimension is one. We simply use here the 

connection between geometry and probability provided by the assumption 

made on the two spectra. The general line of reasoning is the following 

one: from a geometrical point of view, a point with prescribed singularity 

belongs to a set of given fh(a). If the weak assumption holds, then fg(a) is 

also given, and we know the probability of finding such a point in the image 

at a given resolution (this means that all the quantities are computed at 

this resolution). 

In this sense, we may precisely say how an edge, for instance, is charac­

terized both by a given singularity value (local condition) and by the fact 

that it is a rare event (global condition). To illustrate this, we show in 

figure 6 the points of figure 3 (original image) where f (a) « 1 (one can 

verify that we get most edge points of the original image), and the points 

belonging to the sets Ea (there might be several such Ea sets) such that 

f (a) « 2 (we keep here all the points lying inside regions). These ideas 

can be used more rigorously in a probabilistic setting. The general frame­
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Figure 4: Left: initial SPOT image, right: edge detection result using max 
capacity [original satellite data copyright SPOT Image / CNES] 

work is that of Bayesian optimisation. We restate the problem as follows: 
at a given point (x,y) in the image, we look for the most probable couple 
(t, λ), where t is the type of singularity and λ the relative height of singu­
larity at (x,y). Let us denote by A the vector of computed local Holder 
exponents at point (x,y), with different measures or capacities. Typically, 
A = {amin, amax, asum, als0). As is usual in image analysis, we use Bayes 
rule to write: 

Pr((t,X)/A) 
Pr(A/(t,X))Pr(t,X) 

Pr{A) 

and we look for the couple (t, X) that maximizes the left hand side of the 
above equality. This is equivalent to maximizing the product Pr(A/(t, X)) x 
Pr(t,X), since Pr(A) is a constant here. Thus we have to evaluate two 
quantities: the conditional probability of a vector of Holder exponents given 
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Figure 5: Left: some edges, right: a texture 

a singularity, and the prior probability of a given singularity. 

Computat ion of the conditional probabil ity 

This probability is difficult to compute theoretically, and only the cases 

of uniform noise with A = (amax,asum) or A = (amin,asum) have been 

completed (see [7]). In the general case, one has to perform computer 

simulations to obtain the conditional laws. 

Computat ion of the prior probability 

Two cases have to be considered: when the point does not lie in a smooth 

region, it is reasonable to assume that t and λ are independant. Thus: 

Pr(t,X) = Pr(t)Pr(X) 

On the other hand, we know that the iso capacity reacts only to the 

type of the singularity, and that the max capacity reacts only to the relative 

height of the singularity. In our case, we even have an equivalence between 

(t, X) and the coarse grained Holder exponents, which allows us to write: 

Pr(t € Γ) = Pr(al0 G At) 

Pr(X G Λ) = Pr(an
max G Am) 

where we have used a superscript η to indicate that the coarse grained 

exponents are computed at resolution n. The sets T, A¿ and A,Am are 

related by expressions that can be derived explicitly. 

To evaluate Pr(t,X), we thus need only to evaluate the two spectra 

fg{aiso) and fg(amax). This can be done directly on the data, using an 

approach described in [7]. 
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Figure 6: Left: image of points (in white) whose f (a) 
of points (in white) whose f (a) = 1.1 

1.93; right: image 

Finally, when (x, y) lies in a smooth region, another approach using only 
(amin,amax) has to be used. 

Results obtained with this approach are presented on an aerial photo­
graph (figure 7). A blurring with Gaussian noise of variance 0.1 has first 
been preformed, then the method explained above has been applied at three 
succesive resolutions. Finally, a propagation algorithm has been used. 

Using the same line of reasoning, it is also possible to perform texture 
segmentation. We only show here a result on a SPOT image of the region of 
Montpellier,. France (figure 8), where the aim was to recognize four types of 
textured zones: sea, fields, dense towns and semi-urban area. Even though 
the results are far from being perfect, we see that the method was able to 
localize most of the regions. 

Finally, we mention that, using more complex capacities, comparable 
results have been obtained on SAR images. 

5 Conclusion 
In this work, we have demonstrated that the use of a multifractal character­
ization of image points can help to solve the problem of segmentation. Our 
experiments show that, in several cases, this approach gives at least as good 
results as the classical ones. Much more work is needed in this direction, 
but these preliminary results show that the (a, f (a)) approach might be 
able to build a bridge between the two so far unconnected methods of edge 
detection and region extraction. 
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Figure 7: Top left: original image; top right: blurred image; bottom left: 
all non-smooth points; bottom right: smooth points 
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Figure 8: Left: original SPOT image (Montpellier region); right: texture 
based segmentation [original satellite data copyright SPOT Image / CNES] 
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Chapte r 5 

How Bright is the Coast of Brittany? 

Shawn Lovejoy* and Daniel Schertzer^ 

1 Introduction 
1.1 Fractal sets and multifractal measures 
As long ago as 1913, Jean Perrin noted that the usual notions of mea­
surement were perhaps not adequate for answering the seemingly simple 
question 'How long is the coast of Brittany?'1 , and Steinhaus (1954) noted 
that rivers were 'not rectifiable'2. It wasn't until many decades later that 
a clear answer became at all accepted. It now seems obvious that there 
is 'something' fractal about a coastline, hence today, even laymen under­
stand that the length depends fundamentally on the resolution at which it 
is measured. 

If there is no unique (scale independent) length of a coastline, then why 
should their be a unique fractional cloud cover (forest cover) etc? Indeed, 
over the last decade, it has been noticed that as the resolution of satel­
lites improves, the estimates of global albedo are consistently declining. 
Estimates of fractional cloud cover are also known to decline -sometimes 

'Physics Department, McGill University, Montreal, Canada 
t Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Paris 
1Mandelbrot, 1967, building on Richardson's 1961 scaling analyses suggested that a 

fractal dimension was the appropriate characterization of the scaling 
2 '...the left bank of the Vistula, when measured with increased precision woud furnish 

lengths ten, hundred and even thousand times as great as the length read off a school 
map. A statement nearly adequate to reality would be to call most arcs encountered 
in nature as not rectifiable. This statement is contrary to the belief that not rectifiable 
arcs are an invention of the mathematicians and that natural arcs are rectifiable: it is 
the opposite that is true...' Steinhaus, 1954. To prove his point, Steinhaus 1962 shows 
a (fractal) Peano curve 
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precipitously­ with improved resolution. Indeed, Gabriel et al. 1988, have 

shown that the effect is systematic no matter what brightness thresholds are 

used to estimate the cloud fraction3. Similarly, the resolution dependence 

of the coastline has now been generalized to all topographic level sets (not 

just sea level); Lovejoy and Schertzer 1990 have shown the same effect on 

regions exceeding various altitudes on the earth. How is it therefore that 

the analogous conclusion ­ now obvious for coastlines ­ has not been drawn 

for remotely sensed radiances? A partial answer to this question may be 

that remote sensing deals with measures and their integrals over various 

resolutions ('pixel elements'), not with geometric points of sets (such as the 

borderline between zones above and below sea level). While the framework 

necessary for dealing with the latter has been around for quite some time 

(see especially Mandelbrot 1983), the corresponding multifractal framework 

necessary for dealing with measures and fields, is little over ten years old 

(1983). In the following, we argue that there is now ample theoretical and 

empirical evidence for recognizing this resolution dependency as a basic 

aspect of remote sensing. Its implications must be fully pursued in the 

development of resolution independent remote sensing algorithms. 

This chapter will review a small part of what is a mushrooming field, 

aiming to give a brief synopsis of different aspects of a large body of 

work. Several more pedagogical introductions to multifractals are now 

available, see especially Schertzer and Lovejoy 1994a. In a companion paper 

(Schertzer and Lovejoy 1994b, hereafter labeled SL94), we concentrate on 

more recent advances in multifractals and how they can be used in remote 

sensing. 

1.2 Clouds 

Before considering multifractals and multifractal analyses (which involve 

an exponent function rather than a unique exponent values), we will give 

some examples of the scaling of some basic geophysical fields (clouds, wind 

and Earth's surface) using standard energy spectra (E(k) for the energy 

at wavenumber k). Scale invariance implies invariance under 'zooms', the 

simplest of which is the isotropic zoom χ —» Xx (see section 4 for gen­

eralizations), hence k —> λ ­ 1&. Invariance will be associated with power 

laws: 

E(k)^k~ß (1) 

3They even used statistical hypothesis testing to show that resolution independent 

cloud brightness fractions did not exist for any significant brightness levels 
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since only power laws retain their form under zooms (in section 4, we shall 

see that more precisely, they have the required group properties). We shall 

see that the spectral exponent β is related to a single value of the moment 

function K(q) (defined in section 2): β = 1 — K(2) (the value 2 because 

spectra are second order statistics). 

There has long been uncertainty over the exact type and range of scaling 

in the atmosphere. Since the 1950's the basic model postulated isotropic 

two dimensional turbulence at large scales, and isotropic three dimensional 

turbulence at large scales, the two being seperated by a hypothetical 'meso­

scale' gap or 'dimensional transition' (supposedly at about 10km, the scale 

height of the mean pressure). The recognition of scale invariance as a basic 

dynamical symmetry principle ('Generalized Scale Invariance', Schertzer 

and Lovejoy 1985a,b) in the 1980's made the standard model seem quite 

ad hoc since it was much simpler to postulate scaling, but without the 

restriction to isotropy. The resulting 'unified scaling model' (Lovejoy et al. 

1993, Chiriginskaya et al. 1994, Lazarev et al. 1994) seems to be very close 

to the measurements (see fig. 1 for a schematic diagram). Indeed, figs. 2, 3 

show some recent aircraft and radiosonde spectra indicating that through 

the entire atmosphere in the vertical (and right through the meso­scale in 

the horizontal), that the scaling is well obeyed, although the exponents 

are quite different in the two directions (defining an 'elliptical dimension'« 

23/9, see section 4). 

In order to clarify the situation in the horizontal, (specifically to aug­

ment the number of samples of large structures so as to obtain good statis­

tics) satellite radiances are analyzed in fig. 4 with no evidence of a break in 

the horizontal scaling over at least the range æ 300m to R¿ 4000km. Since 

the cloud radiances are nonlinearly coupled with the dynamics, the absence 

of a break in the radiances will reflect the absence of a break in the dy­

namics. To extend this range to smaller scales, figs. 5, 6 show that the 

corresponding cloud liquid water content is scaling over at least the range 

¡=¡ 5m to æ 330km. Recent results on rain (Lovejoy and Schertzer 1990) 

extend the latter limit down to millimeter scales and it has long been known 

that atmospheric turbulence is scaling from dissipation scales of less than 

millimeters to much larger scales. These findings (combined with many oth­

ers, see Lovejoy et al. 1993 for a review) make it likely that the atmosphere 

is scaling over the entire meteorologically significant range. 
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Figure 1: Anisotropic cascade scheme showing how the vertical cross-section 
of a large (horizontally flattened eddy) gets broken into s: .aller sub-eddies 
in a scaling anisotropic manner. The elliptical dimension used here is 3/2 
(from Lovejoy and Schertzer 1986.) 

1.3 Surfaces 
The other field fundamental for remote sensing is the Earth's surface. It 
has long been known (Venig-Meiniz, 1951) that the topography has a power 
law spectrum over wide ranges. However, during the 1980's the scaling 
properties and limits were somewhat obscured when attempts were made 
using inappropriate monofractal analysis techniques to fit the multifractal 
topography (see below) into monofractal frameworks. For example, de­
bates arose around which was the most appropriate value of the supposedly 
unique fractal dimension of altitude isolines. Research has shown that there 
is no unique value; the fractal dimension systematically decreases for higher 
and higher altitude thresholds. This implies that the monofractal frame-
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Figure 2: The spectrum of temperature fluctuations. Top: average over the 
3 air craft data sets taken roughly at one year interval in the tropics (each 
contains 10 samples). Below: 3 individual spectra obtained by averaging 
over the 10 samples. The absolute slopes are close to Corssin-Obukhov value 
5/3: βυ = 1.68 ± 0.05 over the frequencies range u;o/20 - u;o/20480(u;o = 
8Hz). From Chiriginskaya et al. 1994. 

work of self-affine surfaces (which cannot handle multiple dimensions) is 
inappropriate. 

When surfaces are remotely sensed, there is usually no simple or direct 
relation between the physical surface or atmospheric parameters and the 
observed radiances. Below we will argue with examples, that serious ex­
ploitation of remotely sensed data requires the use of multifractal models of 
the radiation/matter interactions. For the moment, we consider another ex­
ample: ice surfaces observed by airborne Synthetic Aperture Radar (SAR); 
fig. 7 shows the result at different wavelengths and polarizations. Full 
treatment of these correlated multifractals requires (complex) Lie cascades 
(see section 5, the accompanying text, and Schertzer and Lovejoy 1994). 
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Figure 3: The mean spectrum of 280 radiosondes at 50m resolution, over 
a total depth of 13.3km, taken in the tropics (same experiment as fig. 2). 
The straight line is the theoretical line (Bogliano-Obhukhov scaling) with 
Hv = 3/5; βυ — 2.20. The scaling is well respected throughout the entire 
thickness of the atmosphere. 

2 Properties of Multifractals 

2.1 Discussion 
The full implications of nonlinear dynamics coupled with scaling have only 
begun to be grasped in the last few years. It is now increasingly clear 
that this generally leads to multifractal behaviour (see e.g. Schertzer and 
Lovejoy 1991). Multifractals have highly singular small scale limits; they 
do not converge in the sense of functions, but only weakly, in the sense 
of measures. Although at first sight this may seem to be an academic 
distinction, it is in fact fundamental. When multifractal fields are measured 
by remote or in situ sensors whose temporal or spatial resolution is much 
lower than that of the intrinsic variability of the phenomenon (which can 
easily be of the order of millimeters and milliseconds), then the result is a 
low resolution function whose properties depend fundamentally (in precise 
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Figure 4: Average power spectrum for satellite images grouped according to 

the satellite and the frequency range of the images (from bottom to top): 

LANDSAT (visible) β = 1.7, GOES (visible) β = 1.4, GOES (infra­red) 

β = 1.7, Nimbus­9 (channel 1 to 5) β = 1.67, 1.67, 1.49, 1.91, 1.85. (See 

Tessier et al. 1993b, Lovejoy et al. 1993). 

power law ways) on the resolution. 

Denote the ratio of the largest (e.g. satellite image) scale by L, and 

the smallest (e.g. single pixel) scale by /, and the ratio j = X(> 1). We 

can then denote the field of interest (e.g. satellite radiance) at resolution / 

by εχ which will have the following 'multiscaling' behaviour (Schertzer and 

Lovejoy 1987): 

Pr{£x > ΧΊ) ft X~c^ (2) 

where Pr indicates 'probability', 7 is the 'order of singularity' associated 
with the threshold value ε χ, and 0(7) > 0 is the corresponding 'codimen­
sion'. As the resolution (7) is increased, the satellite will see more and 
more small bright regions; for a scale invariant field, 7 is the correct way 
to remove the systematic resolution dependencies. Similarly, 0(7) indicates 
how the histograms of brightness values will change with resolution, and 
provides the appropriate way of removing the scale dependence of the his-
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Figure 5: Power spectrum of 5 different aircraft liquid water concentration 
data sets (averaged to 10 points per magnitude on the k-axis, resolution ft 
5m). All the sets are very well scaling and have absolute slopes close to the 
theoretical value for passive scalars β = | (straight line on top of graph). 
In order to avoid overlapping of the different curves, the lines were offset 
vertically. Number of data sets from top to bottom with vertical offset 
given in brackets: 4 (105), 3 (104), 1 (102), 2 (101), 5. From Brosamlen et 
al. 1994. 
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Figure 6: Aircraft liquid water concentration data sets power spectrum (av­

eraged to 100 points per magnitude on the k axis. This shows a remarkably 

good scaling right through the meso­scale (ft 10km, the graph covers the 

range of ft 10m to ft 300km). From Brosamlen et al. 1994. 

tograms. The behaviour indicated in eq. 2 will of course break down for 

large enough λ (small enough /, often of the order of millimeters), but 

over its range of validity, it represents a very strong effect since εχ and the 

probabilities will respectively diverge and converge as λ increases. When, 

c(7) < D (D being the dimension of the observing space; =2 for images) 

0(7) is the (geometrical) codimension 0(7) = D — D(­y) corresponding to the 

(geometrical) fractal dimension D(7) of the support of singularities whose 

order is greater than 7. The basic physical model for such behaviour are 

cascade processes in which the large scale multiplicatively modulates the 

smaller scales, in a mechanism that repeats from one scale to another over 

a very large range. Note that for the moment, we consider only isotropic 

scale changes associated with self­similar multifractals, full treatment of 

geophysical fields requires Generalised Scale Invariance (GSI, Schertzer and 

Lovejoy 1985a,b, 1989, 1991) which involves anisotropic scale changes and 
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Power Spectra for L-Band SAR Sea Ice Reflectivity Fields 

1.2 1.6 
loglO(k) 

2.4 

Figure 7: Power spectra of synthetic aperture radar data of two scenes (512 
χ 512 points each) of sea ice at 12.5m resolution showing that the scaling is 
well respected, especially in the HV polarization in both the SAR C-band 
data scenes (from top to bottom, the curves are HH, VV and HV for scene 
1 and HH, VV and HV for scene 2 respectively. They were offset by 0.5 in 
the vertical so as to not overlap. From Francis et al. 1994. 

is necessary to account for the ' texture' and 'morphology' of structures (see 
e.g. Pflug et al. 1993 for a recent study of cloud texture and type and 
section 4). 

The multiple scaling behaviour of this field ε at scale ratio λ ( = y the 
ratio of the largest scale L to the scale /) can be also be characterized by the 
corresponding law for the statistical moments (via a Laplace transform): 

Χκ(ο) = (εΙ) = J X^-c{n)dl (3) 

(the symbol ' ( . ) ' indicates statistical averaging). All satellite and radar 
measurements of the atmosphere or surface which obey eq.s 2, 3 are strongly 
dependent on the characteristics of the sensor (via the ratio 7); they are 
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Figure 8: The scaling behaviour of the statistical moments of the Dead-
man's Butte data is illustrated here by the straightness of the curves of the 
log(<^) as functions of log(L//), with L the largest scale in the Digital Ele­
vation Model: from bottom to top q = 0.5, 1.5, 2.5, 3.5 and 5. The slopes 
correspond to the scaling exponent K(q). From Lovejoy et al. 1994c. 

not pure functions of the state of the atmosphere or surface that we are 
measuring. Since detailed comparisons of remote measurements at different 
resolutions are seldom made, workers in the field are only just starting 
to realize the importance of these resolution effects. What we propose is 
the systematic development of new resolution-independent algorithms for 
calibrating and exploiting remotely sensed data. This will also involve a 
systematic characterization of the types and limits of scaling of the various 
fields. 

Some examples of multiscaling of the moments are shown in fig. 8 
which shows the scaling of the moments of the quantity φ (the quantity 
correspoding to ε) for the topography at Deadman's Butte, and fig. 9 
shows the corresponding K (q) function. Monofractal topographies (such 
as those of the celebrated monofractal landscapes illustrating Mandelbrot's 
book), would be linear. Below, we indicate how to quantify this degree of 
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K(q) 

Figure 9: The scaling exponent K(q) against q for the Deadman's Butte 
data (see figs. 8). The continuous curve is the theoretical universal multi-
fractal fit with a = 1.9, C\ = 0.05 (see eq. 9) For q > 6, the asymptotic 
behavior of K(q) becomes linear. This is a second order multifractal phase 
transition predicted from the finite sample size. From Lovejoy et al. 1994c. 
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multifractality more precisely with the help of universal multifractals. 

2.2 A few properties 

In general, knowledge of the probability distributions is equivalent to knowl­

edge of all the statistical moments of a process; in multifractals, this rela­

tionship is particularly simple. In eq. 3, only the maximum exponent 

dominates in the integral, and the (Laplace) transform relating the mo­

ments and probabilités reduces to a Legendre transform for the exponents 

(Parisi and Frisch 1985). 

K (q) = max^q­y ­ 0(7)) 0(7) = maxq(q^ ­ K (q)) (4) 

These relations establish a one to one correspondence between orders of 

singularities and moments (q = ^ (7 ) , 7 = K'(q)). Both the codimension 

function c(7) and the moment scaling exponent K(q) are convex. Note 

that in practice, the maximum order of singularity available in a sample 

is bounded simply due to the finite sample size; the resulting restrictions 

on the 7 in the above maximization, are associated with multifractal phase 

transitions as discussed in SL94. 

Various types of multifractals exist; and they can profitably be classified 

according to their highest order of singularity (see Schertzer et al. 1991, and 

Schertzer and Lovejoy 1992). Unfortunately, those which have been most 

extensively studied; the geometric multifractals in strange attractors, or the 

microcanonical multifractals often used as a framework for analysing turbu­

lence (e.g. the celebrated 'p model', Meneveau and Sreenivasan, 1987), are 

artificially restricted so that high order singularities cannot occur. In con­

trast, the general 'canonical' multifractals generically produced by cascade 

processes do not suffer from these restrictions. In canonical multifractals, 

the existence of occasional 'hard' (very violent) singularities leads to quite 

different behaviour for the (theoretical) process without the small scale 

interactions ('bare' properties), and for the same process with the small 

scale interactions ('dressed' properties). The latter are the result for exam­

ple when cascade processes proceed down to infinitely small scales and are 

then integrated over finite scales (for example by a remote sensor). The 

dressed ε χ, will generally display the phenomenon of divergence of high 

order statisitical moments, and are discussed in more detail in SL94. 
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2.3 Universal multifactals 

One of the most fruitful physical ideas is that of universality; that of all the 

complex details of a process, that ­if it is repeated sufficiently often for ex­

ample over a wide enough range of scales ­ that only a few of the details will 

actually matter. Each resulting 'universality class' has a basin of attraction 

which determined by all the set of parameters which give the same limit­

ing behaviour. In multiplicative process and multifractals, the question of 

universality has a long history, much of it being connected with the 'law of 

proportional effect' and lognormal distributions. Unfortunately, for various 

technical reasons (discussed in more detail in SL94), for several years, an 

anti­universality prejudice developed in the multifractal literature. The ab­

sence of universality would have dire implications for the very possibility of 

using multifractals for anything since it would mean that an infinite num­

ber of theoretical parameters would be needed to specify every multifractal 

process (e.g. the entire c(j) or K(q) function). Similarly, the corresponding 

empirical characterization would also be impossible. Fortunately, stable, at­

tractive universality classes do exist for multifractal processes, a fact that is 

being increasingly recognized (Schertzer and Lovejoy 1987, 1989, Fan 1989, 

Brax and Peschansky 1991, Kida 1991, Dremin 1994 etc.). 

Multiplying processes corresponds to adding generators. We seek gen­

erators which are stable and attractive under addition. Considering for the 

moment only stationary (conservative) multifractals, these generators yield 

the universal expressions (Schertzer and Lovejoy 1987, 1989) for the scaling 

function of the moments of the field K{q) and of the codimension function 

c( 7 ) : 

c
w=

c
'Gà+ï)

a
'
 a

*
1
 <

5
> 

K(q) = ­ — ( ? " ­ q) α φ 1 (6) 
a — 1 

where {~+^r) = 1, and when a < 2, for q = ο'(η) > 0. α is the Levy index of 

the generator and characterizes the degree of multifractality. The a = 2 case 

corresponds to the maximal degree of multifractality and the bare a = 2 

multifractal has lognormal probabilities. The a = 0 case corresponds to the 

monofractal minimum. C\ is the codimension of the mean and characterizes 

the sparseness of the mean field. Η is the degree of nonconservation and 

characterizes the degree of nonstationarity of the process. Note that the 

lognormal multifractals are compatible with the lognormal phenomenology 

of geophysics. 
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2.4 The degree of non-stationarity: the Hurst expo­
nent H 

Most fields observed in nature are not conserved, i.e. the average of the 
observed quantity at scale λ (denoted here by.(px)) is not equal at differ­
ent scales. This requires the introduction of a third4 universal multifractal 
parameter Η (the 'Hurst ' exponent) which measures the degree of nonsta-
tionarity in the process; it is also a measure of the conservation of the field 
over different scales (as the case ade proceeds to smaller scales), e.g. Η = 0 
is a conserved or stationary multifractal5. For many analysis techniques it 
is necessary to isolate the underlying conserved quantity (see below). 

To understand this better, consider the relatively well studied case of 
passive scalar advection. If cloud droplets were passive scalars, i.e. trans­
ported by the wind without interacting with it, one obtains the Corrsin-
Obhukhov law for passive scalars (Obhukhov 1949, Corrsin 1951): 

Αρλ = φΐχ-ϊ (7) 

^ = χ | ε Α k (8) 

where εχ is the turbulent energy flux and χχ is the passive scalar vari­
ance flux6 at scale ratio A. Eq. 7 indicates that Η = 1/3. Αρχ = 
p(x + A_1L) — p(x) is the density fluctuation at scale A. Without inter­
mittency, χχ and εχ are constants (have trivial scale dependency) with 
(scaling) intermittency then χχ and εχ will be multifractal and φχ will obey 
eqs. 2, 3. More generally, since liquid water is not really passive (for ex­
ample it is associated with latent heat release which modifies the velocity 
field) we may still consider that the characteristic fluctuations Αρχ are scale 
invariant and write the scaling for the density ρ as: 

| Δ , | Λ « ΦαχΧ~Η (9) 
4Daviset al. 1994 have proposed characterizing multifractals with just two parameters 

(Ci, H)\ these are clearly only sufficient to determine the tangent of K(q) near q=l, i.e. 
the best mono fractal approximation. To discuss any multi fractal characterization, at 
least three parameters are necessary, a is the natural choice 

5If Η > 0 the process is nonstationary i.e. it is statistically translationally invari­
ant. A more restricted notion of stationarity (second order stationarity) depends on the 
value of β (a process is second order stationary if β < 1). The distinctions between 
true stationarity (discussed here) and second order stationarity (which has no special 
significance for multifractals) have sometimes been forgotten (e.g. Davis et al. 1994) 

6Note that as indicated Corssin-Obhukov scaling involves quasi steady fluxes; these 
boundary conditions are totally different from those of point dispersion pollutants 
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where φχ has the conserved property (φχ) = constant (independent of scale). 

Since we have as yet no proper dynamical theory for the liquid­water dis­

tribution in the atmosphere, we do not know the appropriate fields φχ nor 

the corresponding value of a. However, changing the value of a corresponds 

essentially to changing the parameter C\, (Schertzer and Lovejoy 1994), 

without loss of generality, we therefore set it equal to 1. 

3 Multifractal analysis and simulation tech­

niques 

3.1 Summary of multifractal data analyses 

Table 1 summarizes some recent studies of universal multifractal charac­

teristics of various fields, many of them remotely sensed. Most of these 

estimates were obtained using the Double Trace Moment (DTM) technique 

(Lavallé 1991). This method is based a generalization of the above obtained 

by first raising the field at the smallest available resolution (indicated by 

Λ) to the power η, then degrading to resolution A before averaging over the 

qth power of the result: 

( ( 4 ) 1 ) = A
A
'
(9,r?)

 ( io) 

Since we are considering the normalized η powers, the q, η scaling ex­

ponent function is related to the usual exponent by: 

K(q,V) = K(qV)­qK(V) (11) 

The usefulness of the double trace moment technique becomes apparent 

when it is applied to universal multifractals since in this case, we have the 

following: 

K(q,V)­=V
aK(q,l) (12) 

i.e. log/i" vs. log η will be linear over the region where the above holds. 

Since eq. 12 is strictly true only for bare moments, the finite sample and/or 

divergence of moments will cause it to break down for large q, η (q or 

qr\ > qs). At small η, it can also break down due to the presence of noise 

or zero values. Figs. 10, 11, 12 give some examples on surfaces. 

Table 1 contains a more complete list including universality parameters, 

sampling limits, critical orders and singularities of divergence (correspond­

ing to 'hard' multifractals and Self­Organized Critical structures; see SL94), 

as well as the effective dimension of dressing (see SL94 for more details). 
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LoglK(q,T|)l 

­1.0 ­0.5 0.0 

Log η 

Figure 10: The curves of log \K(q, η)\ as functions of log η, for the Dead­

man's Butte data. From top to bottom q takes the values 2 and 0.5. All 

the curves are parallel as predicted by universality eq. 12. The evaluation 

of their slopes, with η taking values between en 0.5 and 2.4, gives the fol­

lowing values of α : 1.90 ± 0.1 and 1.89 ± 0.1. The values of C\, obtained 

by solving the expression for log77 = 0 intercept given by log \K(h,l)\ and 

using eq. (12), are respectively: 0.044 ± 0.05 and 0.045 ± 0.05. The con­

sistency between the estimates of a, C\ for various values of q, are good 

indications that they are accurate. For values of η too high or too low, the 

curve K(q,n) becomes (fairly) constant, and these values of log \K(q,η)\ 

must not be considered to estimate a. From Lavallée et al. 1993. 

Two aspects are worth noting. First, almost all of the a values are > 1, 

hence the corresponding processes are 'unconditionally hard', i.e. for any 

finite D, a finite q¡­> exists; some moments will diverge. Self­organized crit­

icality therefore seems to be prevalent and 7^ gives a quantitative measure 

of the intensities of the self­organized critical strucutres. Second, we see 

that C\ is often smaller than H (see. e.g. topography or turbulence), hence 

the multifractality ­ while being nearly maximal according to the observed 

value of a ­ will nevertheless not be too pronounced unless we consider the 

extreme events; monofractal models can therefore 

118 



Log B W 

Log η 

Figure 11: Same as fig. 10 but for the French topography at 1km resolution. 

From top to bottom q takes the following values: 4, 2 and 0.5. All the curves 

are parallel as predicted by eq. (12). The estimates of the slope for q = 

4, with η taking values between 0.1 and 0.5, gives a = 1.67 ± 0.1. The 

same analysis for q = 2 and 0.5 (with η taking values between 0.12 and 1.1 

in the first case and between 0.3 and 2.3 in the second), yield respectively 

a = 1.69 ± 0.1 and 1.7 ± 0.1. The values of C\, obtained by solving the 

expression for the log η = 0 intercept given by log \K(q, l)\ and using eq. 12, 

are respectively: 0.078 ± 0.05, 0.076 ± 0.05 and 0.076 ± 0.05. Here also the 

values of a, C\ determined are independent of the q values. From Lavallée 

et al. 1993. 
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Table 1: Empirical estimates of universal multifractal parameters. 
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Key to Table 1 

[a] Tessier et al. 1993a; see also Lovejoy et al. 1993 
[b] The value of H depends slightly on the wavelength band used. 
[bl] At 19, 21, 37GHz., Lavallée et al. 1993, the valuew of H depends slightly 
on the wavelength band used. 
[c] Tessier et al. 1993a. 
[c2] Calculated for a single realisation; Ds = 0. 
[d] Schertzer and Lovejoy 1987, Duncan et al. 1993, Lovejoy 1981 obtained 
qo ~ 1-66 for integrals of reflectivity of isolated storms 
[e] Tessier et al. 1993a, using a global raingauge network, correcting for the 
multifractal sparseness of the network 
[f] Tessier et al. 1993a, Ladoy et al. 1993 obtain similar values for the global 
network and Nimes respectively (for 12, 24 hour resolution respectively). 
Other similar values were obtained in Réunion and Dédougou, Hubert et al. 
1993. Nguyen et al. 1993 find the slightly higher a, smaller C\ in various 
locations near Montréal. 
[g] Segal 1979 found a value of 2.5 ± 0.5 for 50 stations, 10 years of data at 
5 minute resolution. 
[h] Using a very large data base, Olsson 1994 finds similar values in Lund, 
Sweden, over periods of 8 minutes to 1 week, 
[i] Tessier et al. 1993c, 50 rivers. 
[j] Schmitt et al. 1992a, note that the theoretical (Kolmogorov) value of H 
is 1/3. 
[k] Schmitt et al. 1993, 1994. 
[1] Chiriginskaya et al. 1994. 
[m] Lazarev et al. 1994, radiosondes. 
[n] H was first estimated using Jimspheres, by Endlich and Mancuso 1968, 
and confirmed by Adelfang 1971, and Schertzer and Lovejoy 1985. The the­
oretical (Bogliano-Obhukov) value of H is 3/5. 
[o] The value of qo was first estimated in Schertzer and Lovejoy 1985. 
[o2] F. Schmitt, S. Lovejoy, and D. Schertzer, analysis of Greenland ice core 
oxygen isotope ratios (in preparation). 
[o3] Lovejoy and Schertzer 1986, analysis of hemispheric temperatures and 
ice core paleotemperatures. 
[p] Schmitt et al. 1992b, the theoretical value for H is 1/3 if it is approxi­
mated as a passive scalar. 
[q] This value was estimated for daily temperatures at individual stations 
(Lovejoy and Schertzer 1986a), regional averages (Ladoy et al. 1986). 
[s] Chiriginskaya et al. 1994. 
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[s2] The theoretical value (passive scalar approximation) is 1/3. 

[s3] In the vertical, Schertzer and Lovejoy 1985 estimate #=0 .9 , çr;=3.3 ap­

parently for the potential temperture in the range 50m­6km. 

[t] Salvadori et al. 1994. 

[t2] This value was estimated for UFQ tracer fluctuations by Visvanathan et 

al. 1991. 

[t3] This value was estimated for C02 fluctuations over wheat fields Austin 

et al. 1991. 

[u] Brosamlen et al. 1994. 

[ν] Davis et al. 1994 obtained similar values for H, C\ with a smaller data 

set. The theoretical value (passive scalar approximation) is 1/3. 

[vl] Due to the symmetry of the a—2 multifractal, the same value of qrj is 

obtained for 1/liquid water density. 

[w] Using the global meteorological measuring network,considering the sta­

tion density as a multifractal, Tessier et al. 1993,1994 

[χ] Synthetic aperture radar, 10, 30cm wavelengths, all polarizations, Francis 

et al. 1994. 

[y] Tessier et al. 1993b. 

[ζ] Kerman 1993. 

[aa] Deadman's Butte Wyoming, 50m­25km; France lkm­lOOOkm; Lavallée 

et al. 1993a. 

[ab] F. Schmitt, private communication. 

[bb] Garrido et al. 1994. 

[bc] Schertzer et al. 1993. 

[ce] Hooge et al. 1993, 1994. 

[dd] This is the weU­known Gutenberg­Richter exponent, first estimated by 

Gutenberg­Richter 1944, and is somewhat variable, the value cited here is for 

the Parkfield region, 

[ee] Lovejoy et al. 1994. 

[ff] Larnder et al. 1992. 
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log(Kpl ,q)) 

log(îl) 

Figure 12: Κ(ς,η) as a function of η on log10 — log10 scales, for the values 
(top to bottom) q =2.5, 2.0, 1.5, 0.75. As expected for universal multifrac­
tals, the curves are linear and parallel for a certain range of the moments 
a. The parameter a can be identified as the slope of the straight line parts 
of the curves, whereas C\ is the value of the straight line at the intersection 
η = 0. From Brosamlen et al. 1994. 

3.2 Isotropic (self-similar) simulations of universal 
multifractals 

We now indicate briefly how to exploit the universality (and the measured 
H, C\, a parameters) to perform multifractal simulations. The first mul­
tifractal models of this type were discussed in Schertzer and Lovejoy 1987, 
and Wilson et al. 1991 give a comprehensive discussion including many 
practical (numerical) details. In particular, the latter describes the numeri­
cal simulation of clouds and topography, including how to iteratively 'zoom' 
in, calculating details to arbitrary resolution in selected regions. Pecknold 
et al. 1993 give a number of improvements and include more systematic 
results (including those shown here). Although we will not repeat these 
details, enough information has been given in the previous sections to un-
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derstand how they work. 

First, for a conserved (stationary) multifractal process φχ we define the 

generator Υχ = \ogφχ. To yield a multifractal φχ, it must be exactly a 

1/f noise, i.e., its spectrum is E(k) æ k~l (this is necessary to ensure the 

multiple scaling of the moments of φχ). To produce such a generator, we 

start with a stationary gaussian or Levy 'subgenerator'. The subgenerator 

is a noise consisting of independent random variables with either gaussian 

(θ!=2) or extremal Levy distributions (characterized by the Levy index a), 

whose amplitude (e.g., variance in the Gaussian case) is determined by 

C\. The subgenerator is then fractionally integrated (power law filtered in 

Fourier space) to give a k~l spectrum. This generator is then exponentiated 

to give the conserved φχ which will thus depend on both C\ and a. Finally, 

to obtain a non conserved process with spectral slope β, the result is frac­

tionally integrated by multiplying the Fourier transform by k~H where Η is 

given in eq. 9. The entire process involves two fractional integrations and 

hence four FFT's . 512 χ 512 fields can easily be modelled on personal com­

puters (they take about 3 minutes on a Mac II), and 256 χ 256 χ 256 fields ■ 

(e.g., space­time simulations of dynamically evolving multifractal clouds) 

have been produced on a Cray­2 (Brenier 1990, Brenier et al. 1990). 

Figures 13­18 inclusive show series of one dimensional simulations with 

various parameters. 

It is apparent from them that C\ is the measure of the sparseness of 

the field: the higher the C\, the fewer the field values corresponding to any 

given singularity. (Because the field is normalized, the spikes are higher for 

the fields with higher C\). It is also again apparent that the higher a fields 

are dominated by a few large singularities. 

4 Elements of Generalized Scale Invariance 

(GSI) 

4.1 Discussion 

The usual approach to scaling is first to posit (statistical) isotropy and 

only then scaling, the two together yielding self­similarity. Indeed this ap­

proach is so prevalent that the terms scaling and self­similarity are often 

used interchangeably! Perhaps the best known example is Kolmogorov's 

hypothesis of 'local isotropy' from which he derived the k~ï spectrum for 

the wind fluctuations. The GSI approach is rather the converse: it first 

posits scale invariance (scaling), and then studies the remaining non­trivial 
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Figure 13: One­dimensional simulation of length 256, with C\ — 0.9 and 

varying a These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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Figure 14: One­dimensional simulation of length 256, with C\ = 0.01 and 

varying a These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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Figure 15: One­dimensional simulation of length 256, with a = 1.4 and 

varying C\ These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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Figure 16: One­dimensional simulation of length 256, with a = 2.0 and 

varying C\ These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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Figure 17: One­dimensional simulation of length 256, with a = 1.8 and 

Ci = 0.02, fractionally integrated with varying H (non­conservation pa­

rameter). These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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Figure 18: One­dimensional simulation of length 256, with a = 1.5 and 

G\ = 0.4, fractionally integrated with varying H (non­conservation param­

eter). These simulations have been vertically offset so as not to overlap. 

From Pecknold et al. 1993. 
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symmetries. For instance, fig. 1 gives a (scaling) anisotropic version of the 
usual isotropic cascade scheme (in which the rectangles in fig. 1 would be 
replaced by squares). One may easily check that this type of anisotropy -
which reproduces itself from scale to scale - does not introduce any charac­
teristic scale. The straightforward generalization of scaling shown in fig. 1 
involving scaling anisotropy in a fixed direction is called 'self-affinity'. As 
far as we know this anisotropic scheme (Schertzer and Lovejoy 1983) seems 
to be the first explicit model of a physical system involving a fundamental 
self-affine fractal mechanism. 

4.2 The basic elements of GSI 
Consider scale invariance under, isotropic dilations/contractions (e.g., sim­
ple reductions): X"^B = ΤχΒ where Τχ is a scale changing operator. In 
our example, ΤΑ = λ _ 1 1 where 1 is the identity matrix. This means that 
if Xi is an element in Β then XA = T\Xi (again, in the previous exam­
ple TA = λ _ 1 1 => XA = λ _ 1Χι). The subscripts on χ indicate the scale. 
In generalized scale invariance (GSI), TA can be much more general than 
isotropic dilations. Fig. 19 shows a generalized 'blow' down of the acronym 
'NVAG' showing how the reduction is combined with stretching and rota­
tion. In general, a scale invariant system will be one in which the small and 
large scales are related by a scale changing operation that involves only the 
scale ratios; there is no characteristic size. In what follows we outline the 
basic elements necessary for defining such a system: we follow closely the 
development in Schertzer and Lovejoy 1985b. 

To be completely defined, GSI needs more than a scale changing oper­
ator; it also requires a definition of the unit scale, as well as a deinition of 
how to measure the scale. These three basic elements can be summarized 
as follows: 

(i) The unit ball B\ which denes all the unit vectors. If an isotropic ball 
(e.g., circle or sphere) exists, we call the corresponding scale the 'sphero-
scale'. For simplicity we often assume this - indeed direct evidence for this 
exists in many satellite cloud pictures, but it is not strictly necessary (and 
at least in some cases not at all true!). 

(ii) The scale changing operator TA which transforms the scale of vectors 
by scale ratio A. TA is the rule relating the statistical properties at one 
scale to another and involves only the scale ratio (there is no characteristic 
'size'). This implies that Τχ has certain properties. In particular, if and 
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NVAG 

Figure 19: A generalized blow-down with increasing λ of the acronym 
'NVAG'. If G = I, we would have obtained a standard reduction, with 
all the copies uniformly reduced converging to the centre of the reduction 
(thanks to S. Pecknold, G. Lewis). Here the parameters determining G are 
c = 0.3, ƒ = —0.5, e = 0.8 (see section 4), and each successive reduction is 
by 28 
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only if λιλ2 = λ, then 

Β χ = Τχ1Βχ2 = Τχ2Βχλ 

i.e., ΤΑ has the group properties (see fig. 20): 

Τχ2Τ\ιΒί = Βχ = ΤχιΤχ2Βι 

Hence Τχ is a one parameter multiplicative group 

(13) 

(14) 

TX = X~G, where G 

Figure 20: Illustration of the group property of the scale changing operator. 
From Schertzer and Lovejoy 1994. 

is the generator of the group. We use the negative sign since in future we 
will be only interested in reductions by factor λ since we shall see that in 
turbulent cascades, energy flux is transferred from large to small scales (TA 
will reduce sizes by factor λ). We will not require that inverse operators 
Τχ1 = Τχ-ι exist, hence we really only have a semi-group (the inverse will 
however usually exist if G is a matrix). 

4.3 Linear GSI and differential rotation: the exam­
ple of the Coriolis force 

In the atmosphere, one expects differential rotation (associated with the 
Coriolis force Ω Λ ν , associated for example with cloud texture) as indicated 
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above. This can be modelled by a matrix G with off-diagonal elements. To 
understand this, we decompose G into quaternions (or equivalently, Pauli 
matrices): 

G = dl + el + ƒ J + cK 

where 

1 = 

J = 

' 1 
0 

' 0 
1 

0 
1 
1 ' 
0 

, I = 5 ·*■ 

, κ = ; 

Ό - ι " 
1 0 

' - 1 o ■" 

0 1 

These matrices satisfy the following anticommutation relations: 

{ I , J } = 0 , { I , K } = 0 , { J , K } = 0 

Writing u = In A and a2 = c2 + f2 — e2 we obtain: 

TA = X~G = X~dx(G­di) = A"c 
1 cosh(au) — (G — dl) 

sinh(au) 

(15) 

(16) 

(17) 

(18) 

(19) 

When a2 < 0, the above formula holds but with \a\ replacing a and ordinary 

trigonometric functions rather than hyperbolic functions. The case a2 > 0 

corresponds to domination by stratication, whereas a2 < 0 to domination 

by rotation. Examples of both balls and trajectories (the locus of points 

ΓΑ = Τ Α Γ Ι , obtained by A varying with Τι fixed) are shown in fig.21. To 

take into account the spatial variation of anisotropy, the generator can be 

taken to be a nonlinear function, or even stochastic (fig. 22). 

5 Multifractal simulations for solving prob­

lems in remote sensing, some examples 

5.1 Resolution independent algorithms 

We are rarely able to directly remotely sense the fields of interest. Typ­

ically, a satellite will observe radiances associated with a field and then 

(often complex) semi­empirical algorithms are used to try to infer the var­

ious physical characteristics from the radiances. Above we argued that 

such algorithms must at a minimum explicitly take the resolution into ac­

count, preferably removing it entirely so as to obtain sensor independent 

algorithms. Ultimately however, a full understanding of the relationship 
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Figure 21: Examples of balls and trajectories for linear GSI with sphero-
scale. Isotropic case: c = 0.0, ƒ = 0.0, e = 0.0 (top left); self-affine case: 
c = 0.35, ƒ = 0.0, e = 0.0 (top right); stratification dominant case (a2 > 0) 
with no rotation: c = 0.35, ƒ = 0.25, e = 0.0 (bottom right); rotation 
dominant case (a2 < 0): c = 0.35, ƒ = 0.25, e = 0.6. For all cases d = 1 
with sphero-scale at 30 units (pixels) out of a total of 512. From Lewis 
1993. 
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Figure 22: Deterministic non-linear GSI with a stochastic generator. 
Schertzer and Lovejoy, 1991. 

between the remotely sensed and underlying physical field will only be pos­
sible as the result of explicit multifractal modelling of the radiation/matter 
interaction. Our efforts in this direction have been especially aimed at 
studying these issues in the rain and cloud fields since radar data of rain 
and satellite data of clouds are probably the data sets with the widest range 
of spatial and temporal scales available anywhere. 

5.2 Scattering statistics in multifractal clouds 
We have argued that over wide ranges, atmospheric fields may be expected 
to display strong multifractal variability. In a series of papers (Gabriel et 
al. 1986, Lovejoy et al. 1988, Lovejoy et al. 1990, Gabriel et al. 1990, Davis 
et al. 1990), we argued that scaling models involving 'monofractal' clouds 
do in fact already display interesting and realistic radiative properties. In 
particular, formulae for asymptotically optically thick clouds were derived 
and were shown to provide straightforward explanations for the 'albedo 
paradox'. Davis et al. 1991a,b obtained some early results on more real­
istic multifractal clouds, including theoretical formulae for small distance 
behaviour, as well as supercomputer simulations. Cahalan 1989, 1994 and 
Barker and Daies 1992 studied optically thin monofractal clouds and Evans 
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1993 performed numerical simulations on optically thin multifractal clouds. 

Here we give a glimpse at some more recent results which may provide 

the basis for systematic study of radiative transport in multifractal media. 

Specifically, we indicate how formulae analogous to eqs. 2, 3 for the mul­

tifractal optical density field arise for radiative properties. Consider the 

following definitions: 

L 

k= extinction coefficient [m2kg~1] 

(p) = mean cloud density [kgm~3] 

I = random photon path distance [m] 

L= size of cloud [m] 

lm= mean free path (m.f.p.) of a photon in the equivalent homogeneous 

cloud = (k(p))­1 [m] 

x = ι = I'1 random photon distance, (fraction of cloud) 

Tp = — = random photon distance, (no. of m.f.p.'s = kx) 

x =
 ¡

-
m 

scale ratio < Λ, (Λ = maximum cascade resolution) 

κ = j ^ = extinction parameter = no. of m.f.p.'s across cloud = mean 

optical depth = extinction coefficient in units such that L = 1, (p) = 1. 

Detailed analysis (Lovejoy et al. 1994b) of radiative transfer in multi­

fractal clouds indicates that in a cloud whose large scale mean optical depth 

is κ that the photon optical path statistics can be described by a formalism 

extremely similar to the multifractal density statistics but with κ playing 
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the role of resolution A. First, the optical distance between 

T(/) = jkpK{z')dz' = kp,,dl (20) 

where we have written p¡ for the average density at resolution /. Using the 

above notation, we obtain: 

r « $ A ­ ' £ = A ~ . (2!) 

which is the optical thickness over a distance / through a singularity of order 

7. The direct (unscattered) transmission Τ across this distance is thus: 

Τ (I) = e"T(/) (22) 

Since the transmittance is the probability distribution for photon path 

lengths, we can average over the singularities, and obtain: 

Pr(l' >l) = (T{1)) = (e­TW) (23) 

Take TP as the dimensionless photon path and write it as a function scaling 

with an 'order of singularity 7P ' defiined as follows: 

Tp = κΊρ = — = Kx = «A - 1 (24) 

or: 
A = J1-*) (25) 

We can now obtain a multifractal scattering formalism in which the ex­
tinction coefficient κ takes the place of the scaling parameter A. Instead 
of the codimension function 0(7) of the singularities of the cloud density 
7 we rather talk about an analogue codimension function cp(7P) which de­
scribes how the single photon path distance singularity 7P varies with the 
extinction coefficient: 

Pr(Tp > κΊ') = Pr(l' > /) » «rc"(>). (26) 

(τ«>) π κκ*^ (27) 

and anticipate that the two will be linked by a Legendre transform as in 
the standard multifractal case. The mean transmission in equation 23 is 
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obtained by averaging over the singularities, using eq. 2 to obtain the 
probability density of 7: 

/

oo 
e-ri7,A)p(7; λ μ 7 

-oo 

J —OO J — (X> 

where we have introduced the tranformation of variables: 

άηΎ 

1 7 = 
1 - 7 τ 
1 7P 

(28) 

(29) 

(30) 

In the lognormal case, the above integral can be done exactly; more gen­
erally, we can use the method of 'moving maximum' to obtain an asymp­
totic estimate of the integral by considering where the maximum occurs. 
This method will work as long as the latter is well-defined. This in turn 
hinges upon the existence of a solution to the following equation obtained 
by equating the ητ derivative to zero: 

,'lr - c ' ( 7 ) = -q (31) 

where the q is the Legendre conjugate of 7, it is the corresponding mo­
ment of the density distribution. We see immediately, that some c' < 0, 
must exist, i.e some negative moments must exist. While this seems rather 
general, in fact for universal multifractals, it is only true of the lognormal 
multifractal, all other universals have divergent moments for all negative 
moments. Assuming that the moments do exist, we obtain two families of 
codimension and moment scaling functions; their mutual relations are given 
in table 2. 

Photon statistics 
9 

Kp{qp) = maa;7p[çP7P - cp(7P)] 
1 - 7 P 

CP(7P) = maxq[q^p - Kp(qp)] 

Cloud statistics 
= -q + K(q) 

= K(q) = max^ - c(7)] 
1 

1 - 7 
_ 4Ί) __ maxq[q-y-K(q)\ 

1 — Ύ 1 — y 

Table 2: Summary of relations between multifractal cloud and photon scat­
tering exponents 
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To give an example of the above, consider the a = 2 (lognormal multi-
fractal). We have: 

c(7) = C l (c l + 1)2 (32) 

e ( 7 ) - ( l - ( l + g i ) ( l - 7 , ) ) a
 ( 3 3 ) 

ΛΊΡ)~ 4C7 x ( l -7p) ( j 

K(q) = C1(q2-q) (34) 

K i , y ( l + C1)2 + 4 C i g p - ( l + C1) 

Numerics have shown (Brosamlen 1994) that these formulae are accurate 
even for clouds with mean optical thickness of the order of 4-10. Since 
the Kp(qp) function is linear in homogeneous clouds, and the above Α'ρ(ςτρ) 
function is close to linear -especially near qp = 0 which corresponds (see 
table 2) to the most probable photon path and singularity, we can use 
the above to approximately 'renormalize' the cloud, obtaining an effective 
extinction parameter: 

K e f f Äi/ i 1 + c i (36) 

This result quite accurately predicts the numerical estimates of transmission 
through multifractal clouds discussed in the next section, and the exponent 
is the same as that obtained for anomalous difusión in lognormal multifrac­
tals (also below). In a forthcoming paper (Lovejoy et al. 1994), we give 
many more details and extensions to multiple scattering. 

Finally, a full understanding of the cloud radiation interaction involves 
a detailed understanding of the relation between cloud and radiation sin­
gularities. This is the subject of a paper by Naud et al. 1994. 

5.3 Visible light scattering in multifractal clouds 
To further understand the relations between the cloud and radiation fields, 
we seek to statistically relate the multifractal singularities of the various 
fields. From a numerical point of view, this is very demanding. Monte Carlo 
techniques avoid this problem, but require enormous numbers of simulated 
photons in order to yield good estimates of the internal cloud fields. 

In optically thick clouds, photons undergo many scatterings and the 
details of the scattering phase function is not too important (according to 
the monofractal studies - Lovejoy et al. 1990, Gabriel et al. 1990, Davis 
et al. 1990 - it will affect prefactors, not exponents). In order to concen­
trate study on the effect of inhomogeneity, and to simplify calculations, a 
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two dimensional system was studied with phase functions which only per­
mit scattering through 90 degrees; (discrete angle -DA- radiative transfer) 
the radiances decouple into non-interacting families with only four radiace 
directions each (details in Davis et al. 1991a). The phase functions were 
position independent; for simplicity we used isotropic DA phase functions. 
For validation purposes, the calculations were made using both Monte Carlo 
and relaxation techiques. The four radiances were then used to calculate 
the total radiance, the vertical and horizontal fluxes, as well as a compo­
nent characterizing the anisotropy of the field. By varying the extinction 
coefficient, we were able to study the effect of increasing cloud thickness, 
optical thicknesses between 12 and 195. The calculations were performed 
on large (1024 χ 1024 point grids using the Cray-2. at Palaiseau, France. 
The main conclusions were: 

(1) Horizontal fluxes were typically less than lOradiance fields were close 
to plane parallel, even though globablly the radiative response was far from 
plane parallel. 

(2) The anisotropic component was often very large; this points to the 
importance of 'streaming' or 'channelling' of photons through the more 
tenuous regions. It also indicates that the diffusion approximation will be 
poor even in optically thick clouds. 

(3) The overall trasmittences were compared with those of equivalent 
plane parallel clouds and with those obtained using the independent pixel 
approximation (each column independent). 

The agreement was generally poor, although the independent pixel ap­
proximation was much better than the plane-parallel approximation. Such 
effects could readily account for the 'albedo paradox' (divergences of factors 
of ten or more between plane parallel and in situ estimates of cloud liquid 
water). 

5.4 Diffusion on multifractals 
The simplest nontrivial transport process in multifractals is diffusion and 
the diffusion equation is often taken as a simplified radiative transport 
model. Using this approximation, and taking J as the total intensity and 
D(x) as the (multifractal) diffusion constant, we have: 

V . ( £ ( x ) V J ) = ~ (37) 
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where again, the diffusion constant is related to the cloud properties via: 

where (as above) k is the extinction coefficient, and p(x) is the multifractal 
cloud density. In one dimension, many aspects are particulary simple. For 
example, the steady state J is a multifractal since: 

ox kp{x) ox 
which implies: 

d-fx = kp(x) (40) 

i.e. J(x) will be multifractal with conservation parameter H (see eq. 9) 
increased by one (since J is an integral order one of the density, and H 
specifies the degree of fractional integration necessary to obtain the field 
froom a conserved multifractal). The time dependent case is less straight­
forward, but still can be solved -at least in 1-D - (for details, see Silas et al. 
1994). Because of the scaling, we anticipate that for photon random walks, 
the distance r after time t will vary as: 

(r?(i)) = ts^ (41) 

where S(q) is the walk scaling exponent. Since the walk is an additive 
(monofractal) process, S(q) will be linear, defining as usual the 'walk di­
mension' dw we have: 

S(q) = f (42) 
a vj 

In one dimension, Silas et al. 1994 obtain the following result which (when 
applicable, i.e. A'(-l) is finite), is believed to be exact: 

dw = 2 + A ( - l ) (43) 

In the above, the dressed scaling exponent A is used; since this is always 
positive, dw > 2, hence the photon walk is subdiffusive ('normal' diffusion 
has dw = 2; here, the photon gets partially ' trapped' between large singular­
ities, this subdiffusive behaviour was noted in a numerical example studied 
by Meakin 1987). Eq. 43 shows that as expected from the monofractal be­
haviour of the path, only a single multifractal singularity is important for 
the walk [ηοτ = A'(—1)). Indeed, the critical role of this singularity can be 
considered to produce a dynamical 'phase' transition, since truncating the 
high multifractal singularities (7) has no effect on the transport. As long 
as 7 > 7 c r , the transport is anomalous, becoming 'normal' discontinuously 
for 7 < 7 c r . 
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5.5 Radar reflectivity of multifractals 'speckle' 

Radar remote sensing of sea ice, ocean or land surface or rain involves in­

homogeneities due to multifractal structures that extend down below not 

only radar pulse volumes but also below microwave wavelengths (Lovejoy 

and Schertzer 1990a,b, Duncan et al. 1993). This leads to the 'speckle' 

phenomenon whereby small changes in look angle will be associated with 

large changes in intensity. It also implies that the usual way of remov­

ing this effect (by assuming subpulse volume statistical homogeneity and 

hence incoherent scattering) will lead to systematic errors. To correct the 

standard theory for these effects, we can model the reflector as a multi­

fractal distribution of dielectrics. In the simplest case appropriate for rain, 

a scalar approximation is sufficient for most purposes since the scattering 

from drops is nearly isotropic. Other situations such as sea ice will involve 

mutifractal distributions of dielectric tensor and will require the formalism 

of Lie cascades (Schertzer and Lovejoy 1993). 

Actually, even for the scalar case basic results can be obtained using 

complex (Lie) cascades, since the radar detects a (complex) Fourier compo­

nent. To see this consider a one (spatial) dimensional distribution of radar 

scatterers at\(x,t), varying in time, with an inner (dissipation scale) Λ ­ 1 , 

the radar number is k/2 (the factor 2 is for simplicity; it will take into 

account the round trip distance to the scatterers), and the pulse volume is 

length A ­ 1 . We will be taking the outer scale of the process to be 1, hence 

we will be interested in A > 1. Similarly, we will use units such that the 

velocity is unity (it is assumed to be independent of scale, we use isotropic 

space/time). The spatial average of the amplitude of the reflected wave is: 

A
^

 =
 \~ïJQ

X ^ σ Α χ ) ά χ (44) 
If we consider etkxa¡\(x) (k < Λ) as a complex (bare) cascade quantity, then, 

for A <C k < Λ, Ax(k) is simply a dressed complex cascade. Using results 

on complex cascades, we obtain 

Re(KA(q)) = Ka(q) + qChR (45) 

where only CI ,R = i?e(A^(l)) remains to be determined. This result has 

been tested numerically by Duncan 1993, Duncan et al. 1994 and indicated 

that the statistics of the cross­section field (σ, Ka(q)) and the modules of the 

amplitude (|A|, Re(I\A(q)) are the same except for a term linear in q which 

represents a scale dependent bias. By using space­time transformations, it 

is also possible to model the temporal behaviour of the reflectivity field. 

Duncan et al. 1994 shows excellent agreement is found with rain data. 
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6 Conclusions 
We have summarized a growing body of work indicating that - as theoret­
ically predicted - due to underlying nonlinear but scale invariant dynam­
ics, that many geophysical fields are multifractal over substantial ranges of 
scale. This implies that they are strongly dependent on the resolution at 
which they are observed and that remote sensing algorithms must system­
atically remove these effects if sensor independent measurements of geo­
physical fields are to be obtained. 

We also summarized the basic properties of multifractals. Although the 
properties of multifractals are more fully discussed in the accompanying 
paper SL94, we concentrate on the discovery of universal multifractals. In 
particular universality classes exist in which most of the details of the de­
tails of the dynamics are 'washed out' leaving a dependence on just three 
basic universal parameters. Without such universality classes, multifractals 
would be sensitive to an infinite numer of model paramters and would have 
little use. We summarised the empirical evidence for these two distinct 
properties in over 20 geophysical fields (many of them remotely sensed). 

We also indicated that since scale invariance is a dynamical symmetry 
principle, it may be expected to hold widely; however, the scale changing 
operator will generally not be isotropic, hence we do not expect to ob­
serve self-similar multifractals and estimates of the generator of the scale 
changing operator using the Scale Invariant Generator technique confirm 
this. However, by allowing for very general (even stochastic) generators, we 
can take into account the observed texture and morphology of geophysical 
processes. 

We also showed how to simulate multifractal fields, and we examined 
some of their properties. We argued that a full understanding of the re­
lation between physically interesting quantities, and the remotely sensed 
radiances will require the use of such models, and we illustrated these ideas 
on radiative and diffusive transport, as well as on the problem of radar 
speckle. 
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Chapter 6 

Multifractals: Theory and Application to 
Image Texture Recognition 

Stefano Fioravanti? 

1 Introduction 
In recent years, the use of fractal geometry in image processing has grown, 
especially for texture characterization. In particular, the fractal dimension 
employed as a descriptor of natural object surfaces has been widely inves­
tigated, with good performance [18], [15]. However, as discussed in [2], the 
fractal dimension is not an optimal tool for fully characterizing textures. To 
overcome the drawbacks of the single fractal dimension, fractal geometry 
has to be extended, and the q-th order fractal dimensions introduced. So, 
one has to deal with the concept of multifractality. 

As pointed out elsewhere [9], the multifractality spectrum function D(q) 
allows one to characterize efficiently natural textures, even if they are quite 
similar. Such a function shows some interesting properties, which will be 
presented and discussed in the following. 

2 ii-dimension, box-dimension, and fractal 
dimension 

Usually, when people think about a set and its dimension, they think about 
its topological dimension. From Euclidean geometry, we know that the 
topological dimension is equal to 1 for a line segment, 2 for a surface, 3 for 

* Dipartimento di Ingegneria Biofisica ed Elettronica, Università degli Studi di Genova, 
Italy 
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a cube, and so on. Moreover, the area of a segment is null while its length 
is finite and different from zero, as is the volume occupied by a surface. 

But there are bounded sets with topological dimensions equal to 1, infi­
nite lengths, and null areas. Hence, one can envisage a new kind of dimen­
sion, i.e. a real (and not integer) dimension between 0 and 1, for which, if 
one found a measure concept linked to such a real dimension, the measure 
of the set is finite and different from zero. This is the basic concept of the 
Hausdorff-Besicovitch dimension (briefly, //-dimension). Mandelbrot gave 
the following definition of a fractal set: A fractal set is, by definition, a set 
for which the Η-dimension is strictly greater than its topological dimension 
[14]. 

Let consider a line L that has to be measured in the different topological 
dimensions; to measure its length M\ (i.e., the measure in the dimension 1), 
the line can be broken into rectilinear segments or covered by balls, disks, 
or other structural elements with length δ. This results in 

Μι = \ίτηΝ(δ)δ 
5—0 

(1) 

where Ν(6) is the number of segments that are needed to cover the line (see 
Figure 1). 

Β(δ) 

N(ò) 

Figure 1: Line covering. 

Analogously, for its area M2, one can cover the line with small boxes 

with side δ, so obtaining 

M2 = ΥιηιΝ(δ)δ2 
(2) 
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Figure 2: Length, area and volume measures. 

and so on (see Figure 2). By generalizing, one can imagine that the measure 
of a set in the d dimension is 

Μά = ΙίτηΝ(δ)δά 

5—0 
(3) 

The box-dimension Db of such a set is then that value of d = Db for 
which such a limit is finite and different from zero, i.e. 

Md = -(-oo if d < Db 
(4) 0 if d > Db 

If the limit of M is a finite non-null number, for δ small enough one can 
make the following approximation 

Ν(δ) « k6~D (5) 

so allowing us to obtain the box-dimension Db 

log N{6) 
Db = lim (6) 5^o log δ 

The box-dimension Db so defined is valid in every A-dimensional metric 
space and is commonly called the fractal dimension D of the set. 

3 Multifractality and the binary multiplica­
tive process 

Multifractality is a property relevant to objects with subsets whose fractal 
dimensions do not equal the global one. So, to characterize the multifrac­
tality of a set, one has to find the spectrum of the fractal dimensions of 
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the subsets which are different from that of the global set; in short, the 

multifractality spectrum. 

Let us suppose we have a segment 5' of size s 5 = 1, over which a set of 

Ρ points is distributed. Let us divide the segment into Ν = 2n equal parts; 

let Ni be the number of points contained in the i­th partition, and μ,· the 

percentage contained in it. In other words, μ(· = N¡/P. If we consider Ρ 

and η to be increasing to infinite, the set 

M = ML (7) 

contains all the information about the distribution of the points over 5'. 

Let us now consider a process (i.e. a binary multiplicative process) that 

generates a distribution of points. These Ρ points are distributed as follows: 

1. divide S into two equal parts and distribute over each a different per­

centage of the initial population (i.e. μη,μι, where μη + μι = 1); 

2. repeat recursively the above procedure for each subpart of the segment; in 

other words, re­distribute the population present over that sub­segment 

over the two halves. 

At the n­th iteration the following M set, characteristic of the distribu­

tion, is obtained 

Μ = { ( μ ο )
η
, ( μ ο Γ -

1
μ 1 ι · · · , ( ^ ι Γ } (8) 

By counting the intervals over which it is distributed a portion of the 

population equal to pk, where 

Pk = μ Γ * (9) 

they result to be 

N(k)=(nA * € ( 0 , . . . , n ) (10) 

As we have to calculate the limit for (η, P) tending to infinity, it is useful 

to define ξ = ­^ and solve the equations as a function of such a variable. 

Hence 

"«) = ( £ ) <»> 
and 

Pi = {μΙ~ζμί)η (12) 
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Let us consider now the set of intervals (sets) with population ρς, called 
3ξ, and look for its fractal dimension 

MAS() = VlrnY^ = HN(i)S° = {+l '^D«) " 3 ) 

By computing such a limit with δ = 2~n (with η —> Too), and by using 
the Stirling relation 

n! w s/2^n{n+l)l2e-n (14) 

one obtains 

7Vn(£) « X
 e-nKi°g€+(i-Oi°B(i-01 ( 1 5 ) 

^ττη^Ι-Ο 

and 
β ( ί ) = m = .fiogf + d - f l M i - O (16) 

log 2 
It is possible to observe how the sets S^ characterize the distribution of 
points over S, as all of them are sets of points with the same densities and 

S = \JS, (17) 
ξ 

Moreover, even if the fractal dimension of S is equal to 1 (it is a segment), 
the fractal dimensions D(Sç) assume values between 0 and 1; each sub­

set has its own fractal dimension, and from this originates the concept of 

multifractality. 

The parameter ξ is used not so much in the literature; as suggested by 

Mandelbrot too, it is better to use the Lipschitz­Holder exponent a, whose 

definition comes from 

Ρξ = δ° (18) 

By considering δ = 2~n, one obtains 

log ft £ l o § Pi + ( l ­ £ ) I o g ( l ­PÙ n Q x 

α = ^ δ = b g i ( 1 9 ) 

It should be noted that a is defined in [o : m , a^ ] , as ξ G [0, 1] 

ί n log(i­pfì 
­ν _ l oë(P() 

a M = — ι — n 
'y' log 2 
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Moreover, there is a linear biunivocal correspondance between a and ξ, 
which allows us to express everything as a function of a, that is 

S = {JSa (21) 
a 

and 
ƒ(«) = ƒ [«(01 (22) 

is the fractal dimension associated with the set Sa. 

4 The function r(q) 
When analyzing discrete sets (i.e., digital images), the simplest way to 
manage them is offered by the so-called box-counting method, which consists 
in dividing the sets into boxes. However, in such a way, one loses much 
information contained in the set; as a matter of fact, one loses information 
about the distribution of points. 

To overcome such a drawback it is necessary to consider not only the 
boxes covering the set, but also the masses that they contain. Hence, to 
each box is associated a quantity 

N-
H = Jï (23) 

where iV is the total number of points in the set, and N¡ is the number of 

points contained into the i­th box. Hence, one has the set M 

M = M f = o (24) 

where Β is the number of boxes that are needed to cover the set. Moreover 

A = l i m ^ | (25) 
i ­o log 5 

is the box­dimension of S. 

In order to weight differently the subset of S, depending on the masses 

contained in the boxes, one has to not only measure S but also to compute 

Ν{δ) 

Μά(ς,δ)=Σμ*δ<ι = Ν(ς,δ)δά (26) 
ι'=0 

where 

l i m M d M ) = ( ° d>T^\ (27) 
5—0 I -(-oo a < r(q) v ' 
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It follows that, in the computation of the box-dimension, 

In this way, depending on the values of q, the different subsets have different 
weights; this fact can also be evidenced by the behaviour of r(q) at the 
boundaries of the existence range. 

If the maximum and minimum values assumed by the densities are in­
dicated by μ-rn and μ^ , and Nm and Ν M the number of boxes in the same 
cases, the infinite limit 

r (\~ V Υ 1^ΣΜή V V [°ZNm Ϊ90, 
hm τ [q) ~ — lim lim = lim lim q— — (29) 

q—i--oo 5—0?—-oo logo 5—0 7—-co log 0 

behaves as a straight line. By considering the derivative of r(q) 

d-^ = -Kmpf 1°Ιμ\ (30) 
dq í ^ o l o g í ­ E , · ^ 

its limits are 

lim dT(q) _ lim­ l oSfa _ ™,, 

l im , élM = _ l i m . _ Ì2SJ£M = _ Q 

imiq^+oo dq — 111115—0 l o g ( 5 — «m 

(31) 

Moreover, r(0) is the fractal dimension of the set under examination, 

and T ( 1 ) = 0 as the {μ,} are normalized to the unit interval. 

In the case of the quaternary multiplicative process used before, it is 

possible to find out the analytical form of r(q) when δ = 2n 

η ι 

η Ν(ά,δ) = Σ f I 1 p"k(l -p)"("-fc) = [ρ" + (1 - Ρ ) 9 ] " (32) 

from which 
r(t) = "* f + ('­»■)'] (33) 

log 2 

In Figure 3, the behaviour of the r(q) function in this case is shown. 
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Figure 3: r(q) behaviour. 

5 Links be tween τ (q) and f (a) 

The function r[q) is linked to the f (a) one defined before; r(q) defines a 

set 5' that can be expressed as in (21), with a chosen among the allowed 

values. 

From the definition of a, one knows that to that variable correspond the 

boxes μα so that 

μ« = δ~α (34) 

and that the set of these boxes has, for δ —> 0, a fractal dimension equal to 

f (a). By calling Ν (α, δ) the number of boxes that are needed to cover the 

set Sa, with a G {a, a + da), this number results to be, if δ is sufficiently 

small, 

Ν{α,δ) = ρ{α)δ-/(α)άα (35) 

where p(a) is the number of sets from Sa to Sa+da. 
From its definition, Md(q,6) is found to be equal to the summation of 

μ], and consequently, in the continuous case, 

Md(q,6) = J ρ{α)δ-ί(α)δαΗα = ( ρ{α)δ~ tf(°)­«?­«*l¿a (36) 

In the limit for δ —» 0, the integral behaves as the maximum on a of the 

argument; of this one, the factor p(a) remains bounded, as it does not 

depend on δ, and then the dominant term is a(q); so that, when a — a{q), 

— [qa ­ f (a)] = 0 (37) 
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and, for this value, 

Then 

Md{q,6) = Kö-[f{a)-a(l-d] (38) 

T{Q) = f [<*(?)] - qoc(q) 

If we differentiate with respect to q, we obtain that, when a = a(q), 

dr(cj) df(a) da(q) da(q) 
dq da dq -q- dq 

da(c¡) 
dq 

-a(q) 

df(a) 
da 

-a{q) 

a(q) 

(39) 

Hence, there is a relation between r(q) and f (a), which can be expressed 
in a parametric form as 

r(q) = f[a(q) - ga(f/)] 

clr(q) 
a{q) = 

dq 

(40) 

(41) 

6 The q — th order generalized fractal di­
mensions D(q) 

If one wants a function which is constant over an ü?-dimensional space, and 
equal to E, one has to use the function D(q), introduced in [10]. Such a 
function results defined as 

D(q) = "(?) (42) 
1 - 9 

With this kind of definition, in order to obtain a continuous function and 
defined over q £ 3?, it is necessary to manage differently the point q = 1 

r rv \ r r ί l o § Σ ι Ä ,· E¿ Pi log Pi ,.Qx 
lim D(q) = — limlim — = — lim (43) 
g^i 5­0 ? ­ i 1 ­ q log 0 S­*o log Ô 

by using l'Hospital's Rule. Hence, it is possible to make the function con­

tinuous by defining D(q) as follows 

r(q) 

D(q) = \ 1 j>,iogM, 
{ ­ b m 5 ­ o ^ ' l o g 6 ­

νφΐ 
(44) 
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Moreover, the value assumed in 1 is the measure of the entropy of the 

distribution divided by log δ, a quantity well known in information theory, 

as well as in physics. From the definition of D\ it follows that, if it exists 

and it is finite, by calling Η the entropy of the mass distribution, 

/ T « ­ T > i l o g ¿ (45) 

By considering an E­dimensional space over which is distributed a popula­

tion of points in an uniform way, and by dividing the space into Ν = δ~Ε 

cells, each cell contains a portion of points equal to μί = δΕ. In this way it 
follows that: 

N(q,6) = ö^­^E (46) 

and then 
1 l o g o ^ " 1 ^ 

D(q) = lim ° ­ = E (47) 
v ' 1 ­ Ç 5 ­ 0 log(5 

From the definition, it follows that D(q) : 3£ —+ 3t and that, by using the 

same approach as for r(q) 

lim D{q) = lim lim ­ 1 ^ Σ ί / ' = aM (48) 
q —oo 5—0?- -oo 1 — q logo 

Analogously 
lim D{q) = am (49) 

9—+00 

Moreover, D(0) is the fractal dimension of the set, by assuming, by 
definition, the value equal to r(0) . Hence, the function D(q) is not increas­
ing, has horizontal asymptotes to the infinite, is always positive, and, when 
q = 0, equals the fractal dimension of the set. 

If we consider once again the case of the binomial multiplicative process, 
it is possible to compute this function in an analytical way, resulting in: 

It is constant if and only if ρ = | ; otherwise, it has a behaviour like the one 
in Figure 4. 

7 Text ure-signal analysis and fractals 
By considering an image as a surface in a 3D domain (see Figure 5), where 
ζ represents the grey level, one can intuitively deduce the link between the 

- 161 



D(q) 
2 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 
-50 -40 -30 -20 -10 10 20 30 40 50 q 

Figure 4: D{q) behaviour for binomial process. 

roughness of such an object and its fractal dimension [14]. In short, a rough 
surface takes up a space of topological dimension larger than 2, and higher 
roughnesses are of larger dimensions, that is, close to 3. The concept of 
fractal dimensions expresses such idea in a quantitative way. 

Several approaches to estimate the fractal dimension of real textures 
have been proposed in the literature. They can be subdivided in three 
main categories, according to their theoretical bases: statistical methods, 
frequential methods, and measure-based methods. To the first category 
belong methods based on the assumption that data can be modeled by the 
fractional Brownian motion (FBM), and that try to extract the statistical 
parameters that rule the FBM process [18], [13]. 

The second category includes techniques based on the analysis of the 
Fourier spectrum of the image signal, modelled like an -, process [12]. In 
particular, in [18] the relation between the spectrum behaviour and the 
fractal dimension is proven and exploited. 

The last ones exploit the links between some measures and the size of 
partitioning elements used for the estimation; to this category belong the 
blanket technique [17], which is based on the M¿ measures (that is, length, 
area, volume, etc.), and the variation one [5], [6]. In particular, the last 
approach is very interesting for situations in which the estimation results 
are not dependent on the signal extent and on the partitioning elements1 

shape; as a matter of fact, they adopt a new structural element that is 
invariant under multiplication of all z-coordinates by a constant. 

A class of measure-based techniques is based on the box-dimension con­
cept [14]; for instance, the algorithms described in [11] and [19] exploit such 

162-



300 

100 

Figure 5: An image as a 3D surface. 

a concept. The work in [11] is based on the work of Voss [20], where an 
original method is proposed to estimate Ν (δ) over sets generated by a func­
tion y = f(x), where to each vector χ corresponds one and only one value 
of y. In particular, Voss demonstrates that 

Ν (δ) oc Σ —P{m\S) 
™ τη 

(51) 

where Ρ(τη\δ) is the probability of finding m points within a box of side δ 
centered on a generic point of the set under examination. By substituting 
such a property, one obtains the following expression of box-dimension 

D = I, lim ! 
5^o [logo 

log 
1 

Σ-ΡΜί) m 
(52) 

The box-dimension computed this way is not dependent on the grid, as 
in the box- counting method, and the resulting Ν (δ) is a real number. 
However, roughness is not an exhaustive feature for describing textures. 
Various examples of structures of the same D but appearing very different 
to the human observer can be found (see Figure 6). 

For instance, let us consider a fractal curve obtained by merging two 
curves of different fractal dimensions. The D of the resulting curve is equal 
to the greater D of the two starting curves and can be expressed as 

D = lim 
5 - 0 

log[iVi(¿) + iV2(¿)] 

log i 
(53) 

As Ν­ι(δ) = 6~Dl and Ν2(δ) = δ~°2, when δ is sufficiently small, the ex­

pression for D is 

D lim 
5 ­ 0 

log (¿­Di + δ~°ή 
log¿ 

max{D\, D2} (54) 
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Figure 6: Takagi's and Brownian surfaces with D = 2.5. 

This demonstrates that single and multiple fractal objects cannot be dis­

tinguished by measuring their fractal dimensions only. To obtain a more 

detailed description of a fractal object, it is necessary to use additional 

parameters that characterize different subsets. In other words, one has to 

introduce the ç­th order generalized fractal dimensions [10], so dealing with 

the multifractal theory [8]. 

8 Multifractals for digital image processing 

The definition of generalized fractal dimension described in the previous 

paragraphs supplies a method for estimation based on the concept of box­

dimension and box­counting. However, as demonstrated in [5], although 

very simple to use, the box­ counting method has many drawbacks that 

make it not so attractive for discrete signal processing. In particular, the 

results are strongly dependent on the origin of the partitioning grid. Hence, 

a different definition of D(q) is used that extends the method introduced by 

Voss to estimate the fractal dimension (see equations 53­54). By following 

the Voss approach, it is possible to extend the concept of (/­measure Μ ¿{δ), 

to çr­th order momenta, as 

ΜΜ,δ) = Σ™"Ρ(™\δ)δά = N(q,6)6d 

m 

and to compute the ç­th order fractal dimensions 

(55) 

DM 

j log[X>qP(m|5)] 
M i m g ­ o i ^ . c i q^O log 5 

Em[(logm)P(m|g)] 
l i m 5 — 0 ΓΓΤ7 Ç — U 

(56) 

log 5 
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It can be demonstrated that, in the case of point distributions where each 

point has a unique mass ^­, where Nt is the number of points of the whole 

set, the latter definition of Nt, named Dy(q), is equivalent to the former 

D(q + 1) = Dv(q) (57) 

The concepts defined in the previous section are based on the hypothesis 

that the analyzed sets are continuous or dense (that is, made up of infi­

nite quantities of points). Under this assumption, it is possible to reach 

measuring­scale dimensions that are infinitesimal. Moreover, these sets fit 

the multifractal model at all scales, that is, it is possible to define a multi­

fractal measure [7]. 

In the case of real structures, it is mandatory to define a different and 

approximated multifractal model to estimate the function D(q). In other 

words, a model must be defined for a given range of scales, and a tool for 

parameter estimation must be provided. This has also been suggested in 

[18] for the estimation of the single fractal dimensions of real objects (that 

is, objects with finite resolutions). 

Let us consider a set S that complies with the multifractal model D(q) 

if, for a small δ value (i.e., δ <C ss, where ss is the set size), there exist 

(¿m,ö"jV/) such that 

N(q,ô)^kq6
qó{q) (58) 

where δ G (¿m,¿jV/)· When ö~m = 0, we deal with a fractal set and 

D(q) = D(q) (59) 

as can easily be demonstrated using the previous equations. 

Now it is possible to estimate D(q) through a linear regression in the 

bilogarithmic plane, that is, 

logó~ = z; log N{q, δ) = y (60) 

y = log kq + qb{q)x (61) 

In this way, the linear regression is applied to samples in the linear region, 

and D(q) is estimated. However, this implies that, in order to estimate the 

fractal dimension, it is necessary to detect the range (ó"m,¿jw) over which 

(60) is linear in the same bilogarithmic plane as defined above. The algo­

rithm for the estimation of (ö"m,ö~Ai) depends on the exploited multifractal 

measure and will be described in the next paragraph. 
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9 Multifractal texture measures 
It is possible to define different multifractal measures related to a generic 
signal f(x), ƒ : dtE —» 3?. One can take into account the signal graph, that 
is a multidimensional (E + 1) surface, or consider the image as an optical 
bi-dimensional mass distribution. 

9.1 Multidimensional digitized surfaces 
In this case, one can keep the roughness information provided by the fractal 
dimension (see Figure 5). However, in this case, the main problem in the 
estimation arises from the fact that a digital image is a discrete set of points 
resulting from the sampling of a continuous function. This discretization 
process gives rise to a drawback for negative q values; in this case, small 
masses predominate over large ones, and, for small δ values, the measures 
of small masses are less accurate. 

As showed in Figure 7, this drawback produces in the bi-logarimic plane 
defined by equations (60-61) two linear regions with two different slopes. 
The samples for small δ values are totally dominated by very few numbers 
(usually, Ρ(δ\1) is not null for small δ) and the fractal behaviour is masked. 
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Figure 7: Samples in the bi­logarithmic plane. 

In order to evaluate the linearity of the set of measures, we use the 
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parameter I proposed in [16] and formally defined as 

/ 
4 μ 1 + (Pxx ­ Pyy)' 

1/2 

pxx μ 
(62) 

yy 

where μ,­j denotes the covariance of the points in the set. The values of 

the parameter I are included in the range [0,1], and the maximum value 

is reached when, and only when, all data lie on a straight line. The scale 

range (¿m , SM) should be determined for each q value in order to optimize the 

linearity, or better, to identify the range in which the multifractal model is 

verified; with this aim, the parameter I is estimated over a moving window, 

with dimension (<5¿, <5¿+¿t), along such a data distribution in the bilogarithmic 

plane, so producing an estimation of the local linearity L(i) 

L(i) = ƒ {[log δί, log Nq(8i)], [log 5 i + 1 , log Nq(6i+1)],..., [log 6i+k, log Nq(Si+k)]} 
(63) 

where k is experimentally set to 3 4- 5 (the behaviour of such L(i) will 
be shown in the next paragraph for different multifractal measures). The 
behaviour of L(i) shows a plateau bounded by one or two minima, which 
represent the upper and lower bounds for the linear region, and are assigned 
to <5m and δ M (see Figure 8). 

55 49 43 37 31 27 23 19 15 13 11 9 7 
δ 

Figure 8: The behaviour of L(i). 

However, when one deals with small textured areas, there are few scales 
of measure only and, as for negative q values the number of scales is re­
duced, it is not possible to compute a reliable D(q). Therefore, for negative 
q values in D(q), the resolution should be increased through interpolation in 
the case of small measuring-scales δ. This can be done by choosing between 
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two possibilities: (i) to use a smoothing interpolant, which produces a min­
imization of the Mean Square Error (MSE) and a stable measure; (ii) to use 
an interpolant complying with the multifractal model, as the one described 
in [3] and based on the Iterated Function Systems (IFS). Both choices were 
implemented, and some experiments were made in order to find out the 
best interpolant; in particular, fractal interpolation showed the unwanted 
property of forcing the set to be a single fractal, as its application results 
in flatting the D(q) behaviour. On the other hand, the bilinear interpolant 
also varies this behaviour, but it results only in lowering the fractal dimen­
sion D( — l), without changing the asymptotes and the derivative of D(q). 
This is an important aspect, as for texture classification only these features 
are needed and so the bilinear interpolation is preferred. To sum up, the 
estimation algorithm includes three steps: 

1. the distribution Ρ(πι\δ) is computed for boxes of size δ = B s1, where 
i G { 0 , 1 , 2 , . . . } ; s is a number between 0 and 1 (and experimentally 
choosen between 0.8 and 0.9); and Β is the size (in pixels) of the 
largest box (in this way, a linear series in the bilogarithmic plane is 
obtained); 

2. for each q value, the scale range and the resolution are computed; 

3. an interpolation of multiple δ values is performed to estimate the limit 
of δ —► 0 and the correct D(q) value. 

9.2 Mass distribution 
The images are considered as mass distributions generated by a subdivision 
process F(p,r) where ρ = (ρι,...,ρη) is the vector of the probabilities 
of mass distributions, and r = (ri,...,rn) is a space partitioning vector; 
consequently, each image point has a mass f{x, y) equal to the grey level of 
the (x,y) pixel. 

Optical images can be considered samples of a continuous function: the 
radiance function. It can be easily demonstrated that under these condi­
tions, such a measure is not a multifractal one and leads to a trivial D(q) 
function (always uniform). However, images have discontinuities in the 
first derivatives, thus, the D{q) function is computed for the image of the 
gradient. When dealing with non-optical images characterized by high dis­
continuities, like SAR ones, the multifractal parameters can be estimated 
directly on original images. 
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Optical images: SAR images: 
ƒ(*,y) = II v l(x,y)\\ f{x,y) = Φ , y ) 

As already pointed out, it is necessary to have a set where every point 
has a unique mass value in order to apply the latter definition of D(q). 
Therefore, each image point (x,y) with mass f(x,y) is assumed to be the 
overlapping of η = f (χ,y) points with unitary mass. 

¡mage flx,y) 

lå 
P(m\ò. ) 

image 

m(x,y, δ ) 

Figure 9: Ρ(πι\δ{) estimation algorithm. 

If it is compared with the previously described method, the estima­

tion algortithm for P(m|¿¿) is very fast: for an optical image, the gradi­

ent is computed; afterwards, the image m(x, j/,¿¡) is obtained by filtering 

the image f(x,y) with a moving average (the computational complexity of 

this filter is independent of its size). Finally, the probability distribution 

Ρ(τη\δ{) is a modified histogram: for each m(x, y, ¿¿) the correspondig entry 

P{m(x,y,6i)} of the histogram is increased proportionally to f(x,y), that 

is, the grey value of the pixel in the original image. The estimation of D(q) 

is obtained by using the approach described in section 9.1. 
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Figure 10: Recursive subdivision algorithm. 

Through such definition, it is also possible to generate test images char­

acterized by a D(q) that is analytically known. By using a recursive mass 

­ 169­



subdivision schema, as in Figure 10, one can obtain a fractal distribution 
denoted by (where ΣίΡί — 1) 

D(q) ι log(E,-P?) (64) 
ς τ - l log2 

that gives estimation results very close to the analytical ones (see Figure 11) 
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Figure 11: Analytical and estimated D(q) functions. 

10 Results on real textures 
The effectiveness of the proposed approach is proved by the better results 
obtained in texture characterization in comparison with the use of the single 
fractal dimension. Figure 12 gives the functions D(q) computed on two 
fractal surfaces (i.e. Takagi's and the Brownian ones, given in Figure 6). 
Even though such surfaces are characterized by the same fractal dimension, 
they appear quite different to a human observer. The two functions assume 
different values, whereas the fractal dimensions, equal to D(0), are exactly 
the same. 

The functions D{q) were estimated also on SAR textures by using the 
mass distribution algorithm. Windows of 128 x 128 pixels were analyzed, 
using 15 different measuring scales (i = 0 , 1 , . . . , 14, ranging from 3 to 61 
pixels, with s = 0.87). An extension up to 256 x 256 has confirmed the 
stability of the result. 

The processing results are shown; for each texture, the behaviour of 
the relevant function D(q) is shown in terms of mean value and standard 
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Figure 12: D(q) for the two surfaces in Figure 6. 

deviation. It may be observed that, even though some overlaps occur for 
certain ranges, significant differences are found for the other ranges, so 
allowing an easy texture discrimination. 

The best results are obtained by using both multifractal measures, that 
is some D(q) values of the multifractal mass distribution, and the fractal 
dimension of the 3D surface. In particular, four features have been used: 

• -D(3) and D{—3) values; 

• the first derivative computed in q = 0 ; 

• the fractal dimension of the 3D surface. 

The feature vector obtained has been classified by a k-nn classifier and the 
results are compared with classical co-occurrence matrix analysis. 

Each 256 x 256 image has been partitioned in 64 overlapped 64 χ 64 
windows (a window every 32 pixels in both χ and y directions) and the 
classification results are reported in Table 1 and the following Figures. 
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error ivith co­occurrences 

matrices features 

34% 

30% 

0% 

0% 

0% 

31% 

0% 

28% 

mean error =15% 

error with multifractal 

analysis 

2% 

0% 

0% 

9% 

6% 

0% 

0% 

0% 

mean error=2% 

Table 1: Comparison between performance of co­occurence matrix and frac­

tal classifications. 
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Figure 15: Classification results by using the co­occurence matrix features. 
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Figure 16: Classification results by using the fractal features. 
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Chapter 7 

Mapping Spatial Variability in 
Landscapes: An Example using Fractal 

Dimensions 

Steven de Jong* 

1 Introduction 
Soil survey and vegetation mapping have traditionally been based on hi­
erarchical systems. Depending on the scale of the survey, geomorphology, 
climate and/or relief are used to distinguish land units and to define uni­
form mapping units. An example of a hierarchical approach is the system 
proposed by ITC which considers the following levels [1]: the landscape, 
the land unit, the land facet and the ecotope or site. Edges of river ter­
races, cuestas, junctions of major geological or lithological units are used to 
draw boundaries between mapping units. The selection of diagnostic crite­
ria depends on the objective of the survey: a regional water balance study 
requires different terrain or mapping units than a wind erosion project or a 
basic soil survey. Although different disciplines have different information 
needs, there can be considerable overlap between the interests of different 
users. An overview of different hierarchical approaches of survey techniques 
is given in [2]. 

The interpretation of aerial photographs or satellite images has become 
an integral part of these types of surveys. The applications of aerial pho­
tographs may include [3, 4]: the drawing of provisional boundaries prior 
to field survey, and the planning of locations for field checks, for post-field 
interpretation and for presentation. The availability of digital satellite im­
ages with channels outside the visible part of the spectrum has provided new 
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opportunities for vegetation and soil survey since 1972. Airborne and space-
borne images play a key role in landscape analysis and advanced methods 
are needed to analyse and to interpret these images. 

The approaches of qualitative descriptions of the variation of the earth's 
surface discussed previously have treated the world as though it is made up 
of uniform regions that can be delineated by sharp boundaries. However, 
the complexity of natural variations, the limitations of field sampling and 
the uncertainties of cartographic delimitation make it often unsatisfactory 
to regard sites as crisp sets. Several researchers have shown that land units 
are mostly not as homogeneous as supposed [5, 6, 7]. Although soil scientists 
and geographers know from field experience that drawn boundaries on maps 
are in fact mis-representations of changes that are often gradual or fuzzy, 
many of them use these mapping units in environmental modelling with GIS 
[8, 9, 10]. Hence, methods to quantify the spatial and temporal aspects are 
urgently needed. 

Researchers have sought for better representations of the real world. 
One way is to treat the overlap zones as fuzzy boundaries. Fuzzy set theory 
is a generalization of Boolean algebra and, in contrast to binary membership 
functions, fuzzy sets allow a partial membership i.e. mapping units can have 
a 'partial membership' of multiple units [10]. An example in soil science is 
soil depth, a soil can be 'deep' or 'shallow' e.g. with a separation boundary 
defined at 75 cm. In a fuzzy membership function we can now define 75 
cm as the ideal centre between deep and shallow soils and express every 
value between 75 and 150 cm (deep to very deep) on a fuzzy scale for deep 
soils from 1 to 0 and express every value between 0 and 75 cm on a fuzzy 
scale between 0 and 1 for shallow soils. Such a fuzzy approach allows us to 
deal with uncertainties associated with the descriptions of environmental 
variables [11]. 

A second approach to tackle the problem of spatial complexity is that of 
geostatistics [12]. The quantities and spatial distributions of attributes of 
the Earth's surface are estimated from spatial covariance functions. Geosta-
tistical methods are based on the 'regionalized variable theory' [13], which 
assumes that the spatial variation of any variable can be expressed as the 
sum of three components: (1) a structural component: a constant mean 
value or a constant trend, (2) a random, spatially correlated component 
and (3) a random noise or residual error term [12]. The variogram (or 
semivariogram) expresses the spatial relation between distance and vari­
ance of the variable. If this relation is known, interpolation techniques such 
as kriging are useful to compute the value of the variable for any location 
and to assess the interpolation error. Although the geostatistical approach 
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has already proven its value, problems arise e.g. when the spatial variation 
revealed by the variogram differs with direction (anisotropy). Furthermore, 
variogram estimation and modelling is extremely important for structural 
analysis and for interpolation and variogram models are only valid when 
certain mathematical conditions are fulfilled. 

The previously discussed methods (the conventional choropleth approach, 
the geostatistical and fuzzy set approach) treat the variability of environ­
mental variables at the Earth's surface as a set of patterns occuring at spe­
cific scales in the landscape. However, the processes that shape the Earth's 
surface vary from large-scale geological processes affecting the entire Earth 
to small-scale processes that give only shape to a slope or part of a slope. 
Hence, there is no reason why any particular scale should dominate and 
the space era has provided possibilities to study the Earth at many scales. 
The fractal theory [13] is a first step in the direction of describing how 
multi-scale complex spatial processes act and how they shape landscapes. 

In the last few years a number of researchers [10, 15, 16 17, 18, 19, 
20, 21] have assumed that landscapes fulfill the two most important char­
acteristics of fractals: (1) 'self-similarity', the manner in which variations 
at one scale are repeated at another and, (2) they should have the prop­
erty of fractional dimension (Hausdorff-Besicovitch dimension). Apart form 
the methods proposed by [15] to estimate fractal Dimension D such as the 
length of a trail, the area- perimeter relation, the variogram, and the Korcak 
empirical relation for islands, a number of other methods were developed 
e.g. cell-counting [22], the triangular prism surface area method [23], the 
isarithm method [16], the robust fractal estimator [24] etc. Based on ex­
periences that objects (surfaces, processes) did not always meet the two 
previously mentioned conditions, the idea of multi-fractals or non-linear 
variability was introduced [25]. Research in the application of fractal ideas 
to landscape studies, cartography, soil and vegetation survey is still in its 
infancy. Some studies show very promising results while other studies il­
lustrate very well that a number or problems can occur such as non-fractal 
behaviour and/or noise in the data besides computation difficulties. 

The case study that is described next, aims at introducing a method to 
assess fractal dimensions from remotely sensed images and to discuss some 
of the problems with computational methods and difficulties encountered 
during field surveys. The new proposed method is a useful image analysis 
tool when individual, neighbouring pixels have different spectral signatures, 
but when the pattern of different signatures is characteristic for a given land 
cover type. Hence, such a method should capture the local variability of 
reflectance properties and must be simple and unambiguous to use and be 
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capable of distinguishing different land cover types. 

2 Case Study 
Many Mediterranean regions are affected by land degradation resulting from 
past and present human activities. These have caused the development of 
highly variable landscapes with vegetation ranging from maquis, garrigue 
and rangelands to badlands [26, 27]. Mediterranean landscapes are vul­
nerable to land degradation processes and the natural conditions in many 
Mediterranean areas are such that disturbed ecosystems do not regenerate 
easily. Consequently, Mediterranean areas need to be treated with care 
and methods for sustainable land use need to be developed. In order to 
develop methods for sustainable land use, information is needed on the 
present state of these areas and knowledge is required on the functioning 
of Mediterranean ecosystems. As the Mediterranean regions are extensive 
and complex, remote sensing techniques may contribute significantly to 
acquisition of data about complex spatial patterns of vegetation [28, 29]. 
However, remote sensing techniques that use only pixel-specific spectral 
signatures to distinguish vegetation types have not been very successful in 
complex Mediterranean regions so far [30, 31]. Per-pixel classifiers do not 
recognize adjacent pixels as belonging to the same vegetation class because 
of the great variety of spatial patterns of vegetation cover and density of 
Mediterranean landscapes. Classification results may improve if a quanti­
tative measure of spatial heterogeneity is used as additional information in 
spectral classification procedures [9, 32, 33, 34]. One of the basic assump­
tions of the current study is that the various Mediterranean land cover types 
show spatial patterns of differing complexity or texture. This assumption 
is supported by several other studies [35, 36, 37]. 

3 Characterization of Spatial Variation 
Local variability in a remotely-sensed image can be described by computing 
statistics of pixel values e.g. coefficient of variance, autocovariance or by 
fractals. The underlying theory in each of these methods is that the com­
puted parameters express a kind of 'natural characteristic' of a spatially 
contiguous set of pixels for a given type of land cover. Although the in­
dividual pixel values may vary, the pattern is distinctive. Open types of 
natural vegetation such as found in the Mediterranean region often display 
such patterns. 
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3.1 Coefficient of Variance 
The coefficient of variance (CV) gives a measure of the total relative varia­
tion of pixel values in an area and can be computed quickly and easily, but 
gives no information about spatial patterns. The same applies for many 
other neighbourhood operations such as diversity or variation filters: their 
absolute values are easy to compare but they do not reveal any information 
on spatial irregularities [5, 10, 18, 20, 38]. 

3.2 Variograms 
Spatial patterns can be described quantitatively in terms of the semivari-
ance function, which can be computed from transects of data points mea­
sured on the ground or from images. This technique is based on the idea 
that the statistical variation of data is a function of distance. The variogram 
relates distances between sample points to the variance of the differences 
in the data. The parameters of a fitted model may include a range (a), a 
nugget (cO) and a sill (c + c0). The range of the variogram indicates a spa­
tial scale of the pattern; the nugget is an indication of the level of spatially 
uncorrelated variation in the data; and the sill reveals the total variation. 
The shape of the variogram is related to the type of variation in the data 
[5, 12, 14, 39, 40, 41]. 

Variograms of remotely sensed measurements should be interpreted with 
care, because some aspects of these variograms may differ from variograms 
resulting from ordinary samples. In remote sensing, the support size equals 
the sample spacing i.e. reflection values are averaged over the 'field of view' 
or pixel size of the measuring device. Furthermore, the sensor's output is al­
ways a derivative of the complex composition of radiation from the terrain. 
Variograms of data collected by remotely sensed devices are influenced by 
the shape and the distribution of elements in the image (or the transect). 
Some major points for variogram interpretation are [42, 43, 44, 45]: 
-the range is related to sizes of objects in the terrain (e.g. batches of shrubs); 
-the shape of the variogram is related to variability in size of objects in the 
terrain; 
-the height of the variogram is influenced by the density of coverage of the 
objects and the spectral differences between the objects; 
-regularization (coarsening the spatial resolution) reduces the overall vari­
ance of the data and blurs fine scale variation. Consequently, the sill height 
will reduce, the range will increase and the nugget will increase; 
-anisotropy in the image is expressed by the variation of variogram param-
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eters with the direction of the transect. 

Variogram parameters could be useful for assessing spatial patterns in 
remotely sensed images. The nugget reveals information on variability be­
tween adjacent pixels, the sill gives information on the total variability of 
the area considered, the range presents information on spatial dependence 
of reflectance and the type of variogram model or the shape of the vari­
ogram reveals information on the spatial behaviour of the data [46, 47 48, 
49]. If one first delineates different land cover types by eye (or by other 
external criteria), variograms can be computed for each delineation sepa­
rately. Statistical tests (e.g. ANOVA ) could be used to see if areas with 
apparently similar patterns returned significantly similar or different val­
ues of the variogram parameters. This approach is cumbersome and only 
useful if an external delineation is provided. It is more interesting to see 
if an analysis of the image patterns could be used to distinguish different 
vegetation types automatically by using the variogram. 

If one were to characterize a part of a remotely-sensed image by using 
variograms, the conventional approach would be to take a kernel or tran­
sect of a limited size, compute the experimental variogram, fit a variogram 
model, and then write the values of the variogram parameters to the cell 
location at the centre of the kernel or transect. Such a procedure could 
yield at least three new data layers per pixel, one for the nugget, one for 
the range and one for the sill. The kernel/transect would then be moved 
up one pixel and the computations would be repeated. The result would in 
principle, be a set of data layers that showed how the patterns in the image 
varied in terms of estimated variogram parameters, which might reveal the 
differences in vegetation or land cover pattern that are being sought. Al­
though the variogram seems to be a robust tool, a number of disadvantages 
of variograms can also be identified: 
-many data points are required to compute a reliable variogram (10 lags 
or more are needed to fit a variogram model). Consequently, an extended 
transect or a large kernel is required to perform the computation; 
-it is difficult to define 'best model criteria' in an automatic procedure for 
estimating variogram parameters; 
-different samples (i.e. sets of observations) from the same landscape units 
can yield different estimated variograms [14, 46]; 
-using the transect method, there is no clearly defined central pixel, in which 
the computed variogram parameters can be stored; 
-a local estimator is required to analyze image patterns to distinguish dif­
ferent land cover types, the variogram of a transect is a global estimator 
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and does not give information on local variation; 
-the computation to derive the variogram and its parameters is considerable. 

An easier and more rapid method to assess spatial patterns from remotely-
sensed images would be useful. A fractal approach to assess spatial patterns 
from images meets the needs of such a method. This study examines the 
use of methods for assessing fractal dimensions of Mediterranean vegeta­
tion types using digital images at two different spatial resolutions, tests 
the usefulness of the fractal approach for distinguishing different types of 
vegetation and compares it with variogram methods. 

3.3 Fractals 
Fractals are a means of describing complicated, irregular features of varia­
tion. Several authors have discussed the use of fractals to quantify 'rough­
ness' of several types of objects [5, 17, 18, 20, 50, 51, 52, 53, 54, 55, 56, 57, 
58]. Only a limited number of studies have been carried out so far to assess 
the usefulness of fractals for image analysis [28, 33, 59, 60, 61, 62, 63, 64]. 
The fractal dimension (D) is a quantitative measure of the irregular fea­
tures or 'roughness' of phenomena [5,10]. The variability of many natural 
phenomena is often irregular and sometimes, it can be approximated by a 
stochastic fractal such as the model of Brownian motion [15]. It is reason­
able to suppose that different kinds of terrain might have characteristically 
different texture or roughness which could be expressed in terms of different 
fractal dimensions [38, 58, 65, 66, 67]. Therefore, local fractal analysis of 
remotely-sensed images may reveal information on patterns of vegetation 
and rock outcrops much better than pixel specific procedures. 

A single-band remote sensing image can be considered as a kind of to­
pographical surface: rows and columns of the image matrix represent the 
spatial location, the pixel value embodies the imaginary elevation. The 
'roughness' described by D is determined by the variation in observed ra­
diance. Values of D for surfaces range by definition from 2.0 for completely 
smooth surfaces to just below 3.0 for very irregular surfaces [19]. Overviews 
of available methods to assess D are given by [10, 17, 50]. Most methods 
for determining D at present only give lumped values for an entire image 
or an entire catchment. This lumped value is useless for detecting patterns 
of roughness over the image and local methods to assess D are required to 
provide a spatial map of patterns of differing complexity or texture. Al­
though several authors [17, 19, 50, 56, 68, 69, 70] have shown that there 
is a relation between fractals and landscape development or landscape pat­
terns, the exact relation is not yet fully understood. This study examines 
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the hypothesis that D can be used to distinguish different land cover types. 

4 Two Methods for Estimating Fractal Di­
mensions 

Two methods to determine D were used in this study: the 'variogram 
method' and a new local method based on the 'Triangular Prism Surface 
Area Method' [23]. 

4.1 The Variogram Method 
In the variogram method, the fractal dimension (Dy) is estimated from the 
best fit line of the log-transformed semivariance function computed from 
one-dimensional transects from field data and from images. Transects are 
often used to characterize vegetation patterns in the field [71, 72] because 
the transect method is easy and quick. The slope of the best fitting line 
relates to Dy as slope — 4 — 2Dy [15]. The essence of a log-transformed 
variogram of a true Brownian fractal is that it has no single, unique range 
nor a sill. Such a variogram will be a straight line on log-log paper. If the 
contribution of noise in the data of a true fractal increases, it will shift the 
variogram upwards along the variance axis. If noise is added to a variogram 
with a clear range and sill, it will reduce the distinctiveness of the range and 
sill and the value of Dy will increase. The value of Dy for one-dimensional 
transects can vary by definition between 1.0 (completely smooth) and 2.0 
(highly irregular). 

The variogram yields several kinds of information on spatial patterns. 
If a variogram has a well-defined range and sill, then the data do not come 
from a real fractal. On the contrary, if a clear range and sill is absent 
then the dataset can be considered as a 'candidate-fractal'. The linearity 
and the slope of such a log-log variogram provide information on spatial 
patterns in the data. Furthermore, the break distance of the log-log vari­
ogram (defined by [38] as the maximum distance to which a least-squares 
line can be fitted with a correlation greater than 0.90) indicates the dis­
tance of spatial independence of the data. Unfortunately, the disadvantage 
mentioned for the common variograms are also true if D is estimated from 
variograms: many data points are required to obtain a reliable variogram, 
the necessary computations are very laborious and the various variograms 
within one landscape unit do not yield the same results. The objective of 
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the new proposed local method to estimate D is to overcome some of these 
disadvantages. 

4.2 Triangular Prism Surface Area Method 
The 'Triangular Prism Surface Area Method' (TPSAM) is a three-dimen­
sional geometric equivalent of the 'walking dividers' method proposed by 
[23]. This method estimates lumped D values from topographic surfaces 
or remotely-sensed images. The method takes elevation values (DNs) at 
the corners of squares, i.e. the centre of a pixel, interpolates a centre value 
of the square by averaging, divides the square into four triangles and then 
uses Heron's formula to compute the surface areas of the imaginary prisms 
resulting from raising the triangles to their given elevations (figure 1). This 
calculation is repeated for different square sizes, yielding the relationship 
between the total area of the surface and the spacing of the squares (resolu­
tion). The computed surface area will decrease with increasing square size, 
because peaks and bottoms will smooth out. The calculations stop if the 
size of the square is too big to fit on the image. Surface area and spatial 
resolution are both log transformed and a linear function is fitted through 
the calculated points. One (lumped) value of D for the entire image is then 
estimated by the slope of the regression line. The number of steps (square 
sizes) to calculate the surface area depends on the size of the image. The 
required formulae to carry out the computation are given by [23]. The TP­
SAM provided good estimates of D for images and small phenomena such 
as particles and molecules [24]. 

A local method to assess the fractal dimension (DL) was developed by 
modifying the original TPSAM. A kernel of 9*9 pixels is moved over the 
digital image (figure 2) and at each position of the kernel, Dr, is assessed by 
calculating 4 times the surface area at different resolutions (squares of 1*1, 
2*2, 4*4 and 8*8 pixels) within the kernel. The surface area is computed 
in the same way as the lumped TPSAM. Resolution and calculated surface 
area are both log-transformed and DL is estimated from the linear function 
fitted through these 4 points by DL = 2 — Slope. DL is written to the 
centre cell of the kernel in a new image file, the kernel is moved one pixel 
to the next position over the image and the calculation starts again. A 
kernel of 9*9 pixels is chosen as a compromise between computing time and 
the number of points required to fit the function. The new proposed local 
method is a type of convolution operation and results in a map of DL values 
for the entire image, which can then be used as an indicator for the spatial 
variability of land cover categories. 
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Figure 1: Example of the modified Triangular Prism Surface Area Method 
to calculate D. Within a square of increasing size, the 'surface area' of the 
image is assessed. The surface area decreases with increasing square size, 
because peaks and and bottoms are smoothed. The regression line of the 
log transformed surface area and the log transformed square spacing yield 
an estimate of the fractal dimension. 
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Figure 2: The working method of the new proposed 'local T>­algorithm'. A 

kernel is moved over the image; for each kernel position the 'surface area' 

is computed at 4 different resolution (squares). DL is assessed from the 

log­transformed surface areas and resolutions and the kernel is moved to 

the next position. The method yields a distributed map of DL­
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The advantages of the new local method are that it is easy to use and 
quick, it renders information on spatial patterns within the template size, 
no extended transects are required and it can be used in relatively small 
areas. A spatially continuous map of DL values is produced by writing the 
computed DL value to the centre pixel of the kernel. Due to the size of 
the kernel (9*9 pixels), two disadvantages of the new local method can be 
identified: 
-the surface area is calculated within the kernel for four square sizes: 1*1, 
2*2, 4*4 and 8*8 pixels; consequently, only four points are available for the 
linear regression of the log transformed surface area and resolution; the least 
square fit might be strongly influenced by extreme values of the computed 
surface area; 
-the relatively large size of the kernel causes blurring or smoothing of the 
output image, a very common, unfavorable effect of spatial filtering [73] and 
the size of the kernel causes some boundary effects. 

A further limitation of the method is that it is not applicable to multi-
band images. Consequently, efficient data reduction methods such as princi­
pal component analysis or ratioing should be applied first to the multi-band 
image. 

5 The Local Method applied to Artificial 
Images 

Before the proposed 'local /J-algorithm' was used for real digital images, 
the approach was tested by applying it to artificial images which were not 
fractals. Some typical examples are presented in figure 3. The images at the 
left side of figure 3 are artificial input images (two intersecting lines, six flat, 
homogeneous raised surfaces and a partly random genetrated image), the 
images on the right side show the results of the /Ji-algorithm. The size of 
each artificial image is 40 by 40 pixels and the values of the digital numbers 
are presented in the legend of the input images. The range of estimated 
'T>L values' are by definition between 2.0 and 3.0 and are presented in the 
legend of the output images. The three examples of figure 3 illustrates 
the blurring of the algorithm and the boundary effects. A general trend 
of /-^-computations is that flat homogeneous areas yield low estimates of 
DL and as the image's heterogeneity increases (intersection of lines, fringes 
of homogeneous areas), DL increases too. Largest DL values are found for 
areas with a very high spatial variability such as the random part of the 
third example of figure 3. 
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Figure 3: The effect of the 'local D­algorithm' is shown on 3 artificial 

images. Images on the left show the input images, output images are shown 

on the right. DL values tend to increase with the complexity of the image. 
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6 The Study Area 
In the study presented here, two methods are used to estimate D: the 
first method (variogram method) is suitable to determine Dy for one-
dimensional field transects; the second method (local /J-algorithm) yields a 
spatial map of estimated DL values, where the new image equals the size of 
the original image minus half the kernel size due to boundary effects. The 
case study aimed at finding the answer to two research questions: 

-Is the Brownian fractal a useful means of describing the 'roughness' or 
' texture' in remotely sensed imagery of Mediterranean land cover types? 

-How do the two methods (variogram and local method) perform at 
distinguishing between different known, types of Mediterranean land cover 
types? 

The suitability of the estimated fractal dimension as a tool for separating 
different types of Mediterranean vegetation was assessed in a study area 
in the southern Ardèche province (France). A physiographic survey was 
carried out resulting in six main land cover classes or mapping units [74]: 

• 1. Badlands (strongly incised areas). Bare, high reflectance surfaces 
varying with densely vegetated areas in gully floors and in between 
gully systems. Shadows play an important role in badlands with re­
gard to apparent reflectance properties. 

• 2. Rangelands - areas dominated by annuals and herbaceous peren­
nials with deep root systems. Shrubs are not present or only scarcely 
present in the rangelands. Rangelands often form a rather homoge­
neous cover over extended areas. 

• 3. Open garrigue - an area of low scattered bushes, smaller in number 
than in the previous class. The bushes are rarely more than 2 meters 
high with bare patches of rock or stony soil between the grasses and 
herbs. 

• 4. Closed garrigue - an open forest type of vegetation with scattered 
bushes alternating with bare patches, rock outcrops and grasses. Gar­
rigue areas show distinct spatial patterns of shrubs. 

• 5. Maquis - forms the local climax vegetation and is a type of ever­
green mixed forest dominated by oak species. Maquis has a dense, 
evergreen vegetative cover. 
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• 6. The sixth class is dominated by human influences and comprises 
agricultural areas and built-up areas. The spatial pattern of this class 
shows spectral variation at regular distances i.e. parcel size. 

Two types of digital multi-spectral images were available for this area: 
a Landsat TM image acquired on 18 July 1991 with a pixel size of 30 χ 
30m. and an airborne image acquired by the Geophysical Environmental 
Research (GER) Imaging Spectrometer on 29 June 1989 with a nominal 
pixel size of 10 χ 10m. [75, 76]. Figure 4 shows the TM image of the study 
area with the 6 land cover types identified. The Landsat TM image was 
radiometrically corrected using the method proposed by [77] using gain and 
offset values to convert digital numbers into reflectance. The original GER 
image contains 63 spectral bands. The radiometric and geometric prepro­
cessing of the airborne image was carried out by the German Aerospace 
Research Establishment [78] and the Joint Research Centre (JRC) of the 
European Community in Italy [75]. A selection was made of GER bands 
corresponding with the TM bands 1 to 5 and 7. The different pixel size 
of the two images makes it possible to test the new DL method on pat­
terns of natural vegetation cover at two levels of space scale. The different 
dates of data acquisition do not seem to have caused any major differences 
in the images because the dynamics of the (semi-)natural ecosystems are 
rather low. In contrast, temporal changes of the agricultural areas can be 
considerable. 

7 The Variogram method (Dy) to Assess 
Fractal Dimensions of Transects 

The 'variogram method' was used to assess D from transects in the different 
mapping units which were surveyed in the field. The Dy values obtained are 
useful to check whether spatial variation estimated from field data matches 
that estimated from images. A hand-held radiometer with a field-of view of 
l m 2 was used to measure reflectance in the visible and near infrared along 
various transects in the mapping units. Each transect comprised a mini­
mum of 175 sample points. A normalized difference vegetation index was 
computed from the visible and infrared measurements and for all transects 
a semivariance function was calculated following the method described by 
[14]. The variograms were all plotted on log-log paper and for each vari­
ogram breaks of slope were located visually [58]. Straight lines were fitted 
up to the breakpoint using the CSS statistical software package [79] and 
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Figure 4: Landsat Thematic Mapper image (Bands 4, 5 and 1 as Red, 
Green and Blue) of the study area showing the six land cover classes: (1) 
badlands; (2) rangelands; (3) open garrigue; (4) closed garrigue; (5) maquis; 
(6) agricultural areas. [Image date: 17 July 1992, Original satellite data 
copyright Eurimage, 1992] 
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Dy was computed from the regression line. This method was applied to all 
units except for the agricultural areas. The method is of little use for agri­
cultural regions, because the spatial variation is determined by the human 
induced boundaries of the parcels. The method also fails in maquis, because 
maquis is hardly penetrable and the vegetation is too high for hand-held 
radiation devices. Therefore, variograms for maquis were estimated using 
data transects taken from the airborne GER image. Table 1 presents Dy 
values and break distance for each land cover unit and per transect the D 
values and their break distance. 

Table 2 shows the average Dy value, the average variogram model pa­
rameters and their CV values per land cover class. 

From the variogram model parameters it can be seen that short vari­
ogram 'range distances' are found for open and closed garrigue and bad­
lands, the largest 'range distances' are determined for rangelands and maquis. 
These results match intuitive expectations that the spatial dimensions of 
the variability of rangelands and maquis are larger than the variability of 
badlands and garrigue (i.e. badlands and garrigue have finer patterns). The 
Dy values indicate rangelands and maquis as most irregular. The Dy values 
are all far in excess of 1.5, indicating that the vegetation index determined 
from the radiance measured along the transects is highly irregular. Large 
values of Dy are also reported by [53, 80]. Discrimination between land 
cover categories using only Dy from hand-held radiometer data is poor. 
Average D values for the different land cover types are close to each other 
and the CV values are relatively high. Maquis is somewhat different than 
the other land cover types and has the largest Dy, but it is unclear whether 
this is a function of the support size of the datasource (GER image) or of 
the spatial pattern of the maquis. A graph relating Dy with break distance 
of the log transformed variograms separates rangelands, open and closed 
garrigue and maquis (figure 5). Badlands are the most variable and are 
difficult to group. Furthermore, the question should be answered whether 
the transects per land cover unit represent real fractals. The linearity of 
the log-transformed variograms provides information on the self-similarity. 
Although some log-log variograms are linear over a certain range, most 
log-log variograms show clear breaks of slope. This non-fractal behaviour 
might be caused by the limited number of points in the transect (175) or 
by the fact that the reflectance properties of the studied surfaces are not 
scale invariant. 

Apart from the estimation of Dy, a conventional statistical procedure 
was carried out to assess the relative homogeneity of the 6 mapping units. 
Five test plots of 10 by 10 pixels were located within the core of each 
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Badlands 

transetti 

transect2 

transect3 

transect4 

transects 

Rangelands 

transect1 

transect2 

transect3 

tran sect4 

Open Garrigue 

transectl 

transect2 

transect3 

Closed Garrigue 

transectl 

transect2 

transecO 

transect4 

transects 

Maquis 

transectl 

transect2 

transecO 

transect4 

transects 

Dv 
variogram 

1.65 

1.69 

1.78 

1.78 

1.90 

1.81 

1.85 

1.79 

1.77 

1.78 

1.70 

1.77 

1.81 

1.82 

1.73 

1.82 

1.70 

1.84 

1.96 

1.93 

1.95 

1.89 

r2 

0.98 

0.99 

0.73 

0.89 

0.86 

0.92 

0.91 

0.94 

0.94 

0.92 

0.99 

0.94 

0.90 

0.73 

0.96 

0.88 

0.96 

0.91 

0.85 

0.83 

0.82 

0.81 

Break-
distance (m) 

14.8 

17.8 

11.7 

12.0 

39.8 

39.8 

48.9 

48.9 

12.0 

10.0 

48.9 

12.0 

7.0 

6.1 

6.1 

7.0 

5.8 

25.7 

39.8 

28.1 

28.1 

32.0 
-

Table 1: Fractal dimension Dy values and break distances computed for 
different land cover units using the variogram method based on normal­
ized difference vegetation indices determined along several transects with a 
hand-heH radiometer. 
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Land Cover Unit 
Number of transects 

Avg. D (variogr.): 
CV (%): 

Avg. range (m): 
CV (%): 

Avg. nugget (cO): 
CV (%): 

Avg. Sill-nugget (C): 
CV (%): 

Badlands 
(n=5) 

1.76 
(5.5) 

9.1 
(57.1) 

5.17 
(64.9) 

17.7 
(66.3) 

Rangelands 
(n =4) 

1.81 
(1.9) 
36.0 
(63.9) 

2.82 
(55.6) 

9.56 
(94.0) 

Open 
garrigue 
(n=3) 

1.75 
(2.5) 

5.6 
(41.1) 
4.31 
(51.5) 

6.19 
(64.4) 

Closed 
garrigue 
(n=5) 

1.78 
(3.2) 

3.6 
(25.6) 

3.20 
(24.0) 

5.56 
(14.2) 

Maquis 
(n=5) 

1.91 
(2.4) 

27.1 I 
OLD 
6.11 
(26.3) 

9.74 
(45.4) 

Table 2: Average fractal dimension values Dy, variogram model parameters 
and coefficient of variance (CV) values for different land cover units de­
termined along several transects from hand-held radiometer measurements 
(variogram method) 
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Figure 5: Graph showing the relation between Dy and break distance from 

the log transformed variograms for each of the five land cover types. 
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land cover class in the TM image and in the airborne image. CV's based 
on a total of 500 pixel values per spectral band per land cover class were 
computed and are shown in table 3. 

Land Cover Unit 

Badlands 

Rangelands 

Open garrigue 

Closed garrigue 

Maquis 

Agricultural 

Land Cover Unit 

Badlands 

Rangelands 

Open garrigue 

Closed garrigue 

Maquis 

Agricultural 

TM1 

10.7 

4.4 

6.2 

6.9 

2.6 

9.7 

GERI 

23.8 

28.7 

26.2 

32.4 

40.7 

27.0 

TM2 

14.4 

6.1 

8.6 

9.4 

3.9 

14.2 

GER2 

18.8 

20.2 

15.4 

22.7 

20.9 

22.1 

TM3 

17.5 

7.5 

12.5 

15.1 

6.9 

22.1 

GER3 

17.3 

17.3 

15.1 

27.0 

26.0 

26.4 

TM4 

10.1 

5.0 

6.5 

5.0 

3.9 

13.3 

GER4 

9.0 

8.7 

7.7 

7.4 

5.0 

12.0 

TM5 

11.2 

6.1 

8.9 

11.0 

6.6 

13.0 

GER5 

21.0 

21.3 

18.1 

35.7 

33.1 

45.4 

TM7 

17.5 

10.3 

12.6 

18.8 

11.6 

22.5 

GER6 

13.9 

12.7 

12.1 

24.0 

20.1 

28.3 

Table 3: Coefficient of variance (CV in experimental plots (n=500 pixels) 
per land cover class for all spectral bands of the Thematic Mapper (TM) 
and for the GER-airborne image (GER) 

The results of the TM image analysis reinforces intuitive expectations 
because the largest CV values are found for badlands and agricultural areas, 
smallest CV values are computed for rangelands and maquis. It is notable 
that in the first two visible bands of the TM image badlands have the 
largest CV values of the 6 land cover types whereas agricultural areas show 
the largest CV values in the next 4 TM bands. This can be explained by 
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the abrupt changes of infrared reflectance between densely covered lots and 
bare lots. This effect is less pronounced in badlands because vegetation 
in badlands is often 'water stressed' resulting in smaller contrast between 
infrared and visible reflection. The CV values computed from the GER 
image show a less distinct pattern. The CV values are generally much 
larger than for the TM image and the land cover types cannot easily be 
separated. Variability of reflectance within the experimental test plots is 
apparently much greater. There are two possible explanations: (a) there is a 
greater variability in the terrain at distances less than 30m., this variability 
is detected by the GER pixel (10 χ 10m.) and is smoothed within the pixel 
(30 χ 30m.) of the TM scanner; (b) there is more noise present in the 
GER image than in the TM image. A visual interpretation of the GER 
image showed that the image is of somewhat poor quality and that the 
contribution of noise to the 'within image variability' might be important. 
The image was used because the different pixel sizes of the GER and TM 
image make it possible to study patterns of vegetation cover at two levels 
of scale. Therefore, image quality was assessed by determining the signal-
to-noise ratios. 

8 Noise in the Digital Images 
The quality of the TM image and the GER image was assessed by deter­
mining the signal-to-noise ratios (SNR) directly from the images. Nominal 
SNR for TM measured in the laboratory are between 200 and 500 [81]. 
Nominal values for the GER image are around 400 [82]. The common pro­
cedure to assess SNR from images is by selecting bright, high reflectance, 
homogeneous surfaces in the image [83]. The quotient of average observed 
radiance and the standard deviation yields the SNR. Bare bright soils or 
(empty) parking places are often suitable surfaces. SNR's generally de­
crease in the shortwave infrared due to lower radiance levels. Furthermore, 
SNR's determined directly from images tend to be lower than laboratory 
measurements. The range of SNR for the GER image is between 7 and 
15, the values for the TM range from 35 to 85. The values for TM are 
minimum values because the number of pixels of the selected bright surface 
was too small for a very accurate estimate. The SNR of the GER image 
appears to be small but the quality of the TM image is much better and 
visual interpretation of the image confirms the somewhat poor quality of 
the GER image. The original GER image looks very speckled in almost all 
spectral bands due to numerous technical defects during data acquisition 
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[75]. Consequently, the computations of variability and of D values using 
the GER image might be influenced by noise. 

9 Fractal Dimension of Images by the Local 
Method (DL) 

Before the local algorithm for D-computations was applied to the digital 
images, the multi-band images were reduced to single band images. Spectral 
ratioing was preferred for data reduction for two reasons: 

• ratioing of one near infrared band and one visible band enhances 
patterns of vegetation cover; 

• ratioing reduces the effect of shadows in the badlands. 

The optimal bands for ratioing were determined using the correlation 
matrix (Pearson correlation) of the experimental test plots described in sec­
tion 5. The 2 bands with the lowest correlation were selected for ratioing. 
Band 1 and band 4 have the lowest correlation for both images. A nor­
malized spectral ratio (4-l)/(4-fT) was calculated for both images and after 
scaling used as input for the DL algorithm. The DL algorithm, applied to 
the TM and GER ratio images, yielded two new images with DL values. 
In contrast to the variogram method, the DL algorithm yields rather small 
D values. The next step in this study was to determine the accuracy with 
which the two images reflect the 6 land cover classes. Objective assessment 
of accuracy of the new map is very difficult because: 

• the spatial transition of the units, e.g. rangelands to open garrigue is 
fuzzy; 

• the distinguished land cover classes are not exactly defined in terms 
of cover percentage or species; 

• only a map based on aerial photo interpretation and fieldwork of the 
land cover types was available and the accuracy of this map is un­
known. 

The usefulness of the DL images was estimated by digitizing polygons 
(minimum of 800 pixels) within the centre of each land cover class. For each 
polygon the average DL value and the standard deviation was computed 
and is presented in table 4. 
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GER Image 

Average DL 

S.D. 

n pixels 

TM Image 

Average DL 

S.D. 

n pixels 

Badlands 

2.19 

0.03 

1148 

Badlands 

2.23 

0.05 

1595 

Range­
lands 

2.25 

0.03 

793 

Range­
lands 

2.10 

0.02 

1763 

Open 
garrigue 

2.24 

0.02 

2698 

Open 
garrigue 

2.22 

0.04 

1164 

Closed 
garrigue 

2.28 

0.03 

1108 

Closed 
garrigue 

2.18 

0.03 

2992 

Maquis 

2.22 

0.02 

829 

Maquis 

2.14 

0.03 

2218 

Agrie, 
area 

2.21 

0.04 I 
1615 

Agrie, 
area 

2.27 

0.06 

10527 

Table 4: Average DL values and their standard deviations (SD) for poly­
gons centralized in each mapping unit 

Normalized curves of the average DL values for all 6 polygons are plotted 
in figures 6 and for the GER and TM image, respectively. The degree of 
separability between the land cover types using DL is indicated by the 
amount of overlap between the curves. A r-test for independent samples 
was carried out for all 6 polygons and for either image. Although all units 
are significantly different at the 0.05 level, the results should be interpreted 
with care because the number of cases is very large. Figures 6 and 7 show 
that DL values in the TM image separate the six land cover types much 
better than the GER image. Five peaks are distinguished in the TM curves 
of figure 7. Rangelands give a nice distinct peak, maquis and closed garrigue 
are less pronounced. Agricultural areas result in very broad-shaped curves, 
this might be expected because estimating DL within one agricultural lot 
will yield low values, estimating DL for fringes of lots will yield high values. 
The curves for badlands and open garrigue coincide, indicating that they 
cannot be separated using DL- The curves resulting from the GER image 
(figure 6) coincide to a large extent. No single unit can be recognized easily. 

Visual interpretation of the 'level-sliced' TM image of DL and the 'level-
sliced' GER image of DL confirms that the TM image shows the general 
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pattern of maquis, garrigue, rangelands and badlands much better. This 
is in contrast with expectations because the smaller pixel size of the GER 
image matches the variogram 'range distance of spatial dependence' (table 
2) much better than the TM pixel size. However, as described previously, 
GER image results may be distorted by noise present in the image. 

fractal dimension 

-^^— Agricultural areas · Open garrigue 
Badlands Closed garrgue 
Rangelands Maquis 

Figure 6: Curves of the estimated fractal dimensions (DL method) of the 
polygons centralized in the mapping units in the GER image. The x-axis 
represents the fractal dimension, the y-axis shows the percentage of pixels 
per land cover class. An individual peak for a unit indicates that it is 
feasible to discriminate the unit in the image based on DL 

10 Discussion and Conclusions 
The research presented here has attempted to answer two questions: (1) Is 
the Brownian fractal a useful means of describing the 'roughness' or texture 
of remotely sensed imagery of different kinds of Mediterranean vegetation, 
and (2) which of the two methods of estimating fractal dimensions of these 
vegetation patterns is most appropriate? Before answering the first question 
it was necessary to estimate fractal dimensions by both methods. 

The results show that though both methods of estimating D are fea­
sible, they require much data and care. The variogram method requires 
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2.00 2.05 210 2.15 2.20 2.25 2.30 2.35 2.40 2.45 
fractal d'rmens'on 

——— Agricultural areas 
Badlands 
Rangelands 

Open garrigue 
Closed garrigue 

• - — Maquis 

Figure 7: Curves of the estimated fractal dimensions (DL method) of the 
polygons centralized in the mapping units in the TM image. The x-axis 
represents the fractal dimension, the y-axis shows the percentage of pixels 
per land cover class. An individual peak for a unit indicates that it is 
feasible to discriminate the unit in the image based on DL 
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large numbers of data points in order to get information over sufficient 
lags/spatial scales, and if only a few linear transects are used they may 
return widely differing values of Dy. Other problems concern anisotropy of 
the pattern in the image and the fact that it is difficult to assign the param­
eters of a variogram that have been estimated over a large sample uniquely 
to a given pixel location for image enhancement. The local method avoids 
the latter constraint of the variogram method but uses few data (a kernel 
of 9 χ 9 pixels) and suffers from image blurring and boundary effects, and 
DL is estimated from only 4 lags. 

The two methods yield results that suggest that both Dy and DL may 
be useful in the classification of the land cover types in the study area, 
though there are many instances where the two methods strongly differ. 
The variogram method yields large values of Dy (all > 1.7) for all land cover 
types, whereas the local estimator produces smaller values (all < 2.3). D 
values where the decimal component is large (> 0.5) imply a weak pattern 
of noisy, random variation, whereas D values where the decimal component 
is small (< 0.3) imply smooth variation with little local noise. The ability 
of DL to separate land cover type clearly depends on the imagery used. 
The estimates of D depend on spatial resolution (which varied from 1 χ 
lm. along the transects to 30 χ 30m. for the TM imagery) and it is not 
clear whether the differences in estimated D values can be wholly ascribed 
to the differences in methodology or whether they can be explained by the 
variations in the imagery of the vegetation patterns not being self-similar 
and therefore not truly fractal. The only situation where data from the 
same source and resolution were used by both methods is the GER data for 
the maquis: Dy was estimated at 1.91 and DL at 2.22. This result suggests 
that the methods do indeed differ considerably, a conclusion that is further 
borne out both by the negative Pearson correlation between Dy and DL 
(i.e. -0.65) but also by examining the rank order of estimated D values for 
all vegetation types as estimated by both methods from all data sources 
(table 5). 

These results suggest strongly that the images used are not true fractals. 
Significant differences in the estimates of D obtained from one-dimensional 
and two-dimensional methods applied to the same area have also been found 
by [17] and [24]. Clarke and Schweizer [24], without giving an answer, have 
asked whether a fractal dimension estimated by a variogram method neces­
sarily bears any relation to that estimated by the walking dividers method, 
and clearly this dependence of estimated D on method is an important area 
that needs to be investigated, as does their other question as to whether the 
fractal dimension of a profile (transect) across a fractal surface necessarily 
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Land cover type 

Badlands 

Rangelands 

Open Garrigue 

Closed Garrigue 

Maquis 

Dv 

4 

2 

1 

3 

5 

DL (GER) 

1 

4 

3 

5 

2 

DL(TM) 

5 

1 

4 

3 

2 

Table 5: Rank order of estimated fractal dimensions. [Note: rank 1 is the 
smoothest (smallest D) and 5 is the roughest] 

has a fractal dimension of that of the surface minus one. 
The difference in estimated fractal dimension between Dy and . D L ( T M ) 

in this study may also be due to smoothing of local variation within the 
30 χ 30m. pixels - in other words the variation is scale dependent. This 
information, together with the appearance of strong breaks of slope in the 
variograms of the transect data, reinforce our conclusions that the remotely 
sensed images of the land cover units are not true fractals, though they 
undoubtedly differ in roughness. This finding is consistent with the conclu­
sions of [5, 17, 50, 54, 58] and others that land surfaces and/or landscapes 
are only rarely self-similar, and then only within limited scales. The disap­
pointing results for the airborne GER image are most probably due to the 
low signal to noise ratio and poor image quality which caused the severe 
overlap between the land cover classes (figure 6). 

Although DL for TM imagery does seem to reflect the different vegeta­
tion types in the study area, it is clear that DL by itself is insufficient for 
the automatic classification of TM images into land cover categories. The 
relations between Dy and break distance (the range of the variogram) in 
figure 5, suggest that information about the texture of patterns may be used 
to separate important vegetation classes, though more research is needed to 
determine how this information can be unambiguously acquired and used. 
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Chapter 8 

Applications of the L-systems to Canopy 
Reflectance Modelling in a Monte Carlo 

Ray Tracing Technique 

Yves Govaerts* and Michel M. Verstraete 

1 Introduction 
In various fields of geophysics, the acquisition of satellite remote sensing 
data supports an increasing number of scientific investigations and thereby 
contributes directly to our knowledge and understanding of the Earth as a 
global and integrated system. Satellite instruments can only measure one or 
a few radiation characteristics, such as light intensity, in a limited number 
of spectral intervals, even though the radiation itself has been affected by 
many processes on its way to the instrument. The nature and behaviour of 
electromagnetic waves (or the associated photons) is described by Maxwell's 
equations, and the interactions of radiation with atoms and molecules can 
be studied with the methods of quantum physics. At the most fundamental 
level, the transfer of radiation through macroscopic natural media, however, 
cannot be described explicitly in terms of quantum interactions because of 
the number of photons involved and the diversity and complexity of the 
materials in the environment. Specific models must therefore be designed 
to represent this macroscopic interaction between fields of radiation and 
finite-size materials, and to account for the anisotropy of natural surface 

[1]· 
Solar radiation interacts with the vegetation in a way that depends, 

among other factors, on the canopy architecture characteristics. There is 

'Institute for Remote Sensing Applications, Joint Research Centre, European Com­
mission, 21020 Ispra, Varese, Italy 
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thus a need to understand the relations between the plant structure com­
plexity and the interaction of radiation with that medium. In this paper, 
we emphasize how we can achieve this goal with the joint use of both the 
L-systems to describe the structural diversity of the vegetation and a Monte 
Carlo ray tracing radiation transfer model to study the scattering proper­
ties of light in different types of modelled canopies. In the next Section, we 
address the main problems resulting from the canopy reflectance modelling. 
In Section 3, we describe our model of radiation transfer in plant canopies of 
arbitrary complexity. The principles of L-systems are explained in Section 
4. Section 5, is dedicated to an application of radiation transfer modelling 
in a forest of varying density to illustrate the opportunities offered by our 
approach. 

2 Modelling the radiation transfer in the 
canopy 

The complexity of the representation of the transfer of radiation in nat­
ural media such as vegetation results in part from the fact that natural 
surfaces reflect light differently in different directions. Such surfaces are 
called anisotropic. This anisotropy results from the optical and the struc­
tural properties of the medium. Models that represent the reflectance of 
these surfaces as a function of the positions of both the source of illumina­
tion and the observer are called bidirectional reflectance models. Ideally, 
a general purpose bidirectional reflectance model should take into account 
the optical and the structural properties over a variety of spatial scales. 
In the solar spectral region, according to the approach of Westin et al. [2], 
we may assume that the overall canopy reflectance results from a combina­
tion of effects at three different scales; the milliscale, the mesoscale and the 
macroscale effects. 

The mill iscale 
With regard to the bulk structure of the canopy, the milliscale is 
defined as the basic scattering object i.e., a leaf or any other phy-
toelements. The main effect of a single leaf on the light transfer is to 
reflect, transmit or absorb the radiation differently as a function of 
the wavelength and the type of surface (see Figure 1). This statement 
implies that the leaves are considered as "black boxes" when part of 
a canopy reflectance model. In fact, this scale conceals another scale, 
the microscale which deals with the cell structure of a leaf. The inter-
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Figure 1: Qualitative reflectance, transmittance and absorbance spectra for 
a 'typical' green leaf. 

action of light with these cells is extremely complex due to the similar 
size between the objects and the wavelength, and can only be properly 
described by considering the wave nature of the light. However, as 
mentioned in the introduction, it is not possible to express the radi­
ation transfer in the vegetation in terms of quantum interactions. In 
practice, all these effects are statistically embodied at the milliscale 
through statistical distribution functions such as the scattering phase 
function. This scale is thus mainly characterised by spectral effects 
resulting from the cellular structure and chemical composition of the 
scatterers. 

The mesoscale 
The mesoscale deals with the spatial organization of the single scat­
terers or phytoelements in space, typically a single plant or a homo­
geneous set of plants. The mutual shadowing effect due to the finite 
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size of the scatterers causes the so-called hot-spot phenomenon. Its 
intensity depends principally on the scatterer's size, density and ori­
entation. The canopy architecture at this scale is most often described 
in terms of leaf area index (LAI), leaf area density (LAD), or leaf an­
gular distribution. This scale is thus governed by directional effects 
resulting from the leaf arrangement. 

The macroscale 
The range of the macroscale runs from the plant local heterogeneous 
arrangements to the broad landscape patterns. The effects of this 
scale on the reflectance result mainly from heterogeneities due to the 
fragmentation of the landscape and the topography. 

Obviously, in the case of laboratory reflectance measurements from a 
single leaf, only the milliscale effects have to be considered. On the con­
trary, to model or to extract information from low resolution measurements 
such as those provided by the AVHRR instrument on the NOAA platform, 
the full range of effects should be taken into account. Canopy reflectance 
models have always attempted (more or less successfully) to introduce the 
effects of these three scales in their models (e.g.[3]). In the rest of this sec­
tion, we briefly review the existing physically-based approaches with their 
range of validity. Geometrical models describe the bidirectional reflectance 
on the basis of classical optics, they represent particularly well the illumina­
tion, and therefore the shadowing of scattering elements of finite dimension 
by direct solar radiation. These models often represent the scatterers as 
geometrical volumes whose optical properties are more representative of 
the bulk properties of the canopy than of the individual scatterers. The 
method thus permits the description of the macroscale effects. The clas­
sical theory of radiation transfer in turbid media allows the description of 
the radiation transfer in homogeneous media where the inter-particle dis­
tance is large enough and the media density is low enough to satisfy the far 
field approximation. This approach thus represents the milliscale effects but 
cannot represent the meso- and macroscale effects. Hybrid models combine 
the approach of radiation transfer in turbid media with the geometrical 
description of the size and orientation of the scatterers. This approach em­
phasizes the mesoscale effects but is also able to represent the milliscale 
effects. Finally, computer models have been developed to describe explic­
itly the transfer of photons in canopies. They are mainly based on Monte 
Carlo methods or computer graphics techniques such as the ray tracing and 
the radiosity method. Hence, they are able to represent the effects resulting 
from all three scales. In a previous paper [4], the authors have reviewed 
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existing computer graphics technique and justified their preference for the 
ray tracing approach to design a general purpose model. 

Each approach has its own advantages and drawbacks and the choice of 
one type of model rather than another depends mainly on the aim of the 
study. For instance, the hybrid models are invertible but fail to represent 
the spatial heterogeneities. The general framework of this approach is to 
study the scattering of light in a medium as complex as the vegetation with 
a very high level of realism. In that context, models based on computer 
graphics techniques offer a definite advantage, although they cannot be 
inverted against reflectance measurement. 

3 Computation of the radiation transfer with 
Raytran 

We developed a new radiation transfer model, called Raytran, which as 
been designed to investigate radiation transfer problems in terrestrial envi­
ronments over a variety of spatial scales. The canopy reflectance is solved 
on a photon-by-photon basis using the Monte Carlo ray tracing technique. 
Monte Carlo procedures are used to generate incident photons, to define 
the type of interaction when collisions occur, and to compute the scatter­
ing angles while the propagation of light is described in terms of geometric 
optics. The Monte Carlo method itself involves three main steps: (1) gen­
eration of random numbers α uniformly distributed in the interval [0,1]; (2) 
computation of the random variables characterized by more complicated 
distribution functions of a; (3) estimation of the statistical properties of 
the simulated process by the realization of random variables obtained in 
step 2 [5]. The program is composed of 7 main parts. The first two perform 
the initialization of the model while the five remaining ones are iterative 
processes. 

1. Construction of the target. The target is described with a set of ge­
ometrical solid objects (e.g.polygons, discs, spheres, cylinders, cones, 
boxes) characterized by their location, orientation, and dimension. 
The optical properties of the objects are defined by their reflectance 
(p) and transmittance (τ) coefficients and by scattering distribution 
functions which characterize their directional behaviour. 

2. Choice of an illumination model. The incident rays, initiated at the 
top of the scene, represent the incident radiation. If all rays are ini-
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tially parallel, the model represents direct solar radiation. Other dis­

tribution can be selected to describe diffuse illumination. 

3. Generation of the photons (rays). Photons are generated in forward 

mode, i.e., from the source to the target. The origin of the rays 

is uniformly distributed in the area located at the top of the scene. 

The model allows the specification of the wavelength of the incident 

radiation, and later interactions with objects can be made dependent 

on this wavelength. 

4. Determination of the localization of the photon­surface interaction. 

The closest intersection point between a ray and a surface element is 

searched with an optimized geometrical sorting algorithm based on 

bounding individual objects in axis­aligned bounding boxes and on a 

uniform subdivision of the scene in smaller volumes called "voxels" 

[6]. In the latter method, each voxel contains the list of all totally or 

partially included objects. 

5. Determination of the type of interaction. When an interaction occurs, 

the simulation of the type of scattering (absorption, reflection, trans­

mission) is performed by generating a random variable u uniformly 

distributed in [0,1] such that 

• a reflection occurs if u < ρ 

• an transmission occurs if ρ < u < ρ + r 

• a absorption occurs if ρ + τ < u 

6. Determination of the new direction. In the case of scattering, the new 

direction (θτ,φτ) is defined with a Monte Carlo procedure applied 

to the scattering distribution function. In the case of a lambertian 

surface, the following distribution is used [7]: 

θτ — arcsin(­y/ü7) (1) 

φτ = 2TTU2 (2) 

where t¿i and u2 are uniformly distributed in [0,1]. 

7. Extraction of relevant information from the ray path. Two types of 

physical values are extracted from each ray path: the radiation regime 

in the target and the bidirectional reflectance function (BRDF). For 

the former type, the target is divided into m horizontal layers and one 

simply counts the number of absorbed or escaped rays in each layer. 
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To compute the BRDF, the hemisphere above the scene is divided into 

n equal area elementary surfaces S¡. The BRDF f¡ of the elementary 

surface S¡ is calculated according to [8] 

/ í = iVÃíV ' = l , . . . ,n (3) 

where E¡ is the number of photons which crosses the surface S¡, Ν is 

the total number of generated photons and ΔΩ; is the projected solid 

angle corresponding to the elementary surface S). Note that different 

measurements may be defined simultaneously. 

Steps 4 to 7 are executed for all generated photons, while steps 5 and 6 

are repeated until the photon either is absorbed or leaves the outer boundary 

of the modelled scene. 

Two strategies can be followed to represent the geometrical structure 

of a vegetation canopy as required by step 1. In the first case, each plant 

is directly constructed from measurements with a set of simple geometri­

cal surfaces and volumes. Quantitative descriptions of the architecture of 

plants do exist in the literature (e.</.[9] or [10]), but remain scarce and of­

ten limited to plants under stress. Alternatively, iterative mathematical 

formulations such as L­systems and fractals have been used to describe bi­

ological structures (e.^.fll] or [12]). The shapes of plants produced with 

these advanced concepts are quite realistic, and allow flexibility to change 

the morphologies. This approach requires information on the actual struc­

ture of canopies, and in particular on the frequency and angles of branching, 

the average length of stems, etc. 

4 Plant architecture modelling with the L­

systems 

Recent advances in computer graphics have made possible the generation 

of images of plants that are extremely realistic. The concepts behind this 

'artificial botany' are based mostly on two mathematical theories: fractals 

and L­systems. L­systems were introduced by Lindenmayer in 1968 as a 

mathematical theory of plant development. The principle is based on the 

central concept of parallel rewriting by successively replacing parts of simple 

objects, called the alphabet, using a set of production rules, starting from 

an initial condition or string of characters called the axiom. In the course 

of the algorithm, a long string of characters is generated. For example, the 
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rule pi : a —> ab means that the letter a is to be replaced by the string ab 
and the rule p2 : b —> a means that the letter b is to be replaced by a. If 
we assume that the axiom is the letter 6, in the first step of rewriting, b is 
replaced by a using rule p2. In the second step, a is replaced by ab using 
production p\. In the next rewriting step, both a and b are simultaneously 
replaced with p\ and p2, and the resulting string is aba. The next derivation 
generates the string abaab which in turn yields abaababa and so on (see Table 
1). The correspondence between the produced strings and the geometric 

Axiom 
Production rules 

Derivation 

ω 
Pi 
P2 
0 
1 
2 
3 
4 
5 

b 
a —y ab 
b —> a 
b 
a 
ab 
aba 
abaab 
abaababa 

Table 1: Example of definiton and derivation of an L-system. 

interpretation is established via a 'LOGO-like turtle ' [13] which interprets 
the characters sequentially as basic commands such as "move forward", 
"turn left", and so on. In a tridimensional space, the state of the turtle is 
defined by its position and three vectors which define its current orientation 
[14]· 

There are many kinds of L-systems. The simplest one, the OL-system 
may be formally defined as an ordered triplet (V,u, P), where V is the 
alphabet, ω is the axiom which is a non-empty word out of the alphabet 
and ρ is a finite set of productions rules. A pair (a,x) composed of a letter 
a and the word χ is called the production, and is written as a —* x. The 
letter a and the word χ are called predecessor and the successor of this 
production, respectively. A OL-system is deterministic (DOL-system) if and 
only if for each letter a of the alphabet V there is exactly one word χ such 
that a —» x. Thus, in such L-systems, the number of productions can not 
exceed the number of symbols in the alphabet of the L-system. A simple 
example of OL-system is given in Figure 2 with the interpretation of the 
turtle movements. 

Various extensions of the OL-systems have been proposed and studied 
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alphabet 
axiom 
production 

'F' '-' V 
F - F - F - F 
F - * F - F + F + F F - F - F + F 

Turtle interpretation of strings: 

F : move forward a step of length d 
+ : turn left by an angle δ (90°) 
- : turn right by an angle δ (90°) 

F 
iL 

+ 

Φ 

η = 0 η = 1 

Figure 2: Von Koch quadratic island. Top: Definition of the corresponding 
DOL-system with the geometric interpretation rules. Bottom: The first 2 
stages in the generation of the system. 
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to achieve flexibility and variety in the sequences of symbols that can be 
generated by an L-system. We list here the main features we used in the 
present study. In a stochastic L-system, for one or more symbols, there is a 
set of rules such as a —> x, a —> y, which are applied with specific probabil­
ities / and m with / + m = 1. So far, L-systems are only able to represent 
discretized values and fail to capture properly continuous phenomena. To 
solve this problem, numerical parameters can be associated with produc­
tion rules to give parametric L-systems. A formal definition is given in [14]. 
A TOL-system (T is for table) is an ordered quadruplet (V,u,P,T) where 
V,u,P have the same definition has for the OL-system and Τ is a finite 
non-empty collection of subsets of p, called tables. It is assumed that for 
each table t belonging to the collection T, and for each letter a, there is at 
least one production ρ in table t with the predecessor a [15]. Such systems 
are used to describe two or more successive phases of growth by means of a 
change in the production rules. These changes in production rules can be 
used to alter the growth of the structure after a certain number of stages. 
TOL-systems can be combined with parametric one as illustrated in Table 
2. 

Axiom 
Production 

ω 
rules pi 

P2 
P3 
VA 

A(4,4),B(2) 
A(x,y) 
A(x,y) 
B(x) 
B(x) 

y < 3 —> A(x χ 2, χ + y) 
y>3-*B(x)A(x/y,0) 
x<l^C 
I > 1 - » B ( I - 1 ) 

Table 2: Example of production rules for a parametric TOL-system. 

Another useful implementation of the L-systems can be used to simulate 
branching mechanisms by saving the position and orientation of the turtle 
before generating a new axis and then restoring the original position of 
the turtle. Moreover, it is also possible to introduce a "tropism vector" to 
represent phenomena which influence physiological processes. This vector 
allows to adjust the orientation of the turtle in response to a stimulus such 
as light or gravity. 

Finally, we close this section with a brief comparison between L-systems 
and fractals. Although the L-systems are very similar to fractals as evident 
from Figure 2, they present the advantage of being more versatile and con­
venient to manipulate simultaneously different types of objects. They also 
lend themselves rather easily to the mathematical description of physiolog­
ical processes in the form of production rules. In the framework of canopy 

220 



reflectance modeling, L-systems offer a unique opportunity to describe plant 
architecture with a very high level of complexity and realism, using a set 
of geometrical objects of given shape, size and position. In the next sec­
tion, we give an illustrative example of radiative transfer in various types 
of forest constructed with trees generated by a L-system. 

5 Application to forests 
The potential of L-systems to generate realistic-looking plants has been 
shown by many authors (e.g.[12]). More recently, Goel and Rozehnal [16] 
have also explored some non-biological applications of the L-systems. How­
ever, in the case where the L-systems are used to generate plants for canopy 
reflectance modeling purpose, the requirement is not so much to represent 
realistic-looking plants than to produce plant architectures with realistic 
morphological properties. For example, a given L-system may produce a 
very realistic-looking tree but with a completely unrealistic LAI value. In 
the seventies, Hallé et al. [17] have suggested that each individual species 
has a precisely determined structure or architectural model. They found 
that by using a set of simple growth characteristics it was possible to cat­
egorize all trees into 23 architectural models which encompass the total 
diversity of tree forms. Each of these models is identified by the name of 
a Botanist. Our concern here is not to reproduce explicitly a specific ex­
isting tree species but rather to create a generic tree obeying classification 
criteria corresponding to one of the 23 standard architectural models, i.e., 
the Rauh's model, which includes, among others, poplar trees, birch trees, 
pine trees and fruit trees of temperate regions [18]. This model considers 
rhythmic orthotropic monopodial growth. Rhythmic growth results from 
seasonal climatic changes and produces shoots with an articulated branch­
ing process as shown in Figure 3A. The angular behaviour of a branch or axis 
with regard to the bearing axis is an important parameter. It is plagiotropic 
if the development is rather horizontal and orthotropic is the development 
is rather vertical. A monopod is a ramified system which includes a unique 
main axis, the trunk. 

To take full advantage of parametric table oriented L-systems in our 
growth model, we divided our generic tree into three parts (Figure 3B). The 
lower one is composed of the bare trunk. The medium one is composed of 
sparse rather horizontal mother branches and the upper one is composed 
of dense mother branches which become more vertical as we reach the top 
of the tree. Each part has its own growth unit which defines the frequency 
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(Β) 

Rauh's model 

(C) 

Figure 3: (A) Rauh architectural model with rhythmic orthotropic monopo­
dia 1 growth. (B) Silhouette of our 'generic tree' derived from production 
rul es based on the Rauh's model. (C) Adopted plagiotrop phyllotaxy. 
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of the branching processes. The rhythmic growth of the tree is determined 
by the number of iterations used to derive the trunk (first order axis), the 
middle and upper part mother branches (second order axis), the daughter 
branches (third order axis) and the twigs (fourth order axis). The twigs 
produce the stems (fifth order axis) which bear the leaves with a plagiotrop 
phyllotaxy (Figure 3C). The production rules used to define the L-system 
are summarized in Table 3. Moreover, growth functions delimit the max-

the trunk produces two (in the middle part) or three 
(in the upper part) mother branches at each branching 
process 
the mother branches produce two (in the middle part) 
or three (in the upper part) daughter branches at each 
branching process 
the length of the trunk segments are shortened by a 
constant ratio with respect to the first segment 
the sum of the mother branch diameter at every branch­
ing points is equal to the diameter of the trunk at this 
point 
the growth of the trunk stops when the height defined 
by the growth function is reached 
the growth of the mother branches stops when the length 
defined by the growth function is reached 
the angle between the trunk and the mother branches 
decreases with respect to the height 
the length of the daughter branches increases with re­
gard to the distance from the trunk 
the daughter branches produce a twig at each branching 
process 
the twig produce a clumping of 5 leaves at each branch­
ing process 

Table 3: List of production rules used to define the L-system of the generic 
Rauh tree. 

imum horizontal and vertical development of the tree. The simplest, but 
quite arbitrary, way to represent plant growth is to use sigmoidal function. 
The term sigmoidal refers to a function with a plot in the shape of the letter 
S. Such functions are commonly found in biological processes [19]. However, 
since we are more interested in producing adult plants than in modelling 
their actual growth mechanism, we have used logarithmic functions. These 
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functions control the height of the three parts of trunk (Figure 4A, solid 
line), the bottom radius of the trunk (Figure 4B), the vertically projected 
area of the tree (Figure 4C, solid line) and the area of the leaves (Figure 
4D). The resulting number of leaves and LAI of our generic Rauh tree are 
given in Figure 4E and F, solid lines. 

So far, the morphological properties apply to trees whose development 
may proceed with a minimum of disturbance. By contrast, in natural en­
vironments such as forests, tree growth may be modified due to stress con­
ditions such as storms, climatic events, fires or crown density [20]. We 
introduced a new parameter to take into account the effects of surrounding 
trees; the smaller the parameter, the denser the forest. The main effects of 
this parameter is to reduce the vertical development of the tree and the to­
tal number of leaves (Figure 4C and E, dashed lines), as well as to increase 
the growth unit in the middle part. We are thus able to control the effects 
of an homogeneous tree density on the development of the individuals. 

We have simulated three different types of forest density: an "open" 
forest with a fractional cover of 40%, a "normal" forest with a fractional 
cover of 80% and a "dense" forest with a fractional cover of 100%. The 
fractional cover is simply the ratio of the projected area of the plant on 
the soil to the area of the soil. Each forest is represented with a sample of 
3 x 3 trees whose age ranges from 17 to 22 years. To simulate an infinite 
forest, we assume that each sampling area is surrounded by similar areas 
such that rays which escape the scene from one lateral side are translated 
to the opposite side while the direction remains unchanged. In the "open" 
configuration, the sampling area is a square of 30m on the side, and where 
the mean distance between the trees is 10m (Figure 5A). In the "normal" 
configuration, the mean distance between the trees is 6.5m such that the 
side length of the sampling area is 20m (Figure 5 B). The "dense" config­
uration is characterized by a mean distance between the trees of 4m and 
the sampling area is 7m on the side (Figure 5C). The ground is supposed 
to be a "green soil" for the open and normal forest and a bare soil for the 
dense forest. The values of the spectral parameters of the soil, branches 
and leaves are given in Table 4. All surfaces are supposed to be lambertian. 
For each configuration, we compute the radiation regime in the visible (VIS 
at 0.6μηι) and the near-infrared (NIR at 0.9/fm) regions. 

To generate the trees, we use Graphtal1 which allows the definition 
of context-free, table oriented L-systems with stochastic production rules. 

1 Graphtal is a public domain software developed by C. Streit in 1992, it is available 
on the anonymous ftp server iamsun.unibe.ch. 
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Element 

Ground under open forest 

Ground under normal forest 

Ground under forest 

Trunk and branches 

Leaves 

VIS (0.6pm) 

Ρ 

0.08 

0.08 

0.08 

0.09 

0.06 

r 

0. 

0. 

0. 

0. 

0.06 

NIR (0.9pm) 

Ρ 

0.35 

0.3 

0.2 

0.3 

0.6 

r 

0. 

0. 

0. 

0. 

0.3 

Table 4: Spectral values for the various elements of the scene (p = reflect 

ance; τ = transmitían ce). 

This software is able to produce an output compatible with Raytran geo­

metric primitives. The branches are defined with cylinders and cones and 

the leaves with triangles. For example, a 20 year old tree described following 

the rules of Table 3 is represented with 289,280 different geometric prim­

itives. To save computer time, we reduced the number of objects used to 

describe each tree: Daughter branches, twigs and stems were not included 

in the scene and the clumping of 5 leaves has been replaced by a single leaf 

of equivalent area. Sensitivity tests have shown that the difference between 

the hemispherical reflectance of the original tree and the simplified one is 

less than 1%. These simplifications allow each forest scene of 3 x 3 trees to 

be composed of ±100,000 different geometric objects. A scene is lit with 50 

million parallel photons which originate from a square located at the top of 

the canopy. To avoid illuminating the soil near the sides of the scene in the 

case of an infinite canopy, the size of the energy source is slightly smaller 

than actual size of the target. This area is indicated by the dashed squares 

on the left column of Figure 5. 

First, we have explored the radiation regime in various forest density 

types. The scene has been divided into 20 horizontal layers and the numbers 

of rays escaping the scene from each layer and absorbed in each layer were 

evaluated. The number of escaped rays is divided by the total number of 

escaped photons to provide an estimate of the contribution of each layer to 

the observed reflectance, while the number of absorbed rays is divided by 

the total number of generated photons to assess how each layer contributes 

to the total absorption of the canopy. Figure 6 gives the profiles of escaped 

and absorbed rays for a sun zenith angle of 45°. It appears quite clearly 

that, in the dense forest case, all the reflected radiation comes from the 

very top layer of the canopy. This kind of configuration may thus be easily 

modelled as a dense monolayer canopy. One can also observe the large 
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differences between the origin of the reflected radiation in the case of the 
open! forest for the two simulated wavelengths. In the visible region, more 
or less half of the signal comes from the trees and half from the ground. 
In the near-infrared region, most of the total reflected radiation exiting the 
scene (±70%) comes from the trees. This phenomenon is due to the multiple 
scattering effect which is much stronger in the latter case and nearly absent 
in the former case. Indeed, in the visible region, a ray which is first reflected 
by the ground and next intercepted by a leaf has a very high probability to 
be absorbed while this probability is quite weak in the near-infrared region. 

Next, we have computed the BRDF. Figure 7, represents tridimensional 

Figure 7: BRDF of an open forest for a sun zenith angle of 45° 
visible region. Right: The near infrared region. 

Left: The 

polar plots of the BRDF of an open forest lighted with a sun zenith angle 
of 45°. This example illustrates very well the influence of the multiple 
scattering and ground effects on the angular distribution of reflectance. In 
the visible region (left), the presence of the hot-spot peak is obvious while 
its shape is much smoother in the near-infrared. For the sake of clarity, 
we have plotted the BRDF in the principal plane which is the defined by 
the incoming solar direction and the local vertical (Figure 8). We may 
deduce the following points for the different wavelengths and tree density 
from these graphs: 

1. There is relatively more directional variability between the forest den­
sity configurations in the VIS region than in the NIR. 
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2. As already mentioned, the hot-spot phenomenon is stronger in the 
VIS than in the NIR. 

3. For a sun angle of 45° in the NIR, the reflectance of open forest is 
higher than the dense one at the nadir but lower for low observa­
tion angles, due to the contribution of the background surface (soil) 
between the tree crowns. 

Finally, we plotted the directional hemispherical reflectance or spectral 
albedo (Figure 9). We observe the following: 

1. As the forest becomes denser, the hemispherical reflectance decreases 
in the VIS and increases in the NIR. This is due to the contrast 
between the optical properties of the leaves and the ground which are 
opposed in the two spectral regions. 

2. In the VIS, the effect of large sun zenith angles is to decrease the 
hemispherical reflectance of the dense configuration and to increase it 
for the two other configurations. 

3. In the NIR, it is possible to discriminate the open and normal config­
uration only at low sun zenith angles. 

What can we conclude, from a practical point of view, from these re­
sults? Global environmental monitoring from remotely sensed data such as 
NOAA-AVHRR are most often based on linear combinations of radiomet­
ric values (vegetation indices) and supervised classification procedures [21]. 
As part of this approach, land-cover discrimination results from empirical 
trial and error methods based on locally adjusted threshold values. Our 
study has shown that since we are able to predict the origin of the received 
signal for the various wavelengths and tree density, one can define a priori 
threshold values from which it becomes possibles to discriminate land-cover 
categories for a given observation geometry. As an illustrative example, we 
have computed the Normalized Difference Vegetation Index (NDVI) and 
the Global Environmental Monitoring Index (GEMI) [22] for these forest 
types on the basis of the directional hemispherical reflectances computed 
above. The result is also shown Figure 9. NDVI does not really differenti­
ate between the normal and the dense configuration especially at low sun 
zenith angles. On the contrary, GEMI does not significantly discriminate 
the open and normal cases except at low sun zenith angles. Many more 
cases should be investigated before drawing firm conclusions, involving a 
variety of plant canopies and a representative sample of illumination and 
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viewing conditions. Nevertheless, a few interesting points should be studied 
further. First, there is a great sensitivity of the GEMI to solar zenith angle. 
This is a side effect (and a confirmation) of its sensitivity to the amount 
of vegetation as already shown in a previous study [23]. Second, the NDVI 
appears to differentiate better between the open forest on the one hand and 
the normal and closed forest on the other hand. The GEMI, for its part, is 
able to maintain a significant sensitivity to forest density as it distinguishes 
bewteen the dense forest and the! two other types. 

6 Conclusion and perspectives 
As we have shown, L-systems are very easy to use to model the growth and 
structural complexity of the vegetation. Monte Carlo ray tracing methods 
constitute a very powerful tool to study the transport of light into these 
simulated media. However, due to the large number of different variables, 
strategies have to be designed to ensure the efficient utilization of the model. 
In that sense, L-systems appear to be more appropriate to produce single 
plants while a fractal approach may be very helpful to describe the large 
scale landscape patterns. In such a way, one can study the relation between 
the actual geometric fractal dimension of a scene with the fractal dimension 
resulting from radiometric measurements. This kind of results will improve 
the methods used to compare high and low resolution remote sensing data. 
Moreover, coupling this radiation transfer model with bio-physical models 
which describe the leaf light use efficiency or the carbon cycle in the vegeta­
tion would a! How to highlight the relation bet ween the spectral signature 
of a plant and its physiological properties. 

This model provides a state of the art representation of the transport 
of light in plant canopies (and other natural surface environments) and 
complements the more classical models developed so far. It is expected that 
model intercomparisons will lead to significant model improvements. The 
flexibility afforded by L-systems opens new perspectives and opportunities 
with respect to radiation transfer modeling and its application to remote 
sensing data interpretation. 
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Chapter 9 

Fractal Modelling of Chernobyl's 

Radioactive Fallout over Europe 

G. Salvadori * S. P. Ratti, G. Belli and E. Quinto 

G. Graziane and M. de Cori 

1 Introduction 

The Joint Research Centre of the European Commission at Ispra (Italy) 

started in 1987 to store measurements collected by several European Labo­

ratories beginning April 26</ι, 1986, when the Chernobyl nuclear accident oc­

curred. The R.E.M. (Radioactivity Environmental Monitoring) data bank 

contains not only official documents provided by E.C. Member States, but 

also many other measurements collected in unofficial reports and private 

communications from Research Institutes and Universities. The investiga­

tion [1] of the R.E.M. data bank, carried out within the Radiation Protec­

tion Programme of the European Commission turned out to be a difficult 

task, due to its heterogeneity and complexity. The post­Chernobyl air/air 

dust pollution measurements (for the nuclides 137Cs, 134Cs, 1317 and 1327) 

were analysed in several Italian (and French) provinces. The following para­

metric function, returning the temporal trend of the radioactivity for all the 

investigated counties and nuclides (roughly speaking, it shows some features 

of "universality"), was provided [1]: 

RA(t) = k + ei­^+^­Mr­*)) (i) 

where RA means "Radioactivity", τ is the life­time of the nuclide; A is the 

effective rate of the exponential decay law (characteristic of a given nuclide 

* Dipartimento di Fisica Nucleare e Teorica, Università degli Studi, Pavia, Italy 

t Environment Institute, Joint Research Centre, European Commission, Ispra, Italy 
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but independent of geographical variables); Β accounts for the pollution 

strength (depending upon geographical variables); C is related to the ar­

rival time of the polluting cloud at a given location; Κ is the radioactive 

background (usually negligible), taken from the literature when available; 

the time origin is the date of the accident. In Fig. 1 we .show the 137Cs data 

(black squares) collected in the province of Milano and the corresponding 

fit (solid line) using formula 1. 
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Figure 1: 137Cs air data (black squares) collected in the province of Milano 

and the corresponding fit (solid line) of formula (1); the two dashed lines 

represent function (1) as calculated using the cross­estimated parameters 

(varied by plus (upper) and minus (lower) one standard deviation) 

2 Cross­estimate of the
 137

Cs parameters 

We are interested here in describing the 137Cs air pollution in Northern 

Italy, a relatively "homogeneous" area; the choice of this nuclide is due to 
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the fact that it is quite "stable" (its mean life time is ~30 years), and hence 
possible side effects (e.g. those due to a fast decay rate) can be disregarded 
in further modelling (see later). Originally, reliable 137Cs measurements 
(and hence the corresponding temporal behaviour as given by formula 1) 
were available [1] only for 6 provinces in Northern Italy (i.e., Alessandria, 
Milano, Piacenza, Pavia, Vercelli and Bologna); in order to improve the 
overall knowledge of the radioactivity distribution we show here an original 
algorithm [2] to calculate the parameters of the interpolating function 1 
when no data are provided in a given location, based on empirical relation­
ships between its coefficients estimated for different nuclides. The fractal 
approaches outlined in the next sections will take benefit of this procedure, 
since (as for any empirical model) the "quality" of the results depends on 
the amount of input data. 

It has been shown [1] that the parameter A does not depend on the 
geographical location but is a function only of the given nuclide; hence, 
the common value A = —0.433 ± 0.004 is assumed here for the 137Cs. 
Furthermore, since the background K is always negligible [1] and does not 
effect the behaviour of function 1, we set it equal to the (weighted) average 
of the values calculated for the provinces where X37Cs data are available. 
Also, given the facts that the nuclides arrived a,t the same time and that 
the value yC is a reliable approximation [1] of their (common) arrival time, 
it is natural to assume that the parameter C for 137Cs in a given location 
can be calculated by using the (weighted) average of the arrival times of the 
available nuclides in the same place. More involved is the estimate of the 
parameter B, based on the following empirical observation [1]: the (average) 
ratio Rx

 Cs between the value of Β of 1 3 7Cs and of another nuclide X (in 
our case 1 3 17, 103Ru, 132Te or a combination of such elements) is fairly well 
defined. Therefore, we estimate B(137Cs) in those locations where 137Cs 
is missing simply by multiplying Rx

 Cs times B(X), where X denotes a 
nuclide (or a combination of nuclides) locally present. 

In Table 1 we list the values of the parameters Β and C (for 137Cs) 
for the ten provinces in Northern Italy of interest here; in Genova, Padova, 
Pisa and Trieste they are calculated by using the cross-estimate algorithm. 
In order to test of this procedure, function 1 fitted on the available data is 
compared to the one obtained using the cross-estimated parameters (clearly, 
only in those provinces where 137Cs is measured). As an example, in Fig. 1 
we show the 137Cs data set (black squares) of the Milano province and the 
corresponding fit (solid line) of formula 1; the two dashed lines represent 
function 1 using the cross-estimated parameters within the corresponding 
"error band" of one standard deviation (obviously, the data set of Milan is 
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Province 
Alessandria 

Milano 
Piacenza 

Pavia 
Vercelli 
Bologna 
Genova 
Padova 

Pisa 
Trieste 

Parameter Β 
3.58 ±0.13 
3.55 ±0.79 
3.50 ± 0.74 
3.40 ±0.32 
3.22 ±0.12 
2.64 ± 0.75 
2.25 ± 0.04 
3.97 ±0.09 
2.40 ± 0.02 
4.40 ±0.18 

Parameter C 
47.06 ± 0.97 
30.74 ± 0.44 
81.03 ±2.12 
36.92 ±0.31 
29.35 ± 0.58 
46.35 ± 1.66 
32.23 ± 0.34 
40.54 ±0.13 
82.21 ± 0.59 

100.00 ± 74.01 

Table 1: estimates of the parameters Β and C of function 1 for the nuclide 
137Cs in Northern Italy; in the first six provinces the values are calculated 
fitting function 1 on the available data, while in the remaining four we use 
the cross-estimate procedure explained in the text. 

not used to calculate them). 

3 The monofractal model 
Many natural phenomena, from the molecular to the planetary scale and 
more, show an extremely complex behaviour. This is the phenomenological 
background that has stimulated the research on fractals [3a-d] and multi-
fractals [3c,d]. The fractal model presented here is based on the Fractal 
Sum of Pulses (F.S.P.) theory [3e]. According to it, the intensity of a 
phenomenon (e.g. radioactive pollution in a region at a given time) is con­
sidered as the sum of primary pulses, whose intensities, time duration and 
geometrical spreads are random variables properly distributed and gener­
ated according to a precise strategy. In this way, it is possible reproduce 
some features of the phenomenon itself such as scaling properties and strong 
fluctuations (see below). 

In our model the primary pulses mentioned above have the shape of 
"bubbles" [3e] and are distributed in a three-dimensional space, where two 
coordinates are spatial (i.e. longitude and latitude of the site being consid­
ered) and the third one is time. For a pulse volume V we use the following 
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hyperbolic probabilistic distribution law [3e]: 

Pr(V >V*)<x^ (2) 

where Pr means "probability" Such choice automatically preserves the scal­
ing property and allows for the presence of strong fluctuations [3]. The in­
tensity Z(f) of a pulse (at position 7·* from the pulse centre) is assumed to 
be: 

Z(r) = ±s(r)V^ (3) 

where D is the fractal dimension of the phenomenon, V is the pulse volume 
and s(r) is a smoothing function (usually having a Gaussian shape) tuning 
the "fading" of the pulse intensity as moving away from its centre. Thus, Ζ 
represents the (additive) contribution (e.g. radiation dose) of each pulse to 
the global phenomenon. Since the fractal dimension is kept constant, the 
model is monofractal m character; we assume here D zz 1.67, as calculated 
for some meteorological phenomena [3e]: in fact, we are convinced that 
the presence of radionuclides in the atmosphere is low enough not to affect 
neither rainfall nor cloud formation and transport of pollutant. 

Having chosen a proper value for D, we need now a reasonable criterion 
to introduce the primary pulses in the Euclidean space E = E(x,y,t). 
In our case [2] , aiming to recover a distribution R(x,y,t) of "real" data, 
it is natural to "guide the growth" of the fractal structure exploiting the 
information provided by the experimental data. A simple way of doing this 
consists in assigning to every point of E a probabiliLy P(x,y, t) proportional 
to the local value of R; in other words, the greater the value of R in a 
region A of E, the more the fractal algorithm "works" in A. In our case, 
R is simply given by function f - see, e.g., Fig. 1. However, since its 
parameters are known only in a few counties (see Table 1), we overcome 
the problem by considering "basins of attraction" of each province (instead 
of the proper geopolitical boundaries) and assuming that RA(t) be the same 
in all the area of interest; roughly speaking, the model generates spatial-
temporal "fractal fluctuations" starting from a homogenous "background" 
value given by RA(t). In Fig. 2 we show the basins of the ten provinces in 
Northern Italy. Finally, the contributions given by each pulse are added; 
the numerical output is then properly normalised so that the total amount 
of pollutant estimated in some area at a given time t* equals the value 
obtained by (spatially) integrating R(x,y,t*) over the same region. 

The fractal model allows the estimation [2] of the 137Cs air concentration 
in large unsampled areas: in fact, it "covers" all Northern Italy (i.e. 49 
provinces, from 7.0 to 14.0 West in longitude and from 43.5° to 46.5° North 
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Figure 2: "Basins of attraction" of the ten provinces considered in Northern 
Italy; i.e. Alessandria (AL), Milano (MI), Piacenza (PC), Pavia (PV), 
Vercelli (VC), Bologna (BO), Genova (GÈ), Padova (PD), Pisa (PI) and 
Trieste (TS) 

in latitude) while a description based upon function 1 works only for 10 
provinces (see Table 1). It is important to stress that both the spatial 
and the temporal resolution are input parameters (in Figs. 3 and 4 we use 
« 0.1° in longitude, fa 0.05° in latitude and 1 day in time) and hence they 
can be refined as needed. In Figs. 3 we show a two-dimensional display of 
the output of the monofractal model in Northern Italy, from 4 till 12 days 
after the Chernobyl accident (i.e., from April 30t/l till May 8th, 1986) with 
a regular one day step. 

In order to check [2,4] quantitatively how bad or how good the recovery 
might be, we systematically neglect, one at time, any of the 10 provinces 
providing input information, re-run the simulation and compare the results 
to the experimental data. In all cases the disagreement does not exceed a 
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Intensity Spectrum 

5 Days Post-Chernobyl 

7 Days Post-Chernobyl 

9 Days Post-Chernobyl 

4 Days Post-Chernobyl 

6 Days Post-Chernobyl 

8 Days Post-Chernobyl 

10 Days Post-Chernobyl 

11 Days Post-Chernobyl 12 Days Post-Chernobyl 

Figure 3: Qualitative two-dimensional display of the output of the 
monofractal model in Northern Italy, from 4 till 12 days after the Cher­
nobyl accident. The spectrum indicates increasing values of radioactivity 
from left to right 
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factor of two; furthermore, in some provinces the model returns estimates 
of the amount of pollution in days when no measurements were made. As a 
further test, the comparison is also performed neglecting, respectively, the 
province with most data (i.e. Milano), the extreme eastern one (i.e. Trieste) 
and the extreme western one (i.e. Vercelli). The same considerations as 
before apply; also, the results seem to be reasonably "stable" independently 
of which province is disregarded. Overall, we are able to estimate the 137Cs 
concentration in about 50 provinces where no measurements were available 
starting from the data of only 10 provinces. A more accurate quantitative 
analysis of the results is in progress [4]. 

4 The multifractal model 
The experience gained analysing the Chernobyl's pollution in Northern Italy 
and devising a fractal model is now exploited in order to provide a more 
complex multifractal approach. The basic idea is to take advantage of the 
possibilities offered by multifractals [3c,d] to take into account the different 
"degrees of fractality" of increasing levels of pollution. At present, we only 
show preliminary results, since several refinements and improvements of 
the model presented here are still needed; however, given the encouraging 
results obtained (see below), we feel confident that important progresses 
will be made in the next future. 

The data used here, extracted from the R.E.M. data bank, consists 
of measurements of cumulative deposition of 137Cs on soil over several 
European Countries (see Table 2 and, as an example, fig. 6 -top right). 
During the quality assurance process [2,4], several data were rejected and 
some Countries were disregarded (due to an insufficient number of sam­
ples). Also, in order to obtain a homogeneous set of measurements useful 
for further modelling, we "renormalised" all the available data as if they 
had been collected on July l s i , 1987; this operation was accomplished by 
using the well known exponential law of radioactive decay: 

R(t) = Roe-r (A) 

where R, (Ro) is the amount of radio at time t (at time zero) and τ is 
the 137Cs decay life-time. Furthermore, wherever measurements of l3ACs 
were available, we calculated the corresponding intensity of 137Cs using the 
known ratio between the two nuclides (fa 1/2): this, in turn, allowed us to 
slightly increase the total number of available data. 
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Country 
Austria 
Ex-Czechosl. 
FRG 
Greece 
Italy 
Ireland 
Norway 
The Netherl. 
Poland 
Rumania 
Ex-USSR 

Average 
Std. Deviation 

# data 
97 
105 
293 
1108 
383 
98 
447 
85 
349 
200 
109 

298 
286 

Min. 
0.740 
0.220 
0.451 
0.100 
0.001 
0.301 
0.401 
0.270 
0.790 
0.429 
19.000 

2.06 
5.36 

Max. 
581.130 
19.000 
44.090 
149.240 
490.720 
14.260 

103.700 
6.070 
82.880 
54.640 

261.000 

164.25 
189.57 

Hyp. exp. 
-1.19 
-2.36 
-1.15 
-1.50 
-1.20 
-5.44 
-2.52 
-2.46 
-2.05 
-2.45 
-1.09 

-2.13 
1.19 

Table 2: Features of the data sets of l37Cs cumulative soil deposition for 
all the European Countries investigated here; we show the number of data 
used, the pollution range (in Bq/m2) and the value of the hyperbolic expo­
nent (see text). Also shown are the corresponding Averages and Standard 
Deviations. 

The measurements are surveyed on a country-by-country basis (see Ta­
ble 2; however, it is worth pointing out that neither theoretical nor practical 
limitations exist to do it on a wider geographical basis and we foresee such 
extension in the next future. The analysis of the data involves two dif­
ferent operations [2,4]: on the one hand we investigate the (geographical) 
sparseness of the measurements, on the other hand we study the statistical 
distribution of the radioactivity. The former operation can be accomplished 
by calculating the fractal dimension Dp· of the set of stations showing a 
value larger than a given threshold T, obtaining in turn a function Dp(T) 
representing the "spectrum" of the fractal dimensions of different levels of 
pollution. Thus, the multifractal approach is more sensitive than the rigid 
monofractal one, as it accounts for the fact that lowly contaminated re­
gions are expected to be more uniformly spatially distributed than possible 
"hot spots". The second operation requires to check whether the follow­
ing probabilistic relation holds at least for radioactivity intensity R large 
enough (i.e., we investigate whether, asymptotically, R is hyperbolically 
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distributed): 
Pr{R > r} oc r~h (5) 

where h > 0 is called hyperbolic exponent. In fig. 4 we show the multifractal 
spectrum DF(T) as calculated using the data collected in ex-Czechoslovakia. 

1.6-

1.4-

1 .2 -c o 
'<Λ 

S LOH 

iS 0 . 8 -o « 
u. 

0.6-I 

0 . 4 -

0 . 2 -

DF(T) g 

Data from ex-Czechoslovakia | 

6 7 8 9 6 7 8 9 
1 

Threshold (Bq / m ) 
10 

Figure 4: The multifractal spectrum DF(T) using the data collected in ex-
Czechoslovaki a on a semi-logarithmic scale (see text). As expected, the 
fractal dimension DF of the set of stations measurin g values greater than 
an arbitrary threshold Τ is a decreasing function of Τ 

Fig. 5 shows, on a bilogarithmic scale, the (asymptotic) hyperbolic 
distribution of the same data; thus, the parameter h in equation 5 can 
be estimated by the slope of the interpolating line. The last column of 
Table 2 contains the values of the hyperbolic exponents for all the countries 
investigated here. 

Briefly, the multifractal algorithm works as follows [2,4]. First we gen­
erate a set of pulses (as for the monofractal model) having intensities dis­
tributed according to formula 5, where h is estimated from real data (see 
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Figure 5: The (asymptotic) hyperbolic distribution of the data collected in 

ex­Czechoslovak!a (on a bilogarithmic scale). The hyperbolic exponent h 

[see equation (5) and table 2] can be estimated by the slope of the interpo­

lating 1 ine. 

Table 2); then we arrange such pulses on an arbitrary grid taking into 

account the information given by the function Dp(T): pulses having inten­

sities larger than Τ are distributed over a "network" having fractal dimen­

sion Dp(T), where such networks are generated by means of "pseudo Levy 

Flights" [2,3a,4]. The link between the actual geographical distribution of 

pollution and its usage in our model represents an original innovation; in 

fact, we provide a consistent way to take into account, simultaneously, both 

the position and the "strength" of each station. The basic idea is that each 

measurement has an "influence" on the simulation proportional to its inten­

sity; moreover, such effect is not concentrated onto a single point in space, 

but spreads over a whole "basin" whose width (depending on the sparseness 

of the original data) can be adjusted as a free parameter. A simple way to 
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model such behaviour is to use "spatial potentials" V defined as: 

f V(x) = V0 (l - f) for\x\ < L 
\ V(x) = 0 for\x\ >L [ ' 

where V(x) is the value of the potential at position χ from the location of 
the station; Vo is the value of radioactivity measured by the station and L 
is a (constant) free parameter tuning the influence of the station over the 
neighbouring space. The overall potential is simply given by the (spatial) 
integral (over the chosen grid) of all the single potentials; then, the global 
potential is exploited to "drift" any purely random network (generated by 
means of "pseudo Levy Flights" toward a spatial configuration closer to the 
actual distribution of pollution [2,4]. Fig. 6 -bottom left shows the global 
potential as calculated using the data collected in Austria. 

Finally, each numerical realisation of the process is added to the previous 
ones and the resulting field (properly normalised [2,4] is compared to the 
actual intensity of pollution: if some (arbitrary) criterion of convergence 
is satisfied [2,4] the simulation stops, otherwise it produces more and more 
fields. Fig. 7-bottom-right shows an example of multifractal simulation over 
Austria. Similar results [4] have been obtained for all the other investigated 
Countries. Further tests [4], performed neglecting some fraction of the input 
data, have shown that the quality of the outputs is not too much affected, 
indicating a fairly good "stability" of the multifractal model. As a general 
comment, we see that the model is able estimate the pollution intensity in 
locations not sampled by the network; moreover, the original "hot spots" 
are almost always correctly reproduced and further constraints in the model 
would probably lead to a more accurate simulation. 

5 Conclusions 
This study represents the very first at tempt to apply monofractals and 
multifractals to environmental radiation protection. The models presented 
show that it is possible to simulate radioactive pollution using fractal tech­
niques. Indeed, this mathematical framework is more powerful then clas­
sical statistical ones, which are not able to account for possible anomalous 
and/or violent fluctuations of natural phenomena. Not only the algorithms 
proposed provide estimates (both in space and in time) that agree reason­
ably well with the available data, but they are also able to "predict" the 
concentration of pollutant in unsampled regions and when no input data 
are locally available. 
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On the one hand, we find that the monofractal approach, exploiting 
an input data set very "sparse" in space (about 10 locations) but dense in 
time (even continuous, by using function 1), is able to provide an estimate of 
137Cs air pollution over the geographical area investigated (Northern Italy) 
for the whole time interval considered (about two weeks after the Chernobyl 
accident). On the other hand, we see that the multifractal model, starting 
from data sets of only a few hundred measurements at a fixed time, is able to 
estimate the cumulative deposition of 137Cs on soil over geographical areas 
as large as a whole Country. It is worth stressing that the physical nature of 
the two investigated phenomena (pollution in air and soil deposition) does 
not affect the (multi)fractal approach. Finally, we feel essential to point out 
that these models are not CPU-time consuming (taking only a few minutes 
on a Macintosh to generate a full simulation) and hence they can provide 
real-time approximations in case of a nuclear accident; clearly the goodness 
of the estimates may depend upon the quantity and the quality of the input 
data. This aspect will be investigated in the future. 

Indeed, we are far from exploiting all of the opportunities offered by 
the mathematical framework of fractals; nevertheless, we believe that this 
work may represent the first concrete introduction of fractals into radioac­
tivity environmental sciences, providing both a theoretical framework to 
handle real data and an operative tool to simulate them (also in emergency 
conditions, when crude real-time estimates are needed). 
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Chapter 10 

Fractals in Geosystems and Implications 
for Remote Sensing 

Leonid Vasiliev* 

1 Introduction 
The number of branches of science that have not yet appreciated the po­
tential of fractal geometry is becoming steadily less and less. As a rule, the 
results of pilot studies have become the subject of symposiums dedicated to 
applications of fractals such as "Fractals in Physics" [1], "Fractals in Fun­
damental and Applied Sciences" [2] or have been accompanied by special 
issues of journals of geophysics [3], geomorphology [4], computer and geo­
sciences [5], optics [6]. This is evidence of the fact that most investigators 
are intuitively realizing the attractiveness of fractal geometry -though initial 
experiments are not always convincing or yielding new knowledge in cer­
tain disciplines, which has given birth to a somewhat sceptical atti tude to 
possible practical uses of fractals. Nevertheless it should be recognized that 
for quantitative description of irregular chaotic structures over the Earth's 
surface the potential of fractal geometry seems attractive and encourages 
the development of new concepts. 

The fractal approach seems most adequate in view of the fact that many 
phenomena observed in nature have one common characteristic associated 
with the idea that microscopic behaviour is the foundation of macroscopic 
effects manifesting themselves as scaling. 

On the other hand, remote sensing of the Earth creates a problem of 
interrelating the characteristics of geophysical fields with those of spatial 
features observed at different spatial resolutions. A sampling of irregular 
3D geophysical fields may strongly change their pattern, depending on the 

'Institute of Geography, Moscow, Russia 
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pixel size. It is far from being an easy task to try and find some universal 
distribution the characteristics of which, within certain limits, would be 
independent of the spatial resolution cell. Therefore, the description of 
geophysical fields is closely associated with remote sensing as a data source. 

Attempts are now being made to use fractal geometry to quantitatively 
describe multidimensional fields estimated from remote sensing data and the 
estimates seem to be interpretable in terms of geophysical and geographical 
parameters. To my knowledge this volume results from the first scientific 
seminar entirely dedicated to "Fractals in Geosciences and Remote Sensing" 
which could help formulate a certain opinion about this problem. 

In this chapter I will try to present the results of an investigation of 
the fractal properties of spatial structures of geosystems with various com­
ponents. Each type of structure is the result of its origin and evolution. 
Hence, the definition of the fractal dimension of structures relies upon sev­
eral models most adequately describing the process of their formation. The 
diversity of natural and man-made structures requires a large number of 
models, thus making the problem very complex. The goal of the investiga­
tion I have made was to reveal and understand scaling properties of fractal 
spatial structures of geosystems and the pattern of their manifestation. It 
will be shown that in self-similar 2D structures and 3D self-affine multi-
fractal geophysical fields the scaling range of self-similarity and self-affinity 
radically differs. 

Scaling properties of fractal structures are also used as a basis for the 
problem of extrapolation of measurement data to a minimal size already 
beyond the spatial resolution of the available remote sensing data. 

2 Self-similar fractal structures of geosys­
tems 

Among the multitude of fractal spatial structures formed on the Earth's 
surface the following should be singled out: 

• 2D land use/land cover structures with a wide range of components 

• river and erosion networks 

• transport networks 

• spatial urban structures 

• geological lineaments 
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Of course, we are not going to summarize all possible fractal structures. 
No doubt, the list of examples could and should be made longer. The 
above group of examples was given to show the diversity of models of fractal 
structures. Two-dimensional land use/land cover structures classified from 
multiband imagery form fractal sets [7]. The distribution of each class 
of crops or cover type is fairly well described by grid DG or mass DM 
dimensions: 

N(r) oc r~Da (1) 

or 

M(L) oc LDM (2) 

where DG = DM-
There is evidence for the scaling relation 

M(L/b) = b~DM(L) (3) 

However the scaling range [Lmi„, Lmax] specifying the length scales of 
self-similarity is wider than [rm,„, rmaT] if Eq. 2 is being used. Basically, 
studies of the spatial distribution of land use/land cover in various physi­
cal/geographical zones and management conditions demonstrate only scal­
ing dependence, but in no case do they imply fractality in terms of the 
Hausdorff - Besicovitch dimension. As will be shown, however, it does not 
prevent several useful conclusions. In fact this is the way to describe spatial 
structures representing only one type of land use/land cover classes. 

In a more general statement of the problem, when a combination of 
several classes is simulated, a set is a fractal with unequal parts: 

m 

Such structures made of 2 or 3 components drastically reduce the scaling 
range as compared with structures formed by single components. 

A river and erosion network structure within a catchment area may be 
considered as a model of irreversible growth of a branching process [7]. 

If a number of concentric circles is drawn around the point assumed as 
the beginning of growth, they would intersect the branches of a river and 
erosion network (Fig. 1). 

We denote those intersections as p(R) then their number Nrp(R) is 
related to the radius R of a circle by 
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Figure 1: Determination of distances λ(Η) between branches of a 
river/erosion network around the circle 

- 255-



Nrp(R) oc RD~2 (5) 

The main theoretical problem is to seek a realistic model of growth 
for various types of river and erosion networks and to confirm their fractal 
properties. One of the methods to determine a fractal dimension in a growth 
model employs the dependence: 

(λ(Α)> oc RN (6) 

where (X(R)) is the mean distance between the intersections along the 
arcs of a circumference with an R radius. Experimental studies made at 
several catchments show that a Laplacian fractal-type model may be some­
times adequate for describing a river or erosion network. In this case Eq. 5 
is written as: 

(X(R)) ex R^- (7) 

where d is the Euclidean dimension. 
For studied catchments covered with such networks fractal dimensions 

have been found to be in the range 2.22 to 2.66. In any case at a qualitative 
level of interpretation Eqs. 4 and 6 describe two kinds of dependences for 
networks similar to that on the Seym river catchment image (Fig. 2): 
non-linear increase of network element density with increasing distance to 
the origin point where growth begins and, therefore, decreasing distance 
between those components. 

Eq. 4 was used to describe the railway network of Paris [8]. However, 
contrary to the river and erosion network pattern, the density of stations 
(MR)) decreases with distance to the origin point of growth which is in the 
centre of the city and at D < 2. 

Networks of geological lineaments interpreted on images at different 
scales may be regarded as ordered chaotic structures formed by a great num­
ber of faults, fractures, tectonic or lithologie contacts of different though 
finite length. Above all the analysis of lineaments puts forward the prob­
lem of assessing the homogeneity of a geological environment. Also there is 
the problem of deciding whether the criteria of lineament combinations are 
common for the entire area and what characteristics of individual groups are 
critical for separating or combining them. Hence it follows that the main 
task is to divide lineaments into portions which - on a certain scale and 
according to a signature chosen - may be considered quasi-homogeneous. 

One of the approaches which can be used is based on the partition­
ing of a lineament network into percolation clusters [9]. The remaining 
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Figure 2: Erosional pattern of the Seym River Basin in the central Russian 
uplands (derived from COSMOS imagery) 
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non-bound lineaments fill vacancies (holes) in individual clusters or spaces 
among percolation clusters (Fig. 3,4). 

The clusters thus identified are restricted to squares with an L- side so 
that percolation can spread out in meridional or latitudinal directions, then 
within each cluster the dependence is observed between the "mass" (length) 
of lineaments M(L) and the side Τ of a given square 

M(L) oc LD (8) 

where D is the mass dimension. 
In fact, a percolation cluster is one of the most popular models of a frac­

tal. The model adequate for analysis would be fractal percolation clusters 
of Mandelbrot-Given [10] with the following dimensions: 

D = In 8/In 3 = 1.8928 for loops and free ends, 
D = In 6/ In 3 = 1.6309 for the backbone, 
D = In 5/In 3 = 1.4649 for its rings' hull boundary. 
Studies of the lineament network of the eastern part of the Baltic shield 

have shown that it forms structures with various fractal dimensions (Ta­
ble 1). The log-log plot in Fig.5 demonstrates an example of mass dimen­
sions determination. The comparison of identified clusters with tectonic and 
geological maps reveals similarity with large-scale subdivisions (domains) 
of structural or tectonic zoning. Ten percolation clusters are combined into 
four groups with D = 1.80, 1.60-1.66, 1.51-1.56, and 1.45, which are close 
to theoretical values of Mandelbrot - Given's fractal curve. The comparison 
of clusters identified with geological maps shows that they are most similar 
to major tectonic units and the correlation of values of fractal dimensions 
with the intensity of deformations and a degree of linearization of fold and 
fault structures. 

As Fig. 5 and Table 1 show, upper limits of self-similarity depend on 
the size of a cluster whereas its lower limits are restricted by the spatial 
resolution of the imagery used and, therefore, do not determine the genuine 
scaling range. 

It is best seen in those cases when within the limits of one cluster several 
tectonic structures are combined. This points to their common foundation 
but, because of insufficiently detailed data available, does not permit identi­
fying the boundaries of specific and not so deep-seated structures. Interpre­
tation of fractal dimensionalities of percolation clusters has demonstrated 
their relationship with the characteristics of various tectonic structures. 
They map both the intensity of general dislocation and the degree of linear 
regularity of folds and faults. 
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G r u l l of F i n í a n 

Figure 3: Lineaments in the eastern Baltic Shield (derived from Landsat 
TM imagery) 
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Figure 4: Map showing locations of selected fractal percolation clusters 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Fractal 

dimension 

D 

1.60 ±0.01 

1.80 ± 0.02 

1.46 ± 0.02 

1.56 ±0.02 

1.51 ± 0.02 

1.66 ±0.02 

1.46 ±0.02 

1.56 ±0.01 

1.74. ±0.02 

1.74 ±0.02 

Square side 

Lo, km 

446 

226 

193 

128 

168 

337 

133 

628 

521 

382 

Scaling range 

[Lmini ¿"maxii κΤΠ 

[2.1,58.5] 

[2.1,36.6] 

[2.1,29.0] 

[1.3,29.0] 

[1.3,30.7] 

[2.1,35.8] 

[1.3,29.9] 

[3.0,71.1] 

[2.5,74.5] 

[3.0,71.1] 

Lineaments 

length 

in a square 

with side 

Lo,T,Ln
L,km 

77186 

26422 

14504 

8764 

11932 

33997 

5781 

80637 

79446 

52590 

Lineaments 

length in 

a percolation 

cluster 

E d L, km 

16787 

14098 

3245 

2405 

3484 

10591 

2117 

19295 

30718 

15778 

Table 1: Fractal dimensions, sizes and scaling ranges of percolation clusters 

of the Eastern Baltic Shield. 

3 Extrapolation to small scales 

The examples given above of spatial self­similar fractal structures within 

geosystems, however strongly the models of their generation and growth 

might differ, deserve attention, as they are associated to the main prob­

lem: the relationship between structures at microscopic and macroscopic 

scales. Let us emphasize again that the computed DG and DM fractal di­

mensions and parameters of the irreversble growth model only determine 

scaling properties and the self­similarity interval [Tm i n , Lmax] or [rmtn , rmax\. 

It is absolutely obvious that in cases where imagery is used, the lower limit 

of the self­similarity interval, i.e. inf rm t n depends on the pixel size whereas 

sup rmax is governed by the area of fractal homogeneity. Theoretically self­

similar fractal sets, however, allow infinite extrapolation and seem attrac­

tive since extrapolation of the asymptotic behaviour of Eqs. 1 or 2 toward 

smaller values of r or L becomes possible as well as curve straightening 

in the log­log plot and calculations of the limit D = l im r_ 0 ln . /V(r) / ln7\ 

The arguments rely on the fact that the power law relationship for a self­

similar fractal set is valid at all scales. Self­similar fractal structures are 

most closely related with the hyperbolic distribution: 
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P(a) = P(A >a) = Fa~D (9) 

where the exponent is equal to the fractal dimension D, and a is the area 

of elements making a fractal set [11]. If we are going to be careful in setting 

(¡■mini then Nr(A > a) will be finite whereas the integral of P(a) = Fa~D 

determines the area covered. 

Relying upon this idea, measurement data acquired from imagery may 

be extrapolated beyond the spatial resolution specified by the pixel size. An 

experiment was conducted to determine the pattern of vegetation in Moscow 

from multiband photos made with the COSMOS­1939 MSU­E system whose 

spatial resolution was 40m. (Fig. 6). 

In the technogenic urban geosystem, vegetation strongly influences the 

climate and improves sanitary and hygienic conditions in the city. The ur­

ban microclimate does not depend much on large territorial units, of greater 

importance are small housing developments, with various types of surface. 

Within surrounding streets and buildings vegetation may be one of the main 

climate ­ generating factors comparable in its role to urban park areas. As 

the role of vegetation in the horizontal heat exchange is not so essential, 

special attention is given to vegetation structures surrounded by buildings 

and in the streets ­ from the viewpoint of microclimatic differentiation. 

Vegetation is also an important factor in the formation of a thermal 

field structure from the viewpoint of spatial distribution of gaseous and dust 

substances in the atmosphere. Numerous investigations made in large cities 

have proved that there indeed exists a relationship between the thermal field 

and atmospheric pollution. 

The estimation of the spatial structure of trees and shrub vegetation in a 

city implies the assessment of the area they cover, of their areal distribution 

and of the relationship between the biomass and population. Topoclima­

tologic simulation demands information about the species composition of 

trees and shrubs and the bulk of their biomass. Of course, it is extremely 

difficult to make estimates of the interaction of numerous factors ­ as to 

how they affect population in a city which is a heat island. And it is for 

this reason that the problems of architecture and planning of the urban 

development should rely on genuine ecological conditions rather than on 

norms and standards. 

Hence the assessment of the pattern of vegetation covering about half 

the territory of any city is the attribute sine­qua­non in the urban geoin­

formation system. 

Fundamentally, however, this problem appears to be non­trivial. In­
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deed, what should be considered? -the boundary and the area of a space 
covered with trees among buildings or around a single house? The area and 
boundaries could be related with the percentage cover of vegetation and 
the smaller the measurement unit the more detailed 'indentations' would 
be mapped on images. This difficulty with mapping, bringing some uncer­
tainty, distinctly manifests itself on 1:2000 topographic plans of Moscow, 
where the boundaries of vegetated areas are somewhat conventional whereas 
in a number of cases plantings along the streets, individual trees, alleys are 
shown by symbols without observing the scale. That is why even large-scale 
maps could not help measure exactly the overall area under vegetation in 
the city. Thus green areas in the city form a spatial structure of "islands" 
with very different areas and with wriggling boundaries that suggest the 
possibility of fractality [12]. 

The log-log plot (Fig. 7) shows the determination of the fractal be­
haviour of urban green areas in Moscow leading to the fractal dimension 
D = 1.86 ±0 .02 . 

Note that the grid and mass dimensions do not differ by more than 0.02 
whereas the self-similarity range derived from the Equation M(L) oc LD is 
5 to 127 pixels or 210 to 5000 sq.m. The M(L) values for L < 5 pixels, drop 
from the line since they are strongly affected by mixed pixels which cause 
errors in pixel classification. Extrapolation of green islands to small scale is 
based on the hyperbolic distribution P(a) = P(A > a) = Fa~D, where the 
F coefficient is derived from the a - distribution over the interpreted image: 

F - αΖχ°τ m 

The result of extrapolation to a = 1/16 of a pixel size, which corresponds 
to the physical interpretation of one tree crown, with the size of the square 
2.5 χ 2.5m is shown in Fig. 8. 

The Equation Nr(A > a) = 15000a -1 '86 yields the following estimates 
of vegetation areas distribution in Moscow within the city boundaries: 

Total area, percent 45.5 
Number of green areals 2, 829, 200 
Tree plantation area and parks, percent 11.2 
Vegetation among buildings, 
squares, alleys, percent 34.3 

It is interesting that among vegetation within blocks of houses areas up 
to 40 x 40m amount to 91%. The use of extrapolation down to l/16th of 
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a pixel reduced the relative error in the determination of vegetation area 
from 7 to 1%. Thus the pattern of vegetation in Moscow is characterized by 
fractal properties with a scaling, defined by Equation 3. The latter shows 
that the arrangement of the spatial pattern of vegetation in some parts of 
a whole city are statistically similar, after rescaling to the whole city. It 
implies scale invariance of vegetation distribution for territorial units of any 
size. Implications of the result shown in the experiment described above, are 
not restricted to one individual example. The rule of extrapolation of self-
similar fractal structures of geosystems to small scale is substantiated both 
theoretically and experimentally. When measurements are made on imagery 
there always arises a necessity to move beyond the spatial resolution cell so 
as to reach the preset accuracy and to estimate the real self-similarity range 
as an inherent property of geosystems, manifesting itself both at micro- and 
macroscopic scales. 

Fractality of a self-similar structure unequivocally governs the hyper­
bolic distribution of areas, thus justifying the rule of extrapolation to mini­
mal sizes of structural elements within the boundaries of the self-similarity 
interval beyond the spatial resolution of images. The method developed is 
especially instrumental in the cases when the objects are considered inacces­
sible, the spatial resolution of an image is restricted by technical conditions 
and when high resolution images can be made in limited areas. Such con­
ditions occur when sea ice or planets are to be observed by remote sensing. 
As our first experiments show, sea ice and Martian or Lunar craters obey 
the hyperbolic distribution whereas a considerable fraction of "small-size" 
elements are not resolved. The necessary limit of the extrapolation to small 
dimensions is determined from a single high resolution image. 

4 Self-affine multifractal geophysical fields 
Many 3D geophysical fields whose parameters are remotely sensed, are self-
affine fractal sets [13]: 

• spectral albedo; 

• radiation and heat fields; 

• back-scattering fields; 

• topography and its roughness. 

- 268 -



Self­affine fractal set properties are explained using different measure­

ment units in the æy­plane and along the 2­axis [14]. Apparently it is not 

only this that matters: topography is measured in the same units along 

all axes, but still the surface may be a self­affine fractal. In contrast to 

the case of self­similar fractals, self­affine fractals are characterized by two 

dimensions: DL ­ local and DG ­ global. As a result, interpolation and 

extrapolation of self­affine fractals lead to a restriction which determines 

crossover, scaling range and general behaviour. 

One of the procedures for estimating fractal dimensions of a 3D geo­

physical field or its transect profile, relies upon the dependence of variance 

along coordinate axes from the section length [15]. The curve of a transect 

profile is divided by the yardstick method taking the length of a unit line a^ 

as constant and the coordinates of the resulting points P¡(XÍ,Z{) are mea­

sured. Then the entire curve is divided into sections Nao ­ long. In each of 

them χ ­, and ζ ­ variances σ2
χ,σ

2
ζ, of all of the measured points of a section 

are calculated. The equations: 

σχ(χΝυ*,σζ(χΝυ* (11) 

are valid for fractal curves. Exponents vx,vz are not equal in a general 

case and are related via 

σ, = «ξ (12) 

where Η = vz/vx and 0 < Η < 1. For self­affine fractals vx = 1 and 

0 < vz < 1. In the case of self­similarity vx = vz and D = l/vx. 

The method is simple but it does not give an unambiguous solution. 

First, the measurement units are indeed different and the relationships of 

scales along x­ and z­axes are uncertain. Second, Eqs. 9 are sensitive to the 

selection of unit length αο· Therefore, with ao changing the calculations lead 

to different H. However most essential for 3D geophysical self­affine fractal 

fields is that when they are measured with different spatial resolution the 

Hurst coefficient Η changes, and, therefore, so does the fractal dimension. 

The above phenomenon is demonstrated by two examples. Fig. 9 illus­

trates the results of fractal dimension determination for a spectral radiance 

field measured simultaneously by two COSMOS­1939 scanners, MSU­E and 

MSU­SK with resolutions of 40 and 200 m. In both cases the section length 

iV is given in pixel units, Hi = 0.65 and H2 = 0.59 but, with the spatial 

resolution value taken into account, the crossover is at 2.9 and 12km. 

The second example (Fig. 10) shows the estimate of the fractal dimen­

sion of the topography transect profile, measuring it simultaneously from an 
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aircraft from a height of 200m. with a laser altimeter and a radar-altimeter 
with an accuracy of 0.3 to lm. , respectively. The antenna 'fields of view' 
covered areas of 1.7 and 12m. at the surface, respectively. 

For those data H\ = 0.63 and Hi = 0.52, whereas the crossover was at 
80 and 300m., respectively. 

Both experiments prove the dependence of the fractal dimensionality 
of the self-affine fractal 3D geophysical field on spatial resolution. The 
tendency is obvious: with growing pixel size the exponent H decreases and 
the crossover shifts. Hence, the determination of the fractal dimensionality 
of 3D geophysical fields from remotely sensed data is fraught with ambiguity. 

Let us try to explain how fractal signatures differ for self-affine fractal 
3D fields when remotely-sensed with different spatial resolutions. 

Distribution smoothing leads to drastic violations of additivity in fractal 
sets. By sampling the growth of such functions their shape strongly changes 
depending on the scale of quantization. Hence a question arises whether 
some universal characteristic of the distributions could be mentioned that, 
within certain limits, would be independent of the quantization value. Of 
course, the answer to this question is in no way unequivocal. We now 
consider one of the possible versions. Let a certain portion be obtained of 
a histogram plotted with an interval δ (Fig. 11). 

The ordinate of the function is yo, its area is 5Ό respectively, SO = yoδ. 
If the histogram is compiled from the measurements where the interval was 
δ/2, their respective coordinates would be yi and y2 and the overall area 
would be 5i+2 = S\-\-S2 = ^(yi+y2). The condition Si+2 = Si + S2 implies 
- when the distribution is normalized - that yo = |6(yi + 2/2)· This is valid, 
however only for smooth curves. As to fractal curves they do not possess 
such a property. Instead, the following relationship may be considered: 

(2y0)D = y? + y? (13) 
with the branching index D, and an attempt could be made to equalize 

histograms at different spatial resolution or quantization. 
The appearance of local DL and global DG dimensions in a fractal 3D-

geophysical field affects the interpolation and extrapolation rule. Basically, 
it differs from the one used for extrapolation of self-similar sets. Exper­
iments show that transect profiles of optical, microwave and radar mea­
surements made with different dividing length units eso> at least are con­
trolled by three separate fractal dimensions D = 1/H,DL = 2 — Η or 
DL = 1+H,DG = 1. 

If intervals for the scaling ratio relationship: 
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z(\x) = \Hz(x) (14) 

are determined by the crossover length and boundaries between three 
regions, then the main problem remains outstanding: how multifractal self-
affine structures should be interrelated at micro- and macroscopic scales. In 
particular, there exists such a necessity in the context of the International 
Satellite Land Surface Climatology Project (ISLSCP) when heat fluxes are 
modelled at various climatological space scales, and high-resolution ground-
based or sub-satellite measurements are used for satellite data calibration 
and validation. Thus, the unequivocal description of a climatological cell 
at various levels of spatial resolution, using remotely sensed data, appears 
to be not a trivial task at all. 

5 Conclusions 
This chapter has dealt with only a small part of the problem associated 
with the use of "fractals in geosciences and remote sensing" which reflect 
only the trends of my studies and the results obtained. Nevertheless they 
point to the priority tasks, which may help derive new understanding in 
geography and related disciplines using fractal analysis. No doubt, the 
fundamental problem is that of the relationship among structures within 
geosystems at micro- and macrolevels; it is obvious that remote sensing 
could be very instrumental here. Practical problems have been outlined 
which may be solved with the help of fractals, such as the determination of 
self-similar microstructures beyond normal spatial resolution limits. Fractal 
geometry encourages the development of models of spatial formations and 
of the growth of natural and man-made chaotic structures. New methods 
are still to be found for evaluating fractal dimensions of self-affine 3D geo­
physical fields so as to prevent ambiguities. One of the approaches could 
be a two-stage evaluation: first, a "crude" tool is used, and, next, attempts 
are made to refine it. I do not think, however, that the conclusions would 
be radically changed. Perhaps we could expect only better, more stringent 
confirmation. The general tendency in the development of fractals allows 
us to be optimistic and believe that they may provide new knowledge in 
Earth sciences. 
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Chapter 11 

Fractal-Based Evaluation of Relief 
Mapping Techniques 

Laurent Polidori* 

1 Introduction 
Relief mapping became an operational application of remote sensing after 
the launch of SPOT in 1986. Digital photogrammetry, which was already 
feasible with scanned aerial photographs, gave rise to numerous digital ter­
rain model (DTM) extraction facilities in public and private companies. 
More recently, ERS-1 has provided a new source of data which allows the 
improvement of 3D mapping techniques by use of stereoradargrammetry 
or interferometry. Particular methods such as altimetry or shape-from-
shading can be considered to compute altitudes although they are not used 
for operational relief mapping. In future years, the need for topographic 
information could justify the development of new techniques such as along-
track stereoscopy in the field of optical remote sensing or multiple incidence 
angle observation in the field of radar. 

Such a variety of relief mapping techniques brings up the problem of 
their validation. Indeed, their robustness has seldom been quantitatively 
evaluated due to the lack of accurate references for comparison, and be­
cause their results are often related to a set of sensor parameters, viewing 
geometry and terrain shapes. 

Evaluating the quality of a DTM is not a simple task, especially if the 
needs of different applications are to be taken into account. For instance, 
the classical and straightforward RMS error estimation does not evaluate 
the accuracy of altitude derivatives (slope, curvature, aspect...) which are 
very useful for many geoscience applications. 

* Aerospatiale, Cannes La Bocca, France 
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A rigorous DTM evaluation should consist of a comparison between the 
satellite-derived DTM and a very dense and accurate reference data set. In 
most cases, such a reference is not available, but two other approaches may 
then be considered. The first approach is an internal validation, i.e. a check 
of a priori assumptions concerning texture or hydrography, in complement 
to a rough external validation. The second approach consists of testing a 
3D mapping tool on synthetic images which have been simulated over a 
perfectly known landscape. 

The aim of this chapter is to show that fractal terrain modelling can 
usefully contribute to these two approaches. In section 2, the aptitude 
of fractal surfaces to model relief is discussed, and some techniques for 3D. 
texture analysis and DTM resampling using fractals are described. Section 3 
proposes fractal-based quality criteria which can be used to reveal artifacts 
in a DTM. Finally, the aim of the fourth section is to show that fractal 
synthesis can improve the validation of a relief mapping technique using 
image simulation. 

2 Fractal modelling of topography 
2.1 Is relief a fractal surface? 
The self-similarity of relief had been noticed very long before the rise of 
fractal concepts, and it was even one of the first sources of inspiration for 
fractal geometry [15]. Stochastic self-similarity is a property of surfaces 
which conserve the same statistical characteristics over a wide range of 
scales. Different mathematical formulations can be used to describe self-
similar behaviour, such as a power spectrum or semi variogram. In the case 
of a vertical terrain profile z(x), the semivariogram represents the variations 
of the semivariance as a function of the horizontal distance Ax: 

7 ( Δ χ ) = l-E[(z(x + Δ χ ) - z(x))2} (1) 

where E refers to the expected value. In other words, the larger 7 (Δχ ) , the 
steeper the average slope over Δχ . 

The semivariogram characterizes the degree of spatial dependence be­
tween the heights of adjacent terrain points. It is the basic concept in 
the theory of regionalized variables, which is extensively used in mining 
and petroleum geology [18]. A clear interpretation of the semivariogram is 
given in [7]. One of the most classical models for a statistical self-similar 
surface is 2D fractional Brownian motion, a bi-variate random process such 
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that for any displacement Δχ , the height increment over Δ χ has a Gaussian 
distribution with mean 0 and variance: 

a2 = Δχ2<3-°> (2) 

It follows that a fractional Brownian surface has a linear log-log semivari­
ogram which can be written : 

1ο δ 7 (Δχ ) = C + 2(3 - D) log(Ax) (3) 

where D is the fractal dimension of the surface and C is a constant. A 
fractional Brownian surface is characterized by C and D only, and the 
slope of its semivariogram is given by 2(3 — D) in the log-log space. Several 
authors have commented on the physical meaning of D (see [16], [20], [10]). 
The smaller the value of D, the steeper the variogram and the smoother 
the surface. This concept can be illustrated by considering displacements 
along a profile in any direction but over the same horizontal distance: 

• if D < 2.5, then the two slopes are likely to have the same sign 

• if D = 2.5, then they are independent (pure Brownian motion) 

• if D > 2.5, then the two slopes are likely to have opposite signs 
A rigorously analogous interpretation of self-similar surfaces can be clone 

in terms of a power density spectrum, which is supposed to be an unbounded 
straight line in the case of a fractal surface. 

Is relief a fractal surface ? 
As noted above, the log-log semivariogram of a rigorously fractal surface, 

such as a fractional Brownian surface, would be an unbounded straight line. 
The semivariogram of the topographic surface is always bounded, since 
altitude is, but it often displays a linear trend over a large scale interval. 
Relief can then be considered as a nearly fractal surface, and its lack of 
'fractalness' is often due to local breaks in the self-similarity behaviour. 

Indeed, most landscapes have slope breaks in their semivariogram at 
horizontal distances which generally coincide with typical morphological 
features in topography [17]. In other words, the self-similarity of a surface 
may have different behaviour according to the scale at which it is observed. 
Similarly, the power spectrum of different sea-floor and terrain profiles re­
veals strong curvatures for some particular wavelengths in spite of general 
linear trends [8]. Goodchild noted that the fact that an observer can es­
timate the scale of a physical landscape implies that pure self-similarity is 
generally not a property of real landscape [9]. Consequently, despite a high 
degree of self-similarity in the topographic surface, fractal modelling has to 
be handled with care. 
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2.2 Fractal-based 3D texture analysis 
Digital terrain models are often used as ancillary data for image rectifica­
tion. In this case they only need to provide accurate elevation values with 
no need for slope or any other derivative. However, many DTM applica­
tions need more than terrain elevation. For instance, numerous studies in 
civil engineering or environmental geology need to characterize the struc­
ture or texture of relief by analysing altitude derivatives. Different tools 
can be implemented to characterize the terrain surface, such as Fourier 
transforms, wavelet transforms, co-occurrence matrices or variograms. Spe­
cific indicators are then derived to quantify a particular property (isotropy, 
roughness...). 

In the case of texture analysis, one of the most suitable tools is the 
variogram, already defined in the previous subsection. It is of interest in 
many remote sensing applications, whenever textures are to be described 
or compared. A comparison of variograms of different land use areas can 
be useful to perform classifications or to select a sampling rate for remote 
sensing images. Curran derived several texture indices from a generic vari­
ogram, referring to different aspects of the radiometric content of a remote 
sensing image (see [7]). A comparison of the concepts of variogram and 
fractal dimension for remotely-sensed image texture classification can be 
found in [24]. 

Similarly, 3D texture analysis can usefully be studied through the relief 
variogram. In particular, interpreting the variogram of a nearly fractal 
surface allows the definition of specific textural indices [26]. The fractal-
based indices are very sensitive to the 3D texture of relief, and they present 
some degree of correlation with the lithological and hydrological properties 
of the surface, which make them a valuable analysis tool for geologists. 

The fractal properties of relief can be derived from the semivariogram 
through a least squares linear estimation of the fractional Brownian surface 
which best fits the real surface. Obviously, it is recommended to check 
the linearity of the variogram (i.e. the 'fractalness' of the surface to be 
analysed) before giving a physical meaning to such surface descriptors as 
fractal dimension (derived from the variogram slope) or the abscissa of a 
slope break. Despite its great interest for geosciences, fractal-based 3D tex-
tural analysis presents two major limitations. First, if the relief variogram 
is not linear, the computation of textural parameters can be carried out 
by least squares adjustment, but they cannot be interpreted as if the sur­
face were fractal. Secondly, the meaningful computation of a variance or 
any other statistical parameter requires a large number of samples, which 
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is in contradiction to the need for a local textural index. Although fractal 
analysis offers an attractive tool for 3D texture characterization, it must be 
interpreted carefully. 

2.3 Fractal-based DTM resampling 
Most digital terrain models used in geoscience and remote sensing are ob­
tained by automated stereomatching or by interpolating digitized contour-
lines. In both cases, the highest frequencies of relief do not appear in the 
computed surface, which is generally excessively smooth. In order to avoid 
this artifact, specific interpolation techniques can be considered, based on 
the continuity of the variogram. 

A specific resampling method called 'kriging' has been developed for 
mine evaluation. Non-observed points are interpolated between neighbours 
using optimal weights in order to preserve the spatial correlation predicted 
by the semivariogram. The practical implementation of kriging as well as 
its advantages and limitations are discussed in detail in [4]. 

Another technique, call 'random midpoint displacement'(RMD), also 
based on the statistical properties predicted by the semivariogram, consists 
of using a random function to preserve self-similarity. RMD interpolation 
can be used either for the resampling of a DTM using its variogram or for the 
generation of a synthetic DTM fitting an ideal variogram. The methods for 
RMD implementation and the applications of this algorithm in geoscience 
and computer vision have been widely published (see [2], [16], [25], [19], 
[10], [26], [23]). A particular application to spaceborne data simulation will 
be presented in the last section of this chapter. 

RMD is used for dichotomic interpolation by extending the supposedly 
linear variogram of a sampled surface towards shorter distances as illus­
trated in fig. 1. Since the DTM variogram is likely to slightly depart from 
linearity, it has to be approximated by a least squares straight line, which 
is the basis for the computation of D and σ. The interpolation is then 
performed by extending it to a half-pixel scale. It can be shown that fitting 
this straight line at a half-pixel distance is obtained by adding to the initial 
surface a random Gaussian term defined by the standard deviation: 

^75\A - 2"-2D (4) 2 3 

It can occur that the RMD interpolation does not yield very realistic results, 
mainly if the landscape to be resampled is not fractal or if the variogram 
obtained from the DTM is biased by some artifacts. In such cases, the 
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Figure 1: Extension of log-log semivariogram to half-pixel scale 

RMD interpolation can be adapted in order to fit to a higher degree of 
realism. For instance, a weighted RMD interpolation can reduce the impact 
of the random term in areas where the input DTM departs from the fractal 
hypothesis [23]. 

It should be noticed that both kriging and RMD are designed to preserve 
the statistical properties of the sampled surface, but disregard the local 
hydrographie and structural aspects of relief. 

2.4 Fractal-based landscape synthesis 
RMD interpolation can be used not only to resample a DTM at sub-pixel 
scale, but also to synthesise a whole landscape with a given fractal dimen­
sion and vertical scaling factor - in other words, to synthesise a particular 
fractional Brownian surface. Fig. 2 shows two fractional Brownian surfaces 
with different fractal dimensions. 

Once again, the procedure can be adapted in order to yield a more re­
alistic landscape. For instance, the synthetic landscape can be chosen to 
be multifractal, with a given fractal dimension for each interval of horizon­
tal distances. Another adaptation can be to consider a spatially variable 
fractal dimension, e.g. as a function of altitude. Indeed, comparing the 
fractal dimensions of digitized contour-lines at different altitudes often re-
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Figure 2: Two fractional Brownian surfaces with different fractal dimensions 
[D = 2.05 (upper); D = 2.25 (lower)] 
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veals a positive correlation between altitude and fractal dimension [9]. Such 
a correlation can be observed in alpine relief with rocky peaks and smooth 
valleys. It can be synthesized by multiplying the semivariance by a mono-
tonic function of height. 

The basic concepts presented in this section concerning the fractal mod­
elling of relief will be used in the following sections in the context of DTM 
assessment. 

3 Internal validation of DTM's 

3.1 On the quality of digital terrain models 
The aim of digital terrain model quality assessment is to quantitatively eval­
uate the discrepancies between the DTM and the real topographic surface. 
This can be done in two different ways, which can be called internal and 
external validation. 

Internal validation consists in checking the consistency of the DTM with 
some a priori knowledge of the surface. For instance, it can be assumed 
that all rivers go downhill, so that an artifact may be seen wherever a river 
goes uphill over some distance. On the contrary, external validation is an 
objective comparison with a reference data set. 

Since a DTM is seldom generated when another DTM of higher accuracy 
already exists over the same area, external validation is generally performed 
using a restricted set of ground control points (GCP's). Very accurate 
GCP's can be employed, for instance GPS stations [1] but this is quite 
an expensive method. Most often, ground control points are plotted on 
medium scale maps. 

In fact, the comparison of a DTM with a set of GCP's has two major 
limitations. First, statistical quality indicators such as RMS height error 
become meaningless when the number of GCP's is too low. More seriously, a 
reduced number of GCP's does not permit the evaluation of the derivatives 
of height, such as slope, orientation or curvature. Since the derivatives 
of height are the indicators of terrain shapes, they have to be carefully 
controlled. Indeed, the topographic surface is so familiar for us, it has 
so many intuitive properties, that we have far more requirements for its 
cartographic representation than for the representation of any other physical 
surface [5]. For instance, the geoid has a clear physical meaning, but its 
local shapes have no intuitive significance. 

Due to the severe requirements just mentioned, the local shapes have to 
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be controlled with care. Several authors have observed that the extraction 
of geomorphological information in DTM's is limited by the lack of accuracy 
in the derivatives of height [11]. Since the comparison with a set of GCP's 
does not allow one to draw conclusions concerning the derivatives, they 
generally have to be evaluated by internal validation. This is commonly 
done in most stereomapping facilities, where the output DTM is manually 
controlled. 

The aim of this section is to show that fractal dimension measurements 
can contribute to the external validation of digital terrain models, by com­
paring the fractal properties of the DTM to the properties of the map­
ping and sampling algorithms. Two properties are considered, namely, self-
similarity and isotropy. 

3.2 The self-similarity criterion 
Plotting the log-log variogram of a DTM generally reveals that the DTM 
is not a fractional Brownian surface. Fig. 3 is a typical variogram over a 

effect of self-similar 
resampling behaviour 

- ► l o g Δ χ 

effect of 
DTM bounds 

Figure 3: Typical log-log semivariogram over a resampled DTM 
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nearly fractal terrain (e.g. alpine relief) with a linear trend at most scales, 
and a peculiar behaviour at the limit scales, which can be interpreted as 
follows: 

• at the DTM scale, the number of samples decreases so the variance 
becomes meaningless 

• at the pixel scale, the variogram slope is expected to be maximum 
when smooth interpolators (e.g. splines) are used 

However, this departure from a self-similar behaviour cannot be viewed 
as an interpolation effect without some assumptions. These assumptions 
can be based on the knowledge of the method which is used to generate 
the DTM (initial height computation technique, spatial distribution of the 
observed terrain points, resampling algorithm...). 

In order to control the quality of a DTM obtained by interpolating 
digitized contour-lines with a classical spline interpolator, it may be use­
ful to compare the variogram slope for short distances and for long ones, 
i.e. shorter and longer than the average horizontal distance between the 
contour-lines in the input map (see [22]). The DTM is controlled by com­
paring fractal dimensions between 10 and 30 pixels (D=2.25) and between 
1 and 5 pixels (D=2.07). The fact that D becomes close to 2.0 means that 
the resampled surface is locally planar, and this may be interpreted as the 
effect of a smooth interpolator. 

The limit between the two distance intervals was chosen in order to 
discriminate the short distances, over which the interpolation is relevant, 
and the longest ones, over which it is not. Obviously, the limit between these 
two scales is known only if the original map is available, but this is not a 
critical point. A more critical point is the need for an a priori knowledge of 
the real surface, indeed, the slope break in the DTM variogram cannot be 
interpreted as an effect of the smoothing interpolator without the guarantee 
that the real surface has no similar slope break at this particular scale in 
its variogram. 

3.3 The isotropy criterion 
Another classical effect of grid resampling is a directional tendency in the 
output DTM. The same method as mentioned above is proposed in [22] for 
detecting directional artifacts. A DTM obtained by interpolating contour-
lines in two directions (N-S and W-Ε) is analysed by measuring fractal 
dimensions in the exploring directions and in the complementary ones. Of 
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course, the scale interval is a crucial parameter for such an analysis. For 
large distances, for which interpolation has no incidence, fractal dimension 
measurements do not show any anisotropic behaviour. On the contrary, 
an important discrepancy is observed over short distances. Indeed, fractal 
dimension is much lower in the exploring directions (close to 2.0). 

Once again, the anisotropic texture of the DTM cannot be interpreted 
as an effect of the anisotropic interpolator without the guarantee that the 
real surface has no intrinsic anisotropy in these particular directions and at 
this particular scale. 

The same approach is used in [3] for the control of USGS DTM's. They 
compare fractal measurements in different directions in order to detect sys­
tematic directional artifacts which may result from the aerial photograph 
scanning procedures. 

3.4 Limitation of fractal-based evaluation 
Internal validation is not possible without some assumptions about the 
real surface. These assumptions can be difficult to justify, for instance 
the fact that the fractal dimension of the real surface does not change 
from observed surfaces to resampled ones. This assumption, as well as 
isotropy, can be partially confirmed by a geomorphological analysis of local 
relief using the DTM. However, their best justification is the correlation 
between the phenomena detected through fractal measurements and the 
characteristics of the mapping and sampling algorithms. Provided that 
these algorithms are known, fractal measurements can contribute to the 
internal validation of digital terrain models. 

The quality assessment of a DTM using fractal assumptions has several 
limitations. For instance, the need for a local fractal measurement implies 
that fractal dimensions have to be estimated over small windows (e.g. 5 by 
5 pixels). Variances are then computed from a limited number of samples, 
and this does not allow very meaningful statistics. 

The limitations related to the need for an a priori knowledge of the real 
surface have already been discussed. However, these limitations partially 
disappear if the control is carried out for a large number of DTM's over a 
large variety of landscapes, but obtained with the same techniques. In this 
case, a slope break or an anisotropy in the average variogram can be related 
to DTM artifacts with more and more confidence since it becomes less and 
less probable to observe the same multifractal or anisotropic behaviour in 
all landscapes. For this reason, fractal-based internal validation is more 
suitable for the quality assessment of a relief mapping technique than for 
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the control of individual DTM's. Fractal-based and other internal validation 
techniques are often limited to the evaluation of terrain shapes. In other 
words, they are not sensitive to absolute location errors. For this reason, 
they are complementary to standard height error estimations, and they have 
no use if the DTM is only required to provide elevations with a minimum 
RMS error. On the contrary, RMS height error is not a suitable quality 
criterion for a DTM which is supposed to provide information about the 
relief shapes for hydrological or geomorphological studies. 

Since DTM's play an increasing role in geographic information systems, 
they have to be evaluated according to quality requirements corresponding 
to different applications and different users. This quality criteria combi­
nation is crucial for the design of multiple user geographic data bases. As 
observed by Burrough, a good GIS should include a range of interpolation 
techniques that allow the user to choose the most appropriate method for 
the job in hand [4]. 

4 Parametr ic evaluation of relief mapping 
techniques using image simulation 

4.1 Interest of image simulation in remote sensing 
Spaceborne image simulation can be performed using a parametric descrip­
tion of both the observed landscape (DTM, land use) and the satellite (orbit, 
instrument...), provided that suitable models are available for the geometric 
and radiometric computations. Image simulation has useful applications in 
remote sensing. 

Due to cost considerations, sophisticated simulation tools are generally 
designed during the specification phase of a spaceborne mission for the 
following tasks: 

• adjustment of the technical specifications 

• prediction of the image quality 

• validation of the ground-segment 

• training of future users 
Image simulators can also be used for the design or validation of image ex­
ploitation techniques such as topographic mapping, by testing these tech­
niques on the simulated data sets. In the case of relief mapping, the val­
idation is carried out by comparing the resulting DTM with the reference 
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DTM used for the simulation, as illustrated in fig. 4. The simulation-based 
approach has several basic advantages: 

First, a wide variety of image data over different landscapes and with 
different viewing configurations can be analysed, so that more general con­
clusions may be drawn. 

Second, the variety mentioned above can be handled with relevant pa­
rameters, namely: 

• 

• 

• 

system parameters (platform, instrument, processor) 

topographic parameters (height, slope, orientation, roughness) 

environment parameters (atmosphere, surface change between two 
data takes). 

The control of each of these parameters allows the evaluation of its impact 
on the performances of a mapping technique. 

Finally, the simulation approach enables comparison with a reference 
datum. 

Indeed, even if the input DTM differs from the real surface, it is supposed 
to represent a reference landscape with an infinite accuracy. The DTM 
derived from the simulated images is required to be as similar as possible to 
the reference DTM. This allows an objective comparison. The comparison 
with the input DTM is preferable to the mere comparison with a set of 
GCP's for two reasons: (a) the reference data set is dense so that the 
derivatives of elevations can be evaluated as well; (b) the reference data 
set has no error, while the GCP's plotted on a map can have an error 
comparable with the accuracy of the evaluated technique. 

Testing a relief mapping technique on simulated image data has two 
main limitations. On the one hand, the approximations made in the geo­
metric and radiometric models limit the representativity of the simulated 
images. On the other hand, the conclusions about the performances of the 
mapping technique are limited to the shapes and frequencies contained in 
the input DTM. 

The aim of this section is to show how fractals can increase the interest in 
the simulation-based evaluation of relief mapping techniques by increasing 
the variety of shapes. Indeed, because of the conventional requirement to 
minimise standard error, most DTM's are smoothed to reduce altimetric 
noise, but at the expense of micro-relief, as discussed in [21]. Consequently, 
such a smooth DTM does not allow the evaluation of the aptitude of a relief 
mapping technique for the restitution of microrelief. 
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Figure 4: Procedure for simulation based evaluation of relief mapping tech­
niques 
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The interest in fractal resampling is precisely to generate the microrelief 
in the DTM before simulating the satellite images. 

4.2 Fractal landscape synthesis for image simulation 
A simple method for fractal resampling has been described in sections 2.3 
and 2.4. It is obviously preferable to generate a realistic landscape, but 
this is not the most critical requirement. The first aim is to ensure that 
the DTM spectrum be as wide as possible. Indeed, if the performances of 
the mapping technique are expressed in terms of a transfer function, the 
behaviour of this transfer function cannot be evaluated for frequencies that 
do not appear in the input DTM. 

It would be possible to simulate the effects of micro-relief directly in the 
output image, by synthesizing a random radiometric texture in coherence 
with an assumed terrain roughness. However, this method is excluded if im­
age simulation is used to test a mapping technique, and the high frequencies 
of relief have to be simulated in the DTM, so that the correspondence be­
tween terrain texture and image texture is deterministic and not stochastic. 
This is the only way of ensuring that two images of a stereo pair represent 
the same landscape. 

It would also be possible to resample the DTM while computing the 
image, in particular in the case of radar image simulation which is generally 
based on object-space algorithms [13]. However, the on-line resampling of 
the DTM has several drawbacks: 

• the DTM used for simulation has to be stored, so that it is available 
for the control of the output DTM 

• the best way of ensuring that two images of a stereo pair represent 
the same landscape is to use the same physical DTM 

The RMD algorithm presented in the section 2 is based on a dichotomic 
interpolation, so that each iteration divides the mesh size by 2 and multi­
plies the DTM size by 2 in both directions. If the sampling rate must be 
conserved, the input DTM has to be previously subsampled before over-
sampling. Fig. 5 shows an input DTM with a 40m. mesh, and the same 
DTM after two RMD iteration on a 160m. mesh subsampled DTM. 

For a fully parametric evaluation, it can be useful to use a synthetic 
fractional Brownian surface, described by two parameters (σ and D) as 
explained in 2.4. On the contrary, resampling the DTM of a natural surface 
leads to a more realistic landscape model but it cannot be described by a 
simple parameter. 
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Figure 5: Input DTM (upper) and RMD sampled DTM (lower) 
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4.3 Contribution of fractal synthesis to the valida­
tion of a relief mapping technique 

Microrelief is a very important factor in the performance of a mapping 
technique. It acts as both a noise and a signal. On the one hand, it acts 
as a noise with an impact on the robustness of mapping algorithms, e.g. 
stereo matching. On the other, its acts as a signal and the efficiency of the 
algorithm depends on its capacity to restore this signal. The second aspect 
is important if the DTM is required to faithfully describe relief shapes, the 
first one is important whatever the application. 

Once a DTM has been derived from the simulated data by photogram-
metry, interferometry or any other technique, it has to be compared with 
the input DTM. The comparison has to be carried out with care. First, it 
is necessary to generate a DTM directly comparable with the reference in 
terms of co-ordinate system and mesh size. Indeed, an intermediate resam­
pling might add discrepancies independent from the evaluation technique, 
so that they would contaminate the evaluation. Second, the comparison of 
the two DTM's has to be done according to selected criteria, which depend 
on the scheduled application of the data. The main quality criteria are 
based on: 

• the histogram of height discrepancies 

• the histogram of slope discrepancies 

• the geometry of the hydrographie network 

• the topology of the hydrographie network etc. 

One can use specific criteria for the detection of high frequency artifacts 
such as those due to the resampling process, already mentioned. For in­
stance, those proposed in the previous section are based on two fractal 
assumptions, namely, self-similarity and isotropy. An important advantage 
of these criteria in the context of simulation-based DTM validation has 
to be pointed out. Indeed, the fractal assumptions based on an a priori 
knowledge of the real surface and previously discussed, are no longer ques­
tionable with the simulation approach, since a perfectly accurate reference 
DTM is available. In other words, the possibility to check that smoothness 
and anisotropy do not appear in the reference make it an objective quality 
assessment method. 

The simulation-based validation described in this section is of great in­
terest for validating a whole relief mapping technique, thanks to the fact 
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that many experiments can be run with different landscapes and different 
system parameters, so that the intrinsic performances and limitations of this 
technique can be isolated. Moreover, the control of all parameters makes 
it easier to optimise the algorithms, and this is the final aim of the quality 
assessment. 

5 Conclusion 
The interest in fractal modelling for the validation of relief mapping tech­
niques has been analysed in this article. The fractal properties of natural 
terrain shapes have been discussed, and two separate methods for DTM 
quality assessment using fractals have been proposed. The first method 
aims at detecting high frequency artifacts through fractal measurements 
and some a priori assumptions about the fractal properties of the real sur­
face. The second method consists of testing a mapping algorithm on a 
synthetic image (or set of images) simulated from a DTM, and the role of 
fractals is to broaden the spectrum of the input DTM for a more complete 
evaluation. Both methods are not designed for the validation of an indi­
vidual DTM, but for the validation of a relief mapping technique. Given 
the increasing amount of satellite data and the increasing number of relief 
mapping tools, the overall quality of generated cartographic value-added 
products is about to become a crucial problem, and fractals could play an 
important role in dealing with it. 
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Chapter 12 

Characterisation and Imaging of Fractal 
Topography 

W. G. Rees* 

1 Introduction: the relationship between 
surface topography and image brightness 

Let us consider a plane surface illuminated from the direction (θ0, φο) and 
viewed from the direction(#i, φο) where the angles θ are measured from the 
surface normal and φ are azimuthal angles measured from some reference 
direction (see figure 1). The manner in which the surface reflects radiation 
is specified by its BRDF (bidirectional reflectance distribution function), 
which is denoted by R and is in general a function of all four angles 9Q, φο, 
θι and φι. For most naturally-occurring materials, however, the azimuthal 
dependence may be neglected. The BRDF is defined (e.g. [1]) such that if 
the incident flux density is F, the radiance L observed in the direction θι 
is given by: 

L = FRcos6o (1) 

For a pseudo-Lambertian surface, the BRDF is constant with a value of 
r/τ, where r is the hemispherical albedo. 

We can use these simple ideas (although see e.g. [2] for a more detailed 
discussion of the effect of topographic effects on images) to understand 
the basis of the relationship between surface topography and the spatial 
structure of an image of the surface, assuming that the dominant source of 
illumination is direct sunlight (e.g. [3]). Let the surface normal be described 
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Figure 1: Geometry to describe the bidirectional reflectance distribution 

function (BRDF) 

by a unit vector N , and the unit vector from the surface towards the sun 

be S. The direction of the incident radiation is clearly given by: 

cos0o = N ­ S (2) 

If the sun's altitude above the horizon is a, we can set: 

S = (cosa, 0, sin a) (3) 

where the x­axis has been chosen to be horizontal to the sun's azimuth, and 

the z­axis is vertical (see figure 2). If we write nx and ny for the x­ and y­

components of the unit surface normal in the same coordinate system, we 

have: 

N = ( n x , n y , [ l ­ n * ­ n ^ ) (4) 

so that application of equation (2) gives: 

cos #o = nx cos a + (1 — n2
x — n2) 2 sin α (5) 
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Figure 2: Relative geometry of the unit vector S from the surface to the sun 
and of the unit surface normal vector N described in a Cartesian coordinate 
system 

If the surface is pseudo-Lambertian. the reflected radiance L is (by equation 
1) just proportional to cos θ0. Even if it is not, so that R is a function of θο 
and θι (and possibly also φο and φι), we can perform a Taylor expansion 
of equation (1) to linearise L with θο- However, we will continue to assume 
that L is proportional to cos θο. 

Equation (5) implies that cos Oo, and hence L, is almost independent 
of ny but linear in nx, as long as the solar elevation a is low enough and 
nx > — sin a (if this condition is not satisfied, the surface is in shadow 
and the radiance falls to zero). This is illustrated by figure 3, which shows 
contours of equal values of θο in the (nx, ny) plane for α = 10 deg. The 
implication of this result is that , for direct solar illumination at a fairly 
glancing angle, the outgoing radiance L (to which the image brightness is 
proportional) can be written as: 

L « Anx + B (6) 
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Figure 3: Contours of equal values of θο in the (nx, ny) plane, for solar 
illumination 10 degrees above the horizon. nx and ny are shown ranging 
between —1 and + 1 : only values within the circular area are possible 
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where nx is the component of the surface slope in the direction parallel to 

the solar azimuth, and A and Β are constants for a surface of constant 

BRDF. This result forms the basis of many so­called 'shape­from­shading' 

algorithms. 

2 Shape from shading 

If the conditions discussed in section 1 are met, so that the validity of equa­

tion (6) may be assumed, we can use the image brightness to determine the 

corresponding surface topography. Assuming equally spaced pixels along 

the direction parallel to the solar azimuth, we can in effect integrate equa­

tion (6) to obtain (e.g. [3], [4]): 

hi = a^2,Li + bi + c (7) 
i=i 

where hi is the height of the ¿th pixel, L¿ is its brightness, and a, b and c 

are constants. The pixel j=l from which the integration begins is clearly 

arbitrary. Although the constants α and b can, in principle, be deduced from 

knowledge of the BRDF and the solar illumination angle, the constant c is 

necessarily derived from a known height hi at a known position i, and it is 

probably safest to obtain all three constants in this way, using a minimum 

of three control points. The advantage of the technique is that it yields 

topographic data at the single­pixel scale to 'fill in' the heights between the 

control points. 

This method has been applied [3] to the topography of the Nordaust­

landet ice cap in the Svalbard archipelago, using a Landsat MSS image 

acquired in March 1973 and topographic height data acquired about 10 

years later by radio echo­sounding methods. Dry snow, such as would be 

expected in this area in Spring, has a very uniform BRDF, so that equation 

(6) should hold fairly accurately. Rees and Dowdeswell [3] found that with 

three height control points distributed fairly evenly over a 110km. transect, 

the algorithm generated height errors with an RMS value of about 80m., 

roughly 10% of the total range of height encountered in the transect. While 

this RMS error is large, it seems probable that most of the power in the 

error spectrum is concentrated at low spatial frequencies and that more 

height control points would effectively solve this problem. This suggests 

the possibility of a powerful synergy between radar altimeter data, which 

sample topography at a scale of the order of 10km., and visible­wavelength 
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satellite imagery, which has a sampling scale of 10m. to 1km. It also sug­

gests the usefulness of the shape­from­shading approach in characterising 

surface roughness. 

3 Fractal dimension as a measure of surface 

roughness 

The roughness of a one­dimensional transect h(x) could obviously be defined 

as the standard deviation σ of the height: 

a = J(h
2
) - (h)

2
 (8) 

where () denotes spatial averaging over all x. However, such a definition 

immediately presents a problem in the case of a transect which is linear 

but which has a non­zero slope k. If the transect is defined over a finite 

range ξ of χ, σ = £|fc|/\/l2. This clearly tends to infinity as the length ξ of 

the transect tends to infinity, but it is unsatisfactory at a more basic level 

in that one's intuitive description of such a transect is that it is perfectly 

smooth. While one might attempt to avoid this problem by defining the 

roughness as the RMS deviation from the mean straight line fitted through 

the transect, measured perpendicular to the line, even this definition would 

fail to register the intuitive smoothness of, for example, a pure sine curve. 

What is required here is a 'scale­free' measure of surface roughness. 

A powerful new approach to the problem of characterising the roughness 

of surfaces, especially naturally occurring surfaces, was introduced by Man­

delbrot who developed thé concept of fractals and fractional dimensionality 

(e.g. [5]). Various workers have demonstrated that natural surfaces often 

exhibit fractal behaviour over certain ranges of spatial scale (e.g. [5] ­ [8]), 

and Pentland [6] has shown that the fractal dimension corresponds very 

well to an intuitive idea of roughness. 

A fractal transect or surface is characterised by its fractal dimension D, 

which is larger than the topological dimension normally associated with the 

geometry under consideration. For example, a transect can be represented 

as a line on a plane, and topologically speaking the line has one dimension. 

However, if the line is irregular, it partakes to some extent of the character 

of the plane (which has two topological dimensions), and the transect has 

a fractal dimension between 1 and 2. If the line is so irregular that it 

passes through every point in the plane (e.g. the Peano curve [9]), its 

fractal dimension is equal to 2. Similarly, a connected surface defined in 
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three dimensions has a topological dimension of 2, and a fractal dimension 
between 2 and 3. A plane surface has D=2, and a very rough surface (a 
sheet of heavily crumpled paper is an approximation) has D=3. 

3.1 Geometric self-affinity 
Fractals exhibit self-affinity, in either the strictly geometric sense or in the 
statistical sense. A well-known example of the geometrically self-affine type 
of fractal is the Koch curve [10]. Figure 4 shows a finite approximation to 
the Koch curve. The Koch curve has the property that it can be broken 

Figure 4: Approximation to the Koch curve at the fourth level of iteration. 
The true Koch curve, which is nowhere differentiable, is generated by an 
infinite number of iterations 

into four identical parts, each of which is an exact one-third scale copy of 
the original curve.This illustrates one definition of the fractal dimension D: 
If an object can be broken into N identical parts, each of which is an exact 
l/S'-(linear) scale replica of the original, the dimensionality of the object 

'"Κ 
The fractal dimension of the Koch curve is thus (log 4)/(log 3) = 1.262. 
A straight line, on the other hand, clearly obeys the relationship N = S, 
giving it a dimension of 1, a square obeys N — S2 (D=2) and a cube Λ̂  = 
S3 (D=3). 
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3.2 Statistical self-affinity 
This definition cannot be applied in its strict sense to statistically self-affine 
objects, and of course real natural objects are highly unlikely to possess the 
strict geometric self-affinity of the Koch curve. The fractional dimension­
ality of such objects can be defined by box-counting or by measuring the 
compass dimension. These will be discussed with reference to curves drawn 
in a plane, but can readily be extended to surfaces defined in space having 
three topological dimensions. 

The box-counting dimension is defined by superimposing a square grid 
of size s on the curve, and counting the number n of grid squares which 
contain some of the curve. A fractal curve of dimension D is characterised 
by the following dependency of n on s : 

nas-D (10) 

Consequently, a graph of log n against log s will be a straight line of slope 
-D. 

The compass dimension is defined by measuring the length of the curve 
using a compass set to describe arcs of length s. The curve is thus repre­
sented as a set of connected straight-line segments, each of length s, joined 
at points lying on the curve. If there are n of these segments, the length of 
the curve measured at the precision defined by s is L = ns, and a fractal 
curve is characterised by: 

L — ns a sx~ or n a s~ (11) 

Again, a graph of log n against log s will be a straight line for a fractal 
curve. 

This approach has been applied to Mandelbrot's question [11]: 'How 
long is the coastline of Britain?' Estimates of this quantity vary typically 
between 7400km. and 8000km. Mandelbrot showed, using the compass 
dimension, that, for 10 km. < s < 1000 km., the coastline is well described 
by equation (11), with a value of D «¿1.25, so that no unique length can be 
assigned to it. Indeed, if equation (11) were valid down to 5=0, the length 
would be infinite. Box-counting gives an almost identical result of D = 1.26 
for s between 10km. and 100km. (see figure 5). 

Many other naturally occurring curves, surfaces and other phenomena 
have been shown to display fractal characteristics over some range of length 
scales s, and the concept is now generally accepted as a valid and useful one 
in characterising the geometry of natural constructs. Table 1 gives a few 
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Figure 5: Estimation of the fractal dimension of the coastline of mainland 
Britain using the box-counting dimension. In the figure on the left, a 10km 
grid has been overlaid on the coastline, and those grid cells in which some 
of the coastline appears have been coloured black. There are 740 such cells. 
In the figure on the right, the grid size is 50km and the coastline occupies 
99 cells. The fractal dimension is thus log(740/99) / log 5 « 1.25 
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Phenomenon 
Norwegian coastline 
Cloud outline 
Steel fracture surface (ID) 

D 
1.52 
1.35 
1.28 

Range 
0.6km - 80km 
1km - 1000km 
2μπι - 300//m 

Source 
[12] 
[13] 
[14] 

Table 1: Examples of natural phenomena showing fractal behaviour, to­
gether with the fractal dimension D and the range of scales over which this 
behaviour persists 

examples to illustrate the range of phenomena for which the concept has 
been found useful. However, it must be emphasised (as equations 9, 10 and 
11 make clear) that no natural construct can be a true fractal in the sense 
of obeying equation (9), (10) or (11) over all scales from zero to infinity. 
There will be a small-scale limit imposed by atomicity or by the breakdown 
of the physical process responsible for the fractal characteristic, and there 
will be a large-scale limit imposed by the physical size of the object itself 
or by an upper bound to the scale of the process. 

4 Fractional Brownian motion 
A particular type of fractal· behaviour, called fractional Brownian motion 
(FBM - see e.g. [15], [16]), can be displayed by functions such as time 
series or surface profiles. As the name suggests, FBM is a generalisation of 
classical Brownian motion. 

In a one-dimensional random walk, a particle makes steps of length χ 
along the x-axis, at regular intervals τ and with equal probability forwards 
and backwards. The direction of any step is uncorrelated with that of any 
other. Under these conditions, it can easily be shown that: 

(x(t + t') - x(t)) = 0 

and 

({x(t + t') - x(t)}2) 
i2t' 

where the angle brackets () denote the expectation value. The Brown­
ian motion thus has the statistically self-affine property that if the time-
coordinate is scaled by a factor k, the x-coordinate must be scaled by a 
factor of v k to preserve its statistical properties. 
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A more general statement of the fundamental property of the classical 
random walk is that the variance of the increment x(t + t') — x(t) is pro­
portional to t'. In the fractional Brownian motion, this power-law index 
is allowed to take any value from 0 to 2. This is equivalent to abandon­
ing the requirement that increments are uncorrelated. If the index is less 
than 1, the time-variance shows antipersistence, in the sense that an in­
creasing trend in the past is likely to be followed by a decreasing trend in 
future (and conversely), whereas if the index is greater than 1, the time 
dependence shows persistence, with trends tending to remain of the same 
sign. 

A function Ρ of a single variable χ (which can denote either space or 
time coordinates) exhibits fractional Brownian motion if: 

Pr 
P(x + d)-P(x) 

Ψ <y = Hy) (12) 

i.e. the cumulative probability distributions of P(x + d) — P(x) are identical 
for different values of d apart from scaling by a factor of dH, where Η is a, 
constant known as the Hurst exponent. If we set 

it follows that the probability distribution function of 

P{x + d)_ P{x) 

A - & 

is F'(A), and hence that 

. . roo 
([P(x + d)- Ρ(χ)Γ) = dnH / F'(y).yndy (13) 

J — oo 

If we consider a statistically stationary variable P(x), it is clear that 
the first-order moment ( n = l ) will be zero so the first non-zero moment 
will correspond to n=2 . Whether P(x) is stationary or not, we define the 
semivariance ηρ(ά): 

lp{d) = \([P(x + d) - P(x)]2) (14) 

The use of the semivariogram (a plot of 7 against d) in image analysis is 
already well established (e.g. [17], [18]). In other branches of physics, the 
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semivariance is known as the structure function. It is a necessary condition 

for a FBM that the semivariance obeys the power-law relationship: 

"fp(d) a d 
■211 (15) 

where H is a, constant. The fractal dimension D of the transect represented 

by the variable P(x) is then: 

D H (16) 

where 0 < H < 1 so that 1 < D < 2. For classical Brownian motion, H = 

1/2 so D = 1.5. Examples of fractal brownian motion with different values 

of D are shown in figure 6. Many natural phenomena show fractal Brownian 

Figure 6: Examples of fractal Brownian motion with values of D = 1.2, 

1.5 and 1.8. The respective values of the Hurst exponent H are 0.8, 0.5 

and 0.2, corresponding to persistent, classical Brownian and antipersistent 

behaviour respectively 

motion, either directly or in their time-integrated forms. In the latter case, 

the fractal behaviour can be demonstrated using either the semivariogram 

analysis or Hurst's R/S analysis [19], which is described below. 
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4.1 R / S analysis (see e.g. [12]) 

Given a variable q(x), where χ is an integer argument, we define the mean 

value (q)L over L values of χ as: 

<<Z>L = T Í > ( Z ) (17) 
L
 x=l 

The variable Q(x, L) is then defined as the cumulative departure of q from 

this mean value: 

Q(xiL) = J2[q(y)­(q)L] (18) 
y=i 

the range R(L) is defined as the interval between the maximum and min­

imum values of Q(x,L), as χ ranges from 1 to L, and S is the standard 

deviation of the L values of q(x). Hurst [19] found empirically that for 

many naturally­occurring time series of data, 

R Η 

(19) 

where Η is the same Hurst exponent as was defined in equation (12). A 

value of Η = 1/2 implies that the data q are uncorrelated: Η > 1/2 implies 

persistence, and Η < l / 2 implies antipersistence. Hurst showed that many 

natural phenomena are characterised by a value oi Η fa 0.73, implying 

that the cumulative sum of q (after subtraction of the mean) is a fractional 

Brownian motion with D fa 1.27. Examples of this phenomenon are given 

in table 2 (all the data are from [19] except the temperature data which are 

new to this work): 

5 Fractal dimension of natural topography 

The semivariogram method (equations 14 to 16) has been used to estimate 

the fractal dimension of linear transects through natural topography. 

First we consider a 10km. transect through Ben Nevis, at 1343m. above 

sea level the highest mountain in the UK. The transect, which was derived 

by digitising a 1:63360 scale map at intervals of 0.16km., is shown in figure 

7. The transect clearly shows the smooth U­shaped valley profiles charac­

teristic of heavily glaciated terrain. 

In figure 8 we plot the semivariogram, on logarithmic axes. It can be 

seen that the power­law relationship of equation (15) is obeyed for scales 
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Phenomenon 
River discharge 
Rainfall 
Air temperature 
(Central England dataset) 
Air pressure 
Sunspot number 

Range 
lOyr - lOOyr 
24yr - 21 lyr 
llyr - 292yr 

29yr - 96yr 
38yr - 190yr 

H 
0.72±0.09 
0.70±0.09 
0.73±0.08 

0.63±0.07 
0.75±0.06 

Table 2: Examples of time series exhibiting Hurst's R/S scaling law. The 
table shows the lengths of datasets examined, and the value of the Hurst 
exponent H. 

of 0.16km to 1.6km. A least-squares fit to the data gives 2H = 1.66±0.04, 
so that the fractal dimension D of the transect is 1.17±0.02. At larger 
scales, the effective value of H is « 0, suggesting that a different process is 
responsible for the topography. 

A similar analysis has been performed for another area of glaciated 
mountain topography in the UK: the Rhinog mountains in Wales. The 
transect (obtained from a 4km. section of a 1:25000 scale map) is shown in 
figure 9, and the semivariogram in figure 10. The behaviour is qualitatively 
very similar to that for Ben Nevis. The fractal behaviour persists over the 
range of scales from 0.05km. to 0.75km, with a value of D of 1.14±0.02. A 
comparison of the results for the two mountains suggests that D fa 1.15 is 
characteristic for heavily glaciated mountain topography, with a maximum 
scale size of the order of 1km. 

A similar analysis for the bedrock topography beneath the Nordaust-
landet ice cap [8] gives a fractal dimension of 1.38±0.04. This rock is very 
much younger than the two examples just discussed, and the greater fractal 
dimension (roughness) is not surprising. 

A third example is shown in figure 11. This is a 20km. Ε-W transect 
of the surface topography just north of Cambridge, where the terrain is 
very flat. However, the large vertical exaggeration in figure 11 shows that 
the 'gentle' relief has in fact a very jagged appearance, and this manifests 
itself in a higher fractal dimension. The logarithmic semivariogram of this 
transect is shown in figure 12. Fractal behaviour persists over scales from 
0.25km. to 1.75km., with a corresponding value of D = 1.27±0.02. There 
is some evidence for another fractal regime at longer scales, with an even 
higher fractal dimension. 
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Figure 13 summarises semivariance data from a large number of sources, 

for ice sheets, ice caps and glaciers in the Arctic. The data are from the 

Greenland ice sheet, the Nordaustlandet ice cap (Svalbard) and Ayerbreen 

glacier (Svalbard), and cover a range of scales from 0.2m. to 800km. The 

datasets corresponding to scales below 100m. are unpublished and have 

been derived from in situ measurements in Svalbard and Greenland, [20] ­

[22]. The three datasets corresponding to scales greater than 10km. have 

been derived from the Seasat radar altimeter map of Greenland [23]. The 

dataset corresponding to scales between about 300m. and 30km. was de­

rived [8] from Landsat imagery of the Nordaustlandet ice cap, Svalbard, 

using the 'shape from shading' algorithm described above. 
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Figure 13: Logarithmic semivariogram for ice sheet, ice cap and glacier 

surfaces, for scales from 0.2m. to 800km. The x­axis shows \og10(lag/km) 

and the y­axis logio(^/m2) 

Several features are apparent from figure 13, but the most obvious fea­

ture is the general conformity of all the datasets to a single curve. There 

are small vertical departures from this curve, corresponding to variations 

of a factor of about 10 in the semivariance of different transects at a par­

ticular scale, and most of the semivariograms begin to diverge from the 

base curve at some maximum scale which is presumably a reflection of the 

scale at which the topography is no longer dominated by the behaviour of 

the ice itself. However, the consistency of the slope (and hence the fractal 
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dimension) of different datasets at the same scale is remarkable. 
The semivariograms have been analysed in decades of scale. For scales 

between about 10m. and 100km., D lies fairly consistently in the range 
1.1 to 1.2. It is suggested that this value, over this range of scales, is 
characteristic of large ice masses. For scales between 100km. and 1000km., 
D increases somewhat to about 1.4. For scales between 0.1m. and 10m., D 
is also increased, to between 1.4 and 1.5. 

Other topographic datasets have been analysed using this technique, 
or a close approximation to it. For example, Bishop and Chellis [24] have 
analysed sonar profiles of the undersides of sea-ice floes using a FBM for­
malism to derive the fractal dimension of ice keels and 'non-keel' structures. 
They found that, on spatial scales from approximately lm. to a few tens of 
metres, the fractal dimensions of one (topological) dimension transects of 
keels lay in the range 1.2 to 1.7, whereas for 'non-keel' structures the range 
was somewhat lower at 1.2 to 1.6. 

The data that have been presented in this section are shown in table 3 
for comparison. 

Topography 
Glaciated mountain terrain, UK 
Sea-ice keels 
Lowland terrain, UK 
Ice cap bedrock, Svalbard 
Large ice masses 
Large ice masses 
Large ice masses 

D 
1.1-1.2 
1.2-1.7 
1.3 
1.4 
1.4-1.5 
1.1-1.2 
1.4 

Scale range/km 
0.1 - 1 
0.001 - 0.01 
0 . 3 - 2 
1 - 10 
0.0001 - 0.01 
0.01 - 100 
100 - 1000 

Table 3: Examples of fractal topography determined by the semivariogram 
method, showing the fractal dimension D of a one-dimensional transect, 
and the range of scales for which this value is valid 

6 Do fractal surfaces have fractal images? 
It has been shown above that, under suitable conditions (direct illumination 
at oblique incidence, no shadowing) the radiance L detected from a surface 
should be given approximately by equation (6) i.e.: 

L - Anx + B 
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where nx is the horizontal component of the surface normal vector in the 
direction parallel to the solar azimuth, and A and Β are constants. The 
spatial properties of L are thus determined by those of nx. Whether or not 
nx obeys FBM statistics, we can define its semivariogram from equation 
(14) as: 

7»,(<0 = \([nx(x + d) - nx(x)}2) (20) 

Using equation (6), this can be expressed as: 

lnx(d) = A2
lL(d) (21) 

i.e. the statistical properties of L differ from those of nx only by a simple 
change of scale. In particular, if nx is a FBM, L will be a FBM with 
the same fractal dimension. Strictly speaking, it is impossible for nx to 
show true FBM characteristics, for a number of reasons. Firstly, as has 
been pointed out before, no real surface can be a true FBM since it cannot 
describe all spatial scales from zero to infinity. Secondly, even if a surface 
were to display FBM characteristics over some range of scales, the value of 
nx could not formally be defined since a FBM is not differentiable. Thirdly, 
the power-law form of the semivariogram (structure function) of a FBM 
requires that the appropriate variable (in this case nx) can take any value, 
whereas nx is limited to the range from -1 to + 1 . 

None of these need impose fundamental limitations, however. It is al­
ways necessary to recognise that a real surface can be only approximately 
represented as a fractal, and that its description in fractal terms is valid 
only over some range of scales. The impossibility of differentiating a FBM 
surface can similarly be avoided by 'rolling off' the fractal behaviour below 
some minimum scale in order to smooth the surface. (However, Efford [25] 
has considered in some detail the effect of fractal geometry at sub-pixel 
scales on the image radiance.) The limitation imposed by the finite range 
of nx is less real than apparent, since the assumptions implicit in equation 
(6) require that nx varies over only a small part of the possible range. 

A more fruitful approach is found by following Kube and Pentland [7]. 
If we write h(x, y) for the height of the surface, and set 

* , , , ) = * * & » > (22) 

and 
dh(x,y) 

g ( g . y ) = Q (23) 
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we can write the surface normal vector N as: 

N = Í =p =i ! 

ÎVp 2 + q2 + l ' VP2 + q2 + 1 ' v/p2 + q2 + l . 

Substituting this into equations (2) and (3), we obtain: 

(24) 

s i n a ­ p c o s a 
COSÖ0 = 7FTFTT (25) 

Provided that both ρ and q are much less than 1, the quadratic terms can be 

neglected and we can deduce that cos θ0, and hence L, is linearly dependent 

on p. 

Firstly we consider the case of a surface with one topological dimension, 

so that the height h is a function of a single variable x. We assume that 

this profile is a FBM with fractal dimension D, so that: 

lh(d) = l­([h(x + d) ­ h(x)]2) a d4'20 (26) 

This clearly implies that the power spectrum Fh(k) of h is proportional to 

k2D~4, so the amplitude spectrum Fk(k) must be given by: 

\Fh(k)\akD~2 (27) 

The amplitude spectrum Fp(k) of the differential ρ = dh/dx is thus given 

by: 

\Fp(k)\akD~l (28) 

Equation 28 This can be squared to find the power spectrum F p (k) , but 

since (from equation 25) the image radiance L is linearly dependent on the 

differential p, the power spectrum Fi,(k) is proportional to F p(k) apart from 

a delta­function term at k=0. We can therefore put 

F L ( k ) a k2D"2 (29) 

and hence 

lL(d) a d2~2D (30) 

Now we can proceed along similar lines to consider the image of a sta­

tistically isotropic surface h(x,y) having two topological dimensions. We 

assume that any linear transect through the surface will show FBM prop­

erties such that: 

jh(d, φ) = ­([h(x + dcos φ, y + dsin φ) ­ h(x, y)]2) (31) 
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is proportional to d4~2D and independent of φ. The fractal dimension of 
a transect is again D, with D lying in the range 1 < D < 2, and the 
fractal dimension of the surface is D + 1. We can define a pair of two-
dimensional Fourier transforms to convert between a function a(x,y) and 
its two-dimensional amplitude spectrum Fa(k, φ) as shown in equations (32) 
and (33): 

/

OO ΓΟΟ 

ƒ a(x,y) exp(ikx cos φ) exo(iky sin φ) dx dy (32) 
-oo J—oo 

/•OO /"27Γ 
a(x,y) = / / Fa(k, </>)exp( —ikx cos φ) exp(—iky sin φ)k dx άφ (33) 

Jo Jo 

Relating (32) to the assumed form of ^h(d, φ), we must have: 

\Fh(k,ç)\akD~3 (34) 

and hence 

\Fp(k^)\ a cos<¿/tD­2 (35) 

where ρ — Õh¡dx. From equation (25), this implies that the power spectrum 

Fi^k, Φ) = (F]Tk, φ))2 of the image radiance is given by: 

FL(k, φ) a cos2 φ k2 D­4 (36) 

so that the two­dimensional semivariogram 7L(C?, φ) of the radiance L will 

be given by: 

ΊL(d,φ)acos2φd2-2D (37) 

This shows that the image radiance of an isotropic FBM surface will have 
a power-law frequency spectrum, with a power-law index that is indepen­
dent of orientation. The absolute value of the frequency spectrum (or the 
semivariance) is, however, dependent on the orientation φ of the transect, 
as implied by equation (37), and will (subject to the assumptions implicit 
in equation (25)) fall to zero at φ = ± π / 2 . This angle corresponds to 
horizontal transects perpendicular to the solar azimuth. 

We can see that the image radiance cannot itself be fractal for the follow­
ing reason. Since the value of D must lie in the range 1 to 2, the power-law 
index 2 — 2D in equation (32) or (37) must lie in the range 0 to -2. The 
power-law index of the semivariogram of a FBM, on the other hand, must 
lie between 0 and +2. However, provided that (a) the moduli of the surface 
slope components ρ = dh/dx and q = dh/dy remain much less than unity, 
(b) the illumination is oblique, and (c) shadowing is insignificant, we can 
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deduce that a FBM surface will give an image of which the semivariance is 
a power-law function of the separation d. A very smooth surface (D fa 1) 
will give 7L(GQ a d°, i.e. a flat spectrum, and a very rough surface (D fa 2) 
will give 7 L ( ¿ ) a d~2, i.e. a spectrum with most of the power at high spatial 
frequencies. 

We may ask whether, in investigating the topographical properties of a 
surface through its image, it is better to calculate the frequency spectrum 
of the image or first to apply the 'shape from shading' algorithm discussed 
above. Although there are advantages on both sides, it is useful to recognise 
that the image represents a differentiated version of the topography, and is 
therefore more likely to be adversely affected by noise. This is particularly 
so in the case of digitisation noise, since the low solar elevation angles 
necessary to this technique will imply generally low image radiances. It thus 
appears likely that more reliable conclusions will be drawn from an image 
by first generating a topographic surface from it using 'shape from shading', 
and then calculating its statistical (fractal or otherwise) properties. 

7 Discussion and conclusions 
The work described in this paper addresses two principal, linked, themes: 
the well-known correlation between image brightness and surface topogra­
phy under suitable imaging conditions, and the statistical properties of the 
surface topography itself. Variations in the image brightness across a scene 
are caused by (i) the physical properties, and (ii) the orientation, of the 
surface, and where it is reasonable to assume that the appropriate physi­
cal properties remain constant (e.g. over a homogeneous region of soil or 
snow), the properties of the image can be used to make deductions about 
the surface topography. 

To estimate the fractal (or otherwise) properties of a surface from op­
tical imagery, it is necessary to use imagery obtained under conditions of 
low sun-angle. In principle, the statistical properties of the surface can 
be determined either by first measuring the spatial frequency spectrum of 
variations in image brightness, or by first using a shape-from-shading algo­
rithm to determine the topography. Although the latter approach requires 
some geometric control, it is probably preferable since the image noise is 
effectively smoothed by integration. 

Using this method, or using surface topography data directly, it has 
been shown that (i) the topography of naturally occurring surfaces is often 
best described by a type of fractal geometry known as fractal Brownian 
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motion, and that (ii) the fractal dimension so determined appears to be 
reasonably characteristic of the surface type, at least for the limited range 
of surfaces so far investigated. This is not unreasonable, since the fractal 
dimension provides a 'scale-free' measure of roughness that corresponds well 
with intuitive perceptions, so that , for example, heavily glaciated terrain is 
smoother (has a lower fractal dimension) than younger rock that has not 
yet been subjected to extensive glacial action. The scope of this approach 
for characterising and discriminating between eroded and uneroded soil 
surfaces, although not yet thoroughly investigated, appears promising. 
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Chapter 13 

The Fractal Structure of Materials and 
Surfaces 

Giovanni Dietler* 

1 Introduction 
In this chapter, I have changed my original plan to present fractals only as 
they are applied to topographic data and have decided also to include an ex­
ample of the fractal structure of materials, since the structure of disordered 
materials plays an important role in geosciences and because it is a good 
example of how fractal geometry [1] can be used to decipher the problem 
posed by such materials. The comparison between the results obtained on 
the disordered materials and the results Of a study of the Swiss landscape 
is very instructive. 

2 Disordered Materials 
Let us begin with the presentations of a few results about the aggregation 
of colloidal silica in water. The interest in the aggregation phenomena, 
which includes the microscopic step of the aggregation of single particles 
up to the formation of a macroscopic disordered material, was awakened 
by the now famous diffusion limited aggregation (DLA) model by Witten 
& Sanders [2]. This model was born just a few years after Mandelbrot had 
introduced the concept of fractal geometry to a broad scientific community 
[1]. The DLA model is one of the first examples of a microscopic model 
with simple rules showing the formation of complex structures, which was 
directly applicable to some real phenomena. 

"Insitute of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland 

325 



Much earlier, exactly the same phenomena were observed in cellular au­
tomata and in critical phenomena. In the first case, a simple rule applied to 
the evolution of a cellular automata, produced a complex non-trivial pat­
tern, while in critical phenomena it was shown, that short range interactions 
were enough to produce long range ordering with power law-like correlation 
functions. 

Let us describe the DLA model as it was originally proposed by Witten 
and Sanders [2]. There are two irreversible processes here, namely the 
diffusion of a particle and secondly its sticking to the aggregate. In Fig. 1 the 
details about the DLA model are given. After many particles are released, 
a tree like aggregate is formed, which is statistically fractal (see Fig. 2). 
The fractal dimension d f is defined by the usual power law dependence of 
the average mass m(r) upon the size r of the aggregate: 

m(r) ~ rdt . (1) 

Witten and Sanders measured, in order to determine the fractal dimension, 
the density-density correlation function of the aggregate in Fig. 2. The form 
of the density-density correlation function c(r) is a power law, which clearly 
indicates the scale invariance of the aggregates: 

c(r) ~ < p(r)p(0) > ~ r - ^ - ^ . (2) 

Experiments confirmed the results of the DLA model with a modification, 
namely that in real systems there is more than one particle diffusing at 
one time and that there are many aggregates forming, which can also un­
dergo aggregation. This modification leads to the cluster-cluster aggrega­
tion (CCA) model by Kolb, Botet and Jullien [3]. Table 1 compares the 
experimentally determined fractal dimension of aggregates with the theo­
retical predictions by the DLA and CCA models. 

The fractal dimension was determined by light scattering from aggre­
gates in dilute solutions and from gels produced from concentrated solution 
of silica colloids [4]. The scattered intensity as a function of the transfer 
moment q is given by the following expression: 

m~-^r' (3) 
It is evident, that from light scattering experiments, it is possible to deter­
mine the fractal dimension and also the length scale £ on which the sample is 
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Figure 1: The diffusion limited aggregation (DLA) model by Witten and 
Sanders [2]. A seed is placed on the lattice centre at the beginning of the 
simulation and then one particle at a time is released at the lattice edges 
and is allowed to diffuse by Brownian motion until it reaches a site near an 
occupied site. At this moment the particle irreversibly binds to the existing 
aggregate. The process continues by releasing a new particle. 
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Figure 2: Result of the simulation using the DLA rules of Fig. 1. Physically 
the tenuous structure stems from the fact that incoming diffusing particles 
stick with high probability to the outer branches of the aggregate. That is 
the tips grow faster than the inner parts of the aggregate, preventing that 
the structure becomes compact. 

d=2 
d=3 

Fractal Dimension dy 
Simulations 

DLAa 

1.7 
2.4 

CCA6 

1.38 
1.75 

Experiments0 

Dilute Concentrated 

(1.75± 0.10) (2.16± 0.10) 

Table 1: Fractal Dimension for Aggregates α Ref. [2], b Ref. [3], c Ref. [4]. 
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Figure 3: Intensity I(q) of the light scattered by the silica gels as a function 

of the transfer moment q. 
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fractal. The experimental measured light intensities are displayed in Fig. 3 
for a set of gels with different total concentrations. Fits to the experimental 
data with equation (3) yield the fractal dimension and the cross-over length 
ξ. The fractal dimension is independent of the concentration as one would 
reasonably expect, while the cross-over length ξ is concentration depen­
dent. Since the transfer moment q has the dimension of an inverse length, 
the plots of Fig. 3 show that the cross-over length ξ diminishes with an 
increasing concentration. The fitted value of ξ can be plotted versus c on 
a double logarithmic graph in Fig. 4, which indicates a power law of £ on 
the concentration c. We have proposed a model [4] in order to explain the 

1000 -

m 

100 
0.01 
Concentration 

Figure 4: Cross-over length ξ versus the concentration c. The value of ξ 
were obtained by fitting the curves of Fig. 3 with equation (3). 
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structure of these gels by assuming that the sample is built, on average, of 

fractals of size ξ. Given ξ and the fractal dimension dj using equation (1), 

one can express the concentration of one of these fractals as: 

m(Q ^ 

v(0 ~ ξ 

and thus 

«(f) ~ ^ ~ hr « 

((c) ~ c < ­ / . (5) 

Fits to the data of Fig. 4 have given a slope of 1.17±0.10, which nicely agrees 

with equation (5) and a fractal dimension of d f = 2.15. If the gels are self­

similar objects, it is enough to perform on them a scale transformation and 

they will statistically overlap. The way we are doing this here, is loaned 

from critical phenomena. The ç­axis of Fig. 3 can be made dimensionless by 

a multiplication with a length, its natural value being £, which is for each 

sample different. The intensity data are replotted in a scale independent 

graph in Fig. 5, resulting in a universal curve for all the data. 

This procedure is called, in critical phenomena, static scaling. Needless 

to repeat, that the gels are all identical up to a concentration dependent 

scale factor. A by­product of the scale invariance is, that the gels are 

uniquely determined by two numbers, the fractal dimension d¡ and the 

length scale £ or the concentration c. This is a very economic way of telling 

the position of each colloidal particle in a gel. 

3 Surfaces 

Now we turn our attention to landscapes and in general to surfaces. My 

interest into surfaces was spurred by the now well­known Kardar­Parisi­

Zhang (KPZ) equation [5], which is a non­linear Langevin equation: 

^ ! l * ) = uV2h(x, t) + ±(Vh(x, t))2 + η(χ, i) . (6) 

This equation describes the spatial and temporal evolution of the height 

h(x,t) of an interface under the action of the surface tension v, a growing 

term proportional to ÇVh(x,t))2 and a Gaussian noise term q(x,t). It has 

solutions for the interface width w(L,t) in the form: 

w(L,t)~L*f(t/L2), (7) 

where χ is the roughening exponent, ζ the dynamical critical exponent and 

f(t/Lz) is an appropriate scaling function. The scaling function f(x) goes 
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to a constant for χ » 1 (long times) and f(x) ~ xx^z for χ « 1 (short 

times), indicating that Δ/ι ~ Lx at large time scales. The dynamic of any 

topographic feature of size L has an average lifetime of the order t ~ Lz. 

For time t « Lz the surface roughness evolves as Ah(L) ~ txlz. The 

approximated value for the exponents are: 

2 J 2(d + 2) 
X ~ ­ ; — ñ

 an
d ζ Rá — ; — — Λ d+3 d+3 

where d is the dimension of the system. 

Sornette and Zhang [6] modified equation (6) and applied it to erosion 

processes. The detailed prediction of the KPZ equation are given in Ta­

ble 2. The exponent ζ is for us of little interest, since it describes the 

Dimension d 

d = 2 

d = 3 

X 

2/5 = 0.4 

1/3 fa 0.33 

ζ 

8/5 

5/3 

d i = d ­ χ 

8/5 = 1.6 

8/3 « 2.67 

Table 2: Exponents from the KPZ equation. 

temporal evolution of the surface over geological time scales, which falls 

very well outside of our life span. Only for some fast erosion process, it will 

be possible and useful to know z. The exponent χ stimulates our interest, 

because it is involved in the spatial dependence of the surface width, hence 

it is connected to the fractal dimension d¡. An additional advantage to 

study χ is that static data are more readily available than the dynamical 

information. Topographic data usually extend from the meter scale up to 

hundreds of kilometers, offering a unique test of the KPZ equation. Beside 

the test of the KPZ equation, one would also like to learn something partic­

ular about the object under study, and not just prove its universal behavior. 

In the case of silica gels, we could determine the microscopic process being 

responsible for the aggregation (DLA model versus CCA model), for the 

topography it would be of great interest to know more about the erosion 

processes. 

To this end the height data of the Swiss topography, available in numeric 

format on computer disk [7], were analyzed in detail. First, let us define 

­ 333 



the static width w(L) of the interface by 

w(L) 

\ 

< 4 Σ ( ^ · ­ ^ )
2

> (8) Ν2 . , 

where Ν = L/t0 is the number of raster points in a length L and l0 the 

raster, /¿,j the height in meters at the coordinate ij and h = 1/N2 J2ij=i nij 

the average height. Expression (8) is essentially the rms deviation of the 

surface height. 

Secondly, the width w(L) has to be calculated [8]. For this purpose the 

whole Swiss surface was divided in squares of size L χ L and w(L) was 

averaged over all the squares, as it is defined in equation (8). Then to check 

for scaling behavior, w(L) was plotted on a double­logarithmic graph versus 

L. There are two scaling regions, one for small L < 5 km and one for large 

L > 5 km. The small L region has a scaling exponent χ « 0.57 whereas 

the large L region posseses a scaling exponent χ fa 0.27. The cross­over 

from one scaling regime to the other is at ξ fa 5 km. The second scaling 

regime is not true scaling, but is due to the linear slope in the data. If a 

plane is subtracted from the data, w(L) becomes constant for L > 5 km as 

it is shown by the dotted line in Fig. 6. How can we interpret our result 

and what can we learn from w(L)l Two points are worth mentioning: (a) 

a scaling regime for L < 5 km and (b) a cross­over to a regime where w(L) 

is constant. This behavior is similar to the one found for gels, which are 

self­similar on length scales smaller than a cross­over length ξ and behave 

like homogeneous materials for length scales larger than ξ. 

We therefore conclude, that the Swiss surface can be assimilated to a 

random collection of self­affine squares of size 5 km χ 5 km, which have 

identical statistical properties. 

Previous studies have never demonstrated the cross­over, probably be­

cause they were done on a limited set of data. Nevertheless, it is interesting 

to compare the fractal dimension found from different data sets. In Table 3 

an incomplete set of values is listed, together with theoretical predictions 

and an experimental value. The studies are mostly on 2­dimensional (tran­

sect data) data sets and all have a fractal dimension d¡ « 1.5, which is in 

good agreement with the KPZ predictions. One very interesting case, is 

the experiment of Czirk et al. [16], where a sand pile was eroded away by 

water poured on top of it and the fractal dimension has the lowest of all 

the 2­dimensional data sets. In general the theoretical predictions for df 

are higher than the measured values independently of the space dimension. 

Results from 3­dimensional data sets are listed in Table 3. For topographic 
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Figure 6: The interface width w(L) versus the horizontal scale L. For 
small L < 5 km the data follow a power law with exponent χ fa 0.57. For 
L > 5 km the width w(L) seems to obey a power law with another exponent 
χ fa 0.27. 
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Author 

Bell3 

Barenblatt et al.6 

Fox L· Hayesc 

Gibert & Courtillotd 

Huang & Turcotte6 

Newman ¿c Turcotte·' 

Dietier & Zhang3 

Dietier'1 

KPZ Equation1 

Czirók et al.·7 

Description 

Seafloor 

Seafloor 

Seafloor 

South Atlantic 

Earth Surface 

Earth Surface 

Swiss Topography 

Hard Material 

Theory 

Experiments 

d 

2 

2 

2 

2 

3 

2 

2 

3 

3 

2 

3 

2 

Size of Data Set 

700 km 

2500 km 

25 km 

4.5 km χ 4.5 km 

75 km 

350 km χ 250 km 

10 //m χ 10 μτη 

18 cm χ 60 cm 

df 

1.5 

1.285 

1.5 

1.5 

2.1 

1.5 

1.5 

2.43 

2.05 

1.6 

2.67 

1.21 

Table 3: Fractal dimension from topographic data. 

aRef. [9], fcRef. [10], cRef. [11], dRef. [12], eRef. [13], 'Ref. [14], *Ref. [8], 
¿Ref. [15], 'Ref. [5], jRef. [16]. 
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data d f is in the range 2.1 to 2.43, well below the theoretical predictions. A 
further example of 3-dimensional data is inserted in Table 3 and concerns 
the surface of a polished steel. The surface was imaged with an atomic 
force microscope and the height data were analyzed according to equation 
(8). The resulting w(L) curve is depicted in Fig. 7. If we assume, as we 
have concluded for the Swiss topography, that the surfaces are a collection 
of self-affine squares of the size ξ χ ξ, the width w(L) can be expressed by 
a simple formula: 

HL) = - ^ x (9) 

From fits of the curve in Fig. 7 the fractal dimension df = d — χ = 2.05 
and the cross-over length ξ = 570 nm were determined. 

4 Comparison between Disordered Materi­
als and Surfaces 

Let us compare the colloidal silica gels and the topography of surfaces. One 
important result of the colloidal aggregation is the differentiation between 
the DLA model and the CCA model, made possible by the fractal dimen­
sion. The small difference between the two models is reflected in a marked 
difference in fractal dimension. Thus, from the measured fractal dimen­
sion, one can draw conclusions about the microscopic processes undergoing 
during aggregation, demonstrating the power of fractal geometry. 

The surfaces behave in this respect rather differently, it is enough to 
look at the last column in Table 3 to perceive the message. In 2-dimensions 
the fractal dimension is d f fa 1.5, regardless of the very different geological 
objects that were considered, from the seafloor to the mountain ranges. 
This is in some respects a deceiving conclusion, since one would like to 
gain more knowledge out of the fractal dimension as it was the case for 
aggregation. 

One point I would like to stress here, namely that we need more re­
liable methods to determine df. Spectral methods have usually a larger 
uncertainty and require larger data sets, whereas our method is more pre­
cise. However, the measurement of the interface width w(L) is not without 
flaws. During the analysis of the Swiss topography we took a limited set 
of data (17.5 km χ 12.5 km) with a 25 meter raster [7] and analyzed it 
according to equation (8). The results were confusing, since the scaling 
exponent χ, and consequently df, are dependent upon the raster length £Q. 
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Figure 7: The interface width w(L) versus the horizontal scale L for a 

polished steel surface. There are about 8 orders of magnitude difference 

between this plot and the one in Fig. 6. The topography of this surface was 

measured on a square of size 10 μπι χ 10 /¿m. 
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Figure 8: w(L) versus L for two different raster sizes, (x) i0 = 25 m. (+) 

and (Δ) l0 = 250 m. For ¿0 = 25 m the scaling exponent is χ = 0.75, 

whereas for £0 = 250 m χ = 0.57. 
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In Fig. 8 w(L) is depicted versus L for different raster lengths: χ is varying 

from 0.57 for io = 250 m to 0.75 for ¿o = 25 m, implying a df from 2.43 to 

2.25. 

The cross­over phenomena is another important result that we have 

found in both examples discussed here. We can summarize the findings 

as follows: The disordered materials (in our case colloidal silica gels) and 

the Swiss topography have similar structure, namely they seem to be built 

out of a collection of self­similar objects of the size ξ (for the gels) or of a 

collection of self­affine squares of the size ξ χ ξ (for the Swiss topography) 

randomly arranged. This implies that the relevant self­affine structure in 

the Swiss topography has a 5 km scale. 
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