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Abstract

In this paper we consider instances of stable matching problems, namely the classi-
cal Stable Marriage (SM) and Stable Roommates (SR) problems and their variants. In
such instances we consider a stability criterion that has recently been proposed, that
of exchange-stability. In particular, we prove that ESM — the problem of deciding,
given an SM instance, whether an exchange-stable matching exists — is NP-complete.
This result is in marked constrast with Gale and Shapley’s classical linear-time algo-
rithm for finding a stable matching in an instance of SM. We also extend the result for
ESM to the SR case. Finally, we study some variants of ESM under weaker forms of
exchange-stability, presenting both polynomial-time solvability and NP-completeness
results for the corresponding existence questions.
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1 Introduction

In their seminal paper [5], Gale and Shapley introduced the well-known Stable Marriage
problem (SM). An instance I of SM involves a set U containing n men and a set W
containing n women. Each person ¢ € U U W has a preference list P(q) in which he/she
ranks all the members of the opposite sex in strict order of preference. A matching M in
I is a one-one correspondence between the men and women. If (m,w) € M for some man
m and woman w, then m is the mate of w, denoted by M (w), and vice versa. We say that
a (man,woman) pair (m,w) is a blocking pair of M if each of m and w prefers the other
to his/her mate in M. A matching that admits no blocking pair is said to be stable. Gale
and Shapley showed that every instance of SM admits at least one stable matching, and
gave an O(n?) algorithm for finding such a matching.

The Stable Marriage problem has been studied extensively [5, 14, 7, 20] and has a
number of important practical applications. Probably the largest and best-known of these
is concerned with the annual assignment of graduating medical students, or residents, to
their first hospital appointments [18, 11]. In a number of countries (for example the US,
Canada and Scotland), an automated matching scheme constructs stable matchings of
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residents to hospitals based on the preferences of residents over hospitals and vice versa,
using extensions of the Gale/Shapley algorithm for SM [7, Section 1.6].

A non-bipartite generalisation of SM that has also received much attention in the
literature is the Stable Roommates problem (SR) [5, 10], [7, Chapter 4]. An instance I of
SR involves 2n participants, and each participant ranks the 2n — 1 others in strict order
of preference. In this case a matching M is a set of n unordered pairs of participants in
I. If {p,q} € M then p is the mate of ¢, denoted by M(q). A blocking pair of M is a
pair of participants {p, ¢} such that each of p and ¢ prefers the other to his/her mate in
M. M is stable if it admits no blocking pair. SR was first studied by Gale and Shapley
[5] who showed that an instance need not admit a stable matching. Irving [10] formulated
a linear-time algorithm that finds a stable matching, or reports that none exists, given
an instance of SR. As the SR problem name suggests, an application is in assigning 2n
students to share n two-bed rooms, based on their preferences over one another.

Recently, an alternative notion of stability, so-called exchange-stability, has been in-
troduced by Alcalde in the context of SR (using the terminology £-stability) [3]. Given a
matching M in an instance I of SR, a sequence of participants (pg, p1, ..., pr—1), for some
r > 2, is an exchange-blocking coalition if p; prefers M (p;41) to M (p;), where 0 <i <r—1
(throughout this paper, all subscripts are taken modulo r when reasoning about exchange-
blocking coalitions). M is coalition-exchange-stable if M admits no exchange-blocking
coalition. The special case of an exchange-blocking coalition with r = 2 is also defined
as an ezxchange-blocking pair and is also denoted as an unordered pair {pg, p1}. Following
terminology in [4], M is exchange-stable if M admits no exchange-blocking pair. It follows
immediately that a coalition-exchange-stable matching is exchange-stable.

Alcalde showed that exchange-stability and classical stability are independent notions,
i.e. neither criterion implies the other. Indeed, he constructed an instance I of SR that
admits a stable matching but no exchange-stable matching, and an instance J of SR that
admits an exchange-stable matching but no stable matching. (These instances also suffice
to illustrate the same properties when ‘exchange’ is replaced by ‘coalition-exchange’ in
the preceding two sentences.) Alcalde argued that, in situations when participants have
“property rights”, exchange-stability could be more appropriate than classical stability.
For example, in the context of assigning 2n students to n two-bed rooms, an individual’s
property would be the bed that he/she occupies. A blocking pair {p,q} in the classical
sense might not lead to any disruption of the matching in practice, since there is no extra
room for p and ¢ to occupy, and moreover each of the mates of p and ¢ in the matching
could exercise their property rights by refusing to give up their bed in order to make a
room available. However an exchange-blocking pair {p, ¢} would in practice lead p and ¢
to simply swap beds.

The concept of an exchange-blocking coalition may also be defined in the SM case (the
members of such a coalition are necessarily of the same sex) and hence the definition of
an exchange-blocking pair also follows in this context.

In practice it is more likely that exchange-blocking pairs would arise, relative to a given
matching, due to the greater difficulty that the members of a large exchange-blocking
coalition may have in determining its existence. Hence in many situations it may suffice
to find a matching that is exchange-stable. In the majority of this paper we consider the
complexity of finding exchange-stable matchings in various problem contexts.

Further motivation for considering exchange-stability arises from a concrete practical
application where in reality an exchange-blocking pair has arisen [12]. In a previous
run of the Scottish PRHO Allocation scheme (SPA), the matching scheme for allocating
graduating medical students to hospital posts in Scotland [11], two participating students
discovered that, if they could have exchanged their assigned hospitals with each other,



then they would each have ended up with a more favourable assignment. Naturally the
hospitals to which the students were matched would not have permitted the exchange (for
if they were to have agreed, it would have implied that the original matching contained
a blocking pair with respect to classical stability, whereas the primary consideration of
SPA is to produce a matching that is stable in the classical sense). Nevertheless, such a
situation can lead participants to lose confidence in the optimality criterion involved in
the matching scheme.

It is known that the problem of deciding whether an SRII instance I admits an
exchange-stable matching is NP-complete [4], where SRII is the variant of SR in which
the preference lists in I are permitted to be incomplete and inconsistent. Incomplete pref-
erence lists arise when a given participant need not find all other participants acceptable.
If a participant p finds a participant ¢ unacceptable, then g does not appear in p’s pref-
erence list. Also, inconsistent preference lists arise when there are two participants p and
g such that p finds ¢ acceptable and ¢ finds p unacceptable. In this context, a matching
must not only satisfy the property that each participant p has a unique participant ¢ as
his/her mate, but moreover each of p and ¢ must find the other acceptable. The definition
of exchange-stability is analogous to that for the complete lists case (however, it should
be noted that the definition of an exchange-blocking pair {p, ¢} as given in [4] does not
assume that p and ¢ are acceptable to M(q) and M (p) respectively).

We now turn to the case of complete preference lists in SM and SR. Let ESM (respec-
tively ESR) denote the problem of deciding, given an instance I of SM (respectively SR),
whether I admits an exchange-stable matching. Cechlarova [4] gave an example instance
of SM involving two men and two women that does not admit a (coalition-)exchange-stable
matching. For completeness, we repeat the example here, representing a participant ¢’s
preference list P(q) in order, starting with the most-preferred mate:

P(ml) = Wi, W2 P(wl) = ma, M1
P(Tng) = W2, W1 P(wg) = mi, ma

It is easy to see that the matching {(mq,w1), (m2,w2)} admits the exchange-blocking pair
{wy,ws}, whilst the matching {(mi,ws), (me,w;)} admits the exchange-blocking pair
{m1, ma}. Cechldrova [4] left as open problems the complexities of both ESM and ESR.

In this paper we resolve the complexities of both of these problems. Firstly, we demon-
strate that, somewhat surprisingly, ESM is NP-complete. This result, proved in Section
2, is an interesting departure from what is usually regarded by the community as the
“expected” algorithmic behaviour of stable matching problems in general, i.e. polynomial-
time solvability. The NP-completeness of ESR then follows as a corollary, since as we shall
demonstrate in Section 3, ESM is a special case of ESR. Note that in the literature, there
are very few examples of stable matching problems that are NP-complete for strictly or-
dered and complete preference lists. To the best of our knowledge, apart from the results
in this paper, the only examples of such problems are the Hospitals / Residents prob-
lem with couples [16], the 3-Person Stable Assignment problem and the 3-Gender Stable
Marriage problem [15].

We also consider in Section 4 a weaker form of exchange-stability, given instances of SM
and its variants, in which exchange-blocking coalitions are permitted to contain only men
(or analogously, only women). Define a matching in an SM instance I to be man(woman)-
coalition-exchange-stable if there is no exchange-blocking coalition involving only men
(women). As before we may define a man(woman)-exchange-stable matching. As in the
SR case, one can extend these definitions to the variant of SM in which preference lists may
be incomplete, which we denote by SMI. The two cases of SMI in which preference lists are
consistent and inconsistent are denoted by SMIC and SMII respectively. We study man-
(coalition-)exchange-stability in these variants of SM, which may be grouped according to



two cases: (i) the preferences of the women are essentially irrelevant (this case includes SM
and SMIC), and (ii) the preferences of the women are relevant insofar as they are permitted
to exclude potential mates in a matching (this case includes SMII). For Case (i), firstly we
show that an instance of SM admits at least one man-coalition-exchange-stable matching,
and such a matching may be found in linear time. Secondly, if we are given an instance [
of SMIC, we show that the problem of finding a man-coalition-exchange-stable matching
in I, or reporting that none exists, is solvable in O(y/nL) time, where L is the total length
of the preference lists in I. These observations exploit a strong connection between man-
coalition-exchange-stable matchings and Pareto optimal matchings in instances of house
allocation problems [9, 1, 2] and housing markets [21, 19, 17]. By contrast, for Case (ii)
we show that problem of deciding whether a man-exchange-stable matching exists, given
an instance of SMII, is NP-complete.

Earlier in this section we outlined a number of practical applications involving the
computation of stable matchings. We also gave motivation for finding matchings that avoid
exchange-blocking pairs and exchange-blocking coalitions in such situations. Hence it is
natural to consider the problem of finding a stable matching that is (coalition-)exchange-
stable — we consider this problem in Section 5.

Finally in Section 6, we present some concluding remarks.

2 ESM is NP-complete

In this section we establish the NP-completeness of ESM. To justify our construction we
shall need the following modification of a result of Alcalde [3].

Lemma 2.1. Let I be an instance of SM in which U and W are the sets of men and
women respectively. Suppose that the men and women can be labelled myi, mo,...,my,
and wi,ws, ..., w, respectively, in such a way that each m € U has the same prefer-
ence list P(m) = wi,wa,...,wy, and each w € W has the same preference list P(w) =
mi,ma,...,My. Then any matching in I is coalition-exchange-stable.

Proof. Let M be a matching in I. Suppose that (m;, wy) € M and (mj,w;) € M, and
without loss of generality assume that ¢ < j. Then wy prefers M(wy) to M(w;). Now
assume that k& <[ (the argument is similar if [ < k). Then m; prefers M (m;) to M(m;).
Hence M admits no exchange-blocking coalition. O

Hence, for each n, there is an SM instance with n men and n women that admits n!
coalition-exchange-stable matchings. (We remark as an aside that, by constrast, it is easy
to show that an SM instance with n men and n women could never admit as many stable
matchings, for each n > 2.)

ESM clearly belongs to the class NP, since when an exchange-stable matching is given,
checking all pairs of men and all pairs of women verifies this property. We now give a
polynomial transformation to ESM from the following problem:

Restricted 3-satisfiability (R3SAT).

Instance: A Boolean formula B in Conjunctive Normal Form, with each clause
containing at most three literals and each variable x occurring at most twice as
literal z and at most twice as literal =.

Question: Is there a satisying truth assignment for B?

The NP-completeness of R3SAT was proved in [7, p.210]; see also [6, p.259]. We also
suppose, without loss of generality, that no clause contains both a literal and its negation,
since such a clause would be satisfied in any truth assignment.



Let B be a Boolean formula given as an instance of R3SAT, containing n variables
r1,T9,...,T, and m clauses C1,Cy, ..., C,,. We construct an ESM instance I.

In I, we shall have 5 types of participants, distinguished by letters representing them:
z- and g-participants are female, whilst u-, y- and h-participants are male. There are
4n of each of the z-, g- and y-participants. The number of u-participants is m, and the
number of h-participants is 4n — m (we remark that 4n > 3n > m).

To each clause C; one u-participant is assigned, denoted by wu;. For each variable
x; there will be 12 variable participants, forming a family. Participants x]l,y]l and gjl-
correspond to the first occurence of literal x; in the formula, x?, yj2 and 9]2 to its second;

y] and gj correspond to the first occurrence of literal 7; and participants x y] and
g] to its second. They are defined even if the corresponding literals are not actually
present in the formula. For simplicity, we shall adopt the following notation: the u-
participant corresponding to the clause containing the literal corresponding to a particular
x-participant will be denoted by u(z), and conversely, any z-participant corresponding to
a literal contained in the clause corresponding to a particular u-participant will be denoted
by x(u). (If a given literal appears in the formula only once or not at all, the function u(x)
for the missing z-participant is not defined.) Furthermore, two z- and y-participants with
the same set of indices and bars will be denoted by z(y) and y(x) respectively (they will
be called twins); similarly for the two y- and g-participants with the same set of indices
and bars we shall use the notation y(g) and g(y) respectively and call them each other’s
son and mother respectively.

Also, the 6 participants without bars from a family (i.e. :/c :c],y],y],g],gj) will be
said to form its true side and the 6 participants with the bar its false side. Moreover, for a
y-participant, ' (y) and #?(y) are the two x-participants from the other side of his family.

We shall suppose that for each type of participant there exists a linear ordering that en-
ables us to list them as g1,...,94n, A1, -5 Adn—m, UL, - Umy T1,-- -, Tap a0d Y1, ..., Yan-
In what follows, each participant p has a “proper” part of his/her preference list, the right-
most extent of which is indicated by a vertical line in p’s preference list. If () denotes the
group of participants listed in p’s preference list to the right of this vertical line, it should
be noted that implicitly we omit from @ any participants who have already appeared in
the proper part of p’s list.

Now we are ready to define the preference lists in I. The preference lists of u-
participants are as follows:

P(u;) = t1,wh t2, w63, wd, 28, 22,2 | 910+ -+ Gans Ty - - - Tan
where the z-participants denote x-participants representing the first, second and third
literal of clause C;. Participants t and wf are the two mothers from the other side of the
family of zf.

For example, suppose that the second clause Cs in the formula has the form

Cy =23V TV a1,
where for the literals To, 1 this is their first ocurrence and for x3 its second, then
1 -2 1 2-1-2 21 1
P(UQ) =93,93,92,92,91,91,%3, L9, L] | 9g1,---,94n, L1, ..., Tdn-

If the clause C; contains only two literals, then z t and w are simply not defined and
they will not appear in the preference list of w;.

Preferences of other types of participants are as follows. (Note that, as mentioned
above, if a given literal appears in the formula only once or not at all, the function u(x)



for the missing z-participant is not defined and the corresponding entry does not appear
in her preference list.)

P(y) = =), (¥),7°®),9u) | 21, Tan, 915+, Gan
Ph) = g1,--yGan | T1,..., Tan

P(z) = w@),y(@) | hiyeo s han—m, Y1y oy Ydn, Uly - - - Uy
P(g) = y(9),hi,- s han—m | Y1y s Ytn, Uty -y Um

Suppose that there exists a satisfying truth assigment f for the given formula B. We
shall define on its basis a matching M of the set of participants and then show that it
is exchange-stable in I. First, match each clause participant u; with the z-participant
corresponding to the first true literal in clause C; under f. It can happen, that in one
family, either both z-participants from one side will be matched with the u-participants,
or only one of them, or none. In any case, match the remaining x-participants to their
twins. The remaining y-participants will be matched to their mothers.

There remains to be matched a subset G of the set of g-participants of cardinality
4n — m. If we apply to G the ordering induced by the original ordering of g-participants,
we can use Lemma 2.1 to obtain an exchange-stable matching of G and the set of all
h-participants.

Lemma 2.2. The matching M s exchange-stable in I.
Proof. We shall successively consider all types of participants.

Woman z — she is matched either to u(z) (who is her first choice) or to y(x), to whom
she prefers only u(z). But in the latter case, u(z) is matched to some z’ and is her
first choice, so 2’ will not take part in any exchange-blocking pair.

Woman g — if she is matched to her son y(g), no exchange-blocking pair involving ¢ is
possible. Otherwise she is matched to some hj, to whom she prefers:

e y(g) — denote him by 3. But then ¢ is matched to z(y'), and x(y’) prefers ¢’
to hk

e Another h;. But h-participants are matched to g-participants according to
some exchange-stable matching by Lemma 2.1, so no exchange-blocking pair
involving g occurs.

Man y — he is matched either to his twin (in that case there is no possibility for y to
improve) or to his mother g(y). Let us now consider the participants preferred by y

to g(y).

e Twin z. But z must be matched to u(x), and the u-participants prefer to
those x only the g-participants who correspond to negations of literals in the
corresponding clause. However, we supposed that no clause contains a literal
and its negation, so u(z) will not co-operate with y in an exchange-blocking
pair.

e An 2/ from the other side of his family. But z’ must be matched to her twin
y(«'), and since ' is the first choice of y(z'), no exchange-blocking pair involving
x will arise.

Man h — he is matched to some woman ¢g and can prefer to his mate only another woman
g'. If ¢’ is matched to some A/, then no exchange-blocking pair involving h can occur
by Lemma 2.1. If ¢’ is matched to y(g’) then no exchange-blocking pair involving
y(g') can arise, since y(g') prefers ¢’ to g.



Man u — since no other types of participants can take part in any exchange-blocking
pair, we only need to consider pairs comprising two u-participants. But these could
exchange only x-participants corresponding to occurrences of literals contained in
the respective clauses. As the sets of those literal occurrences are mutually disjoint,
no exchange-blocking pair involving u-participants is possible. m

Conversely, suppose that M is an exchange-stable matching in I. We shall prove that
on the basis of M, it is possible to define a satisfying truth assigment for B. For that
we firstly need to derive some properties of exchange-stable matchings for the defined
preference lists in I.

Lemma 2.3. No u-participant can be matched in M to an x-participant not corresponding
to a literal contained in the respective clause.

Proof. Suppose that some u, let us call him wu;,, is matched to a woman xg, who does not
correspond to a literal contained in C;,. Now choose any x(u;,). If z(u;,) is matched to
some y or some h, then clearly xo prefers the mate of x(u;,) to w;,, and since u;, is the
first choice of x(u;, ), we have an exchange-blocking pair {xg, z(u;,)}.

Therefore let x(u;,) be matched to some w;,. If i9 < i1, then xg prefers u;, to u;,,
hence again we have an exchange-blocking pair {xg,z(u;,)}. Therefore i > i;. Now
choose any x(u;,). Similarly as before, if x(u;,) is matched to some y,h or u;, with
i3 < iz, women {x(u;,),z(u;,)} form an exchange-blocking pair. Hence i3 > is, and in
this way we construct a sequence u;, , uj,, Ui, . .. With 41 < s < i3 < .... As this sequence
cannot continue indefinitely, eventually we must obtain an exchange-blocking pair. O

Lemma 2.4. No u-participant can be matched in M to a g-participant.

Proof. Suppose that (u,g) € M. Let us take an arbitrary z(u). For this participant, u is
now unavailable, so Lemma 2.3 implies that z(u) must be matched to some y or some h.
Hence women {g, z(u)} form an exchange-blocking pair. O

Lemma 2.5. No g-participant can be matched in M to a y-participant other than y(g).

Proof. Suppose that y;, is matched to some gy other than g(y;,). Then we consider g(y;, ).
Clearly, g(y;,) prefers y;, to her mate. On the other hand, Lemma 2.4 implies that g(y;, )
cannot be matched to a u-participant, and if she is matched to any h-participant or to some
Yi, With i < i1, then we have an exchange-blocking pair {go, g(vi,)}. Therefore is > i;.
Now consider g(y;,). Similarly as before, g(y;,) must be matched to some y;, with i3 > is.

If we continue this argument, we get a sequence ¥;,, Yi,, Yis, - .- With 73 < 49 < i3 < ...
As this sequence cannot continue indefinitely, eventually an exchange-blocking pair must
occur. O

Lemma 2.6. No y-participant can be matched in M to an z-participant other than z(y).

Proof. Let y be matched to some z who is not his twin. Then his mother g(y) must be
matched to some h (by Lemmas 2.4 and 2.5) and so x prefers this h to y, and g(y) prefers
y to her mate too, so {z, g(y)} form an exchange-blocking pair. O

Lemmas 2.3-2.6 now imply:

Corollary 2.7. Fach u-participant is matched in M to an x-participant, corresponding
to a literal contained in the respective clause.

Corollary 2.8. For each z-participant matched in M to u(x), participant y(zx) is matched
in M to his mother.



Lemma 2.9. For a given family, it is impossible to have two x-participants from opposite
stdes matched in M to u-participants.

Proof. Suppose (u(m}),wé) € M and (u(f;),f;) € M (the case (u(fj’_l),fj’_’) € M can be
treated similarly). Then we also have (y;,g;) € M by Corollary 2.8. Hence u(Z}) prefers
g;- to his mate, and y;'- prefers Tz to his mate, so that {u(fé), y;} form an exchange-blocking
pair. ]

Therefore we may define on the basis of the exchange-stable matching M the Boolean

values of the variables in the formula B in the following way: x; will be true if 33]1 or x?

J
are matched to u(ajjl) or to u(x?) respectively, and z; will be false if f} or EJQ are matched
1 2

to u(Z;) or to u(T5) respectively. (If some variable is not assigned a Boolean value in this
way, its value can be arbitrary.) Lemma 2.9 ensures that these Boolean values are defined
consistently. Moreover, Corollary 2.7 ensures that under this truth assignment all clauses
are satisfied.

Hence the Boolean formula B is satisfiable if and only if the constructed ESM instance
I admits an exchange-stable matching. Therefore, together with our earlier observation

that ESM belongs to the class NP, we have proved the following result:
Theorem 2.10. ESM is NP-complete.

3 ESR is NP-complete

In this section we consider ESR, the non-bipartite generalisation of ESM. It is known that
SM is a special case of SR, i.e. given an instance I of SM, we may construct in polynomial
time an instance J of SR such that the set of stable matchings in I is equal to the set
of stable matchings in J [7, Lemma 4.1.1]. Analogously, ESM can be viewed as a special
case of ESR, as is shown by the following lemma (the proof is similar to that of Lemma
4.1.1 of [7]).

Lemma 3.1. Given an instance I of SM, we may construct in polynomial time an instance
J of SR such that the set of exchange-stable matchings in I is equal to the set of exchange-
stable matchings in J.

Proof. Suppose that there are n men and n women in I. The set of participants in J is
equal to the 2n men and women occurring in /. Each participant ¢’s preference list in J
is obtained from ¢’s list P(q) in I by appending all other members of the same sex, in
arbitrary order, to P(q).

Let M be an exchange-stable matching in I. Suppose {z,y} is an exchange-blocking
pair of M in J. Suppose, without loss of generality, that x is a man and y is a woman.
Then z cannot prefer y’s mate (a man) to his own mate (a woman), a contradiction.
Hence z,y are of the same sex, so that {x,y} is an exchange-blocking pair of M in I, a
contradiction. Hence M is exchange-stable in J.

Conversely suppose that M is an exchange-stable matching in J. Suppose that {z,y} €
M where z,y are both men. Then there exist two women z’,y’ such that {z/,y'} € M.
Hence {z,2'} is an exchange-blocking pair of M in J, a contradiction. Therefore M is a
matching in I. Suppose that {z,y} is an exchange-blocking pair of M in I. Then {z,y}
is also an exchange-blocking pair of M in J, a contradiction. Hence M is exchange-stable
in I. ]

The following corollary is an immediate consequence of Lemma 3.1 and Theorem 2.10.

Corollary 3.2. ESR is NP-complete.



4 Man-coalition-exchange-stability in SM

In this section we consider man-coalition-exchange-stability, given an instance I of SMI.
A matching M in I must satisfy the property that, if (m,w) € M then each of m and w
finds the other acceptable. The remainder of this section is split into two cases according
to whether the preference lists in I are consistent. In Section 4.1 we consider instances of
SM and SMIC, whilst in Section 4.2 we consider instances of SMII. Henceforth we denote
by L the total length of the preference lists in 1.

4.1 Consistent preference lists

We begin by assuming that the preference lists in I are consistent — in this context,
from the point of view of finding a man-coalition-exchange-stable matching, essentially
the preferences of the women are irrelevant. The results in this section are closely related
to results already known in the literature for the house allocation problem [9, 1] and for
housing markets [21, 19, 17]. An instance J of the house allocation problem may be
obtained from I by deleting the women’s preferences, and by interpreting the men as
agents and the women as houses, following terminology used in the literature.

We firstly consider the special case that all preference lists in I are complete (so that
I is an instance of SM). It turns out that, in contrast to the exchange-stability case, I is
bound to admit a man-coalition-exchange-stable matching, and moreover such a matching
may be found in linear time using a greedy algorithm known as the serial dictatorship
mechanism [1] applied to J. This algorithm assumes an ordering my, ..., m, of the agents
in J. For each ¢ in turn from 1,...,n, we match m; to the most-preferred unmatched
house on m;’s preference list in J. Denote by M the resultant matching. Abdulkadiroglu
and Sonmez [1] prove that M is Pareto optimal, i.e. there is no other matching M’ in J
such that (i) some agent m; prefers M’'(m;) to M (m;) and (ii) no agent m; prefers M (m;)
to M'(m;). A Pareto optimal matching in J is man-coalition-exchange-stable in I [2].
Putting these observations together gives the following result.

Theorem 4.1. FEvery instance of SM admits a man-coalition-exchange-stable matching,
and such a matching may be found in O(n?) time using the serial dictatorship mechanism.

The serial dictatorship mechanism is also outlined by Roth and Sotomayor [20, Exam-
ple 4.3], who remark that it is strategy proof (though does not in general lead to a stable
matching) and that a very similar procedure is used by the United States Naval Academy
in order to match graduating students to their first posts as Naval Officers.

We now consider the general case where preference lists in I may be incomplete. We
firstly define the underlying graph G = (V, E) of I. This contains a vertex corresponding
to each man m; and woman w;, and an edge {m;, w;} if and only if m; finds w; acceptable.
Clearly if G’ does not admit a perfect matching then I does not admit a man-coalition-
exchange-stable matching. The problem of deciding whether G admits a perfect matching
can be solved in O(y/nL) time [8]. We therefore assume that G admits a perfect matching
M —in general M may admit an exchange-blocking coalition consisting of men.

In order to eliminate such coalitions, we proceed as follows. If we take the house
allocation instance J and let the initial endowment be M (i.e. each agent m; owns the
house M (m;) initially) we obtain an instance K of a housing market [21, 19, 17]. Gale’s
Top Trading Cycles algorithm [21] may be applied to K in order to produce the unique
matching M’ that belongs to the core of the housing market K [21, 19]. That is, there is
no other matching M” and set of agents A in I such that:

1. M"(m;) € {wj € W : w; = M(my,) for some my, € A} for all m; € A;



2. some agent m; € A prefers M"(m;) to M'(m;);
3. no agent m; € A prefers M'(m;) to M"(m;).

Therefore M’ is Pareto optimal in K, and hence by [2], M is man-coalition-exchange-
stable in I. The Top Trading Cycles algorithm may be implemented to run in O(L) time
[2]. Hence we may summarise these discussions as follows.

Theorem 4.2. Given an instance of SMIC, we may find a man-coalition-exchange-stable
matching, or report that no such matching exists, in O(y/nL) time.

4.2 Inconsistent preference lists

We now consider instances of SMII. We denote by MESMII the problem of deciding, given
an instance of SMII, whether a man-exchange-stable matching exists. In this context it is
not necessary for either of the mates wy, ws of the men involved in an exchange-blocking
pair to find their new mates acceptable. Indeed, if the MESMII problem definition were
to include the assumption that wi, wo should find their new mate acceptable, then we may
delete inconsistent entries from the preference lists to obtain an instance of SMIC, and
hence the previous subsection would apply.
It turns out that MESMII is NP-complete, as we now prove.

Theorem 4.3. MESMII is NP-complete.

Proof. We consider a similar transformation to the one used in order to prove Theorem
2.10. As before, we are given a Boolean formula as an instance of R3SAT. However in this
case we create an instance I of SMII rather than SM.

The set of participants is exactly the same as before — the only modification to the
constructed instance of ESM is that each participant’s preference list comprises only the
proper part as defined previously (i.e. the participants to the left of the vertical line, in
the same order).

Given a satisfying truth assignment for the given formula, we construct an assignment
M of men to women as before. It is immediate that M is a matching in I, since every
participant was given a mate from the proper part of his/her list in the proof of Theorem
2.10. Furthermore, M is certainly man-exchange-sta