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CHAPTER 1: INTRODUCTION 

1.1. Background 

In the insurance industry, specific probability distributions are used to model the individual 

claims arising from the policies that the insurance company has issued: These are referred to as 

loss distributions (Achieng, 2010). 

Obtaining the total amount of claims for a specific period is a vital part of the daily work of 

insurance companies. This will help in various ways the management in running the company 

(Jouravlev, 2009). For instance, the insurance company will be able to calculate the premium 

for a type of policy by the use of the claim experience. Moreover, it will be able to reserve a 

certain amount of money to cover the cost of future claims. Premium computation and 

Reserving are not the only reasons for which loss distributions are needed. Loss distributions 

are also utilised in reviewing reinsurance arrangements and also in testing for solvency. This 

explicitly highlights the importance of loss distribution in the insurance industry. 

This paper therefore aims to determine the most suitable loss distributions for various sort of 

insurance contracts being general or life insurance in the Kenyan market industry. The 

following distributions will be compared: the exponential distribution, the Pareto distribution, 

the Generalised Pareto distribution, the lognormal distribution, the Weibull distribution & the 

Burr distribution. We will see how these distributions can be tailored in order to suit the 

observed data. Afterwards, a test of goodness-of-fit will be used to determine the level of 

robustness of the distribution in fitting the given data. The loss distributions will also be used 

in order the probabilities of future events happening. 

1.2.  Problem Statement 

For different types of insurance policies, specific distributions are commonly used to model 

data corresponding to the given data available. For instance, for fire insurance, discrete 

distributions such as the Poisson and the Negative Binomial distributions are preferred due to 

their believed suitability to that type of data. (Boadi et al., 2015). For other types of insurance 

policies, such as motor insurance, considered as a highly risky type of insurance, requires 

thoughtful measures in order to handle them (IRA, 2013).  According to Achieng (2010), claims 

arising from this type of insurance can be modelled using a lognormal distribution given that it 

suits better the claims than any other distribution. Additionally, there are other applications of 

loss distributions in other insurance sectors such as health insurance. In fact, Paranaiba et al. 
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(2011) showed that an improved Burr distribution can have an application in the health 

business.  

However, in reality, it is not that easy to find the appropriate distribution to use for a given data. 

This is due to the fact that the loss distributions, commonly used for certain types of insurance, 

have limitations. For example, for the lognormal distribution, it is unclear which base of 

logarithm should be chosen. Moreover, the nature of the distribution makes it difficult to 

interpret its skewness and kurtosis (Limpert et al., 2001).   

In a fast growing industry such as the Kenyan insurance market (IRA, 2015), it is hence 

substantial to determine the adequate loss distributions that can be used in the insurance 

industry.  

In his assessment of the challenges that the Kenyan insurance companies are facing, Kiragu 

(2014) concluded that the development of suitable products constitutes a considerable obstacle 

to the Kenyan market industry. The use of better loss distributions can help in reducing the 

impact of that barrier. 

There is therefore need to determine the different types of loss distributions that would be 

suitable for the various types of insurance policies that are offered and also determine to which 

such as a model should be trusted in modelling the levels of incoming claims in a given period 

of time.  

1.3.  Research Objectives 

The objective of this research is to determine for the adequate loss distribution for the claim 

amounts by applying a goodness-of-fit test on the selected loss distribution 

 

1.4. Research Questions 

Throughout the research, the paper will be seeking answers to the following questions: 

1. What should be the loss distribution for the given claim amounts? 

2. How well does this distribution fit the data? 
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1.5. Justification 

The purpose of the study is to determine an appropriate loss distribution for a given set of 

data. This is of relevance in the current insurance world because it provides the insurance 

company with better models that are used in their day-to-day activities. The advantage of this 

study is that it will help the insurance companies in obtaining more accurate results when 

dealing with various forms of claims and hence they will manage to minimise risk in a better 

way. Moreover, the research will benefit policyholders: Given that risk associated with claims 

has been minimised, the premiums that the policyholder pays will consequently be reduced.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. The Burr XII (BXII) distribution 

This section will try to highlight how various researchers have tried to approach the concept of 

loss distributions. We will start with Thomas Wright. In 2005, Wright, in his studies, tried to 

find the most approximate loss distribution for data consisting of 490 claims. These claims had 

been collected over a period of seven years. The approach used was the Maximum likelihood 

approach for each single year. The statistical distributions used were the inverse Pareto, Pareto, 

burr, Pearson VI, inverse burr log-normal, Burr XII (BXII) and the restricted benktander 

families. The benktander, the Pareto and the exponential families have a special property: if 

their truncation is taken separately, it will give another distribution in the same family. The 

benktander family mainly emphasises on excess claim amounts given a certain number of 

claims. However, for his study, he was dealing with whole claim data set and hence the 

benktander family could not be used for the given study.  

One of the realisations was that the cumulative distribution function (cdf) and the reliability of 

the BXII distribution can be written in a closed form and this hence greatly shortens the 

computation of the percentiles and the likelihood function for a given set of censored data. 

Some of the main characteristics of this distribution is that tails that are most the time algebraic. 

Zimmer et al (1998) had already established that the BXII distribution can be significantly 

relevant for modelling failure time data. This is due to its characteristic of an algebraic tail. 

Shao (2004a) confirmed the findings Zimmer et al had come up with earlier. Shao et al (2004b) 

continued the study of this distribution by analysing the distribution in relation with the good 

frequency analysis. Other researchers focused on the same distribution: Soliman (2005) stated 

that the distribution can be used as a provisional distribution for a given set data whose original 

distribution is not identified. Another group of researchers who also spent time on this 

distribution are Wu et al. (2007) who tried to find a solution the estimation problems arising 

from the use of this distribution. To achieve this, they used the progressive type II censoring 

where removals at each time were random and followed a discrete uniform distribution.  

 

Mathematically, the followings are respectively the cdf and the pdf of the BXII distribution: 

𝐹(𝑦; 𝑣, 𝑙, 𝑠) = (1 − (1 + (
𝑦

𝑠
)

𝑣

)
−𝑙
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And 𝑓(𝑦; 𝑣, 𝑙, 𝑠) = 𝑣𝑙𝑠−𝑣𝑦𝑣−1 [1 + (
𝑦

𝑠
)

𝑣

]
−𝑙−1

 

Where l > 0 and v > 0 are shape parameters and s > 0 is a scale parameter. The nth moment 

about zero of the BXII distribution (for n < lv) is given by: 

𝜕′𝑛 = 𝑠𝑛 ∗ 𝑙 ∗ 𝐵 (𝑙 −
𝑛

𝑐
,
𝑛

𝑐
+ 1) 

 

2.2. Exponentiated Inverted Weibull distribution  

In the past years, the Exponential Inverted Weibull Distribution ((EIW) has been used by 

various researchers. The reason for that is the ability of this distribution to approach different 

distributions when its shape parameter changes (KAN, PASHA, and H. PASHA, 2008).  

Flaih et al. (2012) discussed various aspects of the standard Exponential Inverted Weibull, the 

ancestor of the EIW distribution, such as its moments, its median, MLE… In their study, they tried 

to determine of the distributions, between EIW and the Inverted Weibull would fit better a certain 

set of data. As results, they arrived to the conclusion that EIW distribution would be fit better the 

given data.  

Other researchers such as Aljouharah Aljuaid (2013) also dealt with this distribution. He used the 

Bayes and classical estimators in order to estimate the parameters of the EIW distribution. Under 

type I censoring, Hassan (2013) used the EIW distribution in order to model the optimal 

designing of failure step-stress partially accelerated life tests with two stress levels. Another 

Notable use of the EIW distribution can be found in the studies of Hassan et al. (2014). In this 

study, an estimation of the population parameters for the EIW distribution was carried out based 

on grouped data with equi and unequi-spaced grouping. 

Mathematically, the followings are respectively the cdf and the pdf of the EIW distribution: 

𝐹(𝑥) = (𝑒−𝑥−𝜇
)

𝜃
  

Where x, θ, μ > 0 

𝑓(𝑥) =  𝜇 ∗ 𝜃 ∗ (𝑒−𝑥−𝜇
)

𝜃
∗ 𝑥−𝜇−1

  

Where x, θ, μ > 0 
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2.3. Data  

2.3.1. Data Collection 

A major issue while determining the appropriate loss distribution is the data collection. If the 

data used (i.e. the sample)  is not a good representative of the whole set that is needed to be 

analysed, the researcher might have difficulties in choosing the most suitable loss distribution 

or might even a model that is not consistent with the data that needs to be analysed. Various 

methods can be used to connect the sample data to the population: These are the conditional 

probabilities and also the maximum likelihood distribution. Various researchers (Baud, Frachot 

and Roncalli (2002) and Fontnouvelle et al. (2003)) have acknowledged the need to make this 

link between the sample and the population data. Additionally, Baud, Frachot and Roncalli 

(2002) went a step further and managed to demonstrate that neglecting reporting bias can cause 

considerable low or inadequate estimates of the severity distributions. Failing to ascertain an 

unbiased sample will result in strongly biased severity distribution; hence increasing the level 

of risk associated with the data. In their study, Baud, Frachot and Roncalli (2002) opted to treat 

the entire data as stochastic. However, this constitutes a serious burden in the sense that the 

maximum likelihood resulting from such a model would be extremely difficult to generate and 

also greatly impractical to use (Frachot et al., 2003).  

Mathematically, the maximum likelihood, aforementioned, would be of the form: 

  

max
(𝜇,𝜎)

𝑙𝑛(𝜇, 𝜎) = ⟨∑ 𝑙(𝜏𝑖 , 𝜇, 𝜎)𝑛
𝑖=1 |𝐻𝑖⟩ 

 

Where:  

 n is the number of losses; 

 ⟨∑ 𝑙(𝜏𝑖, 𝜇, 𝜎)𝑛
𝑖=1 |𝐻𝑖⟩: This is the summation of the log likelihoods of the n losses 

(reported subject to the threshold Hi). 
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2.3.2. Aggregate Losses 

In certain situations, losses are reported in a group that will then constitute the aggregate losses. 

This also constitute a problem in that the losses in a given group might have different loss 

distributions. Extracting information about the individual loss distributions is tiresome tedious 

task. Frachot, Georges and Roncalli (2001) suggested the Generalized Method of Moment 

(GMM) as a way to handle this issue. This method proved to be more efficient in dealing with 

both single-losses and aggregate losses simultaneously as Maximum Likelihood might be 

limited in some circumstances.  

One of the assumptions (and also the main assumption) of the GMM is that the data can be 

generated by a weakly stationary ergodic stochastic process. A stochastic process is assumed 

ergodic if its statistical properties can be deduced from a single, sufficiently long, random 

sample of the process.  

Mathematically, let us consider that the available data consists of T observations {Yt} t = 1...T, 

where Yt our random variable representing each observation. The aim of the estimation problem 

is to find at least a reasonably close estimate of θ. The reasoning behind the GMM is substitute 

the theoretical expected value with its empirical analog—sample average:  

�̂�(𝜃) =  
1

𝑇
∑ 𝑔(𝑌𝑡 , 𝜃)

𝑇

𝑡=1

 

The norm of this expression will then be minimized in light of θ. The minimized value of θ will 

then be used as the estimate of θ. 
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CHAPTER 3: METHODOLOGY 

0. Introduction 

This chapter details the actual process that is going to be used in finding plausible solutions to 

the research questions that have been formulated earlier on. The chapter is divided in various 

sections which are: Section 3.1 will give a picture of how the population and the sample design 

will be carried out; Section 3.2 explains the context in which the data collection is going to be 

carried out; The last part, the section process, will then conclude by showing how an adequate 

will be used to determine the appropriate distribution loss for a given type form of data. 

3.1. Population and Sample design 

As the goal of this study is to find the appropriate loss distribution for a certain type of data, the 

population will hence been all the insurance companies in Kenya, for both life insurance and 

nonlife insurance (or general insurance) companies. For life noninsurance companies, we will 

be dealing with the various policies that are offered in the Kenyan market such as: Auto 

insurance, Health insurance, Income protection insurance, Casualty insurance and so on.  

Given that there are forty seven (47) insurance companies offering both general insurance and 

life insurance products, there is thus a need to diminish that number to one that we can work 

with. For the purpose of this study, five (5) insurance companies will be considered as a sample 

for our research.  

3.2. Data Collection 

Required data will be obtained from secondary sources. The main source of data will be the 

Kenya insurance companies as we would want to identify the adequate loss distributions for 

various types of insurance products. The insurance company has to be registered by the 

Insurance Regulatory Authority, which is the Kenya body in charge of such activities.  

The data used will be annually (annual claims for that product), ranging from the year 2010 to 

2014 due to the availability of the Kenyan data and also the limited amount of time required to 

proceed all the claims associated with the various insurance products offered by the diverse 

companies. Both General insurance and life insurance companies will be part of the study that 

is being carried out. Reinsurance companies will not be part of the study due to the difficulty 

involved with collecting the amount of claims that have actually been settled.  
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3.3. Model Used 

Step 1 

The first step in developing the model will consist of calculating the descriptive parameters 

using the data that we will have obtained. For instance, the mean will be calculated using the 

following formula: 

 𝐸(𝑋) =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   

Where:  

 xi is the claim amount for the ith year ; 

 n is the total number of years. 

Other parameters such as the variance, the median will also be calculated. All the descriptive 

parameters will then be compared later with the parameters found using the likelihood function 

of various loss distributions. 

Step 2 

The second step will consist of calculating the parameters using estimates obtained from the 

maximum likelihood estimation method. This method has several advantages such as its 

desirable properties: consistency, efficiency, asymptotic normality and invariance. Another 

advantage of this method is the fact it incorporates all information provided about the 

parameters contained in the data.  

Consider Xi be the ith claim amount, where 1 ≤ i ≤ n. n being claims the total number of years, 

L is the likelihood function, θ is the parameter and f(x) is the probability distribution function 

of a specific loss distribution. 

The likelihood function of the claims data is given by: 

𝐿 = ∏ 𝑓(𝑋𝑖)

𝑛

𝑖=1

 

Where L is the likelihood function. 
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To get maximum likelihood, differentiation of the previous equation is done: 

𝑀𝐿𝐸 =  
𝑑𝑙

𝑑𝜃
 

To solve the value of the parameter, we will have to equate MLE to zero and hence get the 

value of the estimate.  

Step 3 

The last step will consist of comparing the descriptive parameters obtained and the estimate 

obtained from the various loss distributions. We will then choose the loss distribution that has 

an estimate that describes better the data. To achieve the above, we will be using a goodness-

of-fit test. The various steps will be: 

State the hypothesis  

The null hypothesis and the alternative hypothesis will be as follows: 

H0: The data are consistent with a specified distribution. 

Ha: The data are not consistent with a specified distribution. 

Sample Data Analysis 

The degrees of freedom, the expected frequency counts, test statistic, and the P-value are 

going to be calculated: 

 Degrees of freedom (DF): This will be equal to the number of years (n) of the 

categorical variable minus 1: DF = k - 1. 

 Test statistic: The test statistic is a chi-square random variable (Χ2) will be 

calculated using the following equation 

 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑛

𝑖=1

 

Where:  

 Oi is the observed value in the data for the ith year; 

 Ei is the value obtained from the loss distribution. 
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 The P-value. This is the probability of observing a sample statistic as extreme as the 

test statistic. Since the test statistic is a chi-square, use the Chi-Square Distribution 

Calculator to assess the probability associated with the test statistic. The degrees of 

freedom computed above will be used. 

 Interpretation 

If the P value is less than the significance level, the null hypothesis will be rejected. We will 

then compare the significance levels of the various loss distributions whose null hypothesizes 

were not rejected and the best of them will be chosen. The corresponding distribution will 

hence be the appropriate distribution for that data.  
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CHAPTER 4: DATA ANALYSIS 

The hypotheses to be tested in this study are stated below in their null form: 

H0: The data are consistent with a specified distribution; 

Ha: The data are not consistent with a specified distribution. 

We will first start by calculating the descriptive parameters using the data that we have 

obtained. 

The following table represents the required descriptive parameters for our data: 

Parameter Value 

1. Mean 
      3.385 

2. Variance 
72.343 

3. Standard Deviation 
8.505 

4. Median 
1.778 

5. Skewness 
      18.74983 

6. Kurtosis -483.764 

7. Number 2167 

  

All these values will be used when comparing the descriptive parameters obtained and the 

estimate obtained from the various loss distributions. We will now proceed to the second step 

of our methodology. This will consist of calculating the parameters using estimates of the 

maximum likelihood estimation method. This hence requires us to derive all these estimates 

from the distributions that were stated in the beginning of this study. These are the following: 

 Exponential distribution; 

 Pareto distribution; 

 Lognormal distribution; 

 Gamma distribution; 
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Derivation of the Estimates 

Exponential distribution 

The following is the probability distribution of the exponential distribution: 

𝑓(𝑥) =
1

𝜆
𝑒−𝜆𝑥 

Where x > 0 and λ a parameter.  

The mean and variance of the exponential distribution are the following: 

𝐸(𝑋) =
1

𝜇
  and 𝑉𝑎𝑟(𝑋) =

1

𝜇2
 

Let us now obtain the estimate of this function using the Maximum Likelihood Estimation 

(MLE) Method. 

The likelihood of obtaining the estimate from an exponential distribution with parameter λ is: 

 

To find the MLE, we need to find the value of λ that maximises the likelihood, or, 

alternatively, the value that maximises the log-likelihood: 

 

Differentiating to look for stationary points: 

 

Setting this to zero gives: 

 

The second derivative is 
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, 

This shows that this is a maximum. 

Pareto Distribution 

The following is the probability distribution of the Pareto distribution: 

 

Where: 

  

The mean and variance of the Pareto distribution are the following: 

 

To find the MLE, we need to find the value of λ that maximises the likelihood, or, 

alternatively, the value that maximises the log-likelihood: 

log 𝐿 = 𝑙𝑜𝑔 ∏ 𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

= ∑ 𝑙𝑜𝑔𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

 

Where θ is the unknown parameter. It can either be one of the two parameters: α or λ. 

After carrying out the appropriate computations, the estimate of the parameter α will be: 

�̂� =  
𝑛

∑ ln (
𝑋𝑖

𝜆
𝑛
𝑖=1 )

 

ln (
𝑋𝑖

𝜆
) is exponentially distributed with mean value 

1

𝛼
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Lognormal distribution 

The following is the probability distribution of the Pareto distribution: 

 

Where: 

 

The mean and variance of the lognormal distribution are the following: 

 

To find the MLE, we need to find the values of μ and σ that maximise the likelihood, or, 

alternatively, the value that maximises the log-likelihood: 

log 𝐿 = 𝑙𝑜𝑔 ∏ 𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

= ∑ 𝑙𝑜𝑔𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

 

Where θ is the unknown parameter. It can either be one of the two parameters: μ or σ. 

After carrying out the appropriate computations, the estimate of the parameters μ and σ will 

be: 

�̂� =
∑ ln (𝑋𝑖)𝑛

𝑖=1

𝑛
 

 �̂�2 =  
∑ (ln(𝑋𝑖) −

∑ ln(𝑋𝑖)𝑛
𝑖=1

𝑛
)𝑛

𝑖=1

2

𝑛
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Discussion 

After obtaining the different estimates formula of the loss distributions that we are supposed 

to use, we will then proceed to compute the expected values from each of the distributions. 

The first step consists of calculating the estimates using the formula. After that, we will then 

generate the various expected values of each distribution. These are the values that are going 

to be compared to the observed from our data. Afterwards, a hypothesis test is going to be 

carried to determine whether we have enough evidence to reject the null hypothesis. Our null 

hypothesis is that the data, which we are using in this study, are consistent with a specified 

distribution. This is going to be achieved by comparing a t statistic value and a t critical value. 

These values were obtained in Microsoft Excel using t-Test: Two-Sample Assuming Unequal 

Variances. This study was carried out using a confidence interval of 95 %. This is the most 

used level of confidence interval. 

We will start by the exponential distribution. 

Exponential Distribution 

t-Test: Two-Sample Assuming Unequal Variances   

   Observed   Expected  

Mean               

3.385    

            

0.0045    

Variance             

72.377    

            

0.0065    

Observations  2167 2167 

Hypothesized Mean Difference    

df  2166  

t Stat             

18.497    

 

P(T<=t) one-tail 0  

t Critical one-tail               

1.646    

 

P(T<=t) two-tail            0    
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t Critical two-tail               

1.961    

  

 

The results for this distribution show that on average the mean of the observed is way greater 

than the mean of the expected. It is also apparent that there is a significant difference between 

the variances of the observed and the expected values. The results of the t statistics are hence 

not surprising. The t-stat is higher than the critical value and the p-value is not significant at 

5%. We hence have enough evidence to reject the null hypothesis. 

 

The graph shows that the movement of the observed and the expected values have significant 

differences. The values of the observed values exhibit much larger variations than the values 

of the expected values. Once again, this confirms the results from the t statistic that the data, 

which we are using in this study, are consistent with the exponential distribution. 
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Pareto Distribution  

t-Test: Two-Sample Assuming Unequal Variances   

  Observed Expected 

Mean 3.385088304 0.000269545 

Variance 72.37674016 2.23985E-05 

Observations 2167 2167 

Hypothesized Mean Difference 0  

Df (Degrees of freedom) 2166  

t Stat 18,52103696  

P(T<=t) one-tail 1.64949E-71  

t Critical one-tail 1.645557424  

P(T<=t) two-tail 3.29898E-71  

t Critical two-tail 1.961059818   

 

Once again, the results for this distribution show that on average the mean of the observed is 

way greater than the mean of the observed. We can also see that there is a significant 

difference between the variances of the observed and the expected values; this way justifying 

the results of the t statistics. The t-stat is higher than the critical value and the p-value is not 

significant at 5%. We hence have enough evidence to reject the null hypothesis. 
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For this distribution, just like the previous one, the graph shows that the movement of the 

observed and the expected values have significant differences. The values of the observed 

values exhibit much larger variations than the values of the expected values. Once again, this 

confirms the results from the t statistic that the data of this study are not consistent with the 

Pareto distribution. 

Lognormal Distribution 

t-Test: Two-Sample Assuming Unequal Variances   

  Observed Expected 

Mean 3.385088 3.91E-07 

Variance 72.37674 2.94E-14 

Observations 2167 2167 

Hypothesized Mean Difference 0  

df 2166  

t Stat 18.52251  

P(T<=t) one-tail 1.61E-71  

t Critical one-tail 1.645557  

P(T<=t) two-tail 3.22E-71  

t Critical two-tail 1.96106   

 

The results obtained for this distribution have similarities with results from previous 

distributions. They show that on average the mean of the observed is way greater than the 

mean of the expected. It is also apparent that there is a significant difference between the 

variances of the observed and the expected values. The results of the t statistics are hence not 

surprising. The t-stat is higher than the critical value and the p-value is not significant at 5%. 

We hence have enough evidence to reject the null hypothesis. 
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Once again, the graph shows that the movement of the observed and the expected values have 

significant differences. The values of the observed values exhibit much larger variations than 

the values of the expected values. We can then confirm that the results from the t statistic are 

not consistent with the lognormal distribution. 
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CHAPTER 5: CONCLUSION 

In this paper, the hypothesis was supposed to be tested using Kenya Insurance data. However, 

due to lack of it, we used other insurance data. This does not constitute a major issue as the 

goal of the study was to show clearly the various steps that are required in order to obtain the 

most suitable distribution for a set of data. 

In the study, estimates from various distributions were generated and these were compared to 

the main data to determine which distribution suits most the data that was being used. The 

comparability was achieved by use carrying a hypothesis test. For all the distributions that 

were used in the study, the t-stat value was greater than the critical value. We will then choose 

the distribution with the lowest t-stat value; this is the Exponential Distribution. Henceforth, 

this is the distribution that is most suitable for the data that we had. Further studies could be 

carried out to determine the distributions that are most suitable for each class of insurance.  
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