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Dry etching is an important process for micro- and nanofabrication. Sputtering effects
can arise in two contexts within a dry-etch process. Incoming ions cause removal of
volatile products that arise from the interaction between the dry-etch plasma and
the surface to be etched. Also, the momentum transfer of an incoming ion can cause
direct removal of the material to be etched, which is undesirable as it can cause
electrical or optical damage to the underlying material. This is largely avoided in
dry-etch processes by use of reactive chemistries, although in some processes this
component of the etching can be significant. Etch processes, both machine type and
possible etch chemistries, are reviewed. Methods of characterizing the electrical and
optical damage related to ion impact at the substrate are described. The use of
highly reactive chemistries and molecular constituents within the plasma is best for
reducing the effects of damage.

Keywords: dry etching; damage; low-energy ions;
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1. Introduction

In the manufacture of semiconducting electronic and optoelectronic devices, a vital
step is that of pattern transfer. Here the pattern that has been defined in a radiation-
sensitive material (the resist) is transferred into the relevant layer of material. As
figure 1 shows, the transfer can be additive or subtractive; in practice subtractive
processes are preferred as they have higher reliability and so higher yield.

Subtractive processing involves etching or the removal of material. This can be
done using suitable wet chemicals or by dry etching in a vacuum system with the
assistance of ions formed by an electrical discharge in a gas. Wet-chemical methods
have a number of disadvantages. Wet etching is, in most cases, isotropic. The etched
feature has curved walls and its width differs from that of the opening in the resist.
If the aspect ratio (depth/width) of the desired feature is small, the isotopic nature
of the etching is often not important; however, in the closely packed structures found
in Very Large Scale Integration integrated circuits it is not acceptable. After wet-
chemical etching, the disposal of the partly used reagent can raise environmental
issues. Monolayer-thick layers of hydrocarbons can inhibit wet etching. In situ control
of etch depth is difficult.

One contribution of 11 to a Theme ‘Sputtering: past, present and future. W. R. Grove 150th Anniversary
Issue’.
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Figure 1. Distinction between additive and subtractive processing. (a) Additive processing;
(b) after removal of resist in strong solvent; (c¢) subtractive processing; (d) after etching and
removal of resist.

Dry etching relieves most of these difficulties (but at an increased capital cost).
As ions can be directed by an electrical field, it is possible to gain some control
over the profile of the etched feature. Often the composition of the gas mixture used
in the discharge is chosen so that volatile products of the reaction with materials
are formed that can be pumped away from the vacuum system. The exhaust gas is
normally scrubbed before discharge into the atmosphere. In situ control using optical
spectrometry to determine the transition between one layer and the next, or using
optical interferometry to establish the depth of etching, can readily be accomplished.
Selectivity of etching between two different materials is somewhat more difficult to
achieve in dry etching than in wet etching, but can be very high in certain cases.

2. Dry-etching machines

A summary of the characteristics of six common types of dry-etching machine is
shown in figure 2. The machine types are classified by the names most often used in
the literature, but the nomenclature is far from universal.

The action of the energetic ions on the substrate can be described as physical
sputtering if the material is removed purely through momentum transfer: the atoms
are knocked out by the impinging flux of ions. Purely physical etching is not widely
used, as the etch rate tends to be slow, and the profile of an etched feature is non-
vertical (see figure 3). However, it is employed in ion-beam machines (figure 2a)
employing noble-gas ions. In such machines (often known as ion millers) the ions are
initially created using a hot wire to ionize the gas and then are extracted by an ion
gun. The resulting beam, after overall neutralization by electrons, drifts towards the
target and sputters it.

In reactive etching, the gas is chosen so that ions and radicals formed after disso-
ciation of the gas in the discharge undergo a chemical reaction with the substrate—
preferably one that gives a chemical product that is volatile at the process pressure
so that it can be pumped away. This can be done in an ion-beam-etching machine by
introducing a reactive gas in front of the substrate so that it is ionized by collision
with the beam of noble-gas ions.

More usually, the discharge is formed by the action of an alternating electric field.
The field accelerates any electrons, which collide with the atoms or molecules of
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Figure 3. Typical profile of a masked opening after etching
after sputtering by a non-interacting ion.

the gas, producing ions and more electrons. This process continues until a discharge
is built up. Recombination of the ions into atoms or molecules by the capture or
emission of an electron may be accompanied by the emission of light. The light-
emitting plasma has overall electrical neutrality. At low pressures, say less than
50 mT, a dark space that is essentially free of ions appears between the electrodes
and the plasma. A DC voltage is developed across this dark space, its magnitude
depending on the pressure and frequency. This rectification occurs as the electrons,
being of very low mass, can follow the variation of a high-frequency field, while the
ions, being much heavier, may not be able to.

A reactive-ion-etching (RIE) machine (see figure 2b) is typically driven at 13.6 MHz
and at a pressure less than 50 mT. The two electrodes normally have different diam-
eters, and the smaller one, which carries the sample to be etched, is driven by the
radio-frequency (RF) field, the larger one being grounded. A voltage—the (self-) bias
voltage—is developed across the dark space above the driven electrode, and the ions
are accelerated across this dark space and so land upon the sample from a vertical
direction. Only a small proportion of the gas molecules are ionized in an RIE machine
(an ion density of 103-10° cm ™3 is typical (Chapman 1980)) and this proportion can
be increased by increasing the RF power. Increasing the RF power also increases the
bias voltage.

In a magnetron sputtering machine (see figure 2¢), an axial magnetic field is applied
to a machine that otherwise is similar to an RIE machine. The magnetic field causes
the electrons to spiral and so increases the time they are available to ionize the gas.
Thus, a more heavily ionized plasma may be obtained, and this tends to increase the
etching rate at a given power level.

It can be desirable to separate the generation of the plasma from the extraction
of the plasma, as this allows the density of the plasma (associated with etch rate) to
be adjusted independently of the bias voltage (associated with the damage inflicted
on the sample).

In an electron-cyclotron-resonance reactive-ion etching (ECR/RIE) machine (see
figure 2d), the plasma is generated by a microwave field, normally at a frequency of
2.36 GHz, and extracted by an RF field at 13.6 MHz. A magnetic field (the cyclotron
field B = m/ewc) of ca.0.08 T is applied axially. The effect of this field is to allow
efficient transfer of energy to the electrons and so to allow efficient ionization of the
gas. Such machines create relatively dense plasmas; however, the use of a low bias
voltage is not a necessary guarantee of low-damage etching.
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Figure 4. Processes on the surface of material during ion bombardment.

The inductively coupled plasma (ICP) etching machine (see figure 2e) is an alterna-
tive way of separating the generation of the plasma from the bias voltage. The plasma
is formed by inductive coupling of RF power from an RF coil wrapped around the
chamber; the ions are extracted by another RF or low-frequency supply applied to
an RIE-type electrode (Layadi et al. 1999).

The plasma etching machine (see figure 2f) usually has symmetric electrodes
with the sample immersed in the plasma. The self-bias voltage is low. If the etch
is anisotropic, this arises from the formation of a polymeric film (from the decompo-
sition products of the etching gas) during the process. It is widely used, with many
variations in silicon processing.

3. The role of ions in dry etching

The term ‘reactive-ion etching’ is in a way, a misnomer. In an important experiment,
Coburn & Winters (1979) investigated the etching of silicon in an argon-ion beam
with and without the addition of XeFs gas injected close to the sample. They found
that, while XeF, gas by itself etched silicon slowly and the argon-ion beam by itself
acted similarly, when both an ion beam and XeF5 were present the etch rate increased
by a factor of more than 20. They drew the conclusion that the ions promote the
conversion of the molecules of the gas into reactive species; in particular, the ions
enhance the rate of disassociative absorption of the XeF5 on the surface of the silicon
wafer. It disassociates into Xe and F radicals and the volatile product is SiF, (a gas
at room temperature and pressure, this sublimes at —95 °C). So the main role of the
ions is to promote the formation of radicals from the absorbed gas in the region of
the substrate that is not masked by an ion-resistant layer.

The interactions occurring on the surface of the material being etched are shown in
figure 4. Some ions may sputter the surface (which is very helpful in the initial stages
of etching, when inadvertent hydrocarbon contamination and surface oxide layers can
be removed) and some ions may ricochet and be reflected towards the sidewalls and
cause etching of them. However, the main effect of the ions is to release secondary
electrons that form radicals of the absorbed gas. These radicals may immediately
react with the material to be etched or they may migrate on the surface before
reaction.

While the production of radicals by the ion flux will lead to a greatly enhanced rate
of etching in the direction of, and over the area of, the ion flux that hits the exposed
substrate, it is not clear that this is the sole reason for the highly anisotropic etching
that can be obtained by RIE under the correct circumstances. Another possible cause

Phil. Trans. R. Soc. Lond. A (2004)



130 C. D. W. Wilkinson and M. Rahman

of anisotropic etching is the formation of a thin etch-resistant layer on the sidewalls
(sometimes called polymer formation or sidewall passivation). An example of this
is found in the etching of SiO, by CHF3. In the decomposition of CHF3, moieties
containing carbon and fluorine are made, and these can give rise to a polymer similar
to poly(tetrafluoroethylene). The polymer deposited on the sidewalls will sputter only
slowly, while on the surface it will be removed by sputtering much more rapidly, and
so vertical etching can proceed while the sidewalls are protected.

4. Choice of gases

The main ingredient of most etch-gas recipes is a halogen-containing gas. Fluorine is
widely used with silicon and silicon compounds, and chlorine is used with Ga-, Al- and
As-containing III-V compounds. However, in RIE, the volatility of indium chloride
at room temperature is low, so InP and the technologically important In-containing
ternary (e.g. In GaAs) and quaternary (e.g. GalnAsP) compounds require an alterna-
tive approach. Either the substrate can be heated (to more than 150 °C) or bromine-
or iodine-containing gases can be used (but such gases tend to attack the vacuum
system aggressively) or a mixture of methane and hydrogen can be used. The idea
with methane/hydrogen is to form a hydride (AsHy, say) and a metal-organic com-
pound (dimethyl-gallium, say). Methane/hydrogen is a surprisingly versatile etch;
introduced by Nollebrugge et al. (1985) to etch InP, it can be used for other III-V
(Cheung et al. 1987) and II-VI (Foad et al. 1992) compound semiconductors and
for thin-film magnetic materials (Khamsehpour et al. 1995).

In addition to the main gas, additives and dilutants are often used (Manos & Flann
1989). Additives are used to enhance some aspect of the chemistry. For instance, the
addition of 10% O to CF4 increases the etch rate by 10 times. In the discharge, CF4
is broken down into radicals CF3 and CF5. In the absence of oxygen these radicals
can recombine (both in the gas phase and on surfaces) into stable molecules, e.g.

CF3 4+ CF3 — CFg and CF3+F — CFy.

With oxygen present, it can react with the radicals to form CO, CO5 and COF, thus
releasing fluorine atoms that can etch

CFy2 + Oy — COF + F, COF+ 0O — CO2 +F.

Dilutants are usually noble gases. They can stabilize the plasma. SFg is an electro-
negative gas: it absorbs electrons upon ionization and so the cascade of ‘an electron
in, leading to a positive ion plus two electrons out’ is not possible. However, the
addition (and ionization) of argon adds more electrons and so helps to produce a
stable plasma.

There have been two useful recent reviews of the application of dry etching to the
production of Ultra Large Scale Integration integrated circuits in silicon: one from
IBM (Kuo 1999) and one from Bell Laboratories (Layadi et al. 1999).

5. Dry-etching damage

As dry etching involves the bombardment of the semiconductor surface with ener-
getic ions, its use brings a risk of damage to the electrical and optical properties
of the semiconductor. In silicon the damage can often be annealed in a subsequent
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thermal treatment, while annealing is rarely possible in binary semiconductors, as
decomposition of the material occurs at a lower temperature than would be necessary
for the annealing of defects.

Dry-etching damage typically manifests itself as a surface layer of material with
lower conductivity, the damaged layer being up to 100 nm deep. In dry-etching
processes, the ions falling upon the substrate usually have energies in the range
50-500 eV. The penetration range of ions from the gases typically used in dry etch-
ing (silicon tetrachloride, fluorinated hydrocarbons, dilutants such as argon) is only
a few nanometres at most for ions with energies up to 500 eV. The confused surface
layer (consisting of the original semiconductor and its fragments, gas molecules and
fragments of those molecules, and any involatile products of the semiconductor with
the gas) has a thickness of only a few lattice spacings at most. However, it is often
found that the electrical and optical properties of the semiconductor are damaged
to a much greater depth.

It is generally believed that this damage is due to the introduction of traps, vacan-
cies and interstitial atoms into the crystalline lattice. Some of these defects have been
explicitly identified (Johnson et al. 1994) in the case of RIE etching of GaAs using
SiCly. These impair the electrical behaviour of the semiconductor by reducing the
carrier concentration and/or the mobility and impair the optical behaviour by the
introduction of recombination centres, thus reducing the photoluminescence (PL)
efficiency.

The deepness of the damage was difficult to understand in the 1980s. An important
observation was made by Germann et al. (1989) when he found that the damage to
GaAs depended on the angle of the beam (an argon-ion beam in this case) with
respect to the crystallographic axes of the specimen. This suggested something akin
to channelling. Stoffel (1992) solved the problem. He used ab initio Monte Carlo
calculations of the path of ions on striking the surface of a semiconductor with
a diamond or zinc-blende lattice to show that, while most of the ions remained
on or very close to the surface, a small fraction (ca.0.1%) are channelled along
crystallographic directions, particularly the (110)-direction for ions striking a (100)
surface. These lucky ions penetrate much further into the surface and, when they
dechannel at the end of their trajectory, they cause traps and vacancies as well as
being new impurity atoms. This channelling occurs as the ions essentially see a more
open route if they happen to be scattered at the first impact with the surface in close
to one of the four (110)-directions.

The damage inflicted upon the surface of a semiconductor can be estimated in
many ways.

Schottky metal-semiconductor junctions (Pang 1986) made on the damaged and
untreated surface of a semiconductor show an increase in the ideality factor and
decrease in the breakdown voltage but, with such measurements, it is difficult to
estimate the depth of damage. In principle it is possible to wet etch a known depth
into the semiconductor, but in practice this proves difficult.

Van der Pauw measurement (Knoedler et al. 1989) of an epitaxial conducting layer
on top of an insulating substrate allows the characterization of the sheet conductance
and mobility as a function of etch depth.

Raman scattering (Wang et al. 1992) is a useful tool for the investigation of dam-
age, as such damage causes shifts and broadening in the phonon peaks. In particular,
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in highly doped III-V semiconductors, it allows the measurement of the depletion
depth, so giving information on the depth of damage.

The method, initially introduced by Lishan et al. (1988), that we have found most
useful is that of observation of PL in multiple quantum wells (QWs). A structure
consisting of a series of QWs of different widths is used, each width giving PL at a
particular wavelength. The PLs of etched and unetched samples are compared. The
intensity of the PL in the etched samples is reduced by the defects, and, as wells are
placed at a known depth from the surface, a depth profile of the damage is obtained.

The model for deep damage penetration due to low-energy dry etching is as follows.
Most of the bombarding ion flux is stopped at the surface of the material being
etched, with the main effect being disordering of the topmost monolayers of the
crystal. However, molecular dynamics (MD) simulations in both silicon and III-V
semiconductors show that, even at very low energies, (110) ion channelling is possible
(Bousetta et al. 1991). Thus, a small fraction of the order of ca.0.1% of the incoming
ions is scattered into directions aligned with the (110)-axes. These ions channel up
to tens of nanometres into the crystal and create defects when they dechannel.

We do not use MD simulations to model our experimental data, but instead exploit
an analytic approximation to the damage distribution (Rahman 1995a, b). The theory
we use gives an expression for the mean channelled distance, ., which agrees with
MD to within ca. 30% in the energy range up to 1 keV, with no adjustable parameters.
It has been shown (Rahman et al. 1992) that, as a result of dechannelling, defects

are created at a rate
(y) = e !
= X —_
g\y A p \ )

where « is the probability of an incident ion being scattered into a (110) channelling
direction, .J; is the incident ion flux, y is the depth below the surface being etched
and A\ = A\./v/2 is the mean depth in the y-direction.

The expression for A\ (nm) is given below. It applies to medium mass ions only,
channelling along (110) with an initial energy up to 1 keV. We note again that there
are no adjustable parameters.

77 Epa? 1)Doa® \f
he = 4511 x 10792222 (1 77 5 10 Eoean(f + D Doa”)
Dya Z57 Z5us
Z2
Do =3.729 x 10711 =1 f =259 —0.021ln 2, Zs,
Ml(l
0.4693
aTfF =

@+ 2

_ 1 (¢x) 1

$(z) = 0.9957 — 0.2448x + 0.0278z2 — 0.0012z3,

where x = 6, /T is the reduced temperature, Z;, Zo, My and My are atomic numbers
and masses (AMU) of incident and target nuclei, Fy is the forward ion energy (eV),
a is the lattice constant (A), T is the lattice temperature (K) and 6y, is the Debye
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Figure 5. Schematic of a low-energy ion-implant machine.

temperature (K). For GaAs/AlGaAs we approximate Zs and My by values for Ge, 6,
by the Debye temperature of GaAs at 300 K, and a for GaAs (Z2 = 32, 6, = 370 K,
a=5.63 A). For InGaAs/InAlAs, we again use Ge values for Z5 and Ma, but 6, for
InP at 300 K, and a for InP (Zy = 32, 6, = 430 K, a = 5.86 A). In our experiments
T =~ 313 K and we ignore possible heating of the substrate due to ion bombardment.

6. Low-damage etching

Extensive study has led to a number of general rules that assist in maintaining
low damage. The reactive nature of the etch chemistry in RIE is important, as the
enhanced etch rates lessen exposure times to the bombarding flux and remove damage
as quickly as it is created. Low ion energies are essential too, to lessen the effect of
channelling as described previously; it is observed from the above equation for the
mean channelled depth A. that this parameter scales with the bombardment energy
Ey of the ion. However, this does not give the entire story. We observed previously
that SiCly discharges created by ECR may sometimes lead to increased levels of
damage, despite the low ion energies. This we associated with the relatively high
CI" density in the ECR discharge. To investigate the situation more thoroughly we
have studied the damage due to separate Sit, CI*, (SiCl)*, (SiCly)* and (Cly)™
bombardment and due to the net bombardment in a SiCly; RIE environment.

Samples were prepared using an ultra-low-energy ion implanter. A schematic of
the machine is shown in figure 5. Tons are extracted from a SiCly discharge at 15 kV
and then are mass analysed by a bending magnet to select the desired isotope. A
second bending magnet traps neutral particles and directs the ion beam towards the
target. A deceleration lens just in front of the target reduces the ion energy to less
than 1 keV before bombardment. The distance between the neutral trap and target
is ca.1 m with the background pressure being ca. 10~ mbar. Energy contamination
of the ion beam due to 15 keV neutrals passing unaffected through the deceleration
lens is at the level of less than 0.01%. Figure 2b shows the typical RIE set-up. Tons
bombard the sample in both RIE and the implanter. In the case of RIE, a mixture of
many types of ion is directed towards the sample; in the case of the implanter single
species of ion may be selected.

The implant machine was used to implant ions into GaAs/AlGaAs QW materials
at energies of up to 300 eV and flux densities of 10'3-10'* ions cm ™2 s, comparable
with the conditions experienced inside an RIE chamber. The atomic ions Sit and
35C1* and the molecular ions (SiCl)*, (SiCly)™ and (Cly)™ were selected. Regions
of the samples were masked, as described already, to allow measurement of PL from

Phil. Trans. R. Soc. Lond. A (2004)



134 C. D. W. Wilkinson and M. Rahman

1.0

normalized PL, n

(b)

0 50 100 150 7,
QW width (nm) I

(e)
0 50 100 150
QW width (nm)

Figure 6. Experimental PL measured after bombardment from atomic and molecular ions in
the implanter. Lines denote theoretical values. (a) ClT implanted for 10 s (triangles) and 50 s
(crosses) at 300 eV. (b) Si* implanted for 75 s at 300 eV. (c) (SiC1)* implanted for 325 s, theory
lines are for 300 eV C1* (dashed line) and 80 eV C1* (solid line). (d) (SiCl2)* implanted for 515 s,
theory at single CIT flux (dashed line) and double CI* flux (solid line) at 300 eV. (e) (Cla)*
implanted for 350 s at 100 eV, theory at single C1T flux (dashed line) and double C1T flux (solid
line).

unexposed QWs. Talystep measurements confirmed any etching to be less than 10 nm
deep.

A second group of GaAs/AlGaAs samples was etched in SiCly RIE using a 12 W
process (Deng et al. 2000). Both RIE and ion-implanted samples were measured
using PL to probe the damage profile.

The model of damage is most readily applied to samples exposed within the ion
implanter, which we discuss first. The data points in figure 6a show the normalized
PL measured from samples exposed to 300 eV CIT in the ion implanter for two
different exposure times and doses (10s, ion dose of 10'® ionscm~2 and 50, 5 x
10*® ions cm ™2, respectively). The lines are calculations based on the model described
earlier. An increased dose leads to the accumulation of damage, as expected, because
the etch rate is low.

Figure 6b shows photoluminescence from samples exposed to 300 eV SiT at a dose
of 10 ions cm™2. At this energy, we observe that Sit reduces the PL intensity of
the first QW. Again, the lines denote calculations based on the model described
above. For both CI*™ and Sit the model calculations are in reasonable agreement
with measured data. Previous experiments using the ion implanter suggest that at
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very much lower energies (ca.50eV) Sit does not channel, but prefers instead to
deposit on GaAs.

The model described already applies only to atomic ions. An estimate of the
atomic-ion radius is given by the Thomas—Fermi length, atr ~ 0.01 nm. In con-
trast, molecular ions are much larger, due to the bond length, e.g. ca.0.20 nm for
Si-Cl. Comparing this with the channel diameter, ca.0.26 nm for (110) GaAs, we
see that the irregular shape and tumbling motion of molecular ions as they pass by
lattice nuclei ensures rapid large-angle scattering before channelling can begin. Such
molecular ions do not experience the smooth channel potential felt by atomic ions
and so cannot penetrate to any significant depth along low-index axes.

However, molecular ions may fragment into atomic ions upon impact at the sur-
face. These secondary atomic ions may channel, but at an energy much less that
that of the incident molecular ion. The situation is analogous to what happens when
creating ultra-shallow junctions in silicon by high-energy implantation of large molec-
ular ions. For example, in 30 kV implantation of BF5, the BF3 molecules fragment
upon impacting on the silicon surface and much lower energy boron implants into
the material (Smith et al. 1998).

Having studied atomic-ion bombardment in the implanter, we continued to exam-
ine the effect of molecular ion bombardment. Figure 6¢, d shows the effect of exposure
of the GaAs/AlGaAs QW layers to the molecular ions (SiCl)™ and (SiCly)*, at an
energy of 300 eV and ion dose of 106 ions cm~2. Figure 6e shows the effect of expo-
sure to (Cly)T at an energy 100 eV and ion dose of 105 ions cm~2.

We have argued that molecular ions do not channel, but fragmentation upon
impact may give lower energy atomic ions that may channel. As mentioned earlier, at
very low energies Si™ has been observed to accumulate so we assume that this causes
no significant measurable damage. Hence, the calculations plotted in figure 6¢c—e are
for CI* at energies much lower than the incident molecular-ion energy. The calcula-
tions allow for generation of CIT at twice the dose of (SiCly)™ and (Cly)™, as these
have twice as many Cl nuclei. We chose a secondary ion energy that is ca. 25% of the
incident molecular ion energy, to allow for kinematic effects and energy loss during
impact. From figure 6¢ it is clear that the low-energy Cl* flux describes the exper-
imental data well, and that in all cases (figure 6¢—¢) the effect of fragmentation is
evident in enhancing the secondary CI* ion flux.

We conclude that the model is able to describe well the effects of both atomic and
molecular ion bombardment. This permits the analysis of the more complex situation
arising within RIE machines, where the bombarding ion flux is a mixture of many
types of ion.

Thus, for comparison with the implanter data, the GaAs/AlGaAs was also etched
using SiCly RIE to test for the effect of the net bombardment. When very low power
SiCly RIE was used (10 W DC self-bias ca. 35 V), with the flow rate and pressure
given previously, no significant deterioration in PL intensity was evident even after
5 min of etching time. This showed that the etch stop works and that any subsequent
oxidation of the surface exposed to air does not affect the PL of the topmost QW.

A sample was also etched at 12 W (DC self-bias 80 V) with the SiCly process
described already. The data points of figure 7 show the resulting PL. The discharge
contains a mixture of Sit, CI*, (SiCl,)", and (Cly)™ according to optical-emission
spectroscopy, together with various neutrals. Although the exact composition of the
bombarding ion flux is not known, it will comprise some combination of the above
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Figure 7. Experimental PL. measured after exposure of the sample within an RIE machine.

ions. We have said that the bombarding molecular ions do not channel, but will
create secondary atomic ions that do, although only with energy much less than
80 eV. We have also said that at these low energies Si™ does not produce significant
observable damage.

Figure 7 also shows theoretical curves calculated for 80 eV and 20 eV ClT. This
allows a comparison of the effect expected for atomic CIT bombardment of the sam-
ple surface directly from the discharge (80 eV), or CIT channelling as a result of a
molecular ion impact (20 eV). The model curves show that the higher energy (80 eV)
ions contribute more to deep damage. The agreement with experiment suggests that
the damage occurs primarily from atomic ClT ions direct from the RIE discharge.
The data obtained for more complex discharges further support the conclusion that
the PL degradation as a result of etching may be explained primarily in terms of
atomic-ion channelling alone (Rahman et al. 2001).

This would explain why we have observed enhanced levels of damage in SiCly
ECR as compared to that in SiCly; RIE: increased atomic ClT generation in ECR as
observed using optical emission spectroscopy leads to more significant levels of deep
damage penetration. Presumably a similar conclusion holds for all high-density etch
systems, including ICP, although we have not tested this explicitly. This means that,
when etching nanostructures using either ECR or ICP, one should avoid conditions
that create a large density of atomic ions in the discharge, as this will raise levels of
damage above the minimum possible value even if quite low ion energies are being
used.

7. Conclusions

Dry etching plays a fundamental role in the fabrication of semiconducting devices.
Much development worldwide has gone into the realization of efficient processes that
allow reliable etching of nanometre-sized features of the desired profile.

Ion sputtering plays a vital but subtle role in dry etching. On the one hand, the
use of sputtering to remove material by momentum transfer is normally avoided in
practical dry-etching processes; as the etch rate is low and the profile inevitably non-
vertical. On the other hand, the energy release at the surface being bombarded by the
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ions crucially gives rise to the formation of the radicals that are the principal cause
of removal of material during dry etching. The kinetic energy of the bombarding ions
can give rise to the penetration of the ions into the material, and some of these ions
can be channelled along crystallographic directions to considerable depth. However,
in ITI-V semiconductors, this potential source of optical and electrical damage can
be minimized by a suitable choice of conditions that avoid the presence of atomic
ions and rely on molecular ions to undertake the bulk of the etching.
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Johnson at the University of Glasgow, and Jaap van den Berg and Dave Armour at the University
of Salford and Evelyn Hu at the University of California Santa Barbara. The technical assistance
of Dave Clifton, Colin Roberts and Ronnie Roger in the Dry Etching Facility at the University
of Glasgow is gratefully acknowledged.
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