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A bstract
W e com pute correlation functions in N = 2 non critical superstrings on the
sphere. O ur calculations are restrained to the (s = 0) buk am plitudes. W e show

that the four point fiinction factorizes as a consequence of the non—critical kinem at—
ics, but di erently from the N = 0;1 cases no extra discrete state appears in the
¢! 1 I it.
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C ritical N= 2 strings have been recently considered by several authors'##. O oguri
and Vafa! com puted explicitly scattering am plitudes as, e g., the our point fiinction
of the vertex operator

Z

where X ,X ,are the com plex m atter super elds and the on shell condition is given
by k Tk = @21 szz = 0 . As it tums out, the four point function vanishes
or the critical N = 2 superstring theory'. It seem s to be true that the higher
functions do also vanish in the critical theory. T his result has been obtained as a
consequence of the kinem atics in 2+ 2 din ensional space+tin e. A s a m atter of fact,
this vanishing was already expected, as argued by O oquriand Vafa. Indeed,N = 2
superstrings are extram ely sim ple string theories. O ther string theories present an
in nite tow er of particles, w hich should appear as bound states in the critical string
scattering am plitudes, as is the case of the Veneziano am plitude. H owever, in the
N = 2 string, there is only a m assless, scalar particle; the only way of obtaining
consistency w ith the Veneziano am plitude and to avoid the in nite tower of states
seam s to be through the vanishing of the am plitude. T his is actually what happens.
T here are several In plications com ing out of this vanishing of higher point fiinctions
asdiscussed in [1].

N evertheless, even critical N = 2 strings are worthw hile studying. In fact,
N = 2 theories are im portant ob fcts in the study of integrable theories, and
string vacua®”®. M oreover, there seem s to be a strong relation between self du-
ality in our din ensions and integrability®, a fact that has extrapolated the barrier
of din ensionality’. Finally, we should m ention that there is a deep relation be-
tween integrable m odels and deform ations of conform ally invariant theories® , which
although very interesting w ill not concem us in the present work, but which m ight
be In portant for N = 2 in order to understand the string vacuum .

Ourpresent aim is to consider the non critical N = 2 string theory. Thism ight
be seen as a generalization of previous e orts to understand string theories aw ay
from criticality’ . W e will be actually concemed with a N = 2 m atter super—
multiplet with ¢ 1 (c= 3¢) In a super Coulom b gas representation conform ally
coupled to a N = 2 superliouville theory. H ow ever, aswe shall see, the present case
contains a num ber of new technicaldi culties, which in part is due to the absence
of the so called \barrier" in the centralcharge. In fact, both critical points coalesce,
and the critical and non critical theories display a unique am algam ation of their
properties, enhancing the di culties in obtaining closed results.



T he appearance of Liouville theory as a byproduct of the integration over m atter

elds in a gravity background (as well as its supersym m etric extension) is by now
a very established issue!’® 2. In the case of N = 2 com plex super Liouville (Sgy, )
theory interacting w ith a gravitational eld we consider the action

S =Sg1, + Su

Z Z Z Z
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The super eds X ; (X ; ) are chiral (antichiral) and we have explicitly:
X (z7Z; 7 )=x(Z;2)+ =(Z;Z2) + 1(Z;2) +G(Z;2)
_ o o o L (2)
(zjzy 7 )="(2;2)+ r(Z;2) + 0(2;2) +F(2;2)
where ( W = ;7 = z * and 72 =z . The quantity ¥ stands

for the N = 2 supercurvature super eld and E for the superdeterm inant of the
superzw elbein .

A fter setting = 0 in Sg;, we have the follow ing expression for the last com —
ponent of the super energy m om entum tensor (holom orphic part):
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The rst com ponent of the super energy m om entum tensor isgiven by theU (1)
current® which generates the U (1) symm etry of N = 2 supersym m etric m odels. For
the (holom orphic) part of this currents we have:

J=Jsp + Ju
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T he propagators of the com ponent elds can be read from the kinetic term of (1):

h(z)X(w)i=h'(z)"(w)i= In wj 2
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Follow ing [22]we x Q In (1) in posing the vanishing of the totalcentralcharge

Cr = G, + Q1 + Cghosts = 0 7
3(1+ 20%) ;

CGL =
, (6)
ar = 3b;b=1 8§ ;
Cyhosts = 6 ;
Thus we have:
Q =27 0] (7)

where we chose Q to be real; this corresponds to a choice of phases, as one readily
veri es.

The constants = and in eg. (1) can be xed im posing that the operators

e ande havedm ension (1/2,1/2) (because of the double Integration over the
G ragn ann variables):
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Note that the operator e (e ) is chiral (antichiral) since it satis es the
chirality condition = +qg( = (qg), where the U (1) charge gofa ’ eld is
de ned asusual from the short distance expansion

Jw) (z)= + (10)

Tt is easy to check that the valuesof and = 1n eg. (9) assure vanishing U (1)
charge for the action Sg; as required, w ith the basic assignm ents g(d * ) = 1=2
g(d ). Therefore the solution (9) is clearly a consistent one.
A fterhaving xed the action, wem ust gpecify the vertex operators to calculate
correlation flinctions. For com parison w ith the critical’ case we shall be concen—
trated in vertex operators which are the analogous of the tachyon vertex operators

In the N = 0;1 cases. However in the noncritical theordes the operators m ust be
dressed by gravity. In the N = 2 non-critical case the vertex operator reads:
Z Z
V (k 'E) _ 32z ei(kX_+ XX )+ o+ 42 petkT+ kx)+ T+ 7
k) = =
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N otice that we have used on shellexpressions (with = 0) for the super eldsX X ):

= x(z;Z)+ r(z) + L@  ex? ex

b

(12)
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= X(z;z) g(z)° L@) +e@xT o+ ex

and analogously for ; . In equation (11) the com plex dressing is xed as a

function of the com plex m om entum k by im posing that the vertex V (k ;k) be a
din ensionless operator and its U (1) charge vanishes. T his am ounts respectively to:

. 1 — 1— 1— 1
el(kX+kX )+ + = “k(k 2 + Zk(k 2 _ + _ + =0
> ( 0) 5 ( 0) 5 ( Q) 5 ( Q)
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The rstequation xesthe realpart of thedressing (up to a sign):
+ Q k+k
- = 14
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In this paper we assum e the positive sign solution which is equivalent to positive
energy particles. T he equation (13) xes the In aginary part of

It w ill be convenient Jater on to w rite the noncritical vertex In a form sin ilar
to the critical one' :

Z Z

V (kjk)=  d2zg? &l Xl x4 A2 etk Xtk x)
[k @ ik @x (kg)k )ik @ ik @x (k )k )]

where the scalar product isde ned by a b= ap' + a’¥ and k= (k; i ),k =

k; 1),X = X;"),X = X;7),x=(x;"),%= &7, )= (rayira)
re) = (r@)i r@)) Notice that the second com ponent of the vector k is not
the com plex conjugate of the second com ponent of the vector k in the non critical
case

W e are now ready to com pute correlation filnctions
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W e use the sam e sym bol for the two com ponent vector and for its rst com ponent; there w ill
be no room for confiision since the two com ponent vector w ill only appear inside scalar products,

denoted by a dot.



The rst step is to integrate over the two zero m odes x§ ;x5 of the rst com po-
nent of the m atter super eld (x = x' + ix?). The result gives the conservation of
the real and im aginary parts of the m om enta k, both are encoded in the follow ing

formula:
xXn

ki= 2 ¢ (17)
i=1

The next step is the integration over the Liouville zero m odes’™? 7 5;72 (’
= 1+ i'2) thisismore

delicate in theN = 2 case. Ifwenaively integrateover ’ § and /2 in eg.(16) we
have a divergent result. It is not clear”® how this divergence should be reqularized.
W e opt form aking a W ick rotation in the zero m odes such that ' and 7, becom e
real. A fter Integrating over ’ ;7 , we have:
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where s = = ( i+ Q),and s = =( ;+ Q). Although our regularization

is rather ad’hoc we believe that our results for s = 0 = s bulk am plitudes are
independent of this procedure. From now on we only consider s = § = 0 buk
am plitudes:

i+ Q=0= ;+ 0 (19)

W e start by looking at the n = 3 point function. A fter xing the residual
) ()

O SP (2;2) symm etry choosing { = 3 ' =0andz =1 ;jz=1;2z3= 0we
have:
*
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and (In )= nitepartof lim %% ( s) ( §) .InorertorewriteA; in a

s;8!0 0
m ore sugestive form we need som e kineam atics. F irst of all it is easy to show (using
(13),(17) and (19)) that

><I1 —_
ci=2 oks ki)t (1 ;)0 =0 (22)

P
T he vanishing of ?z 1 Cij holds in the critical' case as a consequence of the

m om entum conservation and the on shell condition k= k = @21 szz = 0. It is
ram arkable that (22) holds also in the non critical case as a consequence of the zero
U (1) current condition (13).

W eassume from now on that o < 0 in thiscase we have from (13) and (14)

. _k+E
G- K i <ek=EES 23)
2 9 k ,if <ek < |
therefore
- - 0 i <ek >
k k= kk - © 0 (24)

4 ,(kek 0) ,if <ek <

U sing all these kinem atic relations we may write A° from (17) in the region
<ek, ;<eksz < g ;<ek; > ( in a factorized form :

In )? (=m k) — —
A= BN G ok T (25)
0

where =m k = ( 1) (ke Zk) . The am plitude vanishes for any other kinem atic region,
where at least twom om enta satisfy Rek >  and are therefore \on shell" (k k= 0)
in the critical sense. It should be stressed that the am plitude A 5 in the critical case

has the sam e form (17) but it cannot be w ritten in a factorized form as in (25).
() ()

Now we calulate the fourpoint amplitudeA4. Fixing ; "= , = 0 and
7z, =1 ;2= 1;2z3 = z;2z4 = 0 we have , after using (22), basically the sam e
expression as in the critical case:

Z
(h ), . t(t+ 2) 4cipcs 4oz
Ay,=—+— dz3j° zj " + + \h. c." 26
4= 102 323313(12)2 . T ( ) (26)

where s= 2s3;;t= 2sp3 and si5 = k; _]§+ Ei k. The hemm itian conjugated
part above corresponds to the previous term inside the brackets w ith Z instead of

T he calculations for ¢ > 0 are com pletely analogous.
O ur de nition of s and t correspond to tw ice of ref.[1 ] because their propagator correspond
to half of ours (see (5))



z. N ote that it is not really the hemm itian con jugated expression since Ei isnot the
com plex conjugated of k; as we stressed before.

A fter perform ing the integrals in (26) using form ulas of ref.[l1] and m aking
algebraic m anipulations which are consequence of kinem atic relations com m on to
the critical and noncritical cases we have:

(Ih )*_,
Ay= ——F—F" (s34) (s14) (524) (27)

w here B B B
F=[k kks Xk)ks k)+ \h.c.'] (28)

and (x)= )= (1 x).
The expression (27) is essentially the sam e one derived in critical case, the
di erence now comes from the fact that after xing the kinem atic region <ekq,
<ek,,<ek; < o,<eky > ( we have, after a long algebra, a very sin ple expression
forF :
((mky)2+ 2 ¥ _

F = 5 ki K- (29)
4 0

i=1

In the above kinem atic region we also obtain siy = (ky _]g) ,thereforewe can nally
write A 4, In a factorized fomm :

(h )® (=mkq)2+ 2°7 _

Ay = 16 2 : 1 ki k: (30)

1

A's In the case of the 3-point function (A 3), it can be shown that A, vanishes in
any kinem atic region where at least two m om enta satisfy <ek > .

In the critical lmiteé! 1( 5! O)wehave (1 k ik;) o thus,
(=m kgq)*

2
0

Ag( 0! 0) (n )?: (31)

If we absorb the factor 1= 2 (= 4 S) in the m easure of the path integral the am —
plitude A 4, diverges lke 1= o , otherw ise the am plitude vanishes A 4 o as in the
critical case! . Tt should be noticed, however, that the factor 1= ? (which com es
from the double zero m ode integrals) must be absent in A 3 (see (17)) f we want to
obtain the critical result in the 4 ! 0 1l it, otherw ise we would have a vanishing
3vpoint coupling. Thus we can not obtain both A 3 and A 4, of the critical case in
the o ! O lmm it (see conclusion).

For ¢ < 1 the interesting m odels are the m inin al ones and in these cases it is

easy to show that the functions (1 k ;i k) have no poles (or zeroes) thus, they
can be sim ply absorbed in the de nition of the vertices V (k;k) exactly as in the



N = 0;1 cases. Actually thefactor (I ki k)= 1+ k ) corresponds to the
factors'” 2 (1+ ? k%) and”  2(? k%) oftheN = landN = 0 cases
regpectively, In the sense that all these factorsbecome (1) = 0 for con gurations

w ith zero energy (E = <e + % = 0) which sho w s the decoupling of such states’?.

C onclusions

W e have calculated the three and four point (s= 0) bulk am plitude, in a non-
critical N = 2 superstring consisting ofa N = 2 m atter supem ultiplet w ith central
charge ¢ 1 (c= 3¢) confom ally coupled to an N = 2 super Liouville theory. W e
have show n that both am plitudesm ay be w ritten ,in a certain kinem atic region, in a
factorized form . For other kinem atic regions the am plitudes vanish . M oreover after
a suitable renom alization of the m easure of the path integralwe recover the result
for the threepoint am plitude of the critical case! in the limit o ! 0( ! 1 ).
T here is, however, an am azing di erence w ith respect to the critical string when
we look at the fourpoint am plitude in the sam e lim it, nam ely, we get a divergent
result (A4 1= ) rather than a vanishing one'. The di erence w ith the critical
case can be explained as follow s, the prefactor F in (29), which vanishes ddentically
in the critical case', goes to zero In the critical lim it (F o) but its vanishing
is supressed by the poles of the functions ( ki k) ( ( ki k) 1= o) which
usually correspond to intermm ediate states , such poles cancel in the critical case but
they show up in the non critical one as a direct consequence of the non analytic
structure of the dispersion relation (14) which pem ited to x com pletelly, in a
certain kinem atic region, the real part of the m om enta of one of the scattered
particles (in our case <eky = o). Thism eans that there m ay not exist a sm ooth
Iim it from the non critical to the critical case. W e should also m ention that it is
possible to rede ne the vertices V (k ;k) and the path integral m easure by pow ers
of (¢ such that the am plitudes become nite n the ! 0 Imit. In order to
conclide the discussion about the ¢ ! 1 lim it we ram ark that whatever is the
correct interpretation of A ; we do not have extra discrete statesas in theN = 0;1
cases and this is expected since the spectrum of critical N = 2 string is nite.

For ¢ < 1 the e ect of the functions ( k ; _]1;) isasmid asin theN = 0;1
cases and the s = 0 am plitudes are basically given by the factor (In )?.

Several agpects of our results are still unclear and a m ore carefull analysis is
needed, w ich would in ply the calculation of higher point am plitudesaswellassé 0
correlators, this is under progress.
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Since o works lke an infrared cut-o in non-critical calculations'® wem ight even speculate
that such poles correspond to the exchange of the m assless particle present in the critical theory.
T he non vanishing contribution of those poles in the non critical case m ight be attributed to the

non trivialkinem atics.



R eference

[L1H .Ooguri,C.Vafa,Nucl. Phys. B 361 (1991)469,B 367 (1991)83.

[2]1A .G weon and A . Shapere, Comel and Princeton preprints CLN S-92/1139,
IASSNS-HEP-92/14.

[31M .Li, Univ. Calibmia, Santa Barbara, UCSBTH -92/14

[4] C.Vafa, at the Simp. on Fields, Strings and Q uantum gravity, Beijng, 1989,
and Sum m er Schoolin H igh Energy Physicsand C osm ology, ICTP,1989,1990.

5] P.Fendley, S.D .M athur, C.Vafa and N.P.W amer, Phys. Lett. B 243
(1990)257.

6]M .K .Prasad,A .Sihha,L.L.Chau W ang, Phys. Rev. Lett. 43 (1979)750.

[7] E.W itten Nucl. Phys B 266 (1986)255; J.Avan, H.J.de Vega and J. M .
M aillet Phys. Lett. 171B (1986)255; E.Abdalla,M . Forger and M . Jacques
Nucl. Phys. B 307 (1988)198.

B]V.A .Fateev, Int. J.M od. Phys. A 12 (1991)2109;P.Fendley and K . Intrili-
gator HUPT -91/A 067.

O]A.Gupta,S.P.Trivediand M .B.W ise,Nucl. Phys. B340 (1990)475.
[10]M .Goulian and M .Li,Phys. Rev. Lett. 66 (1991)2051.
[11] V1L S.DotsenkoM od. Phys. Lett A 6 (1991)3601.
[l12]E.Abdalla,M .C.B.Abdalla,D .Dalmazi,K .Harada, Phys. Rev. Lett. 68
(1992) 1641; Int. J.M od. Phys. A to appear.
1 P.diFrancesco and D .Kutasov,NuclPhys. B 375(1992)119.

[13]

[14] I.K lebanov, Priceton Preprint PUPT 1271, 1991.

[I15]K .A0oki,E.dHoker,M od. Phys. Lett. A 7 (1992) 235,333.

[16] L.A arezGaum e, Ph. Zaugg, Phys. Lett. B273 (1991)81

[17] L.A varezGaume and J. L.M anez, M od. Phys. Lett. A 6 (1991)2039; L.
A arezGaume,H . Ttoyama,J.L .M anez and A . Zadra, CERN prep, 1992

81 G .M oore, N . Seidberg, M . Staudacher, Nucl. Phys. B 362(1991)665

9] A .M .Polyakov Phys. Lett. B103 (1981)207.

0]A .M .Polyakov Phys. Lett. B103 (1981)211.

1] 0 .A warez Nucl. Phys. B216 (1986)125;ibid B 238(1984) 61;E .Abdalla,M .
C.B.Abdalla and K .D .Rothe, Non perturbative m ethods in 2 din ensional
quantum , W orld Scienti ¢ Publising, 1991.

[22] J.Distler, Z H ousek ,H .Kawai, Int. J.M od. Phys. A 5 (1990)391.

[23] N . Seiberg and D .K utasov, Phys. Lett. B251(1990)67.

[24] N . Sebberg, Lecture at 1990 Yukawa Int. Sem . Common Trends in M ath.

and Q uantum Field T heory, and C argese m esting R andom Surfaces, Q uantum

G ravity and Strings, M ay 27, June 2, 1990; J. Polchinski, Strings 90 C onfer—

ence, College Station, TX ,M ar 12-17, 1990, Nucl. Phys. B 357(1991)241.



