
ar
X

iv
:h

ep
-p

h/
92

08
21

6v
1 

 1
0 

A
ug

 1
99

2

UTHEP–92–0501

May 1992

Multiple photon effects in pp scattering at SSC energies ∗

D. B. DeLaney

Department of Physics and Astronomy

The University of Tennessee, Knoxville, TN 37996–1200, USA

S. Jadach †

The University of Tennessee, Knoxville, TN 37996–1200, USA

and

TH Division, CERN, Geneva 23, Switzerland

Ch. Shio and G. Siopsis

Department of Physics and Astronomy

The University of Tennessee, Knoxville, TN 37996–1200

B. F. L. Ward

Department of Physics and Astronomy

The University of Tennessee, Knoxville, TN 37996–1200, USA

and

TH Division, CERN, Geneva 23, Switzerland

and

SLAC, Stanford University, Stanford, CA 94309, USA

ABSTRACT

The Monte Carlo program SSCYFS2 is used in conjunction with available parton distri-

bution functions to calculate the effects of multiple photon radiation on pp scattering at SSC

energies. Effects relevant to precision SSC physics such as Higgs discovery and exploration are

illustrated.
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Now that the SSC is under construction, it is important to prepare for the maximal explo-

ration of its new energy frontier. Higher-order radiative corrections to its basic physics processes

are then of large significance, for these corrections determine the precise level at which signals

for new physics or Higgs physics can be separated from background as well as the precise level

at which such signals can be measured. Accordingly, we have recently initiated [1] the develop-

ment and implementation of the YFS Monte Carlo approach in Ref. [2] to higher-order radiative

corrections to the SSC physics processes. In this Letter, we present our results for the multiple

photon radiative effects in pp → qq(′) + n(γ) + X where q, q′ = u, d, s, and we require that the

pp c.m.s. production angle of q(q′), θq(q′), must satisfy the SDC acceptance cut (GEM would

have a similar cut) |η| < 2.8 for definiteness. (We recall for completeness that the development

in Ref. [2] is based on the original work of Yennie, Frautschi and Suura in Ref. [3].)

Specifically, we use the Monte Carlo (MC) event generator SSCYFS2 which was developed

in Ref. [1] for

q(q̄)′ → q(q̄)′ + n(γ) (1)

and the parton distributions of Refs. [4] to simulate, on an event-by-event basis, the multiple

photon initial state radiative effects in

pp → qq(′) + n(γ) + X , (2)

where q, q′ = u, d, s.

The basic master formula for the cross-section is then the usual parton distribution convo-

lution

σ =
∑
q,q′

∫
Dq(x1)Dq′(x2)σYFS(x1x2s) dx1dx2 (3)

where Dq(x1) is the usual parton distribution of quark q in p and σYFS is the YFS multiple-

photon cross-section for (1) realized by MC methods in SSCYFS2 in Ref. [1]. We emphasize

that the formula in (3) is new in that it combines the YFS amlpitude based higher order

QED corrections to the reduced hard subprocess with the QCD evolved parton distributions.

The theoretical basis for this is the well-known factorization theorem for hard hadron–hadron

collisions [5]. Equivalently, since the distributions are strictly defined in the leading-log approxi-

mation framework, each emission of a gluon or a photon from an incoming parton is independent
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in that framework so that all gluon emissions may be factorized away from the photon emis-

sions,as we imply in (3), for the hard subprocess case.Note that this implies that the QED

corrections to the low energy data from which the Dq are evolved have been done properly [6].

We emphasize that the entire cross-section in (3) is also now realized by MC methods by using

such methods to choose x1 and x2 as well as to realize σYFS. The resulting program is called

SSCYFSP and it will be described in detail elsewhere [7]. Here, we present results obtained

with SSCYFSP and we comment on their implications for SSC physics objectives.

More precisely, our complete trigger cuts for our sample MC data are as follows:

Eγ > 3 GeV, Eparticleout > 80 GeV, θ > π/6 (4)

so that we expect these data to be relevant to the GEM and the SDC acceptances. For

this trigger, we show in turn in Figs. 1-5 the photon multiplicity, the total photon transverse

momentum, the total photon mass, the final v-distribution of the outgoing qq(′) system, and

the outgoing parton energy fraction distribution in the pp cms system.

What we see in Fig.1 is that the mean value of nγ is .133 ±.369. Thus, multiple photon

effects must be considered in detail in view of our cuts, where we require Eγ > 3 GeV.

In Fig. 2, we show that the total photon transverse momentum has a mean value

< p⊥,tot >= 4.1 ± 16.9 GeV. (5)

The key issue regarding background to H → γγ in the intermediate regime is how often we get

40 GeV<

∼
Eγ

<

∼
75 GeV in the transverse directions. We see from Fig. 2 that, even allowing for

realistic parton distributions, which clearly degrade substantially the energy available in the

reduced collisions in (3) on the average, we still will have to deal with this question in detail.

Such discussion will appear elsewhere.

In Fig. 3, we illustrate further the need to make a detailed study of the background from

multiple photon effects to H → γγ via the total photon mass plot, where we find the mean

value

〈Mnγ〉 = 〈((
∑

i

ki)
2)

1
2 〉 = 37.2 ± 6.9 GeV. (6)
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Again, the value of Mnγ emphasizes that the issue of how many such nγ final states in (2) can

fake H → γγ has to be studied in detail.[7]

The v ≡ (ŝ− ŝ′)/ŝ distribution shown in Fig. 4 illustrates again that a substantial fraction

of the available energy is radiated away. The mean value of v is

〈v〉 = .0179 ± .0668. (7)

Hence, even for heavy Higgs hunting at the SSC, a detailed assessment of the effect of this

radiation will be required. Such an assessment will appear elsewhere.[7]

Our final Fig. 5 shows the effect of the interplay of the parton distributions and our SS-

CYFSP multiple photon radiation in the final parton energy distribution. Our YFS radiation

shifts the average value of the parton energy to lower values by a fraction ∼ 0.5〈v〉 of
√

s
′
/2 so

that the final parton energy distribution is only slightly modified to softer values by our YFS

radiation.As expected , since our reduced cross section scales like 1/s′,our final parton energy

distribution is indeed significantly softer than our input distribution: in our input distribution,

we have

〈Eq/(
√

s/2)〉 ≃ .11 (8)

whereas in Fig. 5 we have

〈E ′
q/(

√
s′/2)〉 = .34 ± .27. (9)

This is consistent with (7) and it illustrates the effect of the reduced hard cross section on the

YFS radiation-the preference for smaller values of s′ weakens the YFS radiation effects relative

to what we found in Ref. [1], as expected. This is a consistency check on our work. In all

of our figures, our input distributions were those of Glück, Reya, and Vogt in Ref. [4]. We

have checked that the use of the distributions of Duke and Owens in Ref.[4] does not make a

significant change in our results. The trigger cross-section which we find, 5.672±.002 nanobarns,

is consistent with the results in Ref. [1] and references therein.

In summary, we have combined our SSCYFS2 MC event generator with the parton distri-

butions in Ref. [4] to make for the first time a realistic simulation of pp → qq(′) + n(γ) + X

at SSC energies on an event-by-event basis. We have found that the general character of the
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SSCYFS2 results in Ref. [1] for q(q̄) → q(q̄)′ + n(γ) still hold true for the pp case. Indeed, our

results emphasize the need for detailed n(γ) background studies to H → γγ and n(γ) radiative

studies in Higgs hunting analysis methods in general. Such work will appear elsewhere.[7]
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Figure Captions

1. Photon multiplicity for Eγ > 3 GeV in pp → qq(′) + n(γ) + X, with the trigger cuts in (4),

for
√

s = 40 TeV.(In each of our figures, we show histograms of the respective observable in

units as indicated in the title thereof.)

2. Total photon transverse momentum in GeV units in the pp cms system for the trigger cuts

in (4) for pp → qq(′) + n(γ) + X at
√

s = 40 TeV.

3. Total photon squared mass in GeV2 in pp → qq(′) + n(γ) + X for the trigger cuts in (4) at
√

s = 40 TeV.

4. v-distribution for pp → qq(′) + n(γ) + X at
√

s = 40 TeV for the trigger cuts in (4).

5. Final parton energy fraction distribution for pp → qq(′) + n(γ) + X at
√

s = 40 TeV for the

trigger cuts in (4); here, the parton energy is measured in the subprocess cms system.

5



References

[1] D. B. DeLaney et al., preprint UTHEP-92-0101, 1992.

[2] S. Jadach and B. F. L. Ward, Phys. Rev. D38 (1988) 2897; ibid. D39 (1989) 1471; ibid.

D40 (1989) 3582; Comp. Phys. Comm. 56 (1990) 351; CERN-TH 6230-91;

Phys. Lett. 274B (1992) 470, and references therein.

[3] D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (NY) 13 (1961) 379; K. T.

Mahanthappa, Phys. Rev. 126 (1962) 329.

[4] M. Glück, E. Reya, and A. Vogt, Z. Phys. C53 (1992) 127; D. W. Duke and J. F. Owens,

Phys. Rev. D30 (1984) 49.

[5] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438; ibid. 15 (1972) 675;

Yu. L. Dokshitser et al., Rev. Mod. Phys. 58 (1980) 269;Yu. L. Dokshitser et al.,Basics of

Perturbative QCD, (Frontieres,Gif-sur-Yvette,1991);R.D.Field,Applications of

Perturbative QCD,(Addison-Wesley,Redwood City,CA,1989), and references therein.

[6] L. W. Mo and Y.-S. Tsai,Rev. Mod. Phys. 41 (1969) 205.

[7] D. B. DeLaney et al., to appear.

6



PHOTON MULTIPLICITY

5.000 10.000 15.000 20.000
.000 · 105

2.500 · 105

5.000 · 105

7.500 · 105

10.000 · 105
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PHOTON SUM TRANSVERSE MOMENTUM (GeV)

.500 · 102 1.000 · 102 1.500 · 102 2.000 · 102
.000 · 104

2.500 · 104

5.000 · 104

7.500 · 104

10.000 · 104
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PHOTON SUM MASS SQUARED (GeV2)

1.000 · 104 2.000 · 104 3.000 · 104 4.000 · 104
.000 · 104

2.500 · 104

5.000 · 104

7.500 · 104

10.000 · 104
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v–DISTRIBUTION
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10.000 · 104
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PARTON ENERGY FRACTION
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