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BLOCK REPRESENTATION TYPE
OF REDUCED ENVELOPING ALGEBRAS

IAIN GORDON AND ALEXANDER PREMET

Abstract. Let K be an algebraically closed field of characteristic p, G a con-
nected, reductive K-group, g = Lie(G), χ ∈ g∗ and Uχ(g) the reduced envelop-

ing algebra of g associated with χ. Assume that G(1) is simply-connected, p is
good for G and g has a non-degenerate G-invariant bilinear form. All blocks
of Uχ(g) having finite and tame representation type are determined.

1. Introduction

Let G be a connected, reductive algebraic group over an algebraically closed field
of characteristic p and g = Lie(G). The Lie algebra g carries a natural restriction
map x 7→ x[p]. We assume that the derived groupG(1) of G is simply-connected, p is
a good prime for the root system of G, and g has a non-degenerateG-invariant bilin-
ear form. Given a linear function χ ∈ g∗, we denote by Uχ(g) the reduced enveloping
algebra of g associated with χ. Let χ = χs +χn be the Jordan decomposition of χ.
We fix a triangular decomposition g = n− ⊕ h⊕ n+ and, without loss of generality,
assume that χ vanishes on n+ and χs vanishes on n±. Then the blocks Bχ,λ of
Uχ(g) are parametrised by the set WΛχs/W , where W = NG(h)/ZG(h) is the Weyl
group of g and Λχs is the set of all λ ∈ h∗ satisfying λ(h)p − λ(h[p]) = χs(h)p for
all h ∈ h, [3]. Given λ ∈ Λχs , we denote the stabiliser of λ by W (λ).

In this paper, we show that the rank variety of Bχ,λ coincides with the intersec-
tion of the rank variety of Bχs,λ with the p-nilpotent cone of the coadjoint stabiliser
zg(χ), see Theorem 4.2. This result implies that the rank variety of Uχ(g) is equal
to the p-nilpotent cone of zg(χ), hence generalises in our class of Lie algebras the
main theorem of [38]. In proving Theorem 4.2 we use a deformation argument and
some tools from [38]. In particular, we employ the Mil’ner map β : U(g) → S(g)
and its analogue βχ : Uχ(g)→ Sχ(g) constructed in [38].

According to [9], [11] the dimension of the rank variety of a finite dimensional
Bχ,λ-module M equals the rate of growth of a minimal projective resolution of M .
So Theorem 4.2 enables us to compute the maximum value of the rate of growth of
minimal projective resolutions in the category of finite dimensional Bχ,λ-modules,
hence provides valuable information on the homological complexity of the blocks
of Uχ(g), see our analysis in Section 8. Combined with the results of Section 3 on
block degeneration and our determination of partial coinvariant algebras of tame
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representation type in Section 7, this information turns out to be almost sufficient
for detecting all blocks of Uχ(g) having finite and tame representation type. For G
almost simple and χ nilpotent the only case where we have to look closely at the
basic algebra of Bχ,λ, apart from the relatively easy regular case, is the case where
χ is subregular, G has type An and the stabiliser of λ in W has type An−1 as a
Coxeter group. These subregular blocks, denoted B, are studied in detail in Section
9. It is shown there that any such B is Morita equivalent to a quiver with relations
of “special biserial type”, hence tame. Notably, the quiver of any subregular tame
block has the same shape as in the sl2-case, and n, the rank of G(1), appears in the
relations only.

The classification of all blocks Bχ,λ of finite and tame representation type is
given in Theorems 5.2 and 5.3, which should be combined with Proposition 2.7.
The particular case when G is simple is straightforward to present. The general
case is similar, but there is one further example of a block of tame representation
type.

Theorem. In addition to the underlying hypotheses, assume G is simple. Let
χ ∈ N and λ ∈ Λ/W .
(i) The block Bχ,λ has finite representation type if and only if one of the following
occurs:

1. W = W (λ) ;
2. χ is regular and one of the following holds:

(a) W is of type An and W (λ) is of type An−1;
(b) W is of type Bn (or Cn) and W (λ) is of type Bn−1 (or Cn−1);
(c) W is of type G2 and W (λ) is of type A1.

(ii) The block Bχ,λ has tame representation type if and only if one of the following
occurs:

1. χ is regular and one of the following holds:
(a) W has rank 2;
(b) W is of type A3 and W (λ) is of type A1 ×A1;
(c) W is of type B3 (or C3) and W (λ) is of type A2;
(d) W is of type Dn and W (λ) is of type Dn−1;

2. χ is subregular, W is of type An and W (λ) is of type An−1.

The classification of the representation type of reduced enveloping algebras and
their blocks was begun, in the case χ = 0, by Pollack, [33], and explicit calculations
in the sl2 case were made by Fischer, Rudakov and Drozd, proving tameness, [8],
[42] and [5]. Since 0 is the subregular element of sl2, this is consistent with the
final part of the above theorem. For a general character, partial results on the
representation type of reduced enveloping algebras were discovered by the second
author, using rank varieties, [38]. In Theorem 5.4 we give a precise description of
the representation type of reduced enveloping algebras, refining this. Later, blocks
of finite representation type were classified for characters of standard Levi type by
Nakano and Pollack, [32]. This was generalised to arbitrary characters by Brown
and the first author, [3], giving Part (i) of the above theorem.

It is known that any indecomposable non-projective U0(sl2)-module is up to
isomorphism either a Weyl module or a dual Weyl module or a maximal submodule
of a Weyl module, see [34]. It would be interesting to obtain a purely Lie theoretic
description of all indecomposable representations of the subregular tame blocks.
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2. Generalities

2.1. Let G be a connected, reductive algebraic group over K, an algebraically
closed field of characteristic p, and let g = Lie(G). We assume the following hy-
potheses are satisfied:

(A) the derived group G(1) of G is simply-connected;
(B) p is a good prime for G;
(C) g has a non-degenerate G-invariant bilinear form.

We will denote the bilinear form on g by

B( , ) : g× g −→ K.

Let T be a maximal torus of G and let h = Lie(T ). Let Φ be the root system of G
with respect to T . For each α ∈ Φ let Uα denote the corresponding root subgroup
of G and let gα = Lie(Uα) be its Lie algebra, a root subspace of g. We will abuse
notation by considering α ∈ h∗ rather than its proper designation dα. Choose a
system Φ+ of positive roots and set n+ equal to the sum of all gα with α > 0.
The subalgebra n− is similarly defined on Φ−, the negative roots. We have the
triangular decomposition

g = n− ⊕ h⊕ n+.

Let b+ = h ⊕ n+, the Lie algebra of a Borel subgroup of G containing T . Let
∆ = {α1, . . . , αn} denote the simple roots associated with the choice of positive
roots Φ+.

Let X = X(T ) be the character group of T . This contains the root lattice,
Q = ZΦ, as a subgroup. For α ∈ Φ+, there exists hα ∈ [gα, g−α] such that
λ(hα) ≡ 〈λ, α∨〉(p) for all λ ∈ X(T ). Let W be the Weyl group of G. Then W is
generated by the simple reflections sα for all α ∈ ∆. There is an action of W on
both X(T ) and h∗, given by sα(λ) = λ− λ(hα)α.

2.2. We write g.x for the adjoint action of an element g ∈ G on an element
x ∈ g. Similarly we will write g.χ for the coadjoint action of G on g∗, defined by
g.χ(x) = χ(g−1.x). Let θ : g −→ g∗ send x ∈ g to the functional θ(x) defined
by θ(x)(y) = B(x, y) for all y ∈ g. By Hypothesis (C), θ is a G-equivariant
isomorphism.

Recall there is a Jordan decomposition in g: each element x ∈ g can be written
uniquely as x = xs + xn with xs semisimple, xn nilpotent and [xs, xn] = 0. Given
x ∈ g, we can always find g ∈ G such that g.x ∈ b+, [2, Proposition 14.25]. Let
zg(x) = {y ∈ g : [x, y] = 0} and ZG(x) = {g ∈ G : g.x = x}. If x is semisimple,
then ZG(x) is a connected, reductive algebraic group satisfying Hypotheses (A),
(B) and (C), and Lie(ZG(x)) = zg(x), [19, Theorem 3.10], [44, II.3.19] and [24, 6.5].

Using θ, we can transfer the Jordan decomposition to g∗. In particular, any
element of g∗ is conjugate to χ ∈ g∗ such that χ(n+) = 0. For χ ∈ g∗ let zg(χ) =
{y ∈ g : χ([g, y]) = 0} and ZG(χ) = {g ∈ G : g.χ = χ}. Then ZG(x) = ZG(θ(x))
and zg(x) = zg(θ(x)).

2.3. Since g = Lie(G), g is a restricted Lie algebra with restriction x 7−→ x[p].
The p-centre Zp = K[xp − x[p] : x ∈ g] is a central subalgebra of U = U(g), the
enveloping algebra of g. By the PBW theorem Zp is a polynomial ring in dim g

variables and U(g) is free over Zp of rank pdim g.
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Given χ ∈ g∗, define Iχ as the ideal of U(g) generated by the elements xp −
x[p] − χ(x)p for x ∈ g. Set Uχ = Uχ(g) = U(g)/Iχ, a reduced enveloping algebra.
This is an algebra of dimension pdimg. As the isomorphism class of Uχ depends
only on the G-orbit of χ ∈ g∗, [24, 2.9], it suffices, by Section 2.2, to look at χ
satisfying χ(n+) = 0. In this case if χ = χs+χn is the Jordan decomposition, then,
possibly after further conjugation, we also have χs(n−) = 0 and χn(h) = 0, and so
in particular we can consider χs ∈ h∗.

2.4. Let χ = χs + χn ∈ g∗ with χ(n+) = 0, and set

Λχs = {λ ∈ h∗ : λ(h)p − λ(h[p]) = χs(h)p for all h ∈ h}.
By Hypothesis (A) the elements hα for α simple are linearly independent, so, since
h

[p]
α = hα, we can find ρ ∈ Λ0 such that ρ(hα) = 1 for all simple α. Fix once and for

all such a ρ. Note that W acts on Λ0. For each λ ∈ Λ0 let W (λ) = {w ∈W : w(λ) =
λ}, a parabolic subgroup, [30, Lemma 7]. In general we will only be interested in
λ up to W -conjugacy, so we may assume without loss of generality that W (λ) is a
standard parabolic subgroup; that is, it is generated by simple reflections.

2.5. For each λ ∈ Λχs one defines a baby Verma module

Zχ(λ) := Uχ(g)⊗Uχ(b+) Kλ−ρ,

where b+ = n+ ⊕ h and Kλ−ρ is the one dimensional Uχ(b+)-module defined by
λ−ρ. Every irreducible Uχ(g)-module is a factor of a baby Verma module, although
in general a baby Verma module can have several irreducible images, and different
choices of λ can yield the same module [24, 6.7, 6.9].

2.6. Let Z = Z(U(g)), Z1 = U(g)G ⊂ Z. By [30, Theorem 2] and [3, Theorem
3.5] there is a K-algebra isomorphism

Z ∼= Z1 ⊗Zp∩Z1 Zp.(1)

We have a natural map Z⊗ZpKχs −→ Uχ sending z⊗1 to z+Iχ. By [30, Theorem
10] the primary components of Z ⊗Zp Kχs are labelled by elements of the orbits of
W on the set WΛχs , denoted by WΛχs/W . Thanks to (1) we have an isomorphism

Z ⊗Zp Kχs
∼= Z1 ⊗Zp∩Z1 Kχs .(2)

Let {eλ̃ ∈ Z1 : λ̃ ∈ WΛχs/W} be a set of elements such that {eλ̃ ⊗ 1 : λ̃ ∈
WΛχs/W} correspond to a set of primitive idempotents of Z ⊗Zp Kχs under (2).
By [3, Theorem 3.18] the elements eλ̃ + Iχ ∈ Uχ give a complete list of central
primitive idempotents of Uχ as λ̃ runs through WΛχs/W . In other words we have
a block decomposition of Uχ(g):

Uχ(g) =
⊕

λ̃∈WΛχs/W

Bχ,λ̃(g),(3)

where Bχ,λ̃(g) = eλ̃Uχ(g). By [24, 10.11] the baby Verma module Zχ(λ) belongs to
Bχ,λ̃(g), where λ̃ is a representative for the orbit of λ.

Remarks. 1. The reference [3, Theorem 3.5] requires the assumption p 6= 2. If p = 2
then the block decomposition of Uχ(g) remains valid thanks to [16, Theorem 3.6].
Moreover, if G = SLn(K) or GLn(K), then [3, Theorem 3.5] continues to hold and
the results of this section go through. Thanks to Proposition 6.5 this is sufficient
for our applications.
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2. If no confusion can occur, we will write Bχ,λ when really we mean Bχ,λ̃(g) for
some Lie algebra g and some representative λ̃ of the orbit of λ ∈ Λχs .

2.7. The following is an easy consequence of [46, Theorem 2] and [11, Theorem
3.2].

Proposition. Let χ = χs + χn ∈ g∗ and let W ′ be the Weyl group of ZG(χs).
Then there is a bijection

π : WΛχs/W −→ Λ0/W
′,

such that for any λ ∈ WΛχs/W we have an algebra isomorphism

Bχ,λ(g) ∼= Matpd
(
Bχn,π(λ)(zg(χs))

)
,

where d = 1
2 (dimG.χs).

Proof. We may assume that χ(n+) = 0. Let Φχ = {α ∈ Φ : χs(hα) = 0}. Then
zg(χs) is the algebra generated by h and the root spaces gα for α ∈ Φχ, [24, 7.4].

Choose an element ν ∈ Λχs such that ν(hα) = 0 for all α ∈ Φχ. We have a
W ′-equivariant bijection between Λ0 and Λχs sending µ to µ + ν. Thus Λ0/W

′

is isomorphic to W ′Λχs/W ′. Moreover, the inclusion Λχs −→ WΛχs induces an
isomorphism between W ′Λχs/W ′ and WΛχs/W . Combining these isomorphisms
yields π−1.

By [46, Theorem 2] and [11, Theorem 3.2], there is an isomorphism

Uχ(g) ∼= Matpd (Uχ(zg(χs))) .

Let σν be the winding automorphism of U(zg(χs)) which sends h to h−ν(h) for h ∈ h

and is the identity on the root spaces of zg(χs). Then σν induces an isomorphism
between Uχn(zg(χs)) and Uχ(zg(χs)) which sends the baby Verma module Zχn(µ)
to Zχ(µ+ ν). The proposition follows.

Remarks. 1. Let N = {x ∈ g : x nilpotent} be the nilpotent cone of g. The image
of N under θ is the set {χ ∈ g∗ : χ nilpotent}. We will denote this by N also.
Proposition 2.7 shows that it is sufficient to consider only blocks Bχ,λ with χ ∈ N
and λ ∈ Λ0/W .
2. To ease notation we write Λ for the Fp-space Λ0. That is,

Λ = {λ ∈ h∗ : λ(h)p − λ(h[p]) = 0 for all λ ∈ h}.
It is clear that Λ is W -invariant.

3. Block degeneration

3.1. We intend to study the behaviour of Bχ,λ as we vary χ ∈ N . Let πΛ :
N × Λ −→ Λ be the projection map.

Lemma. The function φ : N × Λ −→ N defined by sending (χ, λ) to dimBχ,λ is
constant on the fibres of πΛ.

Proof. Let χ(x) = B(x, e) for some e ∈ N . There exists e′ ∈ N such that eτ =
e+ τe′ ∈ N for all τ ∈ K and such that e1 = e+e′ is regular nilpotent, [45, Section
5]. Let χτ ∈ g∗ be defined by χτ (x) = B(x, eτ ). For λ ∈ Λ/W the function

Aλ : K −→ Matd(K)
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sending τ to the matrix of left multiplication in Uχτ by eλ is, by construction, a
morphism of varieties. Thus the set

Oλ = {τ ∈ K : rankAλ(τ) ≥ rankAλ(0)}
is open and dense in K. Let O =

⋂
λ∈Λ/W Oλ. By (3) the rank of Aλ(τ) equals the

dimension of Bχτ ,λ. We deduce that

O = {τ ∈ K : dimBχτ ,λ = dimBχ,λ for all λ ∈ Λ/W}.
Since the set of regular nilpotent elements, Nreg, is dense in N , we deduce that
O∩Nreg is dense in O. The lemma now follows since the restriction of φ to Nreg×Λ
is constant along the fibres of πΛ, see for example [3, Proposition 3.16].

3.2. We recall the following definitions from the theory of finite dimensional alge-
bras, [13] and [27, Chapter II]. Let

Bil(n) = {bilinear maps m : Kn ×Kn −→ Kn} ∼= An
3
,

and

Alg(n) = {associative, bilinear m which have an identity} ⊆ Bil(n).

As discussed in [13], Alg(n) is an affine variety, locally closed in Bil(n). The group
GL(n) acts on Alg(n), the orbits being isomorphism classes of n-dimensional alge-
bras. We let OA denote the orbit in Alg(n) of algebras isomorphic to A. We say
that A′ is a degeneration of A if OA′ ⊆ OA, the closure of OA.

Theorem. Let χ, χ′ ∈ N be such that χ is in the closure of the orbit G.χ′. Then
for any λ ∈ Λ/W the algebra Bχ,λ is a degeneration of Bχ′,λ.

Proof. Let d = pdim g and let w1, . . . , wd be a free basis of the Zp-module U . Then
the cosets wi + Iζ form a K-basis of Uζ for all ζ ∈ g∗.

Fix λ ∈ Λ/W . Let u1, . . . , ur ∈ U be such that {eλui + Iχ : 1 ≤ i ≤ r} is a basis
of Bχ,λ. We have a morphism

G.χ′ −→ Matr×d(K),

sending ζ to Mζ , the matrix expressing the elements eλui+ Iζ in terms of the basis
elements {wi + Iζ}. The set

Oλ = {ζ ∈ G.χ′ : rankMζ = r}
is a dense open subset of G.χ′ and includes χ. Now Lemma 2.1 says that for all
ζ ∈ Oλ the block Bζ,λ has a basis {eλui + Iζ : 1 ≤ i ≤ r}, and so, by definition, we
have a morphism

Oλ −→ Alg(r)

sending ζ to Bζ,λ. Since G.χ′ is open in its closure, the theorem follows.

3.3. A finite dimensional K-algebra A is said to have wild representation type, or
be wild for short, if for any finite dimensional K-algebraB, there is a representation
embedding of the module category of B into that of A, so that A-mod contains
B-mod although not necessarily as a full subcategory. The algebra A has finite
representation type or has finite type if it has finitely many isomorphism classes of
indecomposable modules. Finally, A has tame representation type or is tame if it
is neither wild nor of finite type.

Thanks to Theorem 3.2 we can compare the representation type of two blocks.
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Corollary. Let χ, χ′ ∈ N be such that χ is in the closure of the orbit G.χ′. Let
λ ∈ Λ/W .

1. If Bχ,λ has finite representation type then Bχ′,λ has finite representation type.
2. If Bχ,λ has tame representation type then Bχ′,λ has either finite or tame rep-

resentation type.

Proof. By Theorem 3.2 Bχ,λ is a degeneration of Bχ′,λ. The first assertion follows
since the algebras in Alg(d) having finite representation type form an open set, [13,
Theorem 4.2]. The second assertion is a consequence of the main result in [14],
which states that a degeneration of a wild algebra is wild.

4. Rank Varieties

4.1. Let L be a finite dimensional restricted Lie algebra over K and define

Np(L) = {x ∈ L : x[p] = 0},

a Zariski closed, conical subset of L, called the p-nilpotent cone of L. Let M be a
finite dimensional Uζ(L)-module. We define the rank variety of M to be

VL(M) = {x ∈ Np(L) : M |〈x〉 is not free},

where 〈x〉 denotes the subalgebra of Uζ(L) generated by x.
Let χ ∈ g∗ and λ ∈ WΛχs/W . Let S1, . . . , Sr be a list of the simple Bχ,λ-

modules (up to isomorphism). We define the rank variety of the block Bχ,λ to
be

Vg(χ, λ) =
r⋃
i=1

Vg(Si).

By [11, Section 7] the rank variety of any Bχ,λ-module is contained in Vg(χ, λ).

Remark. For G(1) of type An the variety Vg(0, λ) is described in [23, Proposition
2.6]. This was recently generalised to all types in [31, Theorem 6.2.1] only under
the assumption that p is good.

4.2. The rest of this section is devoted to a proof of the following result.

Theorem. Let χ = χs + χn ∈ g∗ and λ ∈ WΛχs/W . Then

Vg(χ, λ) = Vg(χs, λ) ∩ zg(χ).

Remark. If S1, . . . , St is a complete list of the simple Uχ-modules up to isomor-
phism, we define

Vg(χ) =
t⋃
i=1

Vg(Si).

Suppose χ ∈ N . By [21, Satz 2.14] we have Vg(0) = Np(g), so we deduce the
principal result of [38], namely

Vg(χ) = Np(zg(χ)).

Our class of Lie algebras, however, is smaller than that considered in [38] (the latter
includes for example slnp(K)).
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4.3. We recall the Mil’ner map, introduced in [29]. The algebra U has a natural
increasing filtration {Uk}, where Uk denotes the span of all products of at most k
elements of g.

Given a vector space V , we let S(V ) be the symmetric algebra of V . The algebra
S(V ) also has a natural increasing filtration {S≤k(V )}, where S≤k(V ) denotes the
sum of the homogeneous components Si(V ) with i ≤ k.

Let x = (x1, . . . , xr) ∈ g. For I = {i1 < . . . < ik} ⊆ {1, . . . , r} we set xI =
xi1 . . . xik ∈ U . Let

φr(x) =
∑

xI1 . . . xIk ∈ S(U),

where the summation runs through all decompositions

I1 ∪ . . . ∪ Ik = {1, . . . , r}

of {1, . . . , r} into non-empty disjoint subsets. By [10, Section 1.1] there exists
a unique linear map φ : U −→ S(U) such that φ(1) = 1 and φ(x1 . . . xr) =
φr((x1, . . . , xr)) for all x1, . . . , xr ∈ g. Let π : U � g be an ad g-equivariant pro-
jection, which exists by [38, Section 3.3]. This induces a map S(π) : S(U) −→ S(g).
We let β = S(π) ◦ φ : U −→ S(g).

Given χ = χs + χn ∈ g∗, let Jχ be the two-sided ideal of S(g) generated by the
elements xp−χ(x)p for all x ∈ g. We let Sχ = S(g)/Jχ. There is a natural action of
g on Sχ induced by the adjoint action on g ⊂ Sχ. The filtration {Uk} (respectively
{S≤k(g)}) induces a natural increasing filtration on Uχ (respectively Sχ).

Lemma. [38, Lemma 3.2] The map β : U −→ S(g) induces a g-equivariant
filtration-preserving isomorphism βχ : Uχ −→ Sχ.

4.4. We define the map

γχ : Sχ −→ Sχs

by sending x ∈ g ⊂ Sχ to x + χn(x) ∈ Sχs , and extending algebraically. Since
zg(χ) ⊆ zg(χs), the map γχ is a zg(χ)-equivariant isomorphism. This allows us to
construct a zg(χ)-equivariant isomorphism

φχ = β−1
χs ◦ γχ ◦ βχ : Uχ −→ Uχs .

4.5. It will be important for us to vary χ. To this end we let t be a indeterminate.
We define gt = g ⊗K K[t]. We can consider the algebras Uχs+tχn(gt), Uχs(gt),
Sχs+tχn(gt) and Sχs(gt), all of which are free K[t]-modules of rank pdim g. We
define a map

βχs+tχn : Uχs+tχn(gt) −→ Sχs+tχn(gt),

which, for x1, . . . , xr ∈ g ⊂ gt, sends x1 . . . xr to
∑
π(xI1 ) . . . π(xIk ), where the

summation runs through all decompositions I1∪. . .∪Ik of {1, . . . , r} into non-empty
disjoint subsets, and is extended to Uχs+tχn(gt) by K[t]-linearity. As before, it can
be shown that this is a gt-equivariant isomorphism of K[t]-modules. Moreover,
βχs+tχn preserves the natural filtrations on Uχs+tχn(gt) and Sχs+tχn(gt).
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4.6. Similarly we have a zgt(χ)-equivariant isomorphism of K[t]-algebras

γχs+tχn : Sχs+tχn(gt) −→ Sχs(gt),

sending x ∈ g ⊂ gt to x + tχn(x) ∈ Sχs(gt). This allows us to construct a zgt(χ)-
equivariant isomorphism of K[t]-modules

φχs+tχn = (βχs)
−1
t ◦ γχs+tχn ◦ βχs+tχn : Uχs+tχn(gt) −→ Uχs(gt).

4.7. By definition we have that, as elements of Sχs(gt),

(γχs+tχn ◦ βχs+tχn)(x1 . . . xr)

=
∑

(π(xI1 ) + tχn(π(xI1 ))) . . . (π(xIk ) + tχn(π(xIk ))),

for x1, . . . , xr ∈ g ⊂ gt. This expression is equal to

βχs(x1 . . . xr) + t · (linear combination of y1 . . . yd with yi ∈ gt and d < r).

Since the Mil’ner map (βχs)t is a filtration-preserving isomorphism of K[t]-modules,
we see that all y1 . . . yd’s are contained in (βχs)t(Uχs(gt)d). We deduce that the
map φχs+tχn : Uχs+tχn(gt) −→ Uχs(gt) is such that

φχs+tχn(x1 . . . xr) ≡ x1 . . . xr mod t(Uχs(gt)
r−1).

4.8. It follows from [35, Theorem 2.5] that one can find a one-dimensional torus
h(τ) in ZG(χs) such that h(τ).χn = τ2χn for all τ ∈ K∗. Since the elements eλ
are G-invariant, the isomorphism between Uχ and Ug.χ for g ∈ G restricts to an
isomorphism between Bχ,λ and Bg.χ,λ. In particular we can find weight vectors for
h(τ), say u1, . . . , ur ∈ U , such that {eλui + Iχs : 1 ≤ i ≤ r} is a basis for Bχs,λ.
Arguing as in the proof of Theorem 3.2, we find a dense open subset O of K such
that {eλui+ Iχs+vχn : 1 ≤ i ≤ r} is a basis of Bχs+vχn,λ for all v ∈ O. Conjugating
by h(τ) shows that the set {eλui + Iχ : 1 ≤ i ≤ r} is a basis of Bχ,λ.

4.9. For 1 ≤ i ≤ r we have

φχs+tχn(eλui) = eλui + tm1,i + t2m2,i + . . . ,

where mj,i ∈ Uχs(g) ⊂ Uχs(gt). Let πλ : Uχs(g) � Bχs,λ be projection, a g-
invariant homomorphism. We find that

πλ ◦ φχs+tχn(eλui) = eλui + tn1,i + t2n2,i + . . . ,

where nj,i = πλ(mj,i). It follows that the matrix expressing πλ ◦ φχs+tχn in terms
of the basis {eλui : 1 ≤ i ≤ r} has the form

Ct =


1 + ta11 ta12 . . . ta1r

ta21 1 + ta22 . . . ta2r

...
...

...
tar1 tar2 . . . 1 + tarr


for some aij ∈ K[t]. Thus, for almost all v ∈ K, we have that det(Cv) is non-
zero and, from 4.8, that {eλui + Iχs+vχn : 1 ≤ i ≤ r} is a basis of Bχs+vχn,λ.
Thus, for almost all v ∈ K, restriction of φχs+vχn yields a zg(χs+ vχn)-equivariant
isomorphism

Bχs+vχn,λ −→ Bχs,λ.
In particular, for almost all v ∈ K∗, we have an equality

Vzg(χs+vχn)(Bχs,λ) = Vzg(χs+vχn)(Bχs+vχn,λ),(4)
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where Bχs,λ and Bχs+vχn,λ are modules for the adjoint action of the stabiliser
zg(χs + vχn) = zg(χs) ∩ zg(vχn) = zg(χ).

4.10. Let L = ZG(χs), a Levi subgroup of G, and NL(zg(χ)) = {g ∈ L : g.z ∈
zg(χ) for all z ∈ zg(χ)}. Let N be the identity component of NL(zg(χ)). Recall
that L, and hence N , acts on Uχs . Moreover, if we decompose Uχs as a direct
sum of ad zg(χ)-modules, say

⊕
Mi, then, by the Krull–Remak–Schmidt theorem,

N permutes the isomorphism classes of the modules Mi. Since, however, N is the
minimal normal subgroup of finite index in NL(zg(χ)), we deduce that N fixes the
isomorphism class of the modules Mi. This implies that the rank variety of Mi is
N -invariant for any i.

It can be deduced from [35, Theorem 2.5] that, given v ∈ K∗, there exists g ∈ N
such that g.χ = χs + vχn. As a result we deduce from the above that

Vzg(χ)(Bχ,λ) = Ad(g)
(
Vzg(χ)(Bχ,λ)

)
= Vzg(χs+vχn)(Bχs+vχn,λ).(5)

4.11. By [37, Theorem 1.1] and [38, Theorem 2.4], we have that for any Uχ-module
M , Vg(M) ⊆ zg(χ). Since Vzg(χ)(M) = zg(χ) ∩ Vg(M) for any Uχ-module M , we
deduce that

Vg(χ, λ) ⊆ zg(χ).(6)

4.12. Arguing as in [38, Proposition 2.2], we have

Vg(χ, λ) = Vg(Bχ,λ).(7)

The required equality Vg(χ, λ) = Vg(χs, λ) ∩ zg(χ) now follows by combining (7),
(6), (5) and (4).

5. Representation type

5.1. We come to the description of the representation type of a block, Bχ,λ, of
the reduced enveloping algebra Uχ. By Proposition 2.7 we can assume without
loss of generality that χ is nilpotent and λ ∈ Λ/W . Let G1, . . . , Gm be the simple
(simply-connected) normal subgroups of G(1) and let g′ = LieG(1) and gj = LieGj
for 1 ≤ j ≤ m. Let e = θ−1(χ) be the nilpotent element in g corresponding to χ.
By [36, Section 2.9] e ∈ g′, so we can decompose χ = χ1 + . . .+χm, where χj ∈ g∗j is
the restriction of χ to gj . The Weyl group W can be identified with W1×· · ·×Wm,
where Wi is the Weyl group of Gi. Under this identification W (λ) decomposes as
W1(λ) × · · · ×Wm(λ) for any λ ∈ Λ. We will retain this notation throughout this
section.

5.2. We first classify the blocks of finite representation type, completing work
begun in [32].

Theorem. Recall the notation of 5.1. Let χ ∈ N and λ ∈ Λ/W . Then the block
Bχ,λ has finite representation type if and only if one of the following occurs.

1. W (λ) = W .
2. There exists an integer j, 1 ≤ j ≤ m, such that χj is regular, Wi(λ) = Wi for
i 6= j, and one of the following conditions holds:
(a) Wj is of type An and Wj(λ) is of type An−1;
(b) Wj is of type Bn (or Cn) and Wj(λ) is of type Bn−1 (or Cn−1);
(c) Wj is of type G2 and Wj(λ) is of type A1.

(Here we take A0 = ∅ and B1 = A1.)
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5.3. We come to the classification of blocks of tame representation type.

Theorem. Recall the notation of 5.1. Let χ ∈ N and λ ∈ Λ/W . The block Bχ,λ
has tame representation type if and only if one of the following occurs.

1. There exists j, 1 ≤ j ≤ m, such that χj is regular, Wi(λ) = Wi for i 6= j, and
one of the following holds:
(a) Wj has rank 2;
(b) Wj is of type A3 and Wj(λ) is of type A1 ×A1;
(c) Wj is of type B3 (or C3) and Wj(λ) has type A2;
(d) Wj is of type Dn and Wj(λ) is of type Dn−1.

2. There exists j, 1 ≤ j ≤ m, such that χj is subregular, Wi(λ) = Wi for i 6= j,
Wj is of type An and Wj(λ) is of type An−1.

3. There exist j1, j2, 1 ≤ j1 < j2 ≤ m, such that both χj1 and χj2 are regular,
Wi(λ) = Wi for i 6= j1, j2, and Wj1 ×Wj2 is of type A1 ×A1 whilst Wj1 (λ)×
Wj2 (λ) is trivial.

(Here we take A0 = ∅ and D3 = A3.)

5.4. Finally, we describe the representation type of a reduced enveloping algebra
Uχ.

Theorem. Let χ ∈ N .

1. The algebra Uχ has finite representation type if χ is regular and one of the
following holds:
(a) W is trivial;
(b) W has type A1;
(c) p = 2 and W has type A2;
(d) p = 3 and W has type B2 (or C2);
(e) p = 5 and W has type G2.

2. The algebra Uχ has tame representation type if one of the following holds:
(a) χ = 0 and W has type A1;
(b) χ is regular and W has type A1 ×A1;
(c) p 6= 2, χ is regular and W has type A2;
(d) p 6= 3, χ is regular and W has type B2 (or C2);
(e) p 6= 5, χ is regular and W has type G2;
(f) p = 2, χ is subregular and W has type A2;
(g) p = 2, χ is regular and W has type A3.

3. In all other cases Uχ has wild representation type.

Remark. In [38, Proposition 5.2] a list of possible tame Uχ was given. This list,
however, was incomplete and should have also included case 2(f) above. (Indeed
the proof of [38, Proposition 5.2] should be adjusted on p.278, line 7 from “If the
number of blocks is > 1 ...” to “If the number of blocks of size > 1 is > 1 ...”. Then
one must consider A2 and A3 with χ subregular and p = 2. A calculation shows
that the support variety in the A3 case is three-dimensional, implying wildness.) Of
course, Part 2 of the above theorem refines the (corrected) list in [38, Proposition
5.2].

5.5. Theorem 5.2 will be proved in 8.16 and Theorem 5.4 in 8.18. Most of the rest
of the paper is concerned with proving Theorem 5.3.
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6. A Reduction

6.1. Let G(1) be the derived subgroup of G and let g′ = Lie(G(1)). Then gα ⊂ g′

for all α ∈ Φ. Let G1, . . . , Gm be the simple (simply-connected) normal subgroups
of G(1) and let gi = Lie(Gi) for 1 ≤ i ≤ m. Then g1 ⊕ . . . ⊕ gs = g′ ⊆ g, and
[gi, gj ] = 0 if i 6= j.

For 1 ≤ i ≤ m, define G̃i by setting

G̃i =

{
GL(Vi), if Gi ∼= SL(Vi) and p| dimVi,
Gi, otherwise.

Put G̃ = G̃1 × · · · × G̃m, g̃i = Lie(G̃i) and g̃ = Lie(G̃). We have g̃ = g̃1 ⊕ · · · ⊕ g̃m,
and either g̃i = gi, or gi ∼= sl(Vi) and g̃i ∼= gl(Vi) and p| dimVi. We identify each gi

with an ideal of codimension at most one in g̃i.

6.2. Recall that a restricted Lie algebra is called toral if it is abelian and has
a basis consisting of toral elements, that is, a basis consisting of elements which
satisfy t[p] = t. Thanks to [38, Lemma 4.1] there is a toral Lie algebra t0 and an
embedding of restricted Lie algebras

ψ : g −→ g̃⊕ t0

such that ψ(gi) = gi ⊆ g̃ and ψ(h) ⊆ h̃ ⊕ t0, where h̃ is a Cartan subalgebra of g̃

satisfying h ∩ g′ = h̃ ∩ g′. Set ĝ = g̃⊕ t0 and ĥ = h̃⊕ t0.

Lemma. There exists a toral subalgebra t1 ⊂ ĥ such that ĝ = g⊕ t1 and [t1, ĝ] = 0.

Proof. Let c denote the centraliser of g′ in ĝ. Since g′ is invariant under the adjoint
action of G(1), so is c. Now gα ⊂ g′ for any root α, and [gα, g−α] 3 hα 6= 0.
Therefore the maximal torus T ∩ G(1) of G(1) acts trivially on c, implying c ⊆ ĥ.
Since ĝ = ĥ + g′ and ĥ is abelian, we deduce that c is a central toral subalgebra of
ĝ. Let ctor denote the Fp-subspace of toral elements of c.

Identify h with ψ(h) ⊆ ĥ. Let ĥ ∈ ĥ and let ai = αi(ĥ), where 1 ≤ i ≤ n. Let
e±αi be root vectors such that [eαi , e−αi ] = hαi . It follows from the T -invariance
of B that B(eαi , e−αi) 6= 0. Since hα1 , . . . , hαn ∈ h are linearly independent and
the restriction of B to h is non-degenerate, there is h ∈ h such that B(hαi , h) =
aiB(eαi , e−αi) for all i. By the g-invariance of B,

aiB(eαi , e−αi) = B([eαi , e−αi ], h) = B(e−αi , [h, eαi ]) = αi(h)B(eαi , B−αi),

yielding αi(h) = ai for all i. As a consequence, ĥ − h centralises the Lie subal-
gebra generated by all e±αi . The latter coincides with g′, because G(1) is simply-
connected, see [26, 1.2] for example. Thus for any ĥ ∈ ĥ there is h ∈ h such that
ĥ− h ∈ c. In other words, ĝ = c + g. Now c ∩ g is a restricted subalgebra of c, and
hence is spanned by its Fp-subspace (c ∩ g)tor of toral elements. The latter has a
complement in ctor, say ttor

1 . The K-span t1 of ttor
1 is a central toral subalgebra of

ĝ satisfying ĝ = g⊕ t1.

6.3. Let T0 be an algebraic torus over K such that t0 = Lie(T0) and let T̂ = T̃×T0

be a maximal torus of G̃ × T0 such that ĥ = Lie(T̂ ). There is a decomposition
T̃ = T1 × · · · × Tm, where Tj is a maximal torus of G̃j for 1 ≤ j ≤ m. Let
hj = Lie(Tj) for 1 ≤ j ≤ m. Define

Λ̂ = {λ ∈ ĥ
∗ : λ(h)p − λ(h[p]) = 0 for all h ∈ ĥ}.
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Any element of Λ̂ can be uniquely decomposed into (λ1, . . . , λm, λ0) ∈ h∗1 ⊕ . . . ⊕
h∗m ⊕ t∗0. There is an isomorphism between W , the Weyl group of G with respect
to T or of G̃ × T0 with respect to T̂ , and W1 × · · · ×Wm, where Wi is the Weyl
group of G̃j with respect to Tj for 1 ≤ j ≤ m. Under this isomorphism W (λ) is
identified with W1(λ1)× · · · ×Wm(λm).

6.4. Since ψ : h −→ ĥ is an embedding of restricted Lie algebras, the induced
map ψ∗ : ĥ∗ −→ h∗ is surjective and sends Λ̂ onto Λ. Recall that g′ contains all
root spaces of g. Therefore we can consider any root α as an element of h∗ and as
an element of ĥ∗. We have

ψ∗(sαλ) = ψ∗(λ − λ(ψ(hα))α) = ψ∗(λ)− ψ∗(λ)(hα)α = sα(ψ∗λ),

showing that ψ∗ is W -equivariant. Hence we have a surjective map

π : Λ̂/W −→ Λ/W.

Given ξ ∈ g∗, we denote by ξ̂ the functional on ĝ whose restriction to g (respectively
to t1) equals ξ (respectively 0). If ξ vanishes on b+ then ξ̂ vanishes on ĥ + b+. In
particular, ξ̂ is nilpotent in this case.

Lemma. Keep the above notation and suppose that χ vanishes on b+. Let λ ∈
Λ̂/W . Then there is an isomorphism of algebras

Bχ̂,λ(ĝ) ∼= Bχ,π(λ)(g).(8)

Proof. Since ĥ = h ⊕ t1, each µ ∈ Λ̂ decomposes into (ψ∗µ, µ1) ∈ h∗ ⊕ t∗1. Clearly
λ1(h)p = λ1(h[p]) for all h ∈ t1. Let Kλ1 denote the one-dimensional U0(t1)-module
corresponding to λ1. Thanks to Lemma 6.2 and the PBW theorem, there exists an
algebra isomorphism

φ : Uχ̂(ĝ) ∼−→ Uχ(g)⊗ U0(t1)

such that φ(u) = u ⊗ 1 for any u ∈ Uχ(g) ⊂ Uχ̂(ĝ). Since U0(t1) is a commutative
semisimple algebra, there is a primitive idempotent e ∈ U0(t1) such that e(Kλ1) 6= 0
and

φ
(
Bχ̂,λ(ĝ)

)
= Bχ,µ(g)⊗ e ∼= Bχ,π(ν)(g)

for some ν ∈ Λ̂/W . It is straightforward to see that φ sends the Uχ(g) ⊗ U0(t1)-
module Zχ(ψ∗λ) ⊗Kλ1 to the baby Verma module Zχ̂(λ). It follows that Bχ,π(ν)

acts non-trivially on Zχ(ψ∗λ). Therefore π(ν) = π(λ), as required.

6.5. Let χ be as above, and define χi = χ̂|g̃i . Since ĝ = g̃1⊕ . . .⊕ g̃m⊕ t0, we have

Bχ̂,λ(ĝ) ∼= Bχ1,λ1(g̃1)⊗ · · · ⊗ Bχm,λm(g̃m)⊗ B0,λ0(t0).

Since t0 is toral, B0,λ0(t0) ∼= K. Combining this with 6.3 and Lemma 6.4, we have
the following result.

Proposition. Keep the above notation. There is an isomorphism of algebras

Bχ1,λ1(g̃1)⊗ · · · ⊗ Bχm,λm(g̃m) ∼= Bχ,π(λ)(g)

such that χ = χ1 + . . .+χm (considered as functionals on g′) and W (λ) = W1(λ1)×
· · · ×Wm(λm).
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7. Regular algebras

7.1. Recall from 6.1 the definition of G̃. We will assume throughout this section
that G = G̃ and G(1) is simple. We determine the representation type of the blocks
Bχ,λ for χ ∈ g∗ regular nilpotent and λ ∈ Λ/W . Thanks to [30, Theorem 12] and
[3, Proposition 3.16], the block Bχ,λ is Morita equivalent to the partial coinvariant
algebra

Cλ = S(h)W (λ) ⊗S(h)W K,(9)

where W (λ) is defined as in 2.4. So we only need to calculate the representation
type of Cλ. If p = 2 then g = sl(V ) (respectively g = gl(V )) if dimV is odd
(respectively even). It is straightforward to check that in these situations the same
analysis applies.

7.2. The partial coinvariant algebras of finite representation type are described in
[3, Corollary 3.19], see also [32, Theorem 4.2]. They are as follows.

Theorem. Let λ ∈ Λ/W . The algebra Cλ has finite representation type if and only
if one of the following cases occurs:

1. W (λ) = W ;
2. W is of type An and W (λ) is of type An−1;
3. W is of type Bn (or Cn) and W (λ) is of type Bn−1 (or Cn−1) ;
4. W is of type G2 and W (λ) is of type A1.

In all these cases Cλ ∼= K[X ]/(Xr), where r = [W : W (λ)].

7.3. We spend the rest of the section proving the following result.

Theorem. Let λ ∈ Λ/W . The algebra Cλ has tame representation type if and only
if one of the following cases occurs:

1. W has rank 2 and W (λ) = 1;
2. W is of type A3 and W (λ) is of type A1 ×A1;
3. W is of type B3 (or C3) and W (λ) is of type A2;
4. W is of type Dn and W (λ) is of type Dn−1.

We prove this by case-by-case analysis after making several general observations
and simplifications.

7.4. Let λ ∈ Λ/W . By [3, 3.8] the partial coinvariant algebra Cλ is a local,
symmetric, commutative algebra of dimension [W : W (λ)]. Let Wλ be the subset
of W consisting of minimal length coset representatives for the subgroup W (λ) in
W , [18, 1.10]. It is shown in [3, Lemma 3.19] that Cλ admits a N-grading such that
its Poincaré series is

P (Cλ, t) =
∑
w∈Wλ

t`(w).(10)

7.5. Tame, local, symmetric, commutative algebras are classified in [6, Theorem
III.1] (the proof follows the ideas in [40]). They have the form K[X,Y ]/I, where I
is an ideal of the following type:

1. I = (Xm − Y n, XY ), where m ≥ n ≥ 2 and m+ n > 4;
2. I = (X2, Y 2);
3. I = (X2, Y 2 −XY ), where charK = 2.
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In particular any algebra with minimal number of generators greater than two is
wild. Note that the first type of algebra has dimension m+ n > 4.

7.6. As a consequence of 7.4 and 7.5, if λ ∈ Λ/W is such that Cλ is tame, then
the rank of W and the rank of W (λ) as Coxeter groups must differ by either one
or two. Indeed, if the ranks differ by more than two then Cλ has at least three
generators by (10), implying wildness.

7.7. The following lemma gives a useful criterion for the wildness of a partial
coinvariant algebra.

Lemma. Suppose λ ∈ Λ/W is such that

P (Cλ, t) = (1 + t+ . . .+ ti) + 2(ti+1 + ti+2) + ti+1N[t]

for some i ≥ 1, or

P (Cλ, t) = 1 + t+ 3t2 + tN[t].

Then Cλ is wild.

Proof. Since Cλ is local, it admits a minimal generating set consisting of elements
homogeneous with respect to the grading of 7.4.

We consider the first Poincaré series. We have a generator X in degree one.
If Y is a new generator in degree j ≤ i, then Xj = 0. Therefore the algebra
generated by X and Y has only one-dimensional homogeneous components. Since
dim(Cλ)i+1 ≥ 2, we deduce that Cλ requires a third generator, implying wildness.
Similarly, if X i+1 = 0 or X i+2 = 0, then Cλ requires at least three generators, so
is wild.

Assume X i+2 6= 0. Let Y be any element in (Cλ)i+1, linearly independent from
X i+1. Then, since i ≥ 1, either Cλ requires a third generator in degree i + 2,
implying wildness, or X i+2 and XY are linearly independent. In this last situation
the non-vanishing of XY implies that Cλ cannot be an algebra of Type 7.5.1. Since
dimCλ > 4, we deduce from 7.5 that Cλ is indeed wild.

For the second Poincaré series we need a generator in degree one and at least
two new generators in degree two, implying wildness.

7.8. We also have a sufficient criterion for the tameness of a partial coinvariant
algebra.

Lemma. Let λ ∈ Λ/W be such that Cλ is generated in degree one with Poincaré
series

P (Cλ, t) = 1 + 2(t+ t2 + . . .+ tr−1) + tr,

for some r ≥ 3. Assume that the unique quadratic relation in Cλ is square-free.
Then Cλ is tame.

Proof. Since the quadratic relation in Cλ is square-free, we can find linearly inde-
pendent elements X,Y ∈ (Cλ)1 such that XY = 0. By hypothesis these elements
generate Cλ. We deduce from the Poincaré series that the elements X i and Y i

for 1 ≤ i ≤ r − 1 are linearly independent. Since dim(Cλ)r = 1, we see that Xr

and Y r are linearly dependent. Therefore either exactly one of Xr, Y r is zero, or
0 6= Xr = cY r for some c ∈ K∗. If Xr = 0 (respectively Y r = 0), then both Xr−1
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(respectively Y r−1) and Y r (respectively Xr) belong to the socle of Cλ, contradict-
ing symmetry. So, possibly after rescaling, we have an algebra isomorphism

Cλ ∼=
K[X,Y ]

(XY,Xr − Y r) ,

implying that Cλ has tame representation type, by 7.5.

7.9. Let λ ∈ Λ/W be such that the rank of W (λ) is two less than the rank of W .
Consider the following part of a Dynkin diagram:

· · · ◦ • • · · · ·

Here (and for the rest of this section) the coloured nodes indicate the simple reflec-
tions of W not contained in W (λ). Using the grading from (10), we see that Cλ has
two elements of degree one, namely those corresponding to si+1 and si+2, and at
least three elements of degree two, corresponding to sisi+1, si+1si+2 and si+2si+1.
It follows from Lemma 7.7 that Cλ is wild in this case.

Now consider the following diagram:

· · · • · · · · · · ◦ • · · · ·

By (10) the algebra Cλ has two elements of degree one, corresponding to si and
sj+1, and at least three of degree two, corresponding to sisj+1, si+1si and sjsj+1.
It follows from Lemma 7.7 that Cλ is wild.

7.10. So, in the case when W (λ) has rank two less than W , the only possibility
for Cλ to be tame is if W has rank two, so is one of A2, B2 or G2. In case A2

(respectively B2 and G2) a straightforward calculation shows that the hypotheses
of Lemma 7.8 are satisfied with r = 3 (respectively r = 4 and r = 6), and hence Cλ
is tame.

7.11. Type An. Assume that the rank of W (λ) is one less than the rank of W .
We know by Theorem 7.2.2 that if W (λ) has type An−1, then Cλ has finite repre-
sentation type. Suppose we have the following diagram:

· · · ◦ ◦ • ◦ · · · ·(11)

Then Cλ has a unique element of degree one corresponding to si+2, whilst there
are two elements of degree two corresponding to si+1si+2 and si+3si+2. In degree
three we have at least the elements corresponding to sisi+1si+2 and si+1si+3si+2,
so Cλ is wild by Lemma 7.7.

7.12. We have only the following case to consider in type A3:

◦ • ◦ ·

Here Cλ is isomorphic to the algebra with generators A = X1 +X2, B = X3 +X4,
C = X1X2 and D = X3X4 subject to the relations A + B = 0, AB + C + D = 0,
AD + BC = 0 and CD = 0. This is a six-dimensional algebra. Calculation shows
that this algebra is generated by X = A and Y = A2 − 2C, and that XY = 0 and
X4 = Y 2. We deduce that Cλ is isomorphic to the algebra K[X,Y ]/(X4−Y 2, XY )
of Type 7.5.1, and hence tame.
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7.13. Types Bn and Cn. We assume that W (λ) has rank one less than W . If
W (λ) has type Bn−1 (or Cn−1), then we know by Theorem 7.2.3 that Cλ has finite
representation type. Consider the following diagram:

· · · ◦ • · · · · · · ◦ ·(12)

Then Cλ has one element of degree one corresponding to si+1, two elements of
degree two corresponding to sisi+1 and si+1si+2, and elements of degree three
corresponding to si+2sisi+1 and at least one of si+3si+2si+1 or si+1si+2si+1 (which
occurs if i = n− 2). Therefore Cλ is wild by Lemma 7.7.

Consider the following diagram:

· · · ◦ ◦ ◦ • ·

Then Cλ has one element of degree one corresponding to sn, and one element
of degree two corresponding to sn−1sn. In degree three we have the elements
corresponding to sn−2sn−1sn and snsn−1sn, whilst in degree four we have the
elements corresponding to sn−3sn−2sn−1sn and sn−2snsn−1sn. This implies that
Cλ is wild by Lemma 7.7.

7.14. The only remaining case is the following diagram:

◦ ◦ • ·

In this case it can be checked that Cλ is the algebra generated by elements A =
X1+X2+X3, B = X1X2+X1X3+X2X3 and C = X1X2X3 subject to the relations
induced by X2

1 +X2
2 +X2

3 = 0, X2
1X

2
2 +X2

1X
2
3 +X2

2X
2
3 = 0 and X2

1X
2
2X

2
3 = 0. This

is an eight-dimensional algebra. Calculation shows that A2 = 2B and B2 = 2AC
and A4 = 8AC and C2 = 0. This implies that A7 = 0. Since charK 6= 2 (this
is a bad prime), we deduce that Cλ is a quotient of K[A,C]/(A7, C2, A4 − 8AC).
Making the substitution X = ηA and Y = A3 − 8C, we find that Cλ is the algebra
K[X,Y ]/(X6 − Y 2, XY ) of Type 7.5.1, and so tame.

7.15. Type Dn. We assume that the rank of W (λ) is one less than the rank of W .
Consider the following diagram:

•

◦ · · · · · · ◦ ◦

{{{{{{{{

CCCCCCCC

◦ ·

(13)

In degree one (respectively two) Cλ has a unique element corresponding to sn
(respectively sn−2sn). In degree three it has elements corresponding to sn−1sn−2sn
and sn−3sn−2sn; in degree four it has elements corresponding to sn−3sn−1sn−2sn
and sn−4sn−3sn−2sn. This implies that Cλ is wild by Lemma 7.7.
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Consider the following diagram:

◦

· · · · · · ◦ •

{{{{{{{{

CCCCCCCC

◦ ·

(14)

Then Cλ has an element in degree one corresponding to sn−2 whilst in degree two
we have elements corresponding to snsn−2, sn−1sn−2 and sn−3sn−2. Therefore Cλ
is wild by Lemma 7.7.

7.16. Thanks to (11) the only remaining case is the following diagram:

◦

• · · · · · · ◦

{{{{{{{{

CCCCCCCC

◦ ·
Let σi ∈ K[X1, . . . Xn] (respectively σ′i ∈ K[X2, . . . , Xn]) be the ith elementary
symmetric polynomial in n (respectively n− 1) variables. Then the algebra Cλ is
generated by the polynomials X1, σ′i(X

2
2 , . . . , X

2
n) for 1 ≤ i ≤ n−2, and X2 . . .Xn,

subject to the relations induced by σi(X2
1 , . . . , X

2
n) = 0 for 1 ≤ i ≤ n − 1 and

X1 . . . Xn = 0. This is a 2n-dimensional algebra. Let A = X1 and B = X2 . . .Xn.
The formula

σi(X2
1 , . . . , X

2
n) = X2

1σ
′
i−1(X2

2 , . . . , X
2
n) + σ′i(X

2
2 , . . . , X

2
n)

shows by induction that A and B generate this algebra. In fact we find that
σ′i = (−A2)i for 1 ≤ i ≤ n− 1. It follows that B2 = (−A2)n−1, and it is clear that
AB = 0. Thus Cλ is a tame algebra of Type 7.5.1.

7.17. Type E. We assume that the rank of W (λ) is one less than the rank of W .
Consider the following diagram:

◦

• · · · · · · ◦ ◦ ◦ · · · ·
Arguing as in the previous subsections, we find that Cλ has a Poincaré series of the
form described in Lemma 7.7, and is therefore wild. Other possibilities for diagrams
are dealt with in (11), (13) and (14).

7.18. Type F4. Suppose the rank of W (λ) is three. Consider the following dia-
gram:

• ◦ ◦ ◦ ·
Then in degrees one, two and three respectively Cλ has elements corresponding
to s1, s2s1 and s3s2s1 respectively, whilst in degree four we have elements corre-
sponding to s2s3s2s1 and s4s3s2s1. In degree five Cλ has elements corresponding
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to s1s2s3s2s1 and s2s4s3s2s1. It follows from Lemma 7.7 that Cλ is wild. The case
(12) finishes type F4, and therefore the proof of Theorem 7.3.

8. Complexity

8.1. The purpose of this section is to find a necessary condition on χ ∈ g∗ and
λ ∈ Λ/W for Bχ,λ to be tame, and to prove Theorems 5.2 and 5.4 (we continue
assuming that χ vanishes on b+). Our principal tools will be the results of Sections
3 and 4.

8.2. We assume until 8.14 that G = G̃ and that G(1) is simple. In the next lemma
we do not assume that the parabolic subgroup W (λ) is standard in W .

Lemma. Let λ ∈ Λ/W .

1. Suppose that W (λ) does not contain simple reflections si(1), . . . , si(d) such
that i(j) and i(k) are not adjacent on the Dynkin diagram of ∆ for j 6= k.
Then G.(eαi(1) + . . .+ eαi(d)) ⊆ Vg(0, λ).

2. If W (λ) 6= W , then G.eα ⊆ Vg(0, λ) for some short root α ∈ ∆.

Proof. 1. There exists ν ∈ X(T ) such that 0 < 〈ν, α∨i 〉 ≤ p for all i, and dν = λ. Let
V denote the Weyl module forG with highest weight ν−ρ. Differentiating the action
ofG on V gives V a natural B0,λ-module structure. LetG0 denote the subgroup ofG
generated by all U±αi(k) , and g0 = Lie(G0). Obviously e := eαi(1) + . . .+eαi(d) ∈ g0.
Let V0 denote the subspace of V spanned by all weight spaces Vµ with ν − ρ− µ ∈
Zαi(1) ⊕ . . .⊕Zαi(d). By construction V0 is a direct summand of the g0-module V .
It is well-known (and easy to see) that dimV0 =

∏
k ν(hαi(k)). Since si(k) 6∈ W (λ),

we have that ν(hαi(k) ) ≤ p − 1 for all k. Therefore p - dimV0. In particular, V0

is not a free 〈e〉-module. Since all eαi(k) commute, we also have that e ∈ Np(g).
Using our discussion in 4.1, we now deduce that e ∈ Vg(0, λ).

2. Since the short roots in Φ span the root lattice Q and p is a good prime for G,
there is a short root β ∈ Φ such that 〈λ, β∨〉 6≡ 0 (p), for otherwise W (λ) = W ,
contradicting our assumption. SinceG(1) is simple, all short roots in Φ are conjugate
under W . Replacing λ by its W -conjugate, we can assume that there exists a short
root α ∈ ∆ such that 〈λ, α∨〉 6≡ 0 (p). Then sα 6∈ W (λ). Applying the first part
of this lemma (with d = 1), we now deduce that eα ∈ Vg(0, λ). Since this set is
G-invariant, the result follows.

8.3. In the following subsections we give lower bounds for dimVg(χ, λ) in a number
of important cases. We let e = θ−1(χ) ∈ N be the element of g corresponding to
χ. Recall that by 2.2 and Theorem 4.2, dimVg(χ, λ) = dimVg(0, λ) ∩ zg(e).

Given a subset J ⊆ ∆, we denote by uJ the Lie algebra of the unipotent radical
of the standard parabolic of type J in G.

8.4. Type An. For α = αi+ . . .+αj ∈ Φ we choose as a root vector eα the matrix
Ei,j+1 whose (i, j + 1)th entry equals 1 and all other entries are zero, and we set
e−α = tEi,j+1, the transpose of Ei,j+1. Assume that W (λ) 6= W . First we consider
the subregular case.

Assume n ≥ 2. Let e = eα1 + . . .+ eαn−1 and J = {2, . . . , n}. The orbit G.eα1

is minimal in N , and so is the Richardson class corresponding to uJ ; that is, it
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intersects densely with uJ . Thus G.eα1 = G.uJ . We have

Keα1+...+αn−1 +Keα1+...+αn ⊆ G.uJ ∩ zg(e),

so it follows that dimVg(0, λ) ∩ zg(e) ≥ 2.
Now assume n = 1. Then zero is the subregular orbit, and the closure of the

minimal orbit is the nilpotent cone. It is immediate that dimVg(0, λ) ∩ zg(e) = 2
in this situation.

8.5. The closure ordering of conjugacy classes in type An is given by the domi-
nanace ordering on partitions of n, [19, 7.19]. It can be checked that for n ≥ 2 there
is a unique maximal non-regular, non-subregular class. If n ≥ 3 this corresponds
to the partition (n − 1, 2). Let e = eα1 + . . . + eαn−2 + eαn be a representative of
this orbit. The element e is centralised by the set

Keα1+...+...αn−2 +Keα1+...+αn +Ke−αn−1 +Keαn ⊂ Np.
The orbit G.eα1 is characterised as those matrices of rank one whose square is zero.
We deduce that the set

{x1eα1+...+αn−2 + x2eα1+...+αn + x3e−αn−1 + x4eαn : x1x4 − x2x3 = 0}
is contained in G.eα1 ∩ zg(e). Therefore dimVg(0, λ) ∩ zg(e) ≥ 3.

Now assume n = 2. We have to consider the zero orbit. We haveG.eα2 = G.u{2}.
Since any element in u{2} has square zero, we deduce that dimVg(0, λ) ∩ zg(0) ≥
dimG.u{2} = 4.

8.6. Suppose n = 3 and W (λ) = Σ2 ×Σ2. Adopt the notation of [23, Proposition
2.6]. It is easy to see that the subsystem Rλ of Φ has type A1 × A1 and the
partition tπ(λ) of n + 1 = 4 introduced in [23, 2.6] equals (2, 2). Combining [23,
Proposition 2.6] with our discussion in 4.1, we derive that eα1 + eα3 ∈ Vg(0, λ). As
a consequence, Vg(0, λ) contains all matrices in g of rank two whose square is zero.
Let e = eα1 + eα2 , a subregular nilpotent element in g. The element e is centralised
by eα1 + eα2 , eα1+α2 , eα1+α2+α3 and e−α3 . The set

{x1(eα1 + eα2) + x2eα1+α2 + x3eα1+α2+α3 + x4e−α3 : x2
1 + x3x4 = 0}

is a three-dimensional subvariety of G.(eα1 + eα3) ∩ zg(e). It follows that

dimVg(0, λ) ∩ zg(e) ≥ 3.

8.7. Suppose that n = 2 and W (λ) = 1. Then λ is a regular weight. Hence
p is greater than or equal to 3, the Coxeter number, and Np = N . Moreover,
Vg(0, λ) = Np, by [23, Proposition 2.6]. Let e = eα1 , a subregular element. We
have

Keα1 +Keα1+α2 +Ke−α2 ⊆ N ∩ zg(e),

showing that dimVg(0, λ) ∩ zg(e) ≥ 3.

8.8. Type Bn. We begin by identifying the orbit G.eαn . Since αn is a short root,
the closure of G.eαn contains the minimal nilpotent orbit strictly, so we deduce that
dimG.eαn ≥ 4(n− 1) + 2. Let J = {2, . . . , n}. We have G.uJ ⊇ G.eαn . Moreover,
by [19, Theorem 5.3], dimG.uJ = 2 dim uJ = 2(n2− (n− 1)2) = 4n− 2. We deduce
that G.eαn = G.uJ , the closure of the Richardson class of g corresponding to J .
Since e[p]

αn = 0, we must have x[p] = 0 for all x ∈ G.eαn . In particular, u
[p]
J = 0.

Now let e = eα2 + . . . + eαn , a subregular element [26, 3.2]. We mention for
further reference that e is conjugate under NG(T ) to eα1 + . . .+ eαn−2 + eαn−1+αn .
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The centraliser of e includes the elements e−α1 , eα1+2α2+...+2αn and eα2+2α3+...+2αn

(if n = 2 take e−α1 , eα2 and eα1+2α2). Applying a preimage of s1 in NG(T ) to these
elements yields non-zero multiples of eα1 , eα1+2α2+...+2αn and eα1+α2+2α3+...+2αn

(respectively eα1 , eα1+α2 and eα1+2α2), all of which lie in uJ . Therefore

dimVg(0, λ) ∩ zg(e) ≥ 3.

8.9. Type Cn. We can assume that n ≥ 3. Let us describe G.eαn−1 . To this end
let

β = s2s3 . . . sn−1s1s2 . . . sn−2sn(αn−1),

a short root. We have

〈αi, β∨〉 =

{
1 if i = 2,
0 otherwise.

By [44, IV.2.2.8] the dimension of the orbit is independent of p. Using the grading
on g induced by the above, we therefore calculate that dimG.eβ = 4n − 2. Let
J = {2, . . . , n}. Then, by [19, Theorem 5.3], dimG.uJ = 2 dim uJ = 4n − 2.
Since eβ ∈ uJ we deduce that G.eβ = G.uJ , the closure of the Richardson class
corresponding to J .

Let e = eα2 + . . . + eαn + e2α1+...2αn−1+αn . It is easily seen that e is conjugate
under NG(T ) to eα1 +. . .+eαn−2 +eαn+e2αn−1+αn , a Richardson element in u{n−1}.
It follows that e is a subregular nilpotent element of g. The centraliser of e includes
the elements e2α2+...+2αn−1+αn , eα1+2α2+...+2αn−1+αn and e2α1+...+2αn−1+αn . It is
straightforward to check that the set

U−α1 .(Keα1+2α2+...+2αn−1+αn +Ke2α1+...+2αn−1+αn) ⊆ G.uJ ∩ zg(e),

is three-dimensional. We deduce that dimVg(0, λ) ∩ zg(e) ≥ 3.

8.10. Type Dn. The present assumption on G implies that G = G(1). Assume
that W (λ) is a standard parabolic subgroup of W of type Dn−1. Then λ = r$1

for some r ∈ F∗p. Adopt Bourbaki’s notation for the root system of type Dn. Since
$1 = ε1, we can find w ∈ W such that wλ = rεn−1. Set µ = rεn−1. For k = n−1, n
we have

µ(hαk) =
2r(εn−1|εn−1 ± εn)

(εn−1 ± εn|εn−1 ± εn)
= r 6= 0.

Therefore we can assume in what follows that λ is such that sn−1, sn 6∈ W (λ).
Then, by Lemma 8.2, G.(eαn−1 + eαn) ⊂ Vg(0, λ). The present assumption on G

implies that G = G(1).

8.11. Let σ denote the outer involution of the algebraic group G induced by the
nontrivial symmetry of ∆. It induces an automorphism of g, also denoted by
σ, which swaps e±αn−1 and e±αn and fixes e±αi for i ≤ n− 2. Let G0 denote the
connected component of the fixed point groupGσ, and gσ the fixed point subalgebra
of σ. It is well-known (and not hard to see) that gσ = Lie(G0) has type Bn−1 and
is generated by e±α1 , . . . , e±αn−2 and e±αn−1 + e±αn . Moreover, the elements eαi
with i ≤ n−2 together with eαn−1 +eαn generate a maximal nilpotent subalgebra of
gσ and can be viewed as simple root vectors for gσ with respect to hσ = gσ ∩h. Let
β1, . . . , βn−1 denote the corresponding simple roots, so that eβi = eαi for i ≤ n− 2
and eβn−1 = eαn−1 + eαn . Note that βn−1 is a short root of gσ.
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8.12. The element e = eα1 + . . .+ eαn−3 + eαn−3+αn−2 + eαn−3+αn−1 + eαn−3+αn ,
fixed by σ, is Richardson in u{n−2}, hence subregular in g. There exist root vectors
in gσ such that e = eβ1 + . . .+ eβn−3 + eβn−3+βn−2 + eβn−2+βn−1 . This is conjugate
under Uβn−2 = Uαn−2 to eβ1 + . . . + eβn−3 + eβn−2+βn−1 , a subregular nilpotent
element of gσ (see 8.8). Since eβn−1 is a short root vector in gσ we have, by 8.8,
that

dimG0. eβn−1 ∩ zgσ (e) ≥ 3.

Since zgσ (e) ⊆ zg(e) and eβn−1 = eαn−1 + eαn our discussion in 8.10 yields

dimVg(0, λ) ∩ zg(e) ≥ 3.

8.13. Type G2. The element e = eα2 + eα1+2α2 is conjugate under NG(T ) to
eα1+α2 + eα1+2α2 , a Richardson element in u{2}. Hence e is subregular in g. Then
zg(e) has a basis consisting of e−α1 , eα1+3α2 , e2α1+3α2 and e. It is easily seen that
Uα1+2α2U−α1−α2(Keα2) is a dense subset of Keα2

⊕
Ke−α1

⊕
Keα1+3α2 . From

this it is immediate that the Zariski closure Y of Uα1+α2Uα1+2α2U−α1−α2(Keα2) is
an irreducible, conical hypersurface in

X := Keα2 ⊕Ke−α1 ⊕Keα1+2α2 ⊕Kα1+3α2 ⊕Ke2α1+3α2
∼= A5.

Since zg(e) is a hyperplane in X , all irreducible components of Y ∩ zg(e) must be
at least three-dimensional. As a consequence, dimVg(0, λ) ∩ zg(e) ≥ 3.

8.14. Let us return to general G satisfying the hypotheses of 2.1. Recall the com-
plexity of a module over a finite dimensional algebra is the rate of growth of its
minimal projective resolution. If we consider a Uχ(g)-module M , then the com-
plexity of M equals dimVg(M), see [9, Proposition 3.2] and [11, Section 6]. Thus
the following lemma provides the link between rank varieties and representation
type.

Lemma. Let χ ∈ N and λ ∈ Λ/W .

1. The algebra Bχ,λ is simple if and only if Vg(χ, λ) = 0.
2. [7, Theorem 3.2] The algebra Bχ,λ has finite representation type if and only if

dimVg(χ, λ) ≤ 1.
3. [39, Theorem 2] If Bχ,λ has tame representation type, then Vg(χ, λ) is two-

dimensional.

8.15. Thanks to Proposition 6.5, in order to prove the results of Section 5, we
may assume that G = G̃ = G̃1 × · · · × G̃m, g = g̃1 ⊕ . . . ⊕ g̃m, χ = χ1 + . . . + χm
and λ = (λ1, . . . , λm). In this situation

Bχ,λ(g) ∼= Bχ1,λ1(g̃1)⊗ · · · ⊗ Bχm,λm(g̃m).

As in [37, p.242], we have Vg(χ, λ) = Vg̃1(χ1, λ1)×· · ·×Vg̃m(χm, λm). In particular,

dimVg(χ, λ) =
m∑
j=1

dimVg̃j (χj , λj).(15)

Let us remark that, thanks to [12, Theorem 4.2], if Wi(λi) = Wi, then Bχi,λ(g̃i)
is simple (this also follows from Theorem 4.2 combined with the irreducibility and
projectivity of the restricted Steinberg module).
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8.16. Proof of Theorem 5.2. It follows from Theorem 7.2 that the blocks con-
sidered in Theorem 5.2 have finite representation type.

Thanks to 8.14.2, Bχ,λ has finite representation type if and only if Vg(χ, λ) has
dimension at most 1. So by (15) Bχ,λ has finite representation type if and only if
there exists j, 1 ≤ j ≤ m, such that Vg̃i(χi, λi) = 0 for i 6= j and dimVg̃j (χj , λj) ≤
1.

Suppose Vg̃i(0, λ) is non-zero. Since it is a closed G̃i-invariant variety, it contains
eα̃, where α̃ is the longest root of g̃i. Since χ(n+ ∩ g̃i) = 0, we see that eα̃ ∈
Vg̃i(0, λ)∩ zg̃i(χi). We deduce that Vg̃i(0, λ) = 0 for all i 6= j, implying W (λi) = W
for all such i by Lemma 8.2.2. By Lemma 8.14.1 we have that Bχi,λi(g̃i) is a simple
algebra for all such i.

Suppose Bχ,λ is of a type not considered in Theorem 5.2. By Theorem 7.2 χj
is not regular. If ξj is regular nilpotent, then Bξj ,λj (g̃j) has finite representation
type by Corollary 3.3. Thus the pair (Wj ,Wj(λj)) must be of the type described
in Theorem 7.2. Since χj is not regular, however, the calculations of 8.4, 8.8, 8.9
and 8.13 show that dimVg̃j (χj , λj) ≥ 2, a contradiction.

8.17. We give a necessary condition for tame representation type.

Proposition. Let χ ∈ N and λ ∈ Λ/W . If Bχ,λ has tame representation type,
then χ and λ satisfy one of the conditions of Theorem 5.3.

Proof. Suppose Bχ,λ is tame. By Lemma 8.14.3 we must have dimVg(χ, λ) = 2.
By (15) there are two cases to consider.
1. There exist j1, j2, 1 ≤ j1 < j2 ≤ m, such that dimVg̃i(χi, λi) = δij1 + δij2 .
2. There exists j, 1 ≤ j ≤ m, such that dimVg̃i(χi, λi) = 2δij .

In Case 1, arguing as in 8.16, the blocks Bχi,λi(g̃i) are simple andWi(λi) = Wi for
i 6= j1, j2. By Lemma 8.14.2, Theorem 5.2 and Theorem 7.2 the block Bχjk ,λjk (g̃jk)
is isomorphic to K[X ]/(Xrk), where k = 1, 2 and rk = [Wjk : Wjk(λ)]. By 7.5 the
tensor product of these algebras is tame if and only if

[Wj1 : Wj1(λ)] = [Wj2 : Wj2 (λ)] = 2.

This is equivalent to Condition 3 in Theorem 5.3.
In Case 2 the blocks Bχi,λi(g̃i) are simple and W (λi) = Wi for i 6= j. By

Corollary 3.3, if ξj is regular then the block Bξj ,λj (g̃j) has either finite or tame
representation type. Thus the pair (Wj ,Wj(λj)) belongs to one of the cases of
Theorem 7.2 and Theorem 7.3. Suppose χj is itself not regular. Then, applying
Corollary 3.3 once again, we deduce that Bζj ,λj (g̃j) has finite or tame representation
type for subregular ζj . In particular, dimVg̃j (ζj , λj) ≤ 2. The calculations in 8.6 -
8.13 show that Wj is of type of An and Wj(λj) is of type An−1. If χj is not itself
subregular, then 8.5 shows that dimVg̃j (χj , λj) ≥ 3, contradicting tameness.

As a consequence it only remains to show that Condition 2 of Theorem 5.3 yields
a tame block. This will be done in Section 9.

8.18. Proof of Theorem 5.4. We assume that Theorem 5.3 has been proved.
This is proved in [38, Proposition 5.3] that Uχ has finite representation type if
and only if one of the conditions of Part 1 is satisfied. It is also a consequence of
Theorem 5.2, see [32, 4.3].

We want to describe χ for which all blocks Bχ,λ are tame. It is straightforward to
check using Theorems 5.2 and 5.3 that all the algebras mentioned in Theorem 5.4.2
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are tame. We need to discount all other possibilities. It follows from Theorems 5.2
and 5.3 that if Bχ,λ is tame then χ must be regular or subregular.

Suppose first that χj is subregular, and assume p 6= 2. Then g̃j is of type An
by Theorem 5.3.2, and rankWj(λj) ≥ rankWj − 1 for all λ ∈ Λ/W . If n ≥ 3,
then the parabolic subgroup of W corresponding to any weight whose restriction
to T ∩ G(1) equals $n−1 + $n contains at least rankWj − 2 simple reflections. If
p = 2 and n ≥ 3 then the parabolic subgroup corresponding to 0 is reducible as
a Coxeter group. But then Uχ has a wild block by Theorem 5.3. The only case
remaining (apart from A1) is A2. Since the Coxeter number is 3, for p ≥ 3 there
are λ such that W (λ) = 1, by [22, II.6.2]. We deduce that g̃j is of type A1 (any
p) or A2 (p = 2). In both cases dimVg̃j (χj , λj) = 2 is achieved, and so by (15)
Vg̃i(χi, λi) = 0 for all λi and all i 6= j. This implies Wi(λi) = Wi for all i 6= j and
all λi. Therefore Wi is trivial for all i 6= j. This yields cases 2(a) and 2(b).

Suppose that χj is regular for 1 ≤ j ≤ m. If g̃j is of type An, then the argument
of the previous paragraph shows that either n ≤ 2 or n = 3 and p = 2 (and if n = 1
then we have finite representation type). If g̃j has type Bn or Cn, then Gj = G

(1)
j ,

and the parabolic subgroup of W corresponding to $n is of type An−1. Therefore
n ≤ 3. If n = 3 the Coxeter number is 6, so for p ≥ 7 there exists λ such that
Wj(λj) = 1. If p = 5, then the weight $2 + $3 provides a wild block, whilst if
p = 3, the weight $2 yields a wild block. If g̃j has type Dn, then again Gj = G

(1)
j ,

and the weight $n yields a parabolic subgroup of type An−1, and so yields a wild
block unless n = 4. In case D4 the Coxeter number is 6, so we need to consider
the cases p = 3 and p = 5 only. In both cases the weight $2 yields a wild block.
By Theorem 5.3 there are no tame blocks in types E and F4. If G(1) has more
than two simple components, then (15) shows that dimVg(χ, λ) ≥ 3 for some λ,
implying wildness. If there are two simple components, then dimVg(χ, λ) ≥ 3 for
some λ unless the components belong to the finite representation list of Theorem
5.4. It follows from 7.5 and Theorem 7.2 that both components must be of type
A1. The theorem follows.

9. The subregular tame case

9.1. In this section we show that the blocks occurring in Theorem 5.3.2 have tame
representation type. Thanks to Theorem 7.3 and Proposition 8.17, this completes
the proof of Theorem 5.3. The proof relies heavily on the results of [26].

9.2. Let G = SLn+1(K) if charK = p does not divide n+ 1, and G = GLn+1(K)
if charK = p divides n + 1. Let g = Lie(G), so that g = sln+1(K), respectively
g = gln+1(K). Let B : g × g −→ K be the non-degenerate G-invariant bilinear
form defined by B(x, y) = tr(xy) for x, y ∈ g. Choose root vectors eα as in 8.4 and
let χ ∈ g∗ be the subregular nilpotent element defined by χ(x) = B(x, e), where
e = eα1 + . . .+ eαn−1 .

Let λ ∈ Λ/W be such that the group W (λ) is the standard parabolic subgroup
of W generated by the simple reflections s1, . . . , sn−1.

9.3. We will be concerned with the category of finite dimensional Uχ-modules,
Uχ -mod, or more specifically the subcategory of Bχ,λ-modules. These categories
have graded analogues, which we introduce now.
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If G = SLn+1(K) let

T0 =
n−1⋂
i=1

ker(αi),(16)

whilst if G = GLn+1(K) let

T0 = {τE1,1 + . . .+ τEn,n + En+1,n+1 : τ ∈ K∗}.(17)

Thus, in either case, T0 is a one-parameter subgroup of the torus T ⊂ G such that
χ(Ad(t)x) = χ(x) for all x ∈ g and t ∈ T0. As a result the adjoint action of T0 on
U passes to an action on the quotient Uχ.

We define a Uχ-T0-module to be a finite dimensional vector space V over K that
has a structure both as a Uχ-module and as a rational T0-module such that the
following compatibility conditions hold:

1. We have t(xv) = (Ad(t)x)tv for all x ∈ g, t ∈ T0 and v ∈ V .
2. The restriction of the g-action on V to Lie(T0) ⊆ h is equal to the derivative

of the T0-action on V .
We obtain the category, Uχ-T0 -mod, with objects the Uχ-T0-modules and mor-
phisms T0-equivariant Uχ-module homomorphisms. Since Bχ,λ = eλUχ for some G-
invariant element eλ, the full subcategory Bχ,λ-T0 -mod of the category Uχ-T0 -mod
is well-defined. Its objects are Bχ,λ-modules with a compatible rational T0-action.

Remark. In [26] the caseG = SLn+1(K) where p does not divide n+1 is considered,
and the category Uχ-T0 -mod is studied where T0 is as in (16). The results of [26,
Section 2] continue to hold for G = GLn+1(K) where p divides n+1, if we choose T0

as in (17). The proofs can be repeated almost verbatim. The only difference occurs
in character formulae, where appearances of (n + 1) in [26] should be replaced
by 1. This is due essentially to the following fact: if φ is the cocharacter of T
corresponding to T0 in (16) (respectively (17)), then 〈αn, φ〉 = n + 1 (respectively
〈αn, φ〉 = 1). From now on we will use the results in [26] in both cases without
further comment.

9.4. Let F : Uχ-T0 -mod −→ Uχ -mod denote the functor which forgets the T0-
structure. The objects of Uχ -mod which are in the image of F are called gradable.
SupposeM is gradable, that is, there exists a Uχ-T0-module V such that F (V ) = M .
Then, by [25, Remark 1.5], we have F (socV ) = socM and F (radV ) = radM .

It follows from [17, Corollary 3.4] and [25, Corollary 1.4.1] that the simple Uχ-
modules and their projective covers are gradable. Moreover, any lift of a simple
Uχ-module is simple in Uχ-T0 -mod and any lift of a projective indecomposable
Uχ-module is projective indecomposable in Uχ-T0 -mod.

9.5. The category Uχ-T0 -mod has shift functors

[±1] : Uχ-T0 -mod −→ Uχ-T0 -mod .

These send a given Uχ-T0-module V to the object having the same Uχ-module
structure but with t ∈ T0 acting by t.v = (±pαn)(t)tv for all v ∈ V . Given i ∈ N,
we write [i] (respectively [−i]) for the i-fold composition of [1] (respectively [−1]).

Given Uχ-T0-modules V0 and V1, we have a natural isomorphism⊕
i∈Z

HomUχ-T0(V0[i], V1) ∼= HomUχ(F (V0), F (V1)).(18)
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Moreover, if V0 = V1, then the left hand side of (18) acquires an algebra structure
through the identification

HomUχ-T0(V0[i+ j], V1[j]) ∼= HomUχ-T0(V0[i], V1),

for all i, j ∈ Z. With this (18) becomes an isomorphism of algebras.

9.6. Thanks to [26, Theorem 2.6], there are exactly two non-isomorphic simple
Bχ,λ-modules. We let S0 and S1 be lifts of these to Bχ,λ-T0 -mod, and let P (S0)
and P (S1) be lifts of their projective covers, projecting onto S0 and S1 respectively.
By [17, Theorem 4.1] and [25, Theorem 1.4.2] we have that {S0[i], S1[i] : i ∈ Z} is a
complete set of representatives of mutually non-isomorphic simple Bχ,λ-T0-modules.
Then P (S0)[i] (respectively P (S1)[i]) is the projective cover of S0[i] (respectively
S1[i]) in Bχ,λ-T0 -mod.

9.7. The category Uχ-T0 -mod admits a contravariant self-equivalence, D, whose
square is the identity functor. By [26, Proposition 2.16] we have for all i ∈ Z

D(S0[i]) ∼= S0[i], D(S1[i]) ∼= S1[i].(19)

Since Uχ is a symmetric algebra, [43] and [11, 1.2], P (S0) and P (S1) are both
projective and injective. So we deduce from (19) that

D(P (S0)) ∼= P (S0), D(P (S1)) ∼= P (S1).(20)

9.8. Besides the simples and their projective covers there are two other fami-
lies of distinguished objects in Bχ,λ-T0 -mod. The first we denote by Z(S0) and
Z(S1). These are indecomposable Bχ,λ-T0-modules whose underlying Uχ-modules
F (Z(S0)) and F (Z(S1)) are the baby Verma modules in Uχ -mod with heads F (S0)
and F (S1) respectively. We have, by [26, Theorem 2.6], short exact sequences in
Bχ,λ-T0 -mod

0 −→ S1 −→ Z(S0) −→ S0 −→ 0,(21)

and

0 −→ S0[−1] −→ Z(S1) −→ S1 −→ 0.(22)

To define the second objects we need a little notation. Let Φ′ ⊂ Φ be the root
system generated by α1, . . . , αn−1. Let p be the parabolic subalgebra of g spanned
by b+ and all gα for α ∈ Φ′. Then p = l⊕u, where u is the unipotent radical of p and
l is the Levi subalgebra of g which equals the direct sum of h and all gα for α ∈ Φ′.
Since χ(u) = 0, any Uχ(l)-module M can be extended to a Uχ(p)-module by letting
u act trivially. Thus we obtain a Uχ(g)-module by Harish-Chandra induction,

Ind(M) = Uχ(g)⊗Uχ(p) M.

Let µ ∈ X(T ) and let Z l
χ(µ) be the corresponding baby Verma module over l. Let

Ql
χ(µ) be the projective cover of Zl

χ(µ) as a Uχ(l)-module. Then Ind(Zl
χ(µ)) =

Zχ(µ), and we write ∆χ(µ) for Ind(Ql
χ(µ)). We furnish these modules with a

compatible T0-structure by concentrating 1⊗Zl
χ(µ) (respectively 1⊗Ql

χ(µ)) in the
weight space given by the restriction of µ to T0 and letting T0 act on Uχ(g) via the
adjoint action. This is well-defined, since the T0-action on Uχ(l) is by construction
trivial. For further details, see [24, Sections 10 and 11] and [25, Section 2].

Using the above construction, we see that for i = 1, 2 there exists µi ∈ X(T )
such that Z(Si) ∼= Ind(Zl

χ(µi)) as a Bχ,λ-T0-module. We define ∆(Si) := ∆χ(µi)
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as Bχ,λ-T0-modules. By [24, 11.18] and [25, 2.9] we have ∆(S0) ∼= Z(S0), whilst
the module ∆(S1) has a filtration in Bχ,λ-T0 -mod

0 = ∆0(S1) ⊂ ∆1(S1) ⊂ · · · ⊂ ∆n(S1) = ∆(S1),(23)

such that ∆i(S1)/∆i−1(S1) ∼= Z(S1) for 1 ≤ i ≤ n. By [24, Proposition 11.18] and
[25, Proposition 2.9] we have short exact sequences

0 −→ ∆(S1)[1] −→ P (S0) −→ ∆(S0) −→ 0,(24)

and

0 −→ ∆(S0) −→ P (S1) −→ ∆(S1) −→ 0.(25)

In particular, both ∆(S0) and ∆(S1) are indecomposable with simple heads S0 and
S1 respectively.

9.9. We are able to calculate some extension groups in Uχ-T0 -mod.

Lemma. Let V be a simple Uχ-T0-module. Then

Ext1
Uχ-T0

(S0, V ) =

{
K if V ∼= S1, S1[1]
0 otherwise.

Similarly, we have

Ext1
Uχ-T0

(S1, V ) =

{
K if V ∼= S0, S0[−1]
0 otherwise.

Proof. Thanks to [26, Proposition 2.19] it only remains to prove that S0 and S1

have no self-extensions.
We have an exact sequence induced from (24)

HomUχ-T0(∆(S1)[1], S0) −→ Ext1
Uχ-T0

(∆(S0), S0) −→ Ext1
Uχ-T0

(P (S0), S0).

Since P (S0) is injective and since the head of ∆(S1)[1] is S1[1], we deduce that
Ext1

Uχ-T0
(∆(S0), S0) = 0. We have an exact sequence from (21)

HomUχ-T0(S1, S0) −→ Ext1
Uχ-T0

(S0, S0) −→ Ext1
Uχ-T0

(∆(S0), S0).

It follows that Ext1
Uχ-T0

(S0, S0) = 0.
To deal with S1, consider the following exact sequence induced from (25):

HomUχ-T0(S1,∆(S1)) −→ Ext1
Uχ-T0

(S1,∆(S0)) −→ Ext1
Uχ-T0

(S1, P (S1)).

Since P (S1) is projective and the socle of ∆(S1) is S0[−1], it follows that

Ext1
Uχ-T0

(S1,∆(S0)) = 0.

The exact sequence induced from (21),

HomUχ-T0(S1, S0) −→ Ext1
Uχ-T0

(S1, S1) −→ Ext1
Uχ-T0

(S1,∆(S0)),

now shows that Ext1
Uχ-T0

(S1, S1) = 0, as required.
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9.10. A module is called uniserial if it has a unique composition series. Given a
Uχ-T0-module V , we define the radical series of V as follows: set rad0 V = V and
for i > 0 let radi V = rad(radi−1 V ).

Lemma. Suppose V is a Uχ-T0-module such that radi V/ radi+1 V is simple for all
i. Then V is uniserial.

Proof. It is sufficient to prove that any Uχ-T0-submodule M of V equals radi V for
some i ≥ 0. We prove this by downward induction on the number of composition
factors of M . Let M be a proper Uχ-T0-submodule of V and let M ′ ⊇ M be
such that M ′/M is simple. By induction M ′ = radi V for some i ≥ 0, and so
radi+1 V = rad(M ′) ⊆ M . Therefore M ′/M is a factor of radi V/ radi+1 V , a
simple module, implying equality.

9.11. The following lemma is the crucial result in this section.

Lemma. The modules ∆(S0) and ∆(S1) are uniserial.

Proof. The module ∆(S0) is trivially uniserial. We will show that the module
radi ∆(S1)/ radi+1 ∆(S1) is simple in Uχ-T0 -mod for all i ≥ 0, and then apply
Lemma 9.10. Suppose for a contradiction that i is minimal such that the module
radi ∆(S1)/ radi+1 ∆(S1) is not simple. Since ∆(S1) has a simple head we have
i ≥ 1. There is a short exact sequence

0 −→ radi ∆(S1)
radi+1 ∆(S1)

−→ radi−1 ∆(S1)
radi+1 ∆(S1)

−→ radi−1 ∆(S1)
radi ∆(S1)

−→ 0.(26)

By hypothesis the term on the right hand side of (26) is simple. The module ∆(S1)
has only two isomorphism classes of composition factors, S1 and S0[−1]. We assume
that the right hand side of (26) is isomorphic to S0[−1]. The other case is treated
similarly.

The left hand side of (26) is semisimple, so isomorphic to a direct sum of copies
of S0[−1] and S1. By Lemma 9.9, Ext1

Uχ-T0
(S0[−1], S0[−1]) = 0, so we deduce that

this direct sum can contain no copies of S0[−1].
Let us write V = radi−1 ∆(S1)/ radi+1 ∆(S1), a module with head isomorphic

to S0[−1] and socle a number of copies of S1. By [20, Proof of Theorem 9] we have
that

[radP (S0)[−1]/ rad2 P (S0)[−1] : S1] = dim Ext1
Uχ-T0

(S0[−1], S1).(27)

By Lemma 9.9 the right hand side of (27) equals one. We have a commutative
diagram

P (S0)[−1] //

f
&&MMMMMM

S0[−1]

V

OO

where f exists by the projectivity of P (S0)[−1]. This induces a homomorphism

f̃ :
radP (S0)[−1]
rad2 P (S0)[−1]

−→ radV.

If f̃ is not surjective, then we have V/ im f 6= 0, and so there is a copy S1 in
the head of V , a contradiction. Therefore f̃ is surjective and so radV = S1, as
required.
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9.12. Let A be a finite dimensional K-algebra. Given any A-module M with
simple head, we define the heart of M to be

H(M) =
radM
socM

.

The algebra A is called biserial if every nonuniserial projective indecomposable left
or right A-module P contains two uniserial submodules whose sum is the unique
maximal submodule of P and whose intersection is either zero or simple. It is
easily seen that if A is symmetric and the heart of any projective indecomposable
A-module is a direct sum of two uniserial modules, then A is biserial. According
to [4], any biserial algebra A is tame.

Theorem. Let χ ∈ g∗ and λ ∈ Λ/W be as in 9.2. Then Bχ,λ is a biserial algebra.
In particular Bχ,λ is tame.

Proof. By 9.4 the radical and socle of a Bχ,λ-T0-module V agree with the radi-
cal and socle of F (V ), so it is enough to prove that the heart of the projective
indecomposables in Bχ,λ-T0 -mod are direct sums of two uniserial modules.

We claim that

H(P (S0)) ∼=
∆(S1)[1]

S0
⊕ S1,

and

H(P (S1)) ∼= rad ∆(S1)⊕ S0.

The uniseriality of these summands follows from Lemma 9.11.
Thanks to (24), we have a short exact sequence

0 −→ ∆(S1)[1]
S0

−→ H(P (S0)) −→ S1 −→ 0.

Using (24), (19), (20) and (21), we also have a composition

0 −→ S1
∼= D(S1) ∼=

D(∆(S0))
D(S0)

−→ D(P (S0))
D(S0)

∼=
P (S0)
S0

,

showing that there is a copy of S1 in the head and the socle of H(P (S0)). By
(23) and (24) S1 = S1[0] occurs only once as a composition factor of P (S0) in
Bχ,λ-T0 -mod. So we deduce that S1 is a direct summand of H(P (S0)), proving the
first half of the claim.

For the second half of the claim we have, thanks to (25) and Lemma 9.11, a
short exact sequence

0 −→ S0 −→ H(P (S1)) −→ rad ∆(S1) −→ 0.

By (25), (19) and (20) we have a composition of maps

radP (S1) ∼= radD(P (S1)) −→ D(S0) ∼= S0 −→ 0.

As above, we deduce that S0 is a direct summand of H(P (S1)), as required.
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9.13. Quiver and relations for Bχ,λ. Using the results of the previous subsec-
tions, we will determine the quiver and relations for the algebra Bχ,λ. The basic
algebra Morita equivalent to Bχ,λ is simply EndBχ,λ(F (P (S0)) ⊕ F (P (S1))). To
ease notation, set P0 = P (S0) and P1 = P (S1).

By (18) we have an algebra isomorphism

EndBχ,λ(F (P0)⊕ F (P1)) ∼=
⊕
i∈Z

EndBχ,λ-T0(P0[i]⊕ P1[i], P 0 ⊕ P1).(28)

We construct four elements in the right hand side of (28), show that these generate
the basic algebra, and then describe the relations between these elements.

Let A be the unique (up to scalars) map in Bχ,λ-T0 -mod of degree zero, defined
as the composition P0 � ∆(S0) ↪→ P1. Similarly, let B̃ : P1[1] � ∆(S1)[1] ↪→ P0

be the unique map of degree 1.
By the proof of Theorem 9.12, radP1 has head isomorphic to S0 ⊕ S0[−1]. So

we have

P0[−1] //

f
$$J

J
J

J
J

S0[−1]

radP1

OO

Composing f with the inclusion radP1 ⊂ P1, we obtain Ã : P0[−1] −→ P1, a map
of degree −1. Similarly, using the proof of Theorem 9.12, we define B as

P1
//

B

++VVVVVVVVVVVVVV S1
// H(P0) // P0/S0

P0

OO

By construction, B is a map of degree zero.

Lemma. The elements A, Ã,B and B̃ generate EndBχ,λ(F (P0) ⊕ F (P1)) as an
algebra.

Proof. Consider the map induced by Ã,

Ā :
P0[−1]
Ã−1(S1)

−→ P1

S1
.

Using Theorem 9.12 we see the image of Ā is rad ∆(S1). Since S1 = socP1 ⊆ ker B̃,
we deduce that

im(B̃ ◦ Ã) = im(B̃ ◦ Ā) = rad ∆(S1)[1].(29)

Write X = B̃Ã. By (29) X induces an endomorphism of ∆(S1)[1] ⊂ P0 which sends
the head of ∆(S1)[1] onto rad2 ∆(S1)[1]. Since ∆(S1)[1] is uniserial, it follows that
X sends radi ∆(S1)[1] to radi+2 ∆(S1)[1]. Hence the image of Xn : P0 −→ P0

equals S0 = socP0.
Let Y = ÃB̃. We have

B̃ ◦ Y n−1 : P1
B̃−−−−→ P0[−1]

(X[−1])n−1

−−−−−−−→ P0[−1].

It follows from the definition of B̃ and the previous paragraph that the image of
B̃ ◦ Y n−1 equals rad2n−2 ∆(S1), a module with composition factors S0[−1] and
S0 by Lemma 9.11. Using (21), (22), (23), (24) and (25), we see that the kernel
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of Ã has composition factors S0[−1] and S1[−1]. It follows that Y n has image
S1 = socP1.

It is clear that im(B ◦A) = socP0 and im(A ◦B) = socP1. Thus, possibly after
rescaling, Xn = cB ◦A and Y n = A ◦B, for some non-zero scalar c.

Let Ãi = Y i ◦ Ã and B̃i = X i ◦ B̃. The elements X i, Y i, Ãi and B̃i are linearly
independent in EndBχ,λ(F (P0)⊕F (P1)) for 0 ≤ i ≤ n. On the other hand, by (21),
(22), (23), (24) and (25), we have

[F (P0) : F (S0)] = [F (P0) : F (S1)] = [F (P1) : F (S0)] = [F (P1) : F (S1)] = n+ 1.

We deduce, by [1, Lemma 1.7.6], that

dim EndBχ,λ(F (P0)⊕ F (P1)) =
1∑

i,j=0

[F (Pi) : F (Sj)] = 4(n+ 1),

as required.

9.14. It is now straightforward to obtain the quiver and relations (up to scalars).

Theorem. Let χ be subregular and λ ∈ Λ/W be such that W (λ) has type An−1.
Then Bχ,λ is Morita equivalent to the quiver

•

A

��

Ã

%% •
B

jj

B̃

RR

with relations AB̃ = B̃A = ÃB = BÃ = 0, AB = (ÃB̃)n and BA = c(B̃Ã)n, for
some non-zero scalar c ∈ K.

Proof. We have shown in Lemma 9.13 that A, Ã,B and B̃ generate the 4(n +
1)-dimensional algebra EndBχ,λ(F (P0) ⊕ F (P1)). The first set of relations holds
thanks to the grading on P0 and P1: the module P0 (respectively P1) has no
composition factors isomorphic to S0[i] (respectively S1[i]) for i non-zero. The
second set of relations already appeared in the proof of Lemma 9.13. Therefore the
endomorphism ring is a quotient of the above path algebra. The path algebra has
a basis consisting of A, B, e1, e2 and alternating products of Ã and B̃ of length no
more than 2n. Consequently the algebras are isomorphic.

Remark. In the case n = 1 there is a unique subregular nilpotent element, χ = 0,
and λ is a regular weight. The above description of the basic algebra of B0,λ was
given in [8], where it was shown that c = 1. For n = 2, the quiver and relations
were found independently in [28], and it is shown that c = ±1 in this case.

Remark. It follows from Theorem 9.14 that the basic algebra of Bχ,λ is special bise-
rial (see [6, Definition II.1.1]). All indecomposable representations of such algebras
are classified, [6, II.3]. The classification is based on [15] and [41]. It would be in-
teresting to pull the information provided by [6, II.3] back to g to obtain an explicit
description of all indecomposable representations of the tame subregular blocks.
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