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Abstract

This thesis concerns continuous gravitational wave signals from non-axisymmetric

neutron stars and ground-based interferometric detectors. These detectors are cur-

rently being upgraded and this thesis explores relevant issues and methods to prepare

for the advanced detector era. A study into sensitivity dependence on the addition

of a southern hemisphere detector for a targeted continuous wave search is first pre-

sented. Next, we study the effect of close and/or high velocity neutron stars on the

ability of a blind, all-sky search to make a detection. Initial results from a narrow-

band search for signals from the Crab Pulsar and a blind hardware injected signal

are then presented. Finally, we describe the development and initial implementa-

tion of a large-scale mock data challenge designed to test current continuous wave

algorithms to explore various issues before we enter the advanced detector era.
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1

Gravitational waves: theory,

astrophysical sources and

detectors

This thesis presents a detailed analysis of techniques for gravitational wave signal

detection from isolated, non-axisymmetric neutron stars and describes new tools

and strategies relevant to their future development. The gravitational wave commu-

nity is preparing to enter the “Advanced Detector” era where detector networks will

be sufficiently sensitive that a direct gravitational wave detection is likely. These

detections could come from a variety of astrophysical sources, for which the various

groups in the gravitational wave community have been developing detection tech-

niques. There are many search algorithms already in place for the LIGO and Virgo

Scientific Collaboration,1 and in the coming years these need to be comprehensively

tested in preparation for the advanced detector data. One of the analysis groups is

the continuous wave (CW) working group, which focuses on long-duration signals

from neutron stars. The CW group has developed various search methods, from tar-

geted searches to all-sky “blind” searches. This group has already placed upper limits

1http://www.ligo.org/

20
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1. Gravitational waves: theory, astrophysical sources and detectors 21

on gravitational wave amplitudes from known sources such as the Crab Pulsar [10]

and recently the Vela Pulsar [2] using data from the previous generation of gravita-

tional wave detectors. The group has also successfully recovered hardware-injected

signals.

This thesis presents the development of a large-scale mock data set for the purpose

of testing various CW algorithm’s performance. An initial “mock data challenge” is

presented along with initial results from two established CW searches.

In addition, data from the recent LIGO science run (S6) is analysed using a directed

narrow-band algorithm to search for the Crab pulsar as well as a hardware injected

CW signal. This thesis also investigates the effect that proper motion and parallax

has on the all-sky searches, specifically Einstein@Home. 2 These investigations

are all important to consider for CW searches in the Advanced Detector era where

detections are likely. We want to ensure that we have optimised our techniques

and understand possible pitfalls as carefully as possible before this era. This thesis

discusses various considerations and presents methods for signal analysis.

1.1 Gravitational wave theory

Gravitational waves are a direct implication of Albert Einstein’s Theory of Gen-

eral Relativity [36]. In loose terms, general relativity describes the Universe as a

4-dimensional space-time manifold, where the presence of mass causes a curvature.

The more massive an object, the more extreme the curvature, and the motion of

massive objects in the Universe causes a “ripple” in this space-time manifold. This

ripple is a wave sending information about the motion, which travels at the speed of

light [36]. Einstein’s discovery that gravitational force and fields moved at the speed

of light was revolutionary as it contradicted previous understanding that gravita-

2http://einstein.phys.uwm.edu/

http://einstein.phys.uwm.edu/


1. Gravitational waves: theory, astrophysical sources and detectors 22

tional force was felt instantaneously.3

Gravitational radiation can be described as fluctuations in a Minkowski (flat) space-

time metric. An interval in such a metric obeys

ds2 = ηµν dxµ dxν (1.1)

where ds is the interval in space-time and dxi are the corresponding differential

changes in space-time coordinates: time, t, and three spatial dimensions, x, y and

z. The coefficient ηµν which represents the Minkowski metric is defined as

ηµν =



















−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















(1.2)

where c is the speed of light [60].

For a weak gravitational field, including weak gravitational wave fluctuations, per-

turbations may be added to the Minkowski metric to make

gµν = ηµν + hµν ; |hµν | << 1 (1.3)

where gµν describes the full gravitational field and hµν is a small perturbation on

that field.

The fundamental equations of general relativity are the Einstein field equations,

given as

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.4)

where Rµν is called the Ricci tensor with its trace R, referred to as the Ricci scalar

3There was good evidence that gravity indeed propagated instantaneously, for example Laplace,
1809 [53].
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and Tµν is the Energy-momentum tensor. If the condition |hµν | ≪ 1 from Equation

1.3 is satisfied, then it is possible to linearize the Einstein field equations with respect

to the small perturbation hµν .

To initially solve for hµν as gravitational waves, it is simplest to study solutions in a

vacuum and harmonic coordinates as considered in Misner, Thorne and Wheeler [61].

For a vacuum, the energy-momentum tensor disappears, Tµν = 0 and the solution

for harmonic coordinates reduces to

✷h̄µν = 0. (1.5)

The d’Alembertian operator, ✷, in Minkowski space-time is defined as

✷ ≡ ηµν∂µ∂ν = − 1

c2
∂2t + ∂2x + ∂2y + ∂2z (1.6)

and the new quantity, h̄µν is

h̄µν ≡ hµν −
1

2
ηµνh (1.7)

where h is the trace of hµν .

The time-dependent solutions of these equations are interpreted as weak gravita-

tional waves propagating through a flat space-time region. The simplest solution for

this is a monochromatic plane wave of the form

h̄µν(x
α) = Aµν cos(kαx

α − α(µ)(ν)). (1.8)

Here, Aµν and α(µ)(ν) are the constant amplitude and constant initial phase, respec-

tively, of the µν components of the wave and kα are real constants. For the initial

phase, the indices µ and ν are bracketed to indicate there is no summation over
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these indices. The Equations 1.8 are solutions of Equation 1.5 if and only if

ηαβkαkβ = 0 (1.9)

so we must define kα ≡ ηαβkβ and kα are the components of a null 4-vector with

respect to the Minkowski metric. Then the contraction of kαx
α can be written as

kαx
α = −c k0 t+ k · x (1.10)

where two 3-vectors, k and x have been introduced. with components (k1, k2, k3)

and (x1, x2, x3) respectively. If the quantity ω is introduced as ω ≡ c k0, then (1.8)

becomes

h̄µν(t,x) = Aµν cos(ωt− k · x + α(µ)(ν)). (1.11)

Without loss of generality, it can be assumed that ω ≥ 0 and ω can be thought of

as the angular frequency of the wave. The frequency, f , can also be used with the

relation

ω = 2πf. (1.12)

The vector k is the wave vector and defines both the direction in which the wave is

travelling and the wavelength, λ by the relation

λ|k| = 2π. (1.13)

Equation 1.9 can then be written in terms of ω and k and take the form

ω = c|k| (1.14)

which is the dispersion relation for perturbutive gravitational waves. This implies

that the phase and group velocity of the waves are equal to c, the speed of light.

This result shows that in a flat vacuum, gravitational waves travel at the speed of
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light.

To further reduce the gravitational wave equations a transformation may be per-

formed into the transverse traceless (TT) coordinate system [47]. Introducing a

time-like unit vector Uµ where gµνU
µUν = −1 a gauge transformation may be per-

formed such that

h̄′µνU
′ν = 0, (1.15a)

ηµν h̄′µν = 0, (1.15b)

h̄′µνk
′ν = 0, (1.15c)

where Equations 1.15 define the TT coordinate system. It is also important to note

that as a consequence of Equation 1.15b,

h̄′µν = h′µν . (1.16)

Equations 1.15 give eight independent constraints on h̄′µν , so any plane monochro-

matic wave has two independent degrees of freedom, which are referred to as the

gravitational wave’s polarisations.

These polarisations may be better described if further coordinate changes are per-

formed with global Lorentz transformations. By starting with the components

Uµ = (1, 0, 0, 0) then by Equation 1.15a

h̄µ0 = 0. (1.17)

If one assumes the wave propagates in i.e., the +z direction then k = (0, 0, ω/c),

kµ = (ω/c, 0, 0, ω/c). Combining this with Equations 1.15c and 1.17 gives

h̄µ3 = 0. (1.18)
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Finally, Equation 1.15b combines with Equations 1.17 and 1.18 to give the final

constraints on h̄µν ,

h̄11 + h̄22 = 0, (1.19)

with the following notation commonly used:

h+ ≡ h̄11 = −h̄22, h× ≡ h̄12 = h̄21. (1.20)

The h+ and h× polarisations are frequently referred to as the “plus” and “cross”

polarisations, respectively, of the wave.

Equations 1.17 - 1.19 allow us to rewrite the plane-wave solution 1.11 in matrix

form:

hTT
µν (t,x) =



















0 0 0 0

0 h+(t,x) h×(t,x) 0

0 h×(t,x) −h+(t,x) 0

0 0 0 0



















, (1.21)

where the polarisations h+ and h× of the plane wave with angular frequency ω

travelling in the +z direction are given by

h+(t,x) = A+ cos
[

w
(

t− z

c

)

+ α+

]

, (1.22)

h×(t,x) = A× cos
[

w
(

t− z

c

)

+ α×

]

(1.23)

where A+ andA× are the corresponding amplitudes of the two polarisations [61].

The polarization tensors e+ and e× are introduced as

e+xx = −e+yy = 1, e×xy = e×yx = 1, all other components zero, (1.24)

then the full gravitational wave field may be constructed from the plus and cross



1. Gravitational waves: theory, astrophysical sources and detectors 27

polarisations given the equation

hTT
µν (t,x) = h+(t,x)e

+
µν + h×(t,x)e

×
µν . (1.25)

When the gravitational wave is detected (from methods discussed in Section 1.2),

the amplitude of the signal contains the polarisations and the effects from detector

orientation with respect to the source of the gravitational wave signal. According

to [49],

h(t) = F+(t)h+(t) + F×(t)h×(t), (1.26)

where F+ and F× are the beam pattern functions which are periodic functions of

time, with a period of one sidereal day (the rotation of the Earth) [47]. This will be

explained further for the purpose of continuous waves analysis in Section 2.4.

1.2 Gravitational wave detectors and current lim-

itations

Joseph Weber attempted the first direct detection of gravitational waves in the 1960s

using resonating aluminum bars, referred to as “Weber bars” [82] and [83]. These bars

resonate at approximately 1600Hz, a frequency where the radiation from collapsing

stars was expected to peak. Though there were coincident detections of Weber’s

bars, these were not also seen in similar experiments around the world. Another

reason to disregard Weber’s supposed detections is that Weber’s bar detector was

sensitive to strains of order 10−16, insufficient to detect the theoretically predicted

signals. Bar detectors are still being used, with cooling techniques developed to

reduce the noise, but these efforts are subsiding [65].

Currently, the use of ground-based laser interferometers dominates the field, and in

2003 they surpassed the peak sensitivity of the bar detectors [65]. These interfer-
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ometers are sensitive to a wide band of frequencies, so they can be used to detect

gravitational waves from various sources, as discussed in Section 1.3. The arm con-

figuration of interferometers is also ideal for detection due to the quadrupolar nature

of gravitational waves.

Figure 1.1 – A ring of particles reacting to plus and cross polarisations (left and right,
respectively) of gravitational waves. Image courtesy of Sathyaprakash
and Schutz, 2009 [74].

The LIGO Scientific Collaboration currently is operating three interferometric de-

tectors: two in Hanford, WA and one in Livingston, LA. The Livingston detector

and one of the Hanford detectors have arm lengths of 4 km and are referred to as L1

and H1, respectively. The Hanford detector is shown in Figure 1.2. The other Han-

ford detector has arm lengths of 2 km and is referred to as H2 [40]. Other detectors

are the GEO600 detector in Germany, Virgo in Italy and TAMA300 in Japan. This

thesis will mostly refer to data from the LIGO detectors.

An interferometric detector operates by sending a laser beam through a beam-

splitter and onto two test masses which are suspended with pendulum systems at

the ends of (ideally orthogonal) arms. The light is reflected from the mirrors on the

test masses back to recombine at a photo-diode as seen in Figure 1.3.

The quadrupolar nature of the gravitational wave will cause the arm lengths to

compress and stretch, resulting in a change of intensity of light at the photo-diode

[65]. If a suitably oriented gravitational wave is incident upon this interferometer

then the arm lengths will change with respect to each other and the combined laser

beam will show an interference pattern making these detectors ideal for detecting
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Figure 1.2 – Aerial view of the Hanford interferometer. Photo credit: LIGO Labo-
ratory.

Laser

Mirrors

Beamsplitter

Photodiode

Figure 1.3 – Simple schematic of a Michelson interferometer used for gravitational
wave detection.
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the quadrupolar nature of gravitational waves. The detection of these waves comes

from the change in arm length ∆L due to the gravitational wave amplitude, h,

h =
2∆L

L
, (1.27)

where L is the arm length of the interferometers. The challenge of gravitational wave

detections is that even for the most violent astrophysical events, the amplitude is

extremely small, approximately 10−21 or less [74].

The frequencies at which the current, operating LIGO detectors are sensitive range

from about 10 Hz to about 6 kHz and the initial runs achieved a strain noise floor of

nearly 2 × 10−23 Hz−1/2. The advanced detectors will push this floor down another

factor of 10-15 [66]. The sensitivities for the initial runs of the LIGO detectors is

seen in Figure 1.4.

The sensitivity of the detectors is limited by various sources of noise which combine

across the frequency spectrum. Detectors currently in operation have been able to

overcome these various sources of noise to allow unprecedented sensitivity. Seismic

noise originates from motion on the surface of the Earth and fluctuations below

ground. Seismic noise primarily affects the low-frequency band, below about 50 Hz

due to the fact that vibration isolation systems fall towards the lower frequencies.

Thermal noise is due to Brownian motion in the optics and suspensions and domi-

nates (due to losses in the suspensions) from 50 to 150Hz. Shot noise in a free laser

beam is frequency independent, but storage time effects in the arm cavities cause

the shot noise background to measured strain to rise as f above a cavity pole at

90Hz, dominating the background strain spectrum above 150Hz [67]. These sources

of noise all contribute to the total noise curve shape as seen in Figure 1.4.
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Figure 1.4 – Sensitivity curves for the initial 5 science runs (S1-S5) of the 4 km Han-
ford detector (LHO) and the Livingston detector (LLO). The black line
shows the sensitivity goal for the initial runs which is calculated from the
noise sources mentioned in this section. The final science run (S5) was
able to eliminate other technical noise and achieve the goal sensitivity
curve. Image courtesy of the LIGO Laboratory [63].

1.2.1 Low-frequency limitations from seismic noise

Seismic noise, which is due to the motion of the Earth, acts with an effect of ap-

proximately 10−7 f−2 m/Hz1/2 (for a reasonably quiet location) in the six degrees of

freedom (three displacement and three rotation motions) [67]. For our detectors, the

test masses should be disturbed less than 3× 10−20 m/Hz1/2. This means that, say

around 30 Hz, the seismic noise must be reduced in the horizontal direction more

than 109. The horizontal and vertical seismic noise are coupled to one another due

to the curvature of the Earth and thus must be isolated in both directions to fully

reduce the effects. The methods used in the interferometers to reduce seismic noise

includes suspension systems with springs which effectively isolates the mirrors in all

six dimensions [23], [51], [32].
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For Advanced LIGO, the plan is to incorporate an external stage of hydraulic iso-

lation, two in-vacuum stages of active isolation as well as the mass suspension [40],

[15]. Active damping of the pendulum modes is required as motion will occur at the

excitement of pendulum frequencies [67].

1.2.2 Thermal effects on the noise floor

Thermal noise is the next most significant source of noise for the gravitational wave

interferometer detectors at the low frequency end of the operating range. From [75]

it can be shown that for any simple harmonic oscillator such as a test mass on a

spring or pendulum, the spectral density of the thermal motion of the mass is

x2(ω) =
4kBTω

2
0φ(ω)

ωm[(ω2
0 − ω2)2 + ω4

0φ
2(ω)]

, (1.28)

where kB is Boltzmann’s constant, T is the temperature, m is the mass and φ(ω)

is the loss angle of the oscillator which has an angular resonant frequency ω0. For

a mass on a spring, the loss angle (factor) comes from the material properties of

the spring. However, for a pendulum most of the energy is stored in the lossless

gravitational field which means the loss factor is lower than the loss factor of the

material used for the wires or fibres suspending the pendulum [67]. Following [75],

it can be shown that a pendulum of mass m suspended on four fibres of length l,

the loss factor of the pendulum is related to the loss factor of the material by

φpend(ω) = φmat(ω)
4
√
TEI

mgl
, (1.29)

where I is the moment of the cross-section of the fibre and T is the tension in the

wire whose material has a Young’s modulus E [67].

Most material’s loss factors are independent of the frequencies of interest in gravita-

tional wave detectors. By assuming the resonant mode of the test mass is a harmonic
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oscillator, the internal thermal noise may be estimated [67]. It is important to keep

the thermal noise effects as low as possible. This is achieved by making sure the

mass’s mechanical loss factors and the resonant frequencies are as as low as possi-

ble. The shape of the the masses and the size of the masses are important to keep

internal resonances and possible losses maximally reduced.

1.2.3 Newtonian noise from surface density gradients

Newtonian noise arises from fluctuations in the gravitational field around the Earth.

This could be due to a number of factors, such as density fluctuations (in time)

of the Earth’s surface [67]. To completely eliminate this effect on detectors, the

detectors must be in space, as some future proposed missions will be. There are two

main solutions to reduce this effect for ground-based detectors.

The first solution is to monitor local density gradients by placing seismometers in the

area around the detector. The motion can be observed and their calculated effects

can be subtracted from the detector output after the fact [67]. The second solution

is to build the detectors in a very quiet location or underground as most of the

gravitational field effects comes from surface density fluctuations. This is currently

being proposed for the LCGT detector in Japan [62], as well as the Einstein Telescope

[72].

1.2.4 Quantum effects at high and low frequencies

Shot noise at high frequency

Shot noise dominates above 300 Hz in the gravitational wave detector. The shot

noise is determined by the optical configuration of the interferometer and the method

by which the position of the test masses are measured [57]. The shot noise causes

changes in the estimation of the position of the fringes due to the uncertainty of the
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number of photons arriving at the photo-diode. The sensitivity can be given as a

rough scale for the noise, assuming a standard interferometric detector [45]

detectable strain (Hz)−1/2 =
1

L

[

λhc

π2P

]1/2

(1.30)

where L is the arm length of the detector, laser power given as P , λ represents the

wavelength of the laser and h and c are the Planck’s constant and the speed-of-

light, respectively and it is assumed that the photodetectors have a unity quantum

efficiency. This equation shows that longer arm lengths and/or if the power of the

laser is increased, the detectable strain is improved.

Radiation pressure noise at low frequencies

Radiation pressure arises from fluctuations in laser power and affects the test masses

as the power fluctuates. The photons are scattered independently and there is a

statistical uncertainty as to their division in the beam-splitter [35]. This means

there is a Poisson distribution of N photons with a
√
N fluctuation of force from

radiation pressure [67]. Where the shot noise is due to a fluctuation in the number

of photons at the photodiode, radiation pressure is due to the uncertainty in the

amplitude component of the laser field [67]. For a simple Michelson interferometer,

the changing motion of mass m due to radiation pressure at angular frequency ω far

above the pendulum resonance is given by

δx2(ω) =

(

4Ph

m2ω4cλ

)

, (1.31)

where h is Planck’s constant, c is the speed-of-light and λ is the wavelength of the

laser [35].

This noise source is relevant at lower frequencies for Advanced LIGO, at about 10

to 50 Hz [40]. If the masses of the mirrors are greater, they will be more stable and
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resistant to moving due to radiation pressure [67]. Another solution is to decrease

the power of the laser, but that will have an effect on higher frequencies and decrease

the shot noise improvement, which is affected inversely to the laser power.

Once these frequency ranges are made available in Advanced LIGO, longer mea-

surements of neutron stars can be achieved. Additionally, the lower frequencies will

allow earlier observations of coalescence from massive objects (around the 100M⊙

range) [40].

1.3 Astrophysical candidates for initial gravitational

wave detection

Gravitational waves are caused by accelerating masses, similar to how accelerating

charges result in electromagnetic radiation. There are four main types of gravi-

tational wave radiation that current ground-based detectors are suited to detect:

burst, coalescence, stochastic and continuous wave radiation [74]. Burst and coales-

cence are short-duration events whereas continuous wave and stochastic signals are

long-term. Burst signals are transient events for which we do not have a prior signal

model. Supernovae, for example, may produce detectable burst signals. Coalescing

binaries are commonly studied by relativists and used to generate signal models,

which can be exploited in matched template searches. Algorithms that do not as-

sume a signal model designed to detect bursts may also be sensitive to coalescing

binaries. Continuous wave (CW) sources produce long term quasi-monochromatic

signals expected from rotating neutron stars. Stochastic gravitational wave signals

comprise an ensemble of discrete, unresolved sources and possibly may also con-

tain continuous, incoherent background signals which are remnant from the Big

Bang.



1. Gravitational waves: theory, astrophysical sources and detectors 36

1.3.1 Short duration gravitational wave events

Burst sources

Bursts are defined as transient, non-repeating signals for which there is not a known

template. A core-collapse supernova, for example, may offer a chance to observe

a transient gravitational wave signal. As there is little knowledge of the collapse

process, it is difficult to calculate an accurate waveform. A burst amplitude of the

gravitational wave pulse from a supernova can be estimated as [47]

h0 ∼ 1.4× 10−21

(

∆EGW

10−2M⊙c2

)1/2(
1ms

τ

)1/2(
1 kHz

∆fGW

)(

15 Mpc

r

)

, (1.32)

where ∆EGW is the total energy carried away from the explosion, r is the distance to

the source and τ is the duration of the burst. The frequency bandwidth, ∆fGW, could

range from 100 Hz and 10 kHz. Initial LIGO detectors would be capable of detecting

these events, but those that are detectable have a low rate of occurrence.

Coalescence of binary compact objects

The steady inspiral of stars in a compact system due to gravitational radiation

results in compact binary coalescence (CBC). This can result in a variety of gravi-

tational wave signals due to the different stages that take place during coalescence.

These three stages are the inspiral, the merge then the ring-down. These compact

binary systems can be Neutron Star/Neutron Star (NS/NS), Neutron Star/Black

Hole (NS/BH) or Black Hole/Black Hole (BH/BH) [74]. Currently there are a few

NS/NS systems known, including the famous PSR B1913+16 referred to in Weis-

berg and Taylor, 1913 [84] with the result shown in Figure 1.5. Standard NS/NS

systems are thought to be the remnants of a binary star system that survives the

double supernova process or captured neutron stars in dense populations such as

globular clusters. These systems have orbits that decay over the time period of a
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Figure 1.5 – The inspiral of binary system PSR B1913+16 due to gravitational ra-
diation. The points are the observed data and the line is the decay
predicted by general relativity [84].

few million years, so there is a significant population of these systems present at any

one time.

The gravitational waves from these systems emitted during the inspiral phase carries

energy away from the system and the orbital period decreases. The subsequent

merging stage results in a gravitational wave ‘chirp’ when the masses collide. The

ring-down stage is considered the settling period of the rotation of the system to a

more symmetric object and this emits a short period of relaxing gravitational waves.

To give an estimation of mergers, we assume there are 105 galaxies within 100Mpc

and quote our rate in events per year. Rates for NS/NS coalescence is derived from

direct observations of these systems and is approximately 0.1–50 yr−1. For NS/BH

inspirals, the rate is estimated to be 0.01–10 yr−1 [47]. The BH/BH systems must

be estimated from two sources: one not contained in dense star clusters and one for
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binaries in such clusters. These rates are 0.01–1 yr−1 and 0.1–1 yr−1, respectively [47].

Current results from [22] states that BH/BH binaries may be slightly more likely

for gravitational wave detection than previously considered making them the best

candidates for detection due to further analysis of black hole populations. Analysis

of these gravitational waves would provide a more comprehensive understanding of

the distribution and processes of these systems.

1.3.2 Long duration gravitational wave events

Stochastic sources

The stochastic gravitational wave background can be broken up into two main pos-

sible sources. The first comprises an ensemble of a large number of weak, discrete

gravitational signals. These could be local white dwarf or neutron star binary sys-

tems or from powerful extra-galactic black hole binary systems which would emit

much stronger signals. The second stochastic gravitational wave signal source is from

the early moments of the Universe, similar to the Cosmic Microwave Background

(CMB). The CMB results from when the Universe, about 300 000 years after the Big

Bang, became transparent to photons during the recombination phase, resulting in

a large electromagnetic flux that is still present today. This stochastic gravitational

wave is a flux of gravitons left over from when the Universe became optically thin to

gravitons, just before Big Bang Nucleosynthesis (BBN) occurred. This would show

up as a flat spectrum. This would offer observations of the earliest possible moments

in our Universe, providing a insight to the processes that occurred before BBN [11].

These signals are difficult to detect by ground-based interferometers, but identi-

fication will be interesting in later-generation detectors to both study early-time

cosmology of the Universe and to classify the background of local sources.
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Non-axisymmetric neutron stars

Continuous gravitational waves from non-axisymmetric neutron stars are understood

to be long-lasting, quasi-monochromatic gravitational waves [69]. These signals are

fundamentally different in terms of extraction to the short duration events. For

continuous gravitational waves, they are present over longer time-scales so the signal-

to-noise ratio (SNR) can potentially increase by simply increasing the observation

time. The main source of these signals are young, rapidly spinning neutron stars.

As continuous gravitational waves are the main focus of this thesis, I will go into

more detail on this source and the relevant equations in Chapter 2.

Neutron stars were first proposed by Baade and Zwicky in 1934 to be the product of

a normal star from a supernova [18]. When a massive star goes through gravitational

collapse and the gravitational potential energy is released, the outer layers of the

star are blown away and the core collapse results in a neutron star. Because of the

Pauli exclusion principle, the neutrons are not able to degenerate to the same place

and quantum state. The mass of the neutron star is between 1.35 and 2 M⊙ due

to the Chandrasekhar limit [25]. Though the mass is comparable to our Sun, the

typical radius of a neutron star is on the order of 10 km.

Neutron stars are born with a high rotation speed, thought to be due to the conser-

vation of angular momentum in this process. This speed decreases as the neutron

star ages and neutron stars typically have a rotation period between 1.4ms and

12 s according to the ATNF database [58]. Neutron stars also have the possibility

of spinning up, due to accretion or glitches. Glitches in the star may occur due to

an angular momentum transfer between the solid outer crust and the interior of the

star, with the behaviour pointing to a possible superfluid interior [21].

The first pulsar was discovered in 1967 by Bell and Hewish [41] and since then,

there have been almost 2000 observations of pulsars throughout the electromagnetic

spectrum, all logged at the ATNF database [58]. Some notable neutron stars relevant
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to continuous wave searches include the Crab Pulsar (PSR B0531+21) which is a

young pulsar, a remnant of supernova SN1054 [39] whose signals are searched for

using the Narrow-band search in Chapter 5, Scorpius X-1, an accreting neutron star

in the X-ray spectrum[76] and the Vela Pulsar, which emits in radio, optical, X-ray

and gamma-ray radiation and is located in the Vela constellation and is associated

with the Vela Supernova Remnant [54]. It rotates with ∼ 100ms periods and has

been known to glitch. A gravitational wave search was performed on one of the

recent glitches [3].

1.4 The future of interferometric gravitational wave

detection

Currently, the initial gravitational wave detectors LIGO and Virgo are being up-

graded to the so-called “second generation” of detectors. These detectors include

Advanced LIGO, Advanced Virgo and GEO-HF. This is the first step in develop-

ing more advanced and sensitive gravitational wave detectors. Additional plans

include the Einstein Telescope, the “third generation” telescope as well as space-

based telescopes and new additions to the world-wide network of gravitational wave

detectors.

1.4.1 Second generation ground-based detectors

Since the initial LIGO detectors reached their sensitivity level [14] as seen in Figure

1.4, the Advanced LIGO network is currently being installed and constructed to

improve current sensitivity by an estimated factor of 10 [40]. These detectors will

have improved hardware systems, from the optics to the suspension systems. The

current plan for the second Hanford detector is to move the location to India and

have a 4 km baseline.
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The sensitivity of Advanced LIGO will be significantly improved over Initial LIGO.

First, the sensitivity will be an order of magnitude better, with a strain noise down

to ∼ 3× 10−24 Hz−1/2. The bandwidth will also be widened down to 10Hz, making

available previously undetectable signals in the range of 10-40Hz [40].

A factor of 10 improvement in sensitivity results in a factor of 1000 improvement

in the volume of space from which signals can be detected. Detailed analysis of

these improved event rates is given in Mandel et al., 2008 [59]. Due to this greater

sensitivity, Advanced LIGO will be more involved in multi-messenger astronomy,

adding detections in gravitational waves to neutrino and electromagnetic detection

methods in astronomy. More details of the plans for Advanced LIGO can be found

in Harry, et al. [40].

1.4.2 Improving ground-based detector methods: The Ein-

stein Telescope

Future enhancements to Advanced LIGO will result in the “third-generation” detec-

tor, the Einstein Telescope. The advanced detectors are improving readily available

technology whereas the third generation detectors will utilise new techniques to im-

prove sensitivity. The goal of this third generation detector is to further improve

sensitivity by a factor of 10 over the advanced detectors as well as expand the

frequency band [71]. This will allow more detailed measurements of astrophysical

phenomena than would be possible with the advanced detectors.

To achieve this improved sensitivity, the relevant technologies must be improved

beyond current techniques. For example, installing the Einstein Telescope below

ground, significantly reduces the seismic noise and gravitational gradient of the

detectors. Additionally, the Einstein Telescope will utilise cryogenics to reduce the

thermal noise component of the sensitivity curve [71].
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Further solutions to improve the detector systems is to implement multiple inter-

ferometers to optimise both high and low frequencies. To include these multiple

interferometers, the traditional L-shape can be replaced with a triangle shaped de-

tector with arm lengths of 10 km [71].

1.4.3 Space-based detectors: exploring astrophysics at low

frequencies

In addition to the ground-based gravitational wave interferometers, different fre-

quency bandwidths can be explored with different methods. By developing space-

based detectors signals at low frequencies can be detected which would not be possi-

ble due to seismic noise on the ground. As of May 2012, the space-based observatory,

the New Gravitational wave Observatory (NGO) was not selected for the next round

of funding by the European Space Administration (ESA). With hopes that it will

be funded in the next round, it will aim to be operable in the next decade. This

detector relies on the framework established by LISA and the LISA Pathfinder, pre-

vious projects jointly supported by NASA and ESA. LISA was abandoned due to

funding issues and redeveloped as the NGO [78].

A bandwidth of 0.1mHz to 1Hz is the aim for NGO and would allow detections

from many astrophysical sources, such as massive black hole mergers and possible

remnant signatures from the Big Bang. This bandwidth is determined from optimis-

ing the science that can be done, accounting for limitations from the travel distance

between the mirrors and accounting for radiation pressure. The detector will utilise

2 interferometer arms with 3 spacecraft in a triangular formation with arm lengths

of 106 km [78].

As further detector techniques are improved, the data analysis community must

ensure that they can keep up with the challenges. Formal data challenges are devel-

oped to address possible issues that might arise with the improved detectors. This
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allows the data analysis community to keep up with the detector developments,

maximising the available time once they are online which will allow an early detec-

tion. The Mock LISA Data Challenge (MLDC) exists for just such a purpose as the

space-based detectors are developed 4 [16]. The MLDC helps because techniques are

created for data and signals never searched for previously.

1.5 Motivation and structure for thesis

Given these future plans for gravitational wave detectors, the community will move

from placing upper limits on signals to making actual detections. Due to this fact,

a strategy needs to be developed in order to maximise the possibility of a con-

firmed detection. This thesis introduces various important considerations as well as

a hierarchical strategy for the detection of continuous gravitational waves utilising

multiple existing search algorithms. Details of continuous gravitational waves are

given in Chapter 2 including detailed mathematics, current search algorithms, recent

results from the initial detector runs and current detection criteria.

In the advanced detector era, It is important to consider the effect that increased

sensitivity will have on various searches. Adding more detectors to the network is one

way to improve sensitivity. Chapter 3 discusses the effect of sensitivity on continuous

gravitational wave detections from neutron stars due to additional detectors.

The hierarchical method for searches involves a sequence of searches already existing

in the continuous wave group, but currently operating independently, each refining

the estimates and improving the likelihood. The first step is a blind, all-sky search

which has no expected parameters. These searches produce a list of candidates with

a coarse parameter estimate. These candidates are passed on to a narrow-band,

multi-template search to improve the parameter estimation. The highest likelihood

4http://astrogravs.nasa.gov/docs/mldc/

http://astrogravs.nasa.gov/docs/mldc/


1. Gravitational waves: theory, astrophysical sources and detectors 44

template is passed on to a Bayesian search which targets the specific parameters to

establish posterior distributions on the gravitational wave parameters.

After discussing the possible sensitivity improvement due to additional detectors,

this thesis addresses each step of the hierarchical detection method and potential

issues. In Chapter 4, the effects of neutron star motions and distances on the blind,

all-sky search, Einstein@Home are explored.

The next chapter, Chapter 5 introduces the Narrow-band Search, an algorithm

which evaluates likelihood statistics at multiple templates from the resolution of

candidates passed on from the all-sky searches. This chapter presents two results

from the narrow-band search, one a stand-alone search for signals from the Crab

Pulsar in the most recent science run of LIGO. The second result is a detection of

a hardware injected signal in the same science run.

Finally, Chapters 6 and 7 present the development of a signal challenge for the con-

tinuous wave group and initial results, to prepare for the era of likely detections.

Chapter 6 presents the methodology and approach to the development of this chal-

lenge, from generating the data to the parameters of the artificial signals which are

included. Following, in Chapter 7, initial results from a blind all-sky search as well

as stand-alone verification of signals using the final, targeted search.



2

Searching for continuous

gravitational waves

This chapter will describe how continuous gravitational waves could be generated

and the current status of continuous gravitational wave searches. First, these equa-

tions for continuous waves includes details which will affect how searches are de-

veloped. These searches will then be described along with their recent results. We

will then discuss the current detection criteria for the continuous wave group and

consider how they may be tested and improved.

2.1 Mechanisms for continuous gravitational waves

from neutron stars

There are three understood mechanisms under which a continuous gravitational

wave will be created. The first is a non-axisymmetric distortion of the neutron star

itself. This can be described in terms of the neutron star’s equatorial ellipticity

defined as,

ǫ ≡ Ixx − Iyy

Izz
, (2.1)

45



2. Searching for continuous gravitational waves 46

where Iii correspond to the three principal moments of inertia [49]. This can also

be thought of as a persistent ‘bulge’ on the neutron star. This deformation could

persist from elastic stresses in the crust or by magnetic fields [69].

The amplitude of such a signal can be described as

h0 =
16π2G

c4
Iν2

r
ǫ, (2.2)

for a neutron star at distance r with a spinning frequency ν and a moment of inertia

I with respect to the rotation axis [49]. To simplify this equation, we can replace

the physical constants and get (from [49])

h0 = 4.23× 10−25d0

( ν

100 Hz

)2

, (2.3)

where

d0 ≡
( ǫ

10−5

)

(

I

1045g cm2

)(

1kpc

r

)

. (2.4)

The values given for d0 are astrophysically understandable so we can estimate a

likely h0 and sensitivity which we need to reach for an optimally oriented source

with respect to the detector. The most unlikely value given is that of the equatorial

ellipticity, ǫ because current estimations and calculations of known neutron star

ellipticities have an approximate upper limit of 10−6. The maximal deformation

supported by the neutron star’s crust rigidity is estimated as

ǫmax ≈ 5× 10−7
(

σ

10−2

)

, (2.5)

where σ is the breaking strain of the solid crust [80]. The coefficient is particularly

small mainly because the shear modulus of the inner crust is small compared to the

pressure [69].

It is important to think about the possible deformations which are likely to exist
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in real neutron stars. One possibility is that after a glitch, where stresses in the

crust built up to the point of breaking, it could take a significant period of time

in comparison to the lifetime of a glitch, and long enough for our continuous wave

algorithms to detect it for the mass distribution to return to being axisymmetric.

Another possibility is accreting binary neutron stars. The accretion process could

create a ‘hot spot’ on the surface due to the magnetic fields. This ‘hot spot’ could

result in a buildup of the ellipticity. Furthermore, extremely strong magnetic fields

could produce high magnetic tension which could produce a non-axisymmetric de-

formation.

A second mechanism for gravitational wave emission from neutron stars is non-

axisymmetric instabilities from birth or during phases of accretion for rapidly ro-

tating neutron stars. For example, a neutron star with a sufficiently high rotation

rate could have a dynamic instability due to hydrodynamics and gravitational forces

[69].

The third main mechanism for gravitational wave emission is free precession, or the

movement of a neutron star which has a misaligned rotation axis with respect to

the symmetry axis (with a wobble angle, θw) [69]. A large θw could result in a

gravitational wave amplitude of

h0 ∼ 10−27

(

θw
0.1 rad

)(

1 kpc

r

)

( ν

500 Hz

)2

(2.6)

This would give gravitational wave emission at f = ν + νprec where νprec is the

precession frequency as well as the twice the spinning frequency, f = 2ν [69]. It

is possible for free precession to last for ∼ 105 years [27] so while it may not be

a high amplitude, it is an interesting candidate for next-generation detectors (like

Advanced LIGO).

Important parameters used in gravitational wave searches from neutron stars are



2. Searching for continuous gravitational waves 48

referred to as Doppler parameters, δi, and gravitational wave amplitude parameters,

Ai. These are shown in Table 2.1 and Table 2.2, respectively.

ν Spin frequency
fgw Frequency of the gravitational wave (typically 2ν)

ḟgw, f̈gw, ... Frequency derivatives
α Right ascension
δ Declination

Table 2.1 – Doppler parameters, δi, of neutron stars for the purpose of gravitational
wave observation.

h0 Amplitude of the gravitational wave signal
ι Inclination of the spin axis
φ0 Initial phase of the signal
Ψ Polarisation angle
A+ Plus-polarisation amplitude
A× Cross-polarisation amplitude

Table 2.2 – Gravitational wave parameters, Ai, of signals from neutron stars. The
parameters Ψ and ι are shown in Figure 2.1 and the definitions for A+

and A× are given in Equations 2.7.

While the parameters h0 and cos ι are used, sometimes the parameters A+ and A×

are used. These are defined as

A+ =
1

2
h0(1 + cos2 ι), (2.7a)

A× = h0 cos ι. (2.7b)

which describe the polarisation amplitudes in the plus and cross directions [69].

2.2 Loudest expected signal from neutron stars

It is expected, based on current models, that there are ∼ 109 neutron stars in

our galaxy and approximately 105 are active [69]. As mentioned in Section 1.3.2,

approximately 2000 known neutron stars have been observed. This low number
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Figure 2.1 – Diagram depicting the angular parameters Ψ and ι of a neutron star for
continuous gravitational waves. Image courtesy of John T. Whelan.

(compared to the expectation) is mostly due to the fact that the majority of neutron

stars are not pulsars which can be detected and partially has to do with selection

effects due to the neutron star orientation with respect to Earth.

There is an argument that a statistical upper limit can be made on the expected grav-

itational waves of neutron stars, practically independent of the individual physics.

This argument was first made by Blandford and further investigated by Knispel and

Allen, 2008 [52]. If one assumes an isotropic distribution and constant birthrate of

neutron stars that primarily radiate gravitational waves, there is a 50% chance that

the strongest signal between 50 Hz and 2 kHz has an amplitude of at least [69]

h0 ∼ 4× 10−24. (2.8)

This number is consistent with the non-detections in initial LIGO runs given the fact

that the sensitivity of the initial LIGO detectors was above this value. Advanced
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LIGO is expected to have higher sensitivity which will allow for regular detections

of this amplitude.

2.3 Calculating the gravitational wave upper limit

from neutron stars

In the previous section, statistical arguments were given for a likely continuous

wave signal in the LIGO band. If we have a pulsar with known parameters such as a

measured spin, ν and spin-down, ν̇ and a distance r which is emitting gravitational

waves at a frequency f = 2ν due to a non-axisymmetric deformation ǫ, we can derive

a robust upper limit on h0. The gravitational wave luminosity of such a pulsar can

be written as [69]

LGW =
1

10

Gπ6

c5
ν6I2zzǫ

2. (2.9)

We can assume that the gravitational wave emission is purely due to the rotational

energy, Erot, then we can state,

LGW ≤ −Ėrot = −2π2(2Izzνν̇ + ν2İzz), (2.10)

and if the moment of inertia is constant, İzz = 0 the we can describe an upper limit

on the deformation ǫ < ǫsd as

ǫsd =

√

5c5

2(4π)4GIzz

|ν̇|
ν5
. (2.11)

This can be substituted into 2.2 to give an upper limit of

h0 ≤ hsd =
1

d

√

5GIzz
2c3

|ν̇|
ν
. (2.12)
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The spindown upper limit, hsd is calculated for all known neutron stars in the ATNF

database1[58] using the canonical moment of inertia as Izz = 1038 kg m2. These

values are plotted against the sensitivity curves for the sixth science run (S6) with

the Hanford and Livingston 4 km arm detectors in Figure 2.2.
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Figure 2.2 – The spindown upper limits calculated for known pulsars in the ATNF
database using Equation (2.12) against the S6 sensitivity curves for the
Hanford and Livingston 4 km detectors.

1http://www.atnf.csiro.au/people/pulsar/psrcat/

http://www.atnf.csiro.au/people/pulsar/psrcat/
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2.4 Approaches to continuous wave data analy-

sis

As mentioned in Section 1.1, the equation for the amplitude of the signal on Earth

can be given by [49]

h(t) = F+(t)h+(t) + F×(t)h×(t). (2.13)

To do proper data analysis of these signals, the beam-pattern functions F+ and

F× can be time-dependent functions of the position of the source (RA and DEC)

and the polarization angle, Ψ [49]. Following the mathematics in [49], we get the

following equations:

F+(t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ], (2.14)

F×(t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ], (2.15)

where ζ is the angle between the two arms (ideally π/2) and

a(t) =
1

16
sin 2γ(3− cos 2λ)(3− cos 2δ) cos[2(α− φr − Ωrt)]−

1

4
cos 2γ sinλ(3− cos 2δ)

sin[2(α− φr − Ωrt)] +
1

4
sin 2γ sin 2λ sin 2δ cos[α− φr − Ωrt]−

1

2
cos 2γ cosλ

sin 2δ sin[α− φr − Ωrt] +
3

4
sin 2γ cos2 λ cos2 δ, (2.16)
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b(t) = cos 2γ sin λ sin δ cos[2(α− φr − Ωrg)] +
1

4
sin 2γ(3− cos 2λ)

sin δ sin[2(α− φr − Ωrt)] + cos 2γ cos λ cos δ cos[α− φr − Ωrt] +
1

2
sin 2γ sin 2λ

cos δ sin[α− φr − Ωrt)]. (2.17)

where λ is the latitude of the detector site on the Earth, Ωr is the rotational angular

velocity of the Earth and φr is a deterministic phase which defines the position of the

Earth in its diurnal motion at t = 0. Equations 2.14 - 2.17 allow us to compute the

beam pattern at any instant of t. By following Appendix A of Jaranowski, Królak

and Schutz 1998 [49], the phase model of the gravitational wave signal is

Ψ(t) = Φ0 + 2π
s
∑

k=0

f
(k)
0

tk+1

(k + 1)!
+

2π

c
n0 · rd(t)

s
∑

k=0

f
(k)
0

tk

k!
, (2.18)

where f
(k)
0 is the kth time derivative of the frequency measured at t = 0 at the Solar

System Barycentre (SSB), n0 is the unit vector pointing to the star in the SSB frame

and rd is the position vector of the detector in the SSB reference frame.

The SSB reference frame states that the x axis is parallel to the x axis of the celestial

sphere coordinate system and the z axis is perpendicular to the ecliptic. This means

that the vector n0 has the components

n0 =













1 0 0

0 cos ε sin ε

0 − sin ε cos ε

























cosα cos δ

sinα cos δ

sin δ













(2.19)

where ε is the angle between the ecliptic and the Earth’s equator and α and δ are

the position coordinates (RA and DEC, respectively) of the star. The vector rd has
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the components

rd = RES













cos(φ0 + Ω0t)

sin(φ0 + Ω0t)

0













+RE













1 0 0

0 cos ε sin ε

0 − sin ε cos ε

























cosλ cos(φr + Ωrt)

cosλ sin(φr + Ωrt)

sinλ













,

(2.20)

where RES is the distance from the Earth to the SSB (mean value of 1 AU), RE is

the mean radius of the Earth, Ω0 is the mean orbital angular velocity of the Earth

and φ0 is a deterministic phase (that is, a phase which will produce the same output

no matter what starting condition given) which defines the position of the Earth in

its orbital motion at t = 0. The eccentricity of Earth’s orbit and the motion around

the Earth-Moon barycenter is neglected [49].

Finally, in [49], a two-component model of the gravitational wave signal is defined

as

h(t) = h1(t) + h2(t), (2.21)

where

h1(t) = F+(t)h1+(t) + F×(t)h1×(t),

h2(t) = F+(t)h2+(t) + F×(t)h2×(t), (2.22)

and

h1+(t) =
1

8
h0 sin 2θw sin 2ι cosΨ(t),

h2+(t) =
1

2
h0 sin2 θw(1 + cos2 ι) cos 2Ψ(t), (2.23)

h1× =
1

4
h0 sin 2θw sin ι sinΨ(t),

h2× = h0 sin2 θw cos ι sin 2Ψ(t), (2.24)

where θw as described in Section 2.1 is the wobble angle of the star. The equations
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defining h(t) given above define the quadrupolar gravitational wave signal which is

emitted by a free precessing axisymmetric star [49].

2.5 Current continuous gravitational wave search

algorithms

The continuous wave (CW) working group, as part of the LIGO/Virgo Scientific

Collaboration, have developed many methods for searching for continuous gravita-

tional waves from non-axisymmetric neutron stars. These varied searches use either

time-domain or frequency-domain data and range from targeted searches to blind,

all-sky searches. Targeted searches focus on a specific set of parameters, based on

current knowledge of a known neutron star and assumes a spindown directly related

to the electromagnetic spindown rate. Directed searches begin with a set of param-

eters, but allow some variance due to alternative theories of gravitational radiation,

or uncertainty in following up candidates from all-sky searches.

2.5.1 Blind all-sky searches

By using blind, all-sky searches we can detect gravitational waves from previously

unknown sources. Given the large amount of neutron stars in the Galaxy which

have yet to be detected, this is a necessary method for detection. However, these

all-sky searches require multiple templates and a large amount of computational

time. Two all-sky searches in the CW group are Einstein@Home and PowerFlux.

To do a blind, all-sky search requires advanced techniques to cope with the large

volume of data as well as the many possible parameters and unknowns over which

to search.

Einstein@Home copes with these issues by utilising a volunteer computing network
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to achieve a more sensitive search. This allows the use of a longer coherent inte-

gration time with a large parameter space. Einstein@Home is also used to detect

previously unknown pulsars using radio data from surveys based at Arecibo and

Parkes Telescopes.2 Recent results from Einstein@Home are given from the S5 run

in [12]. Further details about the Einstein@Home search is given in Chapter 4 where

the effect of neutron star motion on the parameter space is explored.

Another all-sky search is PowerFlux developed by Vladimir Dergachev. PowerFlux

is a semi-coherent search method which is capable of performing multiple spindown

searches. Candidates from PowerFlux are passed on to the Narrow-band directed

search to followup the proposed parameter space. The recent all-sky search for

periodic signals in S5 data is given in [4]. Further details of the PowerFlux search

is given in Chapter 7 where PowerFlux is used to initially analyse the software

injections described in this thesis.

2.5.2 Multi-template narrow-band parameter search

The directed searches in the CW group use more refined parameters to focus on

a possible candidate either from a known neutron star or can be used to study a

candidate from the all-sky searches. This search still uses multiple templates to allow

the parameters of the search to vary either due to the uncertainty in the candidate

as well as allowing for the possibility of variance in the physics of the source. This

search is referred to as the “narrow-band” search and is further detailed in Chapter

5 with results from the recent science run of LIGO.

The directed searches use the F -statistic first derived by Jaranowski, Królak and

Schutz ([49]) and is the optimal statistic for the detection of continuous gravita-

tional waves. The single-detector, single-source calculations from [49] are updated

by Cutler and Schutz [28] to include multiple detectors and multiple sources.

2http://einstein.phys.uwm.edu/

http://einstein.phys.uwm.edu/
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This directed search searches over a frequency fgw = 2fspin(1+ δ) where δ is a small

number to allow for possible astrophysical variances. This can occur if the gravita-

tional waves are produced by a component of the neutron star spinning separately

from the electromagnetic component. These two components are linked by a torque

which enforces the co-rotation on a timescale τcoupling. In this case, τcoupling is related

to δ as δ ∼ τcoupling/τspin-down where τspin-down is related to the characteristic age of

the pulsar [10]. This can also occur with free precession of a nearly biaxial star

which would result in δ ∼ α(Izz − Ixx)/Ixx where α is dependent on the geometry of

the star [10].

The small variance δ in this search can also be applied when following up blind

search candidates. These searches will produce an uncertainty in the estimated

parameters, which can be used in the search to refine the parameters.

This directed search method has been used in conjunction with the targeted search

mentioned in the next section to place an upper limit on the spindown from the Crab

pulsar [10]. It has also been used to recently place an upper limit on the spindown

from the supernova remnant Cassiopeia A in the S5 data [87].

In addition to being used with the targeted search, this method is a useful one

because it can operate alone on a known pulsar (as done in Chapter 5) or as an

independent follow-up analysis of viable candidates from all-sky searches.

2.5.3 Targeted MCMC search

The main targeted search in the CW group was developed at the University of

Glasgow and uses time-domain raw data and Bayesian methodology to produce

posterior distributions for the gravitational wave parameters. While this search

relies on a large data set, the targeted search focuses on a small frequency band,

complex heterodyning, filtering and resampling to reduce the size of the data by a
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factor of ∼ 106 [34].

First, a slowly evolving complex heterodyne is performed to unwind the phase evo-

lution of the source. This leaves a residual timing signature from the motion of the

source. Since this motion is over a long time scale with respect to the frequency

of the source, the data can be resampled down to a bandwidth of 1/60Hz centred

on the expected frequency [34]. Prior to averaging this data for analysis, the next

step is to apply a low-pass anti-aliasing filter to the heterodyned data. Finally,

the filtered data is resampled to the post-filtering Nyquist rate and averaged over a

minute to form the data segments used in analysis [34].

In practise, this modification of the data is done in two steps. The first step with a

fixed heterodyne frequency and a filter which reduces the sample rate to 4Hz. The

second has a variable heterodyne frequency is used to remove the Doppler effects

due to motion of the Earth. This is particularly useful because the calculation of

Doppler effects then only has to happen 4 times a second as opposed to 16384 times

a second, the original sample rate. Once these calculations are made, the data is

further resampled and binned down to 1/60Hz [34].

Bayes’ Theorem and marginalisation

With resulting binned data sets, Bk, Bayesian formalism is applied to calculate the

posterior probability of the gravitational wave parameters. This formalism is shown

as

p(a|{Bk}, I) =
p(a|I)p({Bk}|a, I)

p({Bk}|I)
(2.25)

where a is the inferred set of parameters from the binned data Bk and I is the model

of the signal with likelihood p({Bk}|a, I). The prior distributions for the parameters

are given as p(a) and the least informative priors are typically used [34].

The main parameter of interest is the amplitude, h0 with a marginal probability
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distribution function of

p(h0|{Bk}) ∝
∫ ∫ ∫

p({Bk}|a)p(a)dφ0dΨd cos ι, (2.26)

with numerical integration over the full range of the parameters [34].

Determining upper limits

Typically, results are quoted as the 95% bounding upper limit of the amplitude h0

from the cumulative probability distribution. This is calculated as the value h95

which satisfies

0.95 =

∫ h95

h0=0

p(h0|{Bk})dh0. (2.27)

The likelihood function of these parameters is then calculated with a posterior prob-

ability [34]. Further details of this type of search are given in Chapter 7 when it is

used for the mock data challenge.

Determining a likely set of parameters

The benefit of this targeted search is that it provides posterior probabilities for the

four gravitational-wave parameters described in Section 2.4. Since it is a Bayesian-

based search, however, it needs starting estimates for parameters for a single-template.

This means that it will only detect signals from previously known sources, or candi-

dates from previous multi-template searches. By using this search in the final step

of detections from previously unknown sources, we can optimise its suitability.

The targeted search has been used to place upper limits on known pulsars in the

fourth and fifth science runs (S4 and S5 respectively) [8] [13] and most notably the

Crab [10] and Vela [3] pulsars.
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2.5.4 Hierarchical method for detection

Given the previously described methods above, a natural method for signal analysis

can be developed to refine the parameters of a possible detection and combine these

algorithms to optimise the process.

The first step in this method is to run the blind, all-sky searches which produce a

list of candidates with a rough estimate of signal parameters. These candidates can

be passed on to the directed, narrow-band search which can explore the multiple

possible templates from the blind search. This search will find the highest likelihood

template and then pass it on to a targeted search which can give probability posterior

distributions for the parameters. This method is illustrated in Figure 2.3.

2.6 Previous results and upper limit analysis in ini-

tial detector runs

To date, no direct detections of continuous gravitational waves have been made,

but there have been significant results from the past LIGO, Virgo and GEO600

science runs. Though the sensitivity of these runs have not been sufficient to make

a detection, these results test the capabilities of the searches and the time-frame in

which they are able to run. Some significant upper limits and results are presented

here, ranging from the targeted to the all-sky searches.

2.6.1 Upper limit on the Crab Pulsar from S5 data

One of the more significant results from the recent LIGO science runs placed an

upper limit on the Crab Pulsar, PSR B0531+21, gravitational wave emission [10].

This work was primarily conducted by Matthew Pitkin running the targeted search

and Joseph Betzweiser running the directed search. This investigation combined
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Figure 2.3 – Hierarchical method for continuous gravitational wave detections from
previously unknown sources. Step one shows the existing blind, all-sky
searches. The possible candidates from these searches can be passed
on to the Narrow-band search which can explore the multiple templates
around the candidates to establish a likelihoods. A sufficiently strong
likelihood template can be passed on to the current targeted searches.
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both the time-domain Bayesian targeted search as well as the directed, frequency-

domain search for a comprehensive search and estimate of the upper limit h95%0 .

The single-template, time domain search resulted in h95%0 = 3.4×10−25 with uniform

priors on the other parameters. With Ψ and cos ι being constrained, this value is

brought down by a factor of 1.3 to h95%0 = 2.7× 10−25. Using the moment of inertia

to be 1038 kg m2, and a distance of r = 2 kpc, the ellipticity of the neutron star is

ǫ = 1.8 × 10−4. Using the uniform priors result, this value for h95%0 constrains the

luminosity of the Crab pulsar due to gravitational radiation to less than 6% of the

observed spin-down luminosity, beating previous indirect upper limits [10].

Using the multi-template, frequency domain search resulted in a 95% confidence

value for h0 as h95%0 = 1.7× 10−24 and an ellipticity of 9.0× 10−4 over all templates

searched. The larger number of templates increased the statistical confidence thresh-

old thus resulting in larger estimates compared to the targeted search [10].

This search is significant for beginning to constrain the astrophysical properties of

the neutron star through gravitational wave observations. Further understanding of

the neutron star astrophysics, such as the magnetic field or the composition of the

neutron star, would lead to more constrained results.

2.6.2 Vela pulsar upper limit from Virgo data

In 2011 upper limits on the gravitational wave emission from the Vela pulsar, PSR

J0835-4510, were estimated using data from Virgo’s second science run, which ran

from July 2009 to January 2010. Three independent targeting search algorithms

were used which assumed the spindown was directly correlated with the radio emis-

sion.

The Virgo detector was specifically used in this case due to its operational sensitivity

at low frequencies and the Vela pulsar having a frequency of frot = 11.19Hz. This
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is too far below the sensitivity curve for the LIGO detectors.

The three pipelines used for this were the targeted complex heterodyned search

with Bayesian analysis and resulting posterior distributions described above, a time-

domain matched filter method using the F -statistic with a new extension called the

G-statistic developed by Jaranowski and Królak [48] referred to as the POLGRAW

search and a matched filter method from a group in Rome which is applied to the

Fourier components of the signal’s five main frequencies where the signal is spread

due to sidereal modulation [17].

No signal was detected in all of the available data from the second science run in

Virgo. Upper limits were placed using all three of these methods [3]. The complex

heterodyning method produced posteriors with two upper limits based on different

prior distributions, in the same manner that was described for the Crab Pulsar.

These are h95%0 = 2.4× 10−24 and 2.1× 10−24 respectively [3].

The F and G-statistics methods produced false alarm probabilities of 22% and 35%

respectively, stating that there is a 22% (or 35%) chance that a signal could be

detected which does not actually exist. This is far above the set 1% false alarm

threshold. However, using monte carlo techniques, 95% upper limits of h95%0 =

2.4× 10−24 and 2.2× 10−24 respectively [3].

The Fourier component search used two methods with 4 and 2 degrees of freedom.

For these, false alarm probabilities of 46% and 40%, respectively, were calculated.

Again far above the false alarm detection threshold of 1%. The calculated 95% upper

limits for these two methods are h95%0 = 2.2 × 10−24 and 1.9 × 10−24 respectively

[3].

Due to the difference in methodology (time-domain versus frequency-domain, Bayesian

versus Frequentist), these results can best be compared by understanding how the

different searches relate to one another. To get a thorough understanding of this, a

Mock Data Challenge with high statistics, such as the one described in Chapters 6
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and 7.

2.6.3 Upper limits for the Cassiopeia A remnant in S5

Continuous gravitational waves from the neutron star in the supernova remnant in

Cassiopeia A (CasA) were searched for using data from a 12-day interval in the fifth

science run of LIGO. There is little known about the compact object at the centre

of CasA, so this searched looked at the interval 100 < fgw < 300Hz and a range of

first and second spindown frequencies which are related to the known age [1].

This search used the multi-template F -statistic method and made no gravitational

wave detection. A 95% amplitude upper limit of h95%0 = 0.7−1.2×10−24 is calculated.

Additionally, an ellipticity upper limit of 0.4 − 4 × 10−4 and an upper limit on the

amplitude of the r-mode oscillations is given as 0.005-0.14 [1].

These upper limits of the amplitude beat previous indirect limits and is the first

time an upper limit of r-mode oscillations are given [1].

2.6.4 Upper limits from the all-sky searches PowerFlux and

Einstein@Home

The PowerFlux algorithm searched two years of data collected during LIGO’s fifth

science run in the band 50-800Hz and a spindown range of 0 to −6 × 10−9 Hz s−1.

This is the most sensitive all-sky run to date with an optimal upper limit of 10−24

near the 150Hz frequency band [4].

In this frequency range, the search is sensitive to neutron star ellipticities down

to 3.3 × 10−6 and distances out to 425 pc for an unfavourable spin orientation.

Assuming the 105 active neutron stars in our galaxy discussed in Section 2.2 with a

uniform distribution, this corresponds to approximately 35 possible sources within
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this distance. If the spin orientation is optimally aligned to the line-of-sight, the

ellipticities can be estimated down to 1.2×10−6. No actual continuous wave signals

were detected in this data set [4].

Einstein@Home ran a similar all-sky search on LIGO data from S5. It searched 66

days of data in the frequency range 50-1500Hz with a frequency spindown range

of −f/τ < ḟ < 0.1f/τ with a minimum age of τmin = 1000 years for f < 400Hz

and τmin = 8000 years for f > 400Hz. This setup is explored further in Chapter 4.

Approximately 105 volunteer computers were used for this search which allowed a

coherent integration time of 30 hrs with a large parameter space. No signals were

detected in this data set, and in the frequency range 125-225 Hz, 90% of sources

with an amplitude larger than 3× 10−24 would have been detected [12].

2.7 Current detection criteria

The continuous wave (CW) working group for the LIGO-Virgo Scientific Collabo-

ration has developed a list of detection criteria for a continuous gravitational wave

signal. These details are laid out in an internal white paper established in 2009 and

can be found in full in [73]. As [73] describes, the continuous wave working group

has one of the easiest tasks of all the LVC working groups in establishing detection

confidence in the sense that additional observations will yield a higher signal-to-noise

(SNR). As is clearly stated in [73], this criteria is laid out to establish detection con-

fidence in various areas and not to define what a “discovery” or “confident detection”

is.

This criteria were established primarily for detection confidence from one type of

analysis, at the most using more than one pipeline (i.e. time-domain and frequency-

domain targeted searches) to exclude bugs, as mentioned in Section 2.7.3. This

thesis presents a hierarchical method for analysis and tests which can study these
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criteria and see if they should be refined to prepare for an era of detection (see

Chapter 6).

2.7.1 Signal detection

The signal-to-noise ratio (SNR) from a waveform h(t) in data with a noise spectral

density Sh is given by [49] as

ρ ≡
√

h|h. (2.28)

where we define

(x|y) ≡ 4R

∫ ∞

0

x̃(f)ỹ∗(f)

Sh(f)
df (2.29)

where ˜ is the Fourier transform, ∗ is the complex conjugate and R denotes the real

component [49].

For models that include both a signal at f0 and 2f0 such as free precession [27] the

signals defined by Equations 2.21 - 2.24 for h1(t) and h2(t) the SNR can be rewritten

to a high accuracy as

ρ ∼=
√

ρ21 + ρ22, (2.30)

where ρ1 and ρ2 are representative SNRs for the two frequency components of the

signal. These are given by

ρ1 ≡
√

(h1|h1) ∼=
{

2

Sh(f0)

∫ T0/2

−T0/2

[h1(t)]
2dt

}1/2

, (2.31)

ρ2 ≡
√

(h2|h2) ∼=
{

2

Sh(2f0)

∫ T0/2

−T0/2

[h2(t)]
2dt

}1/2

. (2.32)

The value T0 represents the observation time and for times longer than a few days,

T0 dominates the SNR values by ∼ √
T0 [49]. For shorter timescales, the noise is

not averaged out and so dominates the SNR, decreasing the value.

Since the parameters in h(t) average over large observing times compared to the
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frequency of the signal, the SNR can be simplified to resemble the classic radiometer

equation, given in [38],

ρ =
√

h|h ∝ h0√
Sn

√

TobsN (2.33)

where N is the number of detectors. Equation 2.33 clearly shows that the SNR can

be improved by increasing the number of detectors, the observation time or reducing

the noise. This will be further analysed in Chapter 3.

2.7.2 Excluding environmental and instrumentation noise as

false signals

Equation 2.33 also shows that the SNR can be improved by reducing the noise

in the data. This noise comes from the sources mentioned previously in Section

1.2. This noise can also potentially yield false signals. As described in the paper

shown in [73], the group established the criterion that no instrumental artifact should

significantly contribute to the calculated SNR. Environmental backgrounds are a rich

potential source of sinusoidal backgrounds, including violin modes in the suspensions

and harmonics of mains electricity coupled either through motor vibrations or RF

interference. These background sinusoids may be mistaken for signals or interfere

with continuous wave searches in certain bands, such as the 380Hz violin mode forest

of the LIGO interferometers. Reduction of the contribution of these backgrounds

to the strain signal is the job of the LIGO laboratory commissioning and operating

the instruments, with tools to establish the contribution of these environmental

backgrounds including seismometers, accelerometers, magnetometers, field coils and

auxilliary channels of the interferometers themselves [73].

This initial check is the primary way to discard a potential candidate, but to fully

exclude the likelihood of a fake signal, further investigation to the specific electronics

is necessary. Due to the frequency evolution of a non-glitching neutron star, over a
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long period of time this artifact would likely disappear.

A multi-tier hierarchical search would not be able to significantly improve this issue,

as the artifact shows up in the original data.

2.7.3 Using multiple pipelines to exclude unexpected bugs

To address possible, unexpected spurious signals which could affect the SNR of a real

signal or create a spurious signal, multiple pipelines can be used. This would help

to eliminate or improve the bug. In the past, the continuous wave group used both

the multiple template, frequency–domain algorithm described in Section 2.5.2 and

the targeted time-domain algorithm from Section 2.5.3 ran independent searches to

verify results on the search for signals from the Crab pulsar [10].

Using multiple types of algorithms to search for and possibly detect a signal is crucial

to verifying a possible detection. To improve this, the hierarchical method described

in this thesis which uses a series of refining searches can naturally eliminate these

spurious events. This improvement to the criteria will be investigated thoroughly

by using the software injection challenge discussed in Chapter 7.

2.7.4 Self consistency

With many possible models and templates for continuous gravitational wave signals,

consistency and self-verification of the signal is required. This can be determined

by analysing the existence of the signal in different detectors individually as well

as combined. In [73], the CW group outlines specific requirements with regards to

self-consistency:

• The combined SNR of interferometers should be higher than for any single

interferometer for the most likely parameters. For potential signals, software
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injections will be made of the signal amplitude of a similar noise. This SNR

increase must be higher than expected for the lowest 5% of software injections.

• The 95% confidence bands for the frequency and first frequency derivative as

well as right ascension and declination must overlap for interferometers with

a SNR > 3.

• The SNR time dependency must be reasonably consistent with the signal model

among the interferometers.

• The combined-interferometer time dependency of the SNR should be consis-

tent with the signal model.

While it would be ideal for a signal to appear in all operating interferometers, it

is possible only one detector will detect the signal. In this case, a high detection

confidence may still be established, as long as the signal model is compatible with

the known sensitivities of all the detectors. The hierarchical search method can

also be used to increase the confidence of a signal if it is only detected in one

interferometer.

Additionally, if there is a candidate flagged in one science run, there is a possibility

for further confirmation in future science runs with better statistical precision due

to the continuous nature of these signals. Conversely, if a signal is detected and

seems to be confirmed, but then disappears in subsequent searches, this is a reason

to distrust it as a continuous gravitational wave. This behaviour is a benefit to

searching for continuous signals as opposed to single, short-duration events.

Finally, the signal should be astrophysically self-consistent, with observed ḟgw being

as least as large as implied from fgw and h where a source distance is known from

electromagnetic observations. In addition, if the distance is not known, one must

check that the signal strength inferred from the event in the data is astrophysically

likely with the observed fgw, ḟgw and h. This should not be the only criterion to



2. Searching for continuous gravitational waves 70

disregard a strong non-terrestrial signal as our understanding of neutron star sources

is incomplete. In addition, we should not rule out the possibility of the existence of

unknown classes of continuous wave sources.

The hierarchical method described in Section 2.5.4 can improve detection confidence

by naturally using different types of search methods (all-sky, targeted, frequency-

domain, time-domain, etc). The ability to confirm candidates as detections will be

increased with this method. The mock-data challenge in Chapters 6 and 7 will help

measure the accuracy of the various existing continuous wave pipelines in determin-

ing event parameters.



3

Exploring sensitivity dependence

on location of detectors

When moving into an era where detections of gravitational waves are likely, im-

proving the performance of the detector network is crucial. As the collaboration

prepares for Advanced LIGO (aLIGO), additional detectors for the LIGO network

are considered. This section investigates the impact of a detector in a new, spacially

separated site on sensitivity of continuous wave searches.

Initially, the new LIGO detector was proposed to be in Australia. This detector

was initially referred to as “LIGO South”, but due to funding issues, that has been

changed to a new site in India, called IndIGO.1 The proposed IndIGO detector will

replace the secondary American detector at Hanford. It will utilise the same technol-

ogy as the American Advanced LIGO detectors and be a Michelson interferometer

with 4 km arm lengths. Having a detector significantly spacially separated increases

the baseline of the network, known to improve the sensitivity and sky location of

coalescing binaries. While a final site location has not been decided, a seismically

quiet site such as the Deccan Plateau in central India is likely [46]. The location of

1http://www.gw-indigo.org
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the IndIGO detector is also needed for the simulation, but since this is currently un-

known, an estimated position of 16.0◦ N, 78.0◦ E was used, approximately the middle

of the Deccan Plateau. The current proposed timeline for introducing IndIGO to

the Advanced Detector network has individual science runs beginning in 2019 with

full inclusion in the network to begin approximately in 2020 [46].

This investigation utilises the targeted search described in Section 2.4 to analyse

the parameter sensitivity difference between the American aLIGO network (two

Hanford detectors and one Livingston detector) and a detector network which re-

places the second Hanford detector with IndIGO. In this chapter, the American

aLIGO network will be referred to as HHL and the IndIGO network is referred to

as HLI. To analyse the difference between the networks we compare the widths of

the posterior parameter curves, which indicates the level of sensitivity. We will not

be looking at the effect of detector location on reconstructed sky location parame-

ters as the mechanisms to do this are still being developed by the continuous wave

group. This chapter looks solely at the dependence of recovering the gravitational

wave parameters on detector location.

This analysis begins with a simulated waveform whose parameters are randomly

chosen as shown in Table 3.1. the parameters are fed in with an estimate of the noise

as initial data for the Markov Chain analysis, which is run on the data containing

the injected waveform, to test whether the maximum likelihood procedure yields

posterior estimates on the parameters matching the injection values. The difference

in the search (as each detector network MCMC begins with the same initial data)

is in the calculation of the antenna patterns having an effect on the sensitivity and

likelihood of parameter recovery.

The purpose of this search is to analyse the width of these posterior parameter

curves as that is an indicator of the level of certainty in the recovery. The width

of the four posterior distributions (one for each h0, cos ι, φ0 and Ψ) are compared
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by taking the ratio on each detector network. This method is performed 100 times

and the ratios are examined to determine if one detector network is favoured over

another.

Parameters Distribution

φ0 [0, 2π) random, uniform
Ψ [−π/4, π/4) random, uniform

cos ι 0
h0 Calculated using parameters
fgw 150Hz
SNR 100

α and δ Random, uniform
Tobs 365 days

Table 3.1 – The sample space of gravitational wave parameters from which the dis-
tribution of pulsars was chosen for IndIGO network analysis.

Having cos ι = 0 means the signal is linearly polarised, which provides a worst-case

scenario for sensitivity as the arms must be optimally aligned. Since the orienta-

tion, γ, of the IndIGO detector is unknown and the signals are linearly polarised we

will use two values for γ which are π/8 radians apart. In the simulation, these values

are chosen as γ = 116.5◦ and γ = 139.0◦. For the simulation, the two orientations

for the detectors will be called I1 and I2, respectively. Therefore, the three networks

used in this chapter are referred to as HHL, HLI1 and HLI2.

If the detector networks have comparable sensitivity, the ratio of the widths of the

posterior curves should be approximately 1. Before we compare the networks, we

want to run some checks to make sure that this method gives reasonable results.

The best way to do this is to run the MCMC parameter code twice on the same

detector network and take the resulting ratio. If we run this 100 times and look at

the distribution of ratios of the posterior curve widths, they should all be tightly

centred on 1. The results from this test are given in Section 3.1.

Once we confirm that this is a valid method for comparing sensitivity using the

targeted search posterior distributions, we will compare the performance of HHL

to HLI1 and HLI2. If the resulting distribution of ratios are greater than one, this
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means that the HLI detectors have better sensitivity and vice versa.

3.1 Testing the validity of the simulation

The first step is to confirm that performing the simulation is robust on the same

detector system by taking the ratio of results on the same detector network. We

will calculate 100 ratios of recovered parameters on the same network.

For the advanced detector network solely in the United States, the mean and stan-

dard deviation ratios of 100 MCMC runs are shown in Table 3.2 and the histograms

of the results are shown in Figure 3.1.

Parameter Mean (µHHL) Standard Deviation (σHHL)

h0 1.014 0.094
φ0 0.996 0.069
cos ι 1.010 0.078
Ψ 1.006 0.058

Table 3.2 – This table shows the mean and standard deviation of the MCMC with
the aLIGO North detector network

As can be seen from the results, there is a tight distribution around the value of 1

for all parameters. This shows that the MCMC system is robust and is a valid way

of comparing the performance of networks.

3.2 Comparing detector network locations on the

sensitivity of continuous wave targeted searches

First we look at the detector network HLI1. The widths of the parameter posterior

distributions from HHL are divided by the widths from HLI1 to get the ratio. These

results are shown in Figure 3.2 and the statistics are given in Table ??.
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Figure 3.1 – The performance of the MCMC tests over 100 comparisons in the detec-
tor network HHL. These are the ratios of the posterior widths for each
parameter on the same detector network. As expected, these ratios are
tightly centred around 1.
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Figure 3.2 – The distribution of 100 posterior width ratios for each parameter from
HHL to HLI1. The HLI1 orientation is γ = 116.5◦.
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Parameter Mean (µ1) Standard Deviation (σ1)

h0 1.01 0.16
φ0 1.01 0.14
cos ι 0.998 0.139
Ψ 0.992 0.139

Table 3.3 – This table shows the mean and standard deviation of the MCMC ratio
between HHL and HLI1.

Next, we examine the next possible orientation for HLI2 where γ = 139.0 and

compare HHL to this detector network. These results are shown in Figure 3.3 and

the statistics are shown in Table ??.

Parameter Mean (µ1) Standard Deviation (σ2)

h0 1.005 0.153
φ0 0.999 0.145
cos ι 0.998 0.145
Ψ 0.984 0.148

Table 3.4 – This table shows the mean and standard deviation of the MCMC ratio
between HHL and HLI2.

Both of these distributions are still centred on 1 to a high sensitivity, but with

a greater width in the distribution. This shows that the addition of a spacially

separated detector to the aLIGO network does not have a significant impact on the

ability to recover gravitational wave parameters from continuous wave sources using

the MCMC method.

3.3 The results of sensitivity analysis

As is seen in Section 3.2, when we compare the simulation results from different de-

tector networks, the spread is slightly wider than the self-consistent checks, showing

that the position of the detectors does make a difference on the results. However,

these ratios of posterior widths with different detector networks still centre on 1,

showing that there is no preference either way for a detector network more widely

distributed on the Earth.
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Figure 3.3 – The distribution of 100 ratios of each posterior width of HHL to HLI2.
The HLI2 network has an orientation of γ = 139.0◦.
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This result is unsurprising for gravitational wave parameters. There may be an

effect in the future for reconstructed sky location, but this has not been developed

as of writing this. However, it is of scientific value to verify that this is true because

of the nonlinearity and complexity of the Markov Chain procedure. Now that the

effect of the location of detector networks for Advanced LIGO is addressed, this

thesis will investigate the specific searches of the continuous wave group and each

step of the hierarchical method described in Section 2.5.4.



4

The effects of time variation in

the source to detector distance on

all-sky searches

Understanding the distribution of neutron stars in the Galaxy is essential when

approaching an era of advanced detectors, especially for developing mock data to

test algorithms. With an accurate model of the population, we are able to tune our

searches to optimise the likelihood of detection. the convergence of parameter recon-

struction algorithms such as template searches and Markov chains on the underlying

physical parameters can be affected by drift in these parameters with time.

The all-sky searches (such as Einstein@Home1) run a blind method of searching,

where there is no prior knowledge about neutron star position or frequencies. To run

this type of search, it is too computationally expensive to explore the full possible

parameter space. A way to maintain sensitivity and keep computing costs to a

reasonable level, a hierarchical method can be used. This is the system that is

implemented by the Einstein@Home search and will be discussed here.

1http://einstein.phys.uwm.edu
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This hierarchical method starts with an initial wide-parameter search with a short

observation time (the highest computing cost factor) which makes a low parameter

space resolution [69]. A low threshold is used to identify potential signals. However,

lowering the threshold means that there is a higher number of candidates, so the next

step takes all these candidates with longer observation times and a longer threshold

to narrow the candidates. This process continues until there is a strong confidence

in the remaining candidates.

This system means that the number of iterations, the observing length of each one

as well as the threshold for each iteration are all free parameters. These all need to

be optimised to obtain the best sensitivity per computing cost [69].

In this chapter, I will focus on the effects that neutron star motions have on the

blind all-sky search, Einstein@Home (E@H) which is a public-distributed comput-

ing project. They utilise the distributed computing platform BOINC 2 which was

developed for SETI@Home. This platform allows signed-up users to offer their com-

puting time to each analyse a small parameter space ∆λ where λ are the position

and spin parameters. Once this is processed, the result is sent back to the central

server and another work unit is requested. This process will ultimately yield an

extremely sensitive search for unknown neutron stars.

4.1 Frequency shifts due to parallax and proper

motion

One important factor to take into account for all of the continuous gravitational wave

searches is the apparent motion of neutron stars on the sky, either due to their own

motion (proper motion) or the movement of the Earth around the Sun (parallax).

The all-sky search, Einstein@Home, searches the parameter space of gravitational

2http://boinc.berkeley.edu

http://boinc.berkeley.edu
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wave frequency fgw and ḟgw. Einstein@Home is a template search which works by

dividing the parameter space into boxes of some small dimension. If motion of either

the source or the detector causes the signal parameters to move between boxes over

the course of the search, sensitivity assigned to the signal is reduced.

This space is broken up into two sections by Einstein@Home of less than and greater

than 400Hz. For the most recent search in S5 [12], the ranges searched are shown

in Figure 4.1. The break at 400Hz is due to the increasing computational cost as

the frequency increases. There is also a small amount of parameter space which

corresponds to the small population of neutron stars with a positive ḟgw.

200 400 600 800 1000 1200 1400
f HHzL

-0.4

-0.3

-0.2

-0.1

f'HHz�secL

Figure 4.1 – The search limits of Einstein@Home as given in [12]. The shaded region
designates the search parameters. The break at 400Hz is to primarily
account for the increasing computing time at high frequencies.

Einstein@Home breaks up the parameter space into blocks of f and ḟ . For f below

400Hz, the blocks are the size ∆f = 1.78mHz and ∆ḟ = 3.18× 10−10 Hz s−1. For

f greater than 400Hz, ∆f = 2.9mHz and ∆ḟ = 5.19 × 10−10 Hz s−1 [12]. These

limits are given in Table 4.1.

Again, these are chosen based on the a trade-off for a computational cost versus

detection. These blocks are distributed amongst the Einstein@Home users to search
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f < 400Hz f > 400Hz

∆f 1.78 Hz 2.9Hz

∆ḟ 3.18× 10−10 Hz s−1 5.19× 10−10 Hz s−1

Table 4.1 – Frequency bins for the S5 Einstein@Home search as given in [12].

for a signal. If a signal is divided between multiple blocks due to a frequency shift,

the sensitivity will go down for each user and will not pass as a viable candidate.

In this chapter we study two modulations in the length of the line of sight between

source and detector, the first due to orbital motion of the Earth about the sun, and

the second due to physical motion of the source with respect to fixed, non-comoving

coordinates.

4.1.1 Frequency shift due to parallax angle

The Einstein@Home search accounts for a Doppler shift in frequency due to the

Earth’s annular orbit (parallax), but it assumes that the gravitational wave “rays”

arrive at Earth in parallel, whereas they actually arrive at a slight angle. This

section explores the affect this assumption has on the search and if accounting for it

would affect the ability to make a detection. The different assumptions are shown in

Figure 4.2 where the red line, d(t), depicts the path that Einstein@Home assumes

(note that it does take account of the shift in distance over time due to Earth’s

motion) and the blue line, a(t), is where we account for the small angle θ. We

also account for the line of sight angle with respect to the orientation of the solar

system, γ.

The goal of this investigation is to determine if assuming the gravitational waves

arrive in parallel has an effect on the frequency calculation. Essentially, we need

to calculate the difference in arrival frequency to see if the signal shifts out of the

Einstein@Home frequency “bins”.

We need to calculate the equation for a(t) using trigonometric identities and rules
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Figure 4.2 – This represents the assumptions made by Einstein@Home, d(t), and the
calculation in this section, a(t), where the small angle θ is accounted
for.

and assume that the Earth orbits the Sun at an angular frequency of ω. This gives

the equation

a(t, γ) =
√

r20 + 2 r r0 sin γ sin tω + r2 sin2 tω (4.1)

which does not use θ. We then translate this to frequency by first calculating the

phase of the gravitational wave signal,

φa(t, γ) = 2π f0

(

t− a(t, γ)

c

)

(4.2)

where f0 is the initial gravitational wave frequency and c is the speed of light. For

this practical demonstration, we will use f0 = 1500Hz as the higher frequencies

are shifted more and have a greater chance of shifting out of the Einstein@Home

parameter bins.

The apparent frequency can be derived from φ(t, γ) using the equation

fa(t, γ) =
φ̇a(t, γ)

2π
(4.3)

where φ̇a(t, γ) is the derivative with respect to time.

We then repeat this process for the distance that Einstein@Home uses, d(t, γ), to
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calculate fd(t, γ) and see if there is a significant difference with fa(t, γ).

As the resulting calculation depends on the inclination, γ and on the starting dis-

tance, r0, we performed sample calculations to get an idea of the possible effects. We

fixed γ = Pi/4 radians and varied r0 to see at what distance we would be concerned

about a search’s sensitivity. This representative value is about r0 = 7 × 10−5 pc,

which is approximately 15 AU, well within our Solar System and would not occur

given our current understanding of neutron star populations. This sample calcula-

tion is illustrated in Figures 4.3 and 4.4.

5.0´ 106 1.0´ 107 1.5´ 107 2.0´ 107 2.5´ 107 3.0´ 107
Time HsecL

-0.002

-0.001

0.001

0.002

0.003
Change in FrequencyHHzL

Figure 4.3 – The difference in frequency calculation between assuming the gravita-
tional waves arrive parallel to the Earth versus accounting for the small
angle of approach. The source is at an inclination angle of γ = π/4 and
the distance is 7× 10−5 pc. The horizontal line is the barrier where the
Einstein@Home search would be affected.

4.1.2 Doppler shift due to neutron star velocities

Proper motion refers to the real (rather than apparent) transverse movement of stars

relative to the centre of the solar system as they travel through the galaxy. Typically

it is measured in units of milliarcseconds per years (mas/yr) and can be quantified

for most of the nearby pulsars. Figure 4.5 shows the distribution of proper motions
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5.0´ 106 1.0´ 107 1.5´ 107 2.0´ 107 2.5´ 107 3.0´ 107
Time HsecL

-0.10

-0.05

0.05

0.10

Change in FrequencyHHzL

Figure 4.4 – The change in frequency due to parallax. The red line is the parallax
calculated for Einstein@Home and the blue line is when you account for
the small angle shift. This is calculated at a distance of 7 × 10−5 pc
where there starts to be a significant difference.

as given in the ATNF database [58].

The proper motion of neutron stars will have an effect on all-sky gravitational wave

searches, in a similar manner as described in Section 4.1.1, except this time it is

a real motion and not an apparent one. If the neutron star is sufficiently close

to Earth, or is moving with a high velocity, it is possible that the ḟ parameter

will be shifted due to transverse doppler shift out of the all-sky search windows.

As mentioned in Section 4.1.1, the Einstein@Home search window in S5 is ∆ḟ =

3× 10−10 Hz s−1. This section analyses the possibility of this effect occurring due to

current understanding of neutron star populations.

Hobbs et al. presented a study of 233 known pulsars and their proper motion,

the largest observable proper motion is for pulsar PSR B2011+38 with a velocity

of 1284 km s−1 in the right ascension and 996 km s−1 in declination [43]. A recent

paper by Tomsick et. al, 2012 estimates a transverse velocity of the object IGR

J11014-6103 to be about 2 400 - 2 900 m s−1 [79]. A representative upper limit value

of 1 000 km s−1 was used in the simulations for the velocity to represent an extreme,
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Figure 4.5 – Known proper motion distributions of pulsars as given in the ATNF
database.

yet realistic situation.

Following a similar process used for Section 4.1.1, we can calculate ∆ḟ over an

extended period of time to determine at which point the parameters become so

extreme they move out of a single Einstein@Home parameter template during an

observation. This study was done by both varying the initial distance as well as

varying the velocity of the neutron star to the most extreme value.

Though the equations for calculating the effect of proper motion are similar to those

for parallax, there are more variables to analyse, such as varying the sky position,

distance and velocity. To explore this, it is useful to picture the scenario of proper

motion as seen in Figure 4.6. For this analysis, we are assuming that the velocity
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of the star remains constant and we are neglecting the effects of the Earth’s orbit

around the Sun.

Figure 4.6 – This diagram shows the vectors necessary for proper motion calculations
with consideration given to a point at tmax where f̈ is at a maximum

If the pulsar is observed over a period of time, there will be a distance, r(tmax) where

the change in r is at a maximum. One approach is to calculate the maximum ∆ḟ(t)

at a r0 of 1 pc. To calculate ∆ḟ(t) we start with

r(t) =
√

r20 + v2(tmax + t)2 −
√

r20 + v2t2max. (4.4)

from Figure 4.6 and derive f(t) using Equations ?? - ??. We then calculate

∆ḟ =
f0v

2

c

[

1

r0
+

t2v4

(r20 + t2v2)3/2
− 1
√

r20 + t2v2

]

. (4.5)

This equation is plotted in 4.7 for the closest approach r0 = 1 pc and a velocity of v =

1000 km s−1. At the closest approach and a year observation, ∆ḟ = 1.5 × 10−13 Hz

s−1 which is well within the bounds of the Einstein@Home parameter bins. Starting

with r0 = 1 pc, the maximum ∆ḟ occurs at 1.5× 1010 s.

Another exploration of proper motion is to study extreme velocities of neutron stars

Equation 4.5 is highly dependent on velocity. As previously mentioned, the largest

known proper motion is 1000 km s−1.
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Figure 4.7 – The second derivative of frequency over time of a pulsar traveling at
1000 km s−1 from a distance of 1 pc

The plot showing ∆ḟ with respect to velocity is shown in Figure 4.8 with the Ein-

stein@Home bin size of 5.9× 10−10 shown as the red dashed line. This plot assumes

a closest approach of r0 = 1 pc and an observation time of Tobs = 1 yr. The intersec-

tion, where the velocity would force the signal out of the Einstein@Home parameter

bin occurs when the neutron star is moving at v ≈ 3.83× 107 m s−1.

The value of 3.83 × 107 m s−1 corresponds to an angular velocity of 1.91◦ yr−1 at a

distance of 1 pc. At the distance of the closest known neutron star of about 150 pc

[50] this velocity would be a proper motion of 45.8 arcsec yr−1 which at our current

understanding of population distributions is infeasible with Barnard’s star having

the highest proper motion of 10.3 as yr−1 at a distance of only 6 light years away

[19] [20].
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Figure 4.8 – The change in ḟ over a year observation dependent on velocity. The red
dashed line shows the Einstein@Home limit

4.2 Analysis of the effects of distances and veloc-

ities of neutron stars on all-sky searches

In this section, I analysed the effect that motion of neutron stars has on the sensitiv-

ity of the all-sky search, Einstein@Home and the likelihood of making a detection.

A blind all-sky search is most likely to detect a non-axisymmetric neutron star close

to Earth, which means it is most likely to have a high proper motion and paral-

lax. This could potentially move the signal out of the parameter bin during the

observation time.

For the effect that parallax (apparent motion) has on blind gravitational wave

searches, I discovered that in order to go outside of the Einstein@Home bins, a

neutron star would need to be at 7 × 10−5 pc. This is within our Solar System

and given our current understanding of distributions of neutron stars, it is com-

pletely non-astrophysical. This demonstrates that it is unlikely that the small angle

when calculating parallax is something we need to account for in the present Ein-
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stein@Home search.

The most important consideration for the Einstein@Home blind search is the possi-

bility of high transverse velocities which result in a high doppler shift. This search

aimed to find out the extreme motion on the sky which would cause an unknown

neutron star to shift out of the search bins. This study showed that at 1 pc and an

approximate extreme, but known, value for velocity of 1000 km s−1 and observation

time of 1 year, the change in ḟ is ∆ḟ = 1.5× 10−13 Hz s−1 which is approximately 3

orders of magnitude within the limits for Einstein@Home.

I also investigated the extreme velocity necessary to exceed the Einstein@Home

limits. I found that this velocity is approximately v ≈ 3.83 × 107 ms−1. For the

closest known neutron star of r0 ∼ 100 pc, this corresponds to a proper motion

of 45.8 arcsec yr−1. This value is about 4-5 times higher than the highest proper

motion observed of 10.3 as yr−1 from Barnard’s Star which is only ∼ 2 pc, a factor

of 50 closer than the closest known neutron star.

This investigation shows that it is astrophysically impossible to have an object

close enough for parallax or proper motion to make an impact on a reasonable

Einstein@Home search. In addition, it provides a useful constraint on the scope

of simulated signals we need to generate to test the CW searches. Specifically, we

do not need to simulate the contributions of parallax and proper motion to our

simulated signals generated in Chapter 6.



5

Refining signal detections with

multiple templates: the

narrow-band search

This chapter describes the middle step in the hierarchical detection method, both

the theory and results from two example, stand-alone searches. This method was

previously referred to as the “wide-parameter” search in previous continuous wave

(CW) search literature. The recent gravitational wave emission upper limit from the

Crab Pulsar used this search method in parallel with a targeted, Bayesian search

[10].

This search is a small-area, directed search where the location and frequencies are

approximately known. It examines multiple templates containing the possible pa-

rameters for a likely signal. The search uses a frequentist method of maximum

likelihoods to determine candidates and parameters, as described in Section 5.1. By

varying the parameters around a small region, we can account for unknown values in

the gravitational wave emission from the neutron star. In this chapter, I apply the

narrow-band technique to the Crab Pulsar parameters again for the recent science

92
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run, S6, as well as applying the search to a continuous wave hardware injection in

S6 data.

5.1 Frequentist search and the F-Statistic

The frequentist approach in statistics interprets the probability P (X) of an event,

X, occurring as the fraction, or frequency, of events in an infinite number of trials

with statistically identical conditions. For detecting gravitational wave signals in a

set of data using this method, we need to define a statistic and hypotheses necessary

for declaring a detection. In CW searches, the F -statistic was derived to optimise

searches in the work done by Jaranowski, Królak and Schutz [49]. We will also define

probability thresholds based on the recent work by Karl Wette [86]. The hypotheses

necessary for this search are the null hypothesis, H0, where there is no signal in the

data and the alternative hypothesis H1 where there exists a signal, h, in the data.

Here, we define a test statistic and assess it’s performance.

In general, to statistically determine which hypothesis is correct for a set of data,

x(t), we need to set a threshold, Λ∗, from a scalar detection statistic, Λ(x) (in this

case, the F -statistic as defined later). The value Λ∗ is defined in such a way that

if Λ(x) < Λ∗ we will accept the null hypothesis H0 and if Λ(x) > Λ∗ then the

alternative hypothesis, H1 is accepted. The probability of these events is defined as

P (Λ(x)|H0) and P (Λ(x)|H1) where the notation P (x|y) is read as “The probability

of obtaining x given y is correct.”

In reality, however, it is possible to mistakenly claim the incorrect hypothesis. These

are referred to as false alarms and false dismissals. Here, we will use the notation

seen in Prix, 2009 [69]. The false alarm probability, where Λ > Λ∗ (from here, I will
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use Λ to mean Λ(x)) despite the fact that H0 is true is defined as

fA(Λ
∗) ≡

∫ ∞

Λ∗

P (Λ|H0)dΛ, (5.1)

where the probability distribution function forH0 is integrated to find the probability

that Λ > Λ∗.

Similarly, the false dismissal probability, where we calculate Λ < Λ∗ despite the fact

that H1 is true and there is a signal h in the data is given as

fD(Λ
∗, h) ≡

∫ Λ∗

−∞

P (Λ|H1)dΛ. (5.2)

In order to calculate the overall probability of detecting a signal which is present in

the data, we define the complement of fD as η ≡ 1 − fD which gives the equation

η ≡
∫ ∞

Λ∗

P (Λ|H1)dΛ, (5.3)

or simply the integral of the probability distribution function for a signal being

present above Λ∗.

Next, we want to maximize η to find the optimal Λ for a given false alarm rate, or

probability, usually 1%. The Neyman-Pearson lemma gives the likelihood ratio test

as

Λ(x; h) ≡ P (x|H1)

P (x|H0)
. (5.4)

Continuous wave analysis

In continuous gravitational wave data analysis, the log likelihood function for a

signal x in a set of data h is defined as follows:

ln Λ(x; h) = (x||h)− 1

2
(h||h) (5.5)
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which is an expression for the matched-filtering amplitude where

(x||y) ≡ 4R

∫ ∞

0

x̃(f)ỹ∗(f)

Sh(f)
df, (5.6)

and x̃(f) is the Fourier transform of the signal, ỹ∗(f) is the Fourier transform of the

complex conjugate of the data and R is the real part of the complex number.

x̃(f) =

∫ ∞

−∞

e2πiftx(t)dt. (5.7)

The value Sh is the one-sided spectral density of the detector’s noise at a specific

frequency [49].

In our searches, not all the gravitational wave parameters of h are known so we

maximise Equation 5.5 to define the maximum likelihood values. In this thesis,

and in frequentist continuous wave searches, the maximum likelihood value is the

F -Statistic [49].

5.1.1 The F-Statistic

The first derivation of the F -Statistic is given in Jaranowski, Królak and Schutz

[49]. Updated calculations include situations with multiple detectors and multiple

sources are given in Cutler and Schutz [28]. This F -statistic is not to be confused

with the standard F-statistic or the F-distribution found in traditional statistics

literature.

With the data, x, we assume the Doppler parameters λ: sky position (α and δ) and

frequencies (f , ḟ ...), are unknown for the purposes of the narrow-band search. The

four amplitude parameters A of the gravitational wave are also unknown. From this

and using Equation 5.5, we calculate [49]

ln Λ(x;A,λ) = Aµxµ −
1

2
AµAνMµν , (5.8)
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with summation over µ, ν ∈ [1, 4] and we define

xµ(λ) ≡ (x||hµ) and Mµν(λ) ≡ (hµ||hν), (5.9)

using the scalar product defined in Equation 5.6.

We can maximise the log-likelihood factor over the gravitational wave amplitude

parameters to obtain the maximum likelihood estimators Aµ
ML. We then substitute

these values into Equation 5.8 to give our statistic [49],

2F(x;λ) = xµMµνxν . (5.10)

The 2F -statistic in Equation 5.10 depends only on the Doppler parameters, which

are generally known for a neutron star. We use this value as the F -statistic in

frequentist searches [49].

If no signal is present, the F -Statistic is a random variable which follows a central

χ2-distribution with 4 degrees of freedom. The probability density function of this

distribution is given as

p0(2F ; 4, 0) =
F
2
e−F . (5.11)

If there is a signal present in the data, the distribution of the 2F -statistic follows

a non-central χ2-distribution with 4 degrees of freedom and ρ2 is the non-centrality

parameter, where ρ is the SNR from equation 2.33. The probability distribution

function of the F -statistic with a signal present is

p1(2F ; 4, ρ2) =
1

2
e(−2F+ρ2)/2

√

2F
ρ2

I1(
√

2F ρ2) (5.12)
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where I1(
√

2F ρ2) is the first kind, first-order Bessel function, expressed as

I1(x) =
x

2

∞
∑

j=0

(x2/4)j

j! Γ(j + 2)
. (5.13)

If the parameters defined in the search are perfectly matched to the signal present

in the data, λs = λ, then the expectation value of the F -statistic is [69]

E[2F ] = 4 + ρ2. (5.14)

As mentioned at the beginning of the chapter, we need to set a detection threshold of

2F∗. Using this value, we can easily integrate 5.1 and get the false alarm probability

pfa(2F∗) = (1 + F∗)e−F∗

. (5.15)

If we set this probability to pfa = 1%, then 2F∗ ≈ 13.3. We can then use this value

to solve 5.2 numerically to find the required ρ for a false dismissal rate. If we set

pfd = 10%, then ρ ≈ 4.5 [69].

Finally, it is important to define the upper limit of the gravitational wave amplitude,

where we limit the gravitational wave emission from the neutron star. We will call

this limit, hC0 where C is the frequentist confidence, the frequency with which the

interval [0, hC0 ] contains the true value of h0 in repeated experiments,

C =

∫ ∞

2F0

F (2F|hC0 ) d2F , (5.16)

where 2F0 is the value of the loudest candidate [69].

Next, I will introduce the narrow-band search which will iterate searches over various

Doppler parameters λ in a small window and calculate the F -statistic for each

scenario and find the resulting distribution.
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5.2 The narrow-band search

As described in Section 5.1.1, the F -statistic is a maximum likelihood statistic cal-

culated for different possible parameters of h(t). We define a signal h(t;A,λ) where

A is the set of amplitude parameters, h0, cos ι, Ψ, φ0. The vector λ is the Doppler

parameters, the position n of the source as well as the frequency and frequency

derivatives.

In continuous wave searches, the amplitude parameters A from Table 2.2, are gener-

ally unknown and the Doppler parameters, λ described in Table 2.1, are estimated

for position, α, δ, frequency, f and frequency derivatives. For the narrow-band

search, these Doppler values, λ, are also treated as unknowns over a small param-

eter space. This allows for the possibility that frequency may not be at precisely

twice the spin-frequency as well as the position may not be as well-defined. There-

fore this search is considered a “directed” search where templates are created for

values within λ ± δλ where δ is a small window in the parameters for α, δ, f and

ḟ .

By defining the spacing of the templates, I get a number of templates, Nt. Each

template Ni returns a 2F value for the specific values of λi. As described in sec-

tion 5.1.1, the distribution of these values is a χ2-distribution with a non-centrality

parameter of ρ2 if a signal is present which converges to 0 if there is no signal.

It is unlikely that a template with parameters λi will perfectly match the signal

parameters, λs. The offset dλ = λi − λs will cause a loss of the F -statistic. This

loss is referred to as the mismatch and is defined as

m(λs, dλ) =
E[F(λs)]− E[F(λ)]

E[F(λs)]
, (5.17)

where E[F(λs)] is the local maximum of F if there is a signal in the parameters λs

[69]. This mismatch is used to define the template overlapping in the narrow-band
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search.

The local metric gij which arises from m can be approximated as

gij ∼ 〈∂iφ∂jφ〉 − 〈∂iφ〉〈∂jφ〉, (5.18)

as shown in [68] and [24] where φ(t) is the phase of the signal, ∂i = ∂/∂λi and 〈...〉

is the average over the observation time, Tobs [69].

These F -statistic values are computed using the code ComputeFStatistic_v2 found

in the LSC Algorithm Library (LAL) code routines [26]. The 2F value is calculated

for each data template Ni and sums the results. This resulting distribution is then

compared to the expected probability distribution.

We use Short-Fourier Transforms (SFTs) of 30 hr durations to move the data into

frequency space. These SFTs are then combined to form Power Spectral Densities

(PSDs) at individual frequencies where the detector data can then be analysed.

5.3 Applying a multi-template search for a signal

from the Crab pulsar in S6 data

First, I test the narrow-band method by searching for signals from the Crab Pulsar

(PSR B0531+21) in the sixth science run (S6) of LIGO data and the 3rd science

run of the Virgo detector. Previous searches for the Crab Pulsar included a 30m

interferometer search by Levine and Stebbins in 1972 [55] and bar detector searches

from Hirakawa et al (1978) [42] and Suzuki in 1995 [77]. All of these searches

resulted in a gravitational wave upper limit which was above the spin-down limit of

the Crab.

The first result from the LIGO detectors was from the second science run (S2),

which gave a 95% upper limit of h95%0 = 4.1 × 10−23 [7]. Combined data from the
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third and fourth science runs gave an upper limit of h95%0 = 3.1 × 10−24, only 2.2

times higher than the spin-down limit [8].

When the fifth science run (S5) data was analysed, both the narrow-band search

(previously referred to as the wide-parameter search) and a targeted pipeline [10]

were used to set upper limits as discussed in Section 2.6.1. This section will perform

a new analysis on the subsequent detector science run using only the narrow-band

search.

S6 multi-template analysis

For this search, I used a relatively short observation time of Tobs = 28 days from

S6 in the GPS time range 932000000 - 934419200. I searched 566 SFTs for H1, 719

SFTs for L1 and 1181 SFTs for Virgo. This is because although the previous search

in [10] used S5 data from ∼ November 2005 through August 2006, the computing

cost of the narrow-band search is proportional to Cc ∝ T 6
obs [69] and the SNR only

improves as ρ ∝ T
−1/2
obs . Given a limited computing time, with little improvement

on ρ, it was not worth increasing Tobs to more than 28 days. Yet, this is still an

opportunity to test the S6 data and understand the narrow-band search for the

future Advanced Detector searches.

First, I set the central parameters and a window over which the narrow-band algo-

rithm will search. This determines the number of templates and computing time

the search takes. The 4 Doppler parameters I started with as well as their windows

are shown for this search in Table 5.1.

To calculate the expected distribution, I assumed a Gaussian distribution of 2F

values to get the equation

p(Ni|2Fi) =
1

√

2π〈N〉
e

−(N−〈N〉)2

2〈N〉 (5.19)
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λi Central value Window

α 1.45967 0.005
δ 0.384224 0.005
f0 59.55577 10−3

f1 -7.4588×10−10 5×10−10

PEPOCH 813369613

Table 5.1 – Parameters given for the S6 narrow-band search for the Crab pulsar where
f1 is the first time derivative of f

where 〈N〉 is the expected number of 2F -values given no detection and is calculated

from the central χ2-distribution to be

〈N〉 = Ntot

2
Fie

−Fi∆Fi. (5.20)

The total number of templates searched are Ntot ≈ 4.5 × 107. The distribution of

the resulting 2F values calculated from each template are shown in Figure 5.1. The

expected line is from Equation 5.19. It is clear that the 2F values from the search

follow this distribution. The discrepancy at the peak of the curve is due to known

implementation details of ComputeFStatistic_v2 as described in Section IV B of

Wette, 2012 [86].

If we want to calculate the cutoff value of 2F∗, where the probability P that all

templates are below 2F∗ then take 1 − P and set it equal to 1%. If we integrate

Equation 5.11 from 0 to 2F∗ to get (for a single template)

Psingle(2F∗) =
1

2
(1− (1 + F∗)e−F∗

), (5.21)

which is the probability of one template being below the threshold F∗. Each search

is independent, so we simply need to multiply the probability by Ntot to get P , take

1 − P and set it equal to 1% to numerically solve for F∗ which gives a value of

∼ 49.

This search resulted in a maximum 2Fmax = 41 which is less than the 2F∗ threshold,
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Figure 5.1 – Results of the 28 day narrow-band search of the Crab pulsar. The
gap at the peak between the expected value and the results are due to
implementation details of the F-statistic code [86].

which means this is consistent with a no-signal distribution.

5.4 Recovery of a hardware injected signal in re-

cent data

In the Initial LIGO runs, the head committee conducted blind hardware injections,

unknown to the individual data analysis groups. The purpose of these is to fully test

the methodology for declaring a known detection and testing the science which can

be done with the searches, such as extracting the parameters. In the sixth science

run (S6), two blind injections were made, a coalescing binary signal and a continuous

wave signal. The coalescing binary signal was flagged as the “Big Dog” signal and

the recovery is described in Abadie et. al [5]. During the discussion for the Big Dog

event, the CW signal was revealed to have been injected in September 2009. This



5. The narrow-band search 103

section recovers this signal using the narrow-band search with the parameters given

to the group post-injection. By recovering this injection, we can confirm the validity

of this method of injecting blind signals.

The CW signal was injected for 28 days of S6 between 969837280 and 971622272. I

searched 542 SFTs for H1, 462 SFTs for L1 and 747 SFTs for Virgo. The parameters

of the injection are given in Table 5.2.

λi Central value Window

α (rads) 2.454 0.005
δ (rads) 0.465 0.005
f0 (Hz) 643.352 10−3

f1 (Hz s−1) -8.84e-11 5×10−11

PEPOCH (sec) 751680013

Table 5.2 – The values that were injected into the S6 data with the windows used in
the narrow-band search.

This search included Ntot ≈ 1.7× 107 templates and the results of the narrow-band

search are given in Figure 5.2

The highest 2F value from this search has a value of 2010. The false alarm prob-

ability of obtaining this 2F value when there is not actually a signal in the data is

effectively zero, which states definitively that this is a strong injection.

The parameters recovered are shown in Table 5.3. The time-derivative of the fre-

quency has the highest error, but in a short Tobs, this is difficult to recover well.

λi Recovered Value Error

α 2.4543579 0.02%
δ 0.4654563 4.5× 10−6%
f0 643.3325 1.34× 10−5 %
f1 -9.47120×10−11 7.1 %

Table 5.3 – These are the recovered parameters from the narrow-band search for the
continuous wave hardware injection in S6.

The recovered amplitude parameters are shown in Table 5.4. The uncertainty in
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Figure 5.2 – Results of the 28 day narrow-band search of the S6 continuous wave
hardware injection. The dots represent the number of 2F values
achieved for each template. No signal present would result in a sharp
distribution concentrated at lower 2F values.
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these values is high, but it is difficult to recover these values as they are completely

unknown with no priors.

Ai Recovered Value Uncertainty

h0 3.15355× 10−24 17.3%
cos ι 0.723358 20.1%
φ0 2.65094 23.2%
Ψ 0.172732 177.1%

Table 5.4 – Recovered amplitude parameters from the narrow-band search for the S6
hardware injection

This narrow-band search was able to detect the S6 continuous wave injection.

Though the amplitude of the signal was well above the sensitivity of S6, this shows

that the narrow-band search is an effective method for detecting a signal when it is

possible.

5.5 Discussion of search and the implication of the

results

For this chapter, I explored two different perspectives for utilising the narrow-band

search in continuous wave data analysis. In the Advanced Detector era, this search

will be able to perform both independently (as demonstrated in this chapter) as well

as a middle step between the blind and targeted searches as discussed in Chapter

2.

First, I ran a parameter search for the Crab Pulsar in the S6 data allowing us to

place an upper limit on the gravitational wave emission from the Crab pulsar at

frequencies and frequency derivatives in a region around the values predicted by

radio observations. In an observation time of Tobs = 28 days I was unable to place a

better upper limit compared to the S5 result. This is due to the fact that although

the S6 data is more sensitive than S5, Tobs is much less. Though Tobs was much
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smaller, it was still worth running this search over a separate science run as there

is a possibility that pulsars may have variable emission as discussed in Lyne et. al,

2010 [56].

Next, I ran a search on a blind hardware-injected signal in the S6 data. This signal

had a high amplitude so it was easily recovered by the narrow-band search and

demonstrates effectively what signal detection will be like with higher sensitivity

in the Advanced Detector era. I was able to confidently detect this signal and

recover the correct parameters. This shows that the narrow-band search is a valid

and effective way of running a directed search for signals where estimated Doppler

parameters are known. Additionally, it verifies the blind injection process where

people who are not directly involved in continuous wave analysis successfully injected

a recoverable signal.



6

Development of a data set for the

continuous wave mock data

challenge

Part of the process of preparing for regular detections of gravitational wave signals

with advanced detectors involves testing the algorithms on simulated signals within

realistic data. Throughout the initial LIGO Science Runs (S1-S6), signals were

artificially injected into the data through the hardware. This means an end mirror

in the detector was moved in a way that caused the output to resemble a gravitational

wave signal. For short-duration events, such as signals from supernovae or coalescing

compact objects, this is acceptable as it only affects a short stretch of the data. For

long-duration signals, like continuous waves from neutron stars, it is not feasible

to generate many signals in this manner because they will contaminate the actual

data output and interfere with other types of searches, particularly the stochastic

search.

To appropriately test search techniques, it is ideal to have simulated signals which

imitate actual signal detection processes, hence the use of hardware injections. Real-

107
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istically, continuous wave signals would be always present in data, but as explained

above that is not an option from a hardware perspective for many signals. The

alternative is to use software to generate a full set of data with continuous wave

signals present throughout.

An alternative method of introducing a signal into the data involves superimposing

the signal onto the detector output at the processing stage. Software injections of

signals have been used in the past for individual testing of algorithms. A simulated

signal can be generated using the code Makefakedata_v4 found in the LSC Algo-

rithm Library which reads in user-defined parameters such as position, spin, etc.

about the neutron star, the gravitational wave parameters and information such as

type of output and duration of signal [26]. The types of output are generally Short

Fourier Transforms (SFTs) or the raw detector frame output.

Despite the existence of software injection codes and the current use of software

injections for testing the CW group algorithms, no large-scale methods to effec-

tively generate a full set of data with multiple signals present existed. To develop

this, it was necessary to develop code which could generate simulated neutron star

population data, including neutron star position, orientation and spin parameters,

generate a signal for each of these and add them all to existing frame files over an

entire science run.

This chapter will describe the development of this code as well as the final dataset

currently being used in the CW group. This dataset uses the strain data from the

sixth LIGO Science Run (S6) and contains artificial signals from all known pulsars as

well as 3000 additional simulated signals. These software injections are of particular

use to compare blind-all sky searches as there are many signals present over a wide

range of strengths, which allows us to exercise the algorithms over a wide range of

conditions. Additionally, while each individual all-sky search has ran their own tests,

this is the first large-scale, comprehensive method for testing performance.
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6.1 Signal parameters

The first step in developing this dataset is to determine the parameters of the simu-

lated neutron stars and write them out in such a manner that they can be automati-

cally read in. This allows us to automatically generate as many signals as necessary.

The simplest method is to have a directory which houses a set of files, each describ-

ing the necessary parameters for an injection simulating a single neutron star. The

Australia Telescope National Facility (ATNF)1 pulsar database utilises the timing

package Tempo2 [44] which dictates a standard pulsar parameter format. By using

this file format, we can maintain consistency between the pulsar and gravitational

wave communities.

In order to effectively test the algorithms, it is useful to have a large set of neutron

star signals over the entire gravitational wave frequency range with signal strengths

having a variety of signal–to–noise ratios (SNRs). The CW group has searches which

vary greatly in sensitivity, from the targeted search with the highest sensitivity, to

blind, all-sky searches with low sensitivity. The approximate difference between

these extremes is a factor of 20-30, so we need a range of SNRs in order for this to

be an effective method for testing all of the CW algorithms.

As mentioned above, this project is particularly important to test the multiple all-

sky searches, so the SNR range will be catered to their sensitivity. The strengths of

the software injections will have a spread over the sensitivity curve seen in Figure

1.4.

To avoid the signals interfering with each other in the searches, due to the fact

that the algorithms are not designed for multiple signals at the same frequency, the

gravitational wave reference frequencies will be uniformly distributed and be spaced

at ∆fgw = 0.5Hz intervals. The other neutron star parameters will all be chosen

from random, uniform distributions.

1http://www.atnf.csiro.au/

http://www.atnf.csiro.au/
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Figure 6.1 – The SNR distribution of the software injected signals corresponding to
a targeted signal search. The mean is 100, the standard deviation is 60
with upper and lower cutoffs of 5 and 205, respectively.

To determine the parameters of each individual neutron star, we start by choosing

a SNR from a Gaussian distribution with a mean of 100, a standard deviation of 60,

and limited to SNR ∈ [5, 205]. We will use calculations from the targeted search to

determine the h0 value, which would then give a range of SNR for the all-sky searches

centered on ∼ 10. The lower cutoff of 5 is to limit the SNRs from being negative

and the upper limit of 205 is to maintain symmetry. The choice of a Gaussian

distribution for SNR is to give the targeted search a few signals with a low SNR to

test the limits. As well, there are a few at a high SNR to make sure that the all-sky

searches will detect at least those. There are a lot in the middle that may challenge

the various searches. The distribution of the SNRs are shown in Figure 6.1.
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Figure 6.2 – Right ascension and declination of the uniform distribution of neutron
stars.

Once a fixed SNR, ρ, and frequency, fgw, are chosen, the position in the sky is

randomly chosen from a uniform distribution and are shown in Figure 6.2. The

distribution of the orientation of the neutron star is uniform in cos ι, as well as the

polarisation, Ψ as seen in Figure 6.3. The phase of the signal is also randomly chosen

from the interval φ0 ∈ [0, 2π).

The last neutron star parameter distribution which needs to be defined is the spin-

down value, ḟgw. Uniform distributions were appropriate for the other parameters,

but for ḟgw, a uniform distribution is inappropriate. This is especially important

because the all-sky searches are designed based on a realistic distribution of fgw-ḟgw

(examples in [12]). Currently, approximately 5% of known neutron stars have a
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positive ḟgw value (spin-up) mostly due to the acceleration of sources toward Earth,

so this will be applied to these software injections. The ḟgw values for the injections

are randomly chosen from the limited log distribution,

log

(

|ḟgw|
Hz s−1

)

∈











−9,−18 for ḟgw < 0

−18,−13 for ḟgw > 0











(6.1)

where only 5% are chosen from the latter set of positive spinup values, [10−18, 10−13]Hz

s−1. The distribution of ḟgw is shown in Figure 6.4. A summary of all of these neu-

tron star distributions are shown in Table 6.1.
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Figure 6.4 – Frequency versus |ḟ | of the software injection parameters.

As discussed in Chapter 4, proper motion is unlikely to affect the all-sky searches.

However, it was included in this data set before the results of Chapter 4 were com-
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Figure 6.5 – Plot of f versus age (years).
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Parameter Distribution

SNR Gaussian distribution: µ = 100, σ = 60, SNRmin =
5, SNRmax = 205

fgw Range from 50.25 Hz to 1550 Hz at 0.5 Hz intervals

ḟgw Random and uniform distribution in log(ḟgw) from
−10−9 to +10−13 (eliminating spin-downs between
−10−18 to +10−18) and fewer than 5 percent spin-
up (positive range)

Location Random and uniform distribution in sky
Ψ Random and uniform ranging from −π/4 to π/4
φ0 Random and uniform ranging from 0 to 2π

cos ι Random and uniform from -1 to 1
h0 Calculated from assigned SNR, f from above dis-

tributions and H1 S6 sensitivity curve

Table 6.1 – The distribution of the parameters of the pulsars from which the software
injections are calculated

.

pleted. From the ATNF database of actual observed neutron stars [58] (as seen in

Figure 4.5), we can approximate a distribution of proper motions as two separate

Gaussian distributions in the RA and DEC directions. For the right ascension, the

distribution has a mean of 3mas yr−1 and a standard deviation of 36. In declina-

tion, the distribution has a mean of -3mas yr−1. Due to a few outliers in the data,

a Gaussian fit was not appropriate, so these values were estimated by setting the

mean and standard deviation to match that of the ATNF data.

We also need to include the frequency epoch which is the time were fgw is equal

to the reference frequency. This value is necessary in order to adjust the frequency

and position based on the spindown and proper motion values. For these software

injections, we used a single reference epoch of GPS time 946339215.

The values for h0 are calculated by manipulating Equation (2.33) to

h0 = ρ

√
Sn√
Tobs

[

1

2
(1 + cos2 ι)F 2

+ + cos2 ιF 2
×

]−1

(6.2)

where ρ is the chosen SNR, Sn is the detector noise corresponding to fgw for the
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neutron star and Tobs is the observation time which for this case, Tobs = 1 yr [64].

The values in [· · · ] are time-averaged over a day and represent the antenna pattern

(as discussed in Section 2.4) for the specific detector H1. These calculated values are

shown in Figure 6.6. As mentioned before, this calculation is based on a targeted

search, approximately 10-15 times more sensitive than the all-sky searches. This

accounts for all of the sources being a factor of 10 or so stronger than the sensitivity

curve. If an all-sky search were to attempt to find these sources, the mean value

would approximately lie on the curve.
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Figure 6.6 – Distribution of h0 values for each injected pulsar compared to H1 strain
for one-year integration on a targeted search.

Once h0 has been determined, the parameters are written out to a text file, in the

format of the Tempo2 parameter files, but with the gravitational wave parameters,

h0, cos ι, Ψ and φ0 included. The code written to generate these writes out one
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file for each neutron star and stores it in a directory, to be used for the software

injection code.

6.2 Description of software injection code

The objective of this code is to rewrite the entire data set for the sixth LIGO science

run (S6). This presents many logistical difficulties such as computation time and

automation of the code. This code utilises many existing codes in the LSC Algorithm

Library Suite (LALSuite), written and managed by members of the LVC.2

6.2.1 Considerations and difficulties

The first consideration when writing this code is the extremely large volume of

data which needed to be read in and copied. The sixth science run was from July

2009 to October 2010 and the raw data was sampled at 16384Hz. This resulted

in approximately 10TB of data which needed to be read in, replicated across sites

and stored. It is imperative to make sure that this amount of data can be gener-

ated in a reasonable amount of time with a limited impact on the computational

clusters.

Another issue to consider is how much control the group has on the strength of the

signals. There was discussion in the group on whether or not they can individu-

ally modify the signal to cater towards testing their own algorithms. However, the

original reason for developing these software injections was mainly to comprehen-

sively test the blind, all-sky algorithms and this is best done when the sources are

unknown.

Current LIGO data frame files follow a specific format and it is necessary to maintain

this when generating a new set of frames. The collaboration uses a system called

2https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
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the LIGO Data Analysis Software (LDAS) formatting.3 The format specifications

include the structure of the file frame names, which include the detector (H1, L1,

H2 ...), the type of frame channel, the start time of the data in GPS seconds and the

duration of the data appended with the file extension “.gwf”. Each frame file contains

a set of channels which represent various aspects of the data. By maintaining the

standards of LDAS, this allows the data to be included in the LIGO frame database

for future reference.

The final important consideration in this development is to decide on the type of

data to distribute to the group for analysis. Many of the algorithms read in Short

Fourier Transforms (SFTs) of the data which are generated separately from detector

frames. Because the SFTs are so commonly used, generating them as part of the

software injection project before distributing to the group for individual analysis was

an option. However, the best method for truly testing the algorithms is to replicate

the analysis process as identically as possible. Therefore once the software injection

frames are generated, they are handed directly to the group in raw form and then

the standard process done by any individual groups is conducted as would be with

any original detector data.

6.2.2 Code overview

First, the code needs to read in the neutron star parameter files described in Section

6.1 and store the values in order to calculate the injection in an appropriate data

format. To make the code computationally efficient and minimize memory usage, the

parameters are read in first and stored in arrays which are called later in the code,

instead of reading in the parameters separately for every detector frame file.

Then the original data frame files are read in one at a time and the data is extracted

and checked. As mentioned above, the start time and duration of the frame data

3http://www.ldas-sw.ligo.caltech.edu/

http://www.ldas-sw.ligo.caltech.edu/
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are given in the file name of the original frames. This information is read in directly

from the file name and then used to generate the injections. Typically, each frame

is 128 s worth of data and is always sampled at 16384Hz which results in a file of

approximately 30MB. The start time of the frame is given in GPS seconds.

The signals from each neutron star are generated and added together as one vector.

This vector is then added to the output frame file as one channel which just contains

the pure set of signals, with no noise included. This then gives the group the ability

to access the pure signals and extract them to modify them as necessary for their

own tests.

The vector of signals is then added to the raw data extracted from the detector

frame file to generate a vector which contains both the signals and the noise. This

comprises a second channel in the output frame file which the group will then use

to analyse for the overall algorithm comparison.

The code then writes out a new file which contains two channels, one with just the

signals and one with the original gravitational wave data and the signals included.

Then the code loops through the next raw data file and repeats the process.

Command line arguments for this code are simply the detector from which the data

is taken, the directories which house the neutron star parameter files, the directory

which holds the original gravitational wave frame files, the output directory and the

year and directory for ephemeris files which are used to calculate the exact position

of the Sun and Earth which affect the waveforms. A log file is written for each raw

frame file directory, detailing all parameters used for future reference if necessary.

The code flow can be found in Figure 6.7.

The workload computing management system Condor4 was used to run this code.

This effectively schedules and runs computing jobs on the computing clusters. Con-

dor codes were written to manage the command line arguments in order to cycle

4http://research.cs.wisc.edu/condor/

http://research.cs.wisc.edu/condor/
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through directories of raw frame files.

These software injections were generated on the ATLAS computing cluster housed

at the Max Planck Institute for Gravitational Physics.5 It took approximately 1000

computing jobs, each job taking approximately 33 hours, and the total space of the

generated frames came to 10TB. Once generated, the new software frame files are

moved to a permanent node and then transferred to the LDAS grid where they can

be accessed by anyone in the collaboration for personal analysis.

Currently, the frames have finished generating on ATLAS and 99% have been trans-

ferred to the California Institute of Technology computing cluster to generally dis-

tribute to the LIGO Collaboration. The failed transfers were due to erroneous

frames with zero content which occurred when cluster nodes crashed. These have

been fixed and have yet to be transferred to Caltech. All of the frames which are

at Caltech have been converted to SFTs as discussed in the following section. The

all-sky search, PowerFlux, and the Bayesian time-based targeted search have done

a primary analysis on this mock data. This is further discussed in Chapter 7.

6.3 Additional Processing

6.3.1 Generation of Short Fourier Transforms

Traditionally, Short Fourier Transforms (SFTs) are made from the raw detector

frame data and used by a few of the search algorithms (see, for example, Chapter 5).

These SFTs are generated from 30min of raw data and transformed into frequency

space.

Since these software injection frames are meant to mimic the entire method for data

processing, these SFTs are currently being generated in the same manner at the

5https://wiki.atlas.aei.uni-hannover.de/foswiki/bin/view/ATLAS/WebHome

https://wiki.atlas.aei.uni-hannover.de/foswiki/bin/view/ATLAS/WebHome
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California Institute of Technology computing cluster.

Once the SFT generation is complete, the various algorithms in the continuous wave

group who traditionally use these will process the data as they would normally.

6.3.2 Including binary neutron star signals

So far in this project, only isolated neutron stars are considered. The continuous

wave group also has the infrastructure to search for continuous gravitational waves

from binary neutron stars. According to current understanding of neutron star

populations, approximately 25% are in binary systems [58].

Binary neutron star systems have much larger shifts in frequencies than isolated

neutron stars. Mock signals from binary systems were not included in this initial

set of software injections. This is due to the fact that binary systems vary widely

in frequency over time and would affect the tests of isolated neutron stars. Due to

the prevalence of binary neutron star systems, it is important to perform a similar

test to compare current algorithms designed specifically for these systems.

6.3.3 Continuous wave mock data challenge

Now that the software injection frames are complete, it is necessary to design a

comprehensive and effective method for comparing the algorithms in the continuous

wave group. As explained above, some of the algorithms require further data pro-

cessing of the raw data frames and will go through this process accordingly. This is

because there might be a clear discrepancy in performance between two algorithms

which seem to perform similar analyses but process the raw data differently, and we

want to make sure this is caught.

Because this data processing can take extended computing time and space, full

analysis of the software injections from all of the isolated neutron star algorithms
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will take some time to be completed. The initial test of these injections frames

can be performed by the targeted time-domain search, which uses the raw frame

files directly and targets the search specifically on a single source. Additionally,

as discussed in this chapter, the SNR for targeted searches is much higher than it

would be for the other searches, making the recovery much simpler.

The algorithms in the continuous wave group require varied amounts of computing

time, so an effective way to test the performances is to develop a challenge which

accommodates all projects and still results in an improved understanding of per-

formance. A tiered challenge system allows for limited available time while still

comparing detection capabilities. This challenge was initially tested with the as-

sistance of Colin Gill at the University of Glasgow using the time-domain targeted

search as well as Vladimir Dergachev at California Institute of Technology using the

all-sky search named PowerFlux. Initial tests were positive and will be described in

detail in the following chapter, Chapter 7.



7

Mock data challenge and initial

results

7.1 Details of the mock data challenge

The purpose of the software injections detailed in the previous chapter is to com-

pare current CW search algorithm performance against a large data set of known

signals. As discussed in Section 2.4, the CW group runs searches ranging from tar-

geted searches which can achieve a high sensitivity to blind searches which have the

capability to find previously unknown sources of gravitational wave radiation. To

develop a mock data challenge which can account for the variety of searches, the

injected data set is broken in half by position in the sky, with half of the signal pa-

rameters considered to be “known” for the targeted and directed searches and half of

the parameters considered to be “unknown” to test the blind, all-sky searches. Cur-

rently, two searches have tested the ability to recover injections in a small frequency

space and the results will be discussed here. The next step is to assign the same

small frequency space to the entire group for initial testing and a more thorough

comparison. The small frequency space is intended to cut down on the computing

124
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time as well as the number of possible signals to recover for quick examination. Once

this has been completed, a series of tests which will slowly expand the frequency

space searched to include the full set of data.

The first challenge for the CW algorithms to analyse runs through 125 < fgw <

175Hz and contains 49 injected signals. This frequency range was chosen because

it has the best sensitivity and would additionally not require a high computational

cost for the all-sky searches. This challenge is shown in Figure 7.1 with the red dots

highlighting the CW signals in the given frequency. This frequency was chosen for

the initial challenge because the all-sky searches’ computing time is highly dependent

on frequency. A lower frequency would allow for less computing time and quicker

results.

The CW group utilises both time-domain and frequency-domain searches for signals.

In this thesis, only the frequency-domain F -statistic has been discussed, but there

also exists a time-domain based targeted search which is used below to detect the

known software injected signals. This chapter will also describe results from a blind,

all-sky algorithm called PowerFlux, which searches in the frequency-domain.

7.1.1 Initial results from the blind, all-sky algorithm Power-

Flux

The PowerFlux search is a continuous wave, blind, all-sky search. It searches within

the frequency-domain using short Fourier transforms (SFTs). These SFTs are gen-

erated from 1800 seconds of data, are Hann-windowed ([85]) and 50% overlapping

[9]. PowerFlux searches a five-dimensional parameter space of λ = {f̂0, ḟ , α, δ,Ψ}

where f̂0 is the initial gravitational wave frequency and Ψ is the polarisation angle,

from the parameters described in Tables 2.1 and 2.2. PowerFlux is the only all-sky

search which searches explicitly for the polarisation angle [9].
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Figure 7.1 – The initial challenge signals are shown highlighted in red with the full
set of 3000 signals in black. Half of the sky’s parameters (the non-
shaded region) are widely known to the CW group, and are used for
the targeted, known signal searches. The parameters of the signals in
the shaded region are not available to the CW group until follow-up on
blind searches is necessary.
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PowerFlux calculates the power coming from a particular region of the sky by con-

sidering

P [k, ft, at] =

∑

t∈SFT |at|2|zt,k+ft|2/w4
t

∑

t∈SFT a
4
t/w

4
t

(7.1)

where at is the series of amplitude response coefficients for sky position and po-

larisation, while ft is the series of frequency bin shifts due to Doppler effects and

spindown. The value |zt,ft |2 is the power in the bin ft, calculated at time t and from

k which refers to the bin number of the resulting power sum [30]. The weight wt

is independent of the gravitational wave parameters and depends on the noise in

each individual SFT as wt = 1/σ2
t where σ2

t is the variance of the noise at time t

[29].

PowerFlux then computes the power for 501 contiguous frequency bins at a fixed

time, sky position, spindown and polarisation. The 501 values are used to compute

signal-to-noise ratios, upper limits and other various statistics [29]. The size of these

frequency bins is computed as 1/Tcoh where Tcoh is the coherence time for the SFTs,

usually 1800 seconds. Therefore the frequency bins are 1/1800Hz separation [29].

The number of frequency bins is chosen because it is large enough for reasonable

statistics and at the same time small enough that most of the frequency bands will

avoid 1Hz harmonics which arise as instrumental artifacts [4]. Upper limits from the

weighted power sums (7.1) are calculated using the Feldman-Cousins method [37]

with an assumption that the detector noise is Gaussian and there are few spikes in

power [29].

Vladimir Dergachev performed an initial all-sky, blind PowerFlux run in the first

frequency range of 125 < fGW < 175Hz. A spindown of 0 was assumed and there

was a nominal spindown tolerance of 10−10 Hz s−1. Of the 49 sources in this frequency

range, 4 had a spindown larger than this value and could not be detected. Upper

limits were calculated for all the sources and the results are shown in Figure 7.2.

The upper limits are all above the actual injection and the upper limits do not seem
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Figure 7.2 – Calculated upper limits of each injection in 125 < fGW < 175Hz minus
injected strain. Only the injections with spindown less than the nominal
value are shown.
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to be dependent on the strength of the injection.

Next, the signal-to-noise ratios are calculated for each injection (below the nominal

spindown value of 10−10 Hz s−1). With a list of the actual injection values, the

outliers produced by PowerFlux were examined and any points within 0.6mHz of

the injected frequency were recorded. If more than one outlier was within this

range, the highest SNR value was used. Out of the 49 injections, 13 signals were

not detected: 9 which were missed by the code and 4 of which were higher than the

nominal spindown value [31]. These SNR values are shown in Figure 7.3. There is

an expected trend of decreasing SNR for weaker injected strains.

Figure 7.3 – Signal-to-noise ratios for the 49 injected signals, minus the 4 injections
with too high of a spindown. Signals missed by PowerFlux are given an
SNR of -1.

The 9 injected signals which were missed do not display any specific trend with
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respect to the strength of the signal. Further analysis needs to be done to determine

specifically why these signals were not able to be detected, despite their high strain

values. The difference between the recovered sky position and the injected position

is shown in Figure 7.4. The only possible trend in this data is that the stronger

injected strain results in higher error from the recovered sky position.

Figure 7.4 – Difference between recovered position and injected sky position for each
detected signal. The missed injections are excluded from this plot.

This initial run of PowerFlux on the mock data set is an encouraging result for

the full challenge of all-sky searches. It demonstrated that the injections could be

detected with a blind search, but not too strong, as not all the signals were flagged

as candidates.
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7.1.2 Results from the Bayesian time-domain search

The CW targeted search is a time-domain Markov Chain Monte Carlo search which

utilises Bayesian probability and presents results as posterior probability distribu-

tions which display a degree-of-belief in the resulting parameter values. This time-

domain algorithm involves steps of heterodyning, noise and parameter estimation

to extract an expected signal from the detector data. The first step involves hetero-

dyning the data close to the expected frequency of the signal, low-pass filtered and

rebinned to reduce the sample rate from 16384Hz to 4Hz [6].

The second step involves fine-heterodyning the data to take into account time-

varying Doppler shift and pulsar spindown as well as instrumental calibration arti-

facts. This step further rebins the data to one sample per minute, during which it

is assumed the data is stationary. From this, the variance and co-variance of the

data in each bin can be calculated and used in the subsequent likelihood calcula-

tion [6].

The noise in the one minute data samples, {Bk} is taken as Gaussian with respect

to a parameter model, y(tk; a) where a is the parameter space vector with the

gravitational wave parameters (h0, cos ι, φ0,Ψ) and tk is the time stamp of the k-th

sample. If the detector strain is described as

h(t) = F+(t,Ψ)h0
1 + cos2 ι

2
cosΦ(t) + F×(t,Ψ)h0 cos ι sinΦ(t), (7.2)

where Φ(t) is the phase evolution of the signal and F+,× are the strain antenna

patterns of the detector with plus and cross polarisation as previously described in

Chapter 1. The complex heterodyne of (7.2) is given as [34],

y(tk; a) =
1

4
F+(tk; Ψ) h0(1 + cos2 ι)ei2φ0 − i

2
F×(tk; Ψ) h0 cos ιe

i2φ0 . (7.3)
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The next step is to determine the prior distributions on the parameters, a that will

be used to calculate posteriors. The parameters φ0, Ψ and cos ι all have uniform

prior distributions: φ0 ∈ [0, 2π], Ψ ∈ [−π/4, π/4] and cos ι ∈ [−1, 1]. The prior for

h0 is chosen to be constant for h0 ≥ 0 and zero for h0 < 0 [6]. The joint posterior

probability distribution function (pdf) for these parameters is

p(a|{Bk}) ∝ p(a) exp

[

−
∑

k

R{Bk − y(tk; a)}2
2σ2

R{Bk}

]

× exp

[

−
∑

k

I{Bk − y(tk; a)}2
2σ2

I{Bk}

]

,

(7.4)

where σ2
R(I){Bk}

is the variance of the real (imaginary) parts for each data sample

Bk [6].

Finally, the posterior pdf (7.4) is integrated over φ0, Ψ and ι to obtain a marginalised

posterior for h0,

p(h0|{Bk}) ∝
∫ ∫ ∫

p(a|{Bk}) dι dφ0 dΨ, (7.5)

normalised so
∫∞

0
p(h0|{Bk}) dh0 = 1 [6]. This targeted search places a 95% upper

limit on the amplitude of the gravitational wave signal, h95%0 , such that

0.95 =

∫ h95%
0

0

p(h0|{Bk}) dh0, (7.6)

which defines the 95% Bayesian upper limit on a signal [6].

Colin Gill (University of Glasgow) performed the time-domain targeted search on

the 19 “known” pulsars in the gravitational frequency range 125 < fGW < 175Hz

and was able to recover the parameters. The full results are shown in Table 7.1

which presents the injected parameters, Ainj, the recovered parameter, Â and the

error ǫ defined as

ǫ =
|Ainj − Â|

σ
, (7.7)

where σ is the standard deviation of the posterior distribution.
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Figure 7.5 – Extraction of gravitational wave parameters for injected pulsar
J0041+6825 on the H1 detector. The injected values are shown as ver-
tical dashed lines.

Two posterior distributions for the 4 gravitational wave parameters of two injected

pulsars are shown in Figures 7.5 and 7.6. These figures show the parameters φ0, Ψ

and cos ι were easily recovered, with a narrow posterior distribution. The distribu-

tions for h0 are wider but still are recovered.

h0 φ0 Ψ cos ι

J0041+6825 Ainj 4.69e-24 0.26 -0.02 0.42

Â 4.69e-24 0.26 -0.01 0.42

ǫ 0.05 0.64 2.28 0.27

J0108-1251 Ainj 4.72e-24 4.34 0.33 0.45

Â 4.67e-24 4.36 0.34 0.45

ǫ 1.60 1.85 2.38 0.61

J0407+6153 Ainj 3.20e-24 1.05 0.51 0.69

Â 3.13e-24 1.06 0.49 0.71
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ǫ 2.06 0.30 1.24 1.90

J0450+7153 Ainj 2.95e-24 4.32 -0.49 0.13

Â 2.95e-24 4.31 -0.50 0.14

ǫ 0.16 2.00 1.68 3.53

J0545+8742 Ainj 3.76e-24 5.30 -0.50 0.43

Â 3.74e-24 5.30 -0.50 0.43

ǫ 1.16 0.52 1.79 0.88

J0552-3823 Ainj 3.31e-24 2.39 -0.75 -0.74

Â 3.35e-24 8.69 -0.77 -0.73

ǫ 1.29 6.98 0.03 1.18

J0602-1629 Ainj 7.05e-24 5.58 0.37 0.08

Â 7.06e-24 5.58 0.36 0.08

ǫ 0.57 2.11 2.78 0.12

J0710-2048 Ainj 1.92e-24 0.21 -0.76 0.06

Â 1.92e-24 6.47 -0.77 0.07

ǫ 0.27 20.43 0.05 2.11

*J0738-2002 Ainj 9.03e-24 2.12 0.76 -0.23

Â 8.95e-24 2.17 0.76 -0.24

ǫ 4.87 22.74 1.15 2.64

J0746+5850 Ainj 5.20e-25 5.30 -0.35 -0.90

Â 5.33e-25 6.93 0.53 -0.00

ǫ 0.29 0.74 1.94 12.32

J0810+1551 Ainj 5.50e-25 0.22 -0.38 0.70

Â 6.53e-25 0.18 -0.35 0.56

ǫ 3.08 0.03 0.49 3.39

J0839+5450 Ainj 2.56e-24 0.10 0.41 -0.75

Â 2.58e-24 0.26 0.50 -0.74

ǫ 0.61 2.50 2.69 0.53
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*J0850-3119 Ainj 9.25e-24 4.65 0.14 -0.07

Â 9.18e-24 4.63 0.14 -0.07

ǫ 4.66 13.54 2.66 2.98

J0907+3446 Ainj 8.23e-24 5.70 -0.05 0.38

Â 8.22e-24 5.73 -0.06 0.37

ǫ 0.26 7.32 1.47 1.99

J0928-1046 Ainj 5.46e-24 4.28 0.41 0.03

Â 5.45e-24 4.31 0.41 0.03

ǫ 0.22 9.18 3.12 3.29

*J1023+0059 Ainj 1.18e-23 1.40 -0.01 0.29

Â 1.00e-23 1.39 -0.01 0.36

ǫ 2165.07 2.95 0.02 72.28

*J1125-7334 Ainj 9.04e-24 5.66 0.00 -0.02

Â 8.98e-24 5.67 0.00 -0.02

ǫ 4.27 1.65 2.26 0.21

J1137-2335 Ainj 9.42e-25 4.37 0.22 -0.67

Â 9.95e-25 4.40 0.24 -0.64

ǫ 1.67 0.36 0.38 1.46

J1156+2206 Ainj 1.70e-24 6.22 0.11 -0.89

Â 1.73e-24 0.62 0.49 -0.00

ǫ 0.25 2.73 0.94 17.28

Table 7.1 – This table shows the recovery of the gravitational wave parameters using
the targeted code on 19 pulsars in the range 125 < fgw < 175Hz. The
injected value Ainj, the recovered value Â and ǫ are all shown for each
pulsar. Pulsars marked with a * are suspicious recoveries possibly due to
a high amplitude (specifically J1023+0059) or being on the edge of the
parameter space.

The difference between the injected and recovered gravitational wave parameters in
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Figure 7.6 – Targeted results of gravitational wave parameters for injected pulsar
J0602_1629 on the H1 detector. The injected values are shown as ver-
tical dashed lines.

units of standard deviation are shown in Figure 7.7. While one can intuit that a

higher amplitude would result in a smaller error, this effect is not seen, and it is not

currently known why. Analysis of more signals may shed light on a possible trend

or possible problem with the analysis code.

The primary purpose of running this targeted search on the mock data set was

to make sure the signals were correctly injected and could be retrieved. Since the

Glasgow targeted search works directly from time-domain raw data, there was little

processing that needed to be done and results could be achieved quickly. Over-

all this test successfully recovered the injected signals and their parameters. This

demonstrates that the mock data was generated accurately.
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Figure 7.7 – These plots show the value ǫ, the difference between the recovered pa-
rameters and the injected values in units of standard deviation as de-
scribed in Equation 7.7 for each recovered parameter. Plot (a) shows the
difference in σ versus injected value for the gravitational wave strain, h0.
Plot (b) shows the difference versus injected value for the signal phase,
φ0. Plot (c) shows the difference from recovered to injection for polar-
isation angle Ψ and Plot (d) shows the difference between injected and
recovered for the cosine of the inclination angle, cos ι. The discrepant
recoveries discussed in Table 7.1 are still included in these plots.
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7.2 Conclusion and Future Work

To date, only two of the CW search algorithms have analysed the software injected

data. Over the next few years, as preparations for Advanced LIGO continue, all

of the CW algorithms will perform these challenges to give us a concrete sense of

relative performance. The tier system of the challenges is set up so an initial run

may be done on a small, low frequency range of 125 < fgw < 175Hz which requires

smaller computing time. If the results of this challenge are not sufficient to compare

algorithm performance, the next challenge, with more targets and a wider frequency

range may be run. The existence of 3000 injected signals over all of S6 and across

the gravitational wave detector frequency band allows any algorithm to run their

own tests and analyse results. As described in Chapter 6, the data containing the

software injections is available to the CW group as raw, detector frame files. This

requires the group to run their entire tests from beginning to end, as they would

with actual detector data.

This chapter described results from a time-domain, Bayesian targeted search on 19

pulsars in the range 125 < fgw < 175Hz as well as results from PowerFlux, a blind,

all-sky search in the same frequency range. The targeted search was able to recover

all the parameters for each given pulsar with relative ease, at a high SNR. This is

to be expected as the software injections were generated to have a high SNR for

targeted searches, but is a check for completeness as well as a test of the targeted

search’s performance.

The PowerFlux blind, all-sky algorithm recovered 36 of the possible 45 signals in the

same frequency range. There are 4 signals which cannot be recovered by PowerFlux

as their spindown is higher than the nominal PowerFlux limit of 10−10 Hz s−1. It is

not yet clear why PowerFlux was unable to recover 9 of the signals as there was no

discernible trend in strain strength which would cause them to not be detected.

The next step would be to apply the Narrow-band search described in Chapter 5
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to these software injections. The Narrow-band search has been used in the past to

follow-up possible detections from PowerFlux, so this same process can be applied

to the software injection challenge results. There are three interesting investigations

to which the narrow-band pipeline can be applied with regards to PowerFlux. Pow-

erFlux resulted in a list of outliers in this initial frequency range, so first we would

want to test if the narrow-band pipeline is able to further determine the validity of

an injected signal which has been flagged by PowerFlux. The second test would be

to run the narrow-band search on the 9 possible, but missed, signals from PowerFlux

to see if the signals can be seen by a directed search, possibly shedding more light on

why PowerFlux missed these signals in the first place. The third test is to run the

narrow-band search on a few of the PowerFlux outliers which are known to not be

one of the injected signals. This would give a better idea of how frequent false alarms

would be with this method of a blind search followed up by a directed one. All three

of these scenarios: an injected signal flagged by PowerFlux and followed up by a

directed search, a signal which exists but is missed by PowerFlux and a false signal

which could be flagged by PowerFlux and may or may not be falsely detected by a

follow-up search are all important scenarios to consider for the Advanced Detector

era, where there is a possibility of all of these occurring.
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Conclusion

As we approach the advanced detector era, when the chances of LIGO detecting

signals increase, it is important now more than ever to understand the analysis

codes, both from the point of view of their efficiencies for detecting signals and for

their ability to reconstruct parameters from noisy data. This thesis has considered

several issues of importance for the continuous gravitational wave searches.

In Chapter 3, we explored the effect that an additional detector in the southern

hemisphere would have on the sensitivity for continuous wave searches. This study

concluded that there would be no significant advantage or disadvantage which is

important to consider as gravitational wave networks continue to expand. While

additional detectors would improve sensitivity, the location is not an issue for the

targeted continuous wave algorithm.

Chapter 4 explored the issue of neutron star populations, studying extreme examples

of distance and proper motion and the effect these have when generating a data set

for the all-sky search Einstein@Home. After defining the values at which there begins

to be an impact, we concluded that it was statistically highly unlikely such sources

would exist. However, this conclusion is important for simulations and extreme

testing of the algorithms.

140
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The directed algorithm, the Narrow-band Search, was applied in Chapter 5 to data

from LIGO’s sixth science run (S6). Two searches were performed: one for the

Crab Pulsar where no signal was definitively detected, and one for a blind hardware

injection which was successfully recovered with a false alarm probability of ∼ 0%.

The latter search was particularly useful in showing the ability for strong signals to

be recovered with the correct parameters using a narrow-band, directed search with

multiple templates.

Chapter 6 described the code development and production of software injected sig-

nals into S6 data. The purpose for generating these signals is to have a large data

set of long-duration continuous wave signals against which various algorithms can be

tested for performance in the runup to the advanced detector era. Preliminary tests

from the single-template targeted time-domain search and the all-sky PowerFlux

search are presented in Chapter 7.

To extend the work in this thesis, the primary objective is to explore the benefits

of a hierarchical method for detecting signals from previously unknown sources.

The mock data challenge presented in this thesis allows detailed comparison in

performance and sensitivity whereas now they are effectively comparable. This is

particularly necessary for the advanced detectors where more possible detections

will require deeper understanding of the capabilities of the algorithms.

The software injections will also be used to robustly test the hierarchical method for

confirming detections. That is, where a blind, all-sky search flags up a candidate,

a narrow-band, directed search follows up using the uncertainties in the all-sky pa-

rameters to determine the parameters and the likelihood of detection. This method

will be useful with advanced detectors at higher sensitivities which would allow the

all-sky searches to detect signals from previously unknown sources and be confirmed

with further algorithms. The software injections are particularly useful for testing

and refining this method as there are a large amount of known sources. By deter-
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mining the strengths and difficulties of such a method, the criteria for claiming a

detection can be more secure and robust.

Continuous waves as presented in this thesis are promising candidates for initial

direct detection of gravitational waves. As opposed to short-duration events, con-

tinuous waves are long-duration and can exist throughout detector data. As the

sensitivity of the future gravitational wave detectors continue to increase by orders

of magnitude, more known neutron stars (and potential gravitational wave sources)

enter the range of detectability. Additionally, it is thought that only 10−4% of

existing neutron stars have been detected through electromagnetic radiation. Grav-

itational wave emission presents a new opportunity for astrophysical research and

the potential for detecting previously unknown continuous wave sources requires

the community to refine algorithms and methods for detection to optimise their

capability.

The author hopes that this work improves the understanding of the many and varied

search algorithms applied to the continuous gravitational wave search problem in

the LIGO Scientific Collaboration and Virgo Collaboration, and that through this

improved understanding, the chances of us detecting continuous gravitational wave

signals and understanding the properties of the source are improved in the upcoming

advanced detector era.
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