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Abstract

Let V be a non-zero finite dimensional vector space over the finite field Fq. We take

the left action of G ≤ GL(V ) on V and this induces a right action of G on the dual

of V which can be extended to the symmetric algebra Fq[V ] by ring automorphisms.

In this thesis we find the explicit generators and relations among these generators

for the ring of invariants Fq[V ]G. The main body of the research is in chapters

4, 5 and 6. In chapter 4, we consider three subgroups of the general linear group

which preserve singular alternating, singular hermitian and singular quadratic forms

respectively, and find rings of invariants for these groups. We then go on to consider,

in chapter 5, a subgroup of the symplectic group. We take two special cases for this

subgroup. In the first case we find the ring of invariants for this group. In the second

case we progress to the ring of invariants for this group but the problem is still open.

Finally, in chapter 6, we consider the orthogonal groups in even characteristic. We

generalize some of the results of [24]. This generalization is important because it

will help to calculate the rings of invariants of the orthogonal groups over any finite

field of even characteristic.
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Chapter 0

Introduction

Let V be a finite dimensional vector space over the finite field Fq with basis e1, . . . , en.

Suppose x1, . . . , xn is the dual basis of the dual vector space V ∗. Let G ≤ GL(V )

and consider the polynomial ring in the n indeterminates Fq[x1, . . . , xn]. Invariant

theory over finite fields is a branch of abstract algebra. The theory deals with those

elements of Fq[x1, . . . , xn] which do not change under the action of the group G.

These elements form a ring structure which is called the ring of invariants of the

group G.

This thesis is concerned with the invariant theory of finite groups. For a long time

there has been interest in finding the ring of invariants of the group G ≤ GL(V ). The

rings of invariants of the general linear and the special linear groups were computed

early in the 20th century by Dickson in [16]. These were found to be a graded

polynomial algebras in both cases. For a modern treatment see Wilkerson [43].

Wilkerson also deals with the ring of invariants of the whole general linear group.

There is another important paper by Carlisle and Kropholler [9]. These authors

found explicit generators for the rational invariants of orthogonal and unitary groups.

In the same year they calculated the ring of invariants of the symplectic group in [8]

and their result showed that this ring of invariants is a graded complete intersection.

There are several papers [[10], [11], [12], [15]] and theses [[3], [26]] which deal with

the rings of invariants of orthogonal and unitary groups in low dimensional cases.

In 2005 Kropholler, Mohseni Rajaei and Segal [24] found explicit generators and

1



CHAPTER 0. INTRODUCTION 2

relations for the rings of invariants of orthogonal groups over F2 but the general

case is still open. In 2006 Chu and Jow [14] computed rings of invariants of unitary

groups. In the last two cases it was found that the rings of invariants are graded

complete intersections. There is another unpublished paper [13] by Chu which deals

with rings of invariants of orthogonal groups in odd characteristics. Chu did this

work in 2007 but he discusses only two rings of invariants, and we know that when

the dimension of V is even then up to isomorphism there are two orthogonal groups

and corresponding to these two orthogonal groups we have two invariant rings up

to isomorphism. Similarly when the dimension of the vector space V is odd then

up to isomorphism there is only one orthogonal group and corresponding to this

orthogonal group we have one invariant ring up to isomorphism. Thus by rings of

invariants in odd characteristic we mean these two rings of invariants throughout

the whole thesis.

The calculation of rings of invariants is important because once we calculate the

generators of these rings and the relations among them we can understand the struc-

ture of these rings and so we can deal with these rings according to their properties.

In this thesis we do similar calculations to those which discussed above. The

main research work in the thesis is in chapters 4, 5 and 6. Our motivation starts

by considering subgroups of the general linear group which are similar to subgroups

whose rings of invariants are already known.

In chapter 4 we consider the following groups and find rings of invariants.

Aut(V, ξ) = {g ∈ GL(V ) : ξ(gv1, gv2) = ξ(v1, v2) ∀ v1, v2 ∈ V }

Aut(V,H) = {g ∈ GL(V ) : H(gv1, gv2) = H(v1, v2) ∀ v1, v2 ∈ V }

In the first case V is a vector space over the finite field Fq and ξ is a singular

alternating form on V while in the second case V is a vector space over the finite

field Fq2 and H is a singular hermitian form on V . These two groups are similar

to the symplectic and unitary groups: if the forms ξ and H are non-singular, then

Aut(V, ξ) becomes the symplectic group and Aut(V,H) becomes the unitary group.

As discussed above we know the rings of invariants of symplectic and unitary groups.



CHAPTER 0. INTRODUCTION 3

In particular we prove the following two results.

Theorem 4.7.2. Suppose G = Aut(V, ξ) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq[x1, . . . , xm, xm+1, . . . , xm+n] and U = Radξ = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/U)∗

(xi − x), we have SG ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]SP (V/U, ξ̄).

Theorem 4.7.4. Suppose G = Aut(V,H) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq2 [x1, . . . , xm, xm+1, . . . , xm+n] and W = RadH = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/W )∗

(xi−x), we have SG ∼= Fq2 [y1, . . . , ym]GL(W )⊗Fq2 [xm+1, . . . , xm+n]U(V/W, H̄).

In chapter 5 we take a vector space V over the finite field Fq of dimension 2n

together with a non-degenerate alternating form ξ of the following matrix

0 1

−1 0

0 1

−1 0

. . .

0 1

−1 0


filled out with zeroes. We consider the following subgroup of the symplectic group

SP (V, ξ):

G = {g ∈ Sp(V, ξ) : gU = U},

where U is a subspace of V . We consider the following two cases:

(i) U = 〈e1, e2, . . . , em〉 where m is even and less than 2n;

(ii) U = 〈e1, e3, . . . , e2n−1〉.

When we restrict the form ξ to U it is non-degenerate in the first case and degenerate

in the second case. Again the above group is similar to the group

{g ∈ GL(V ) : gU = U}
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and the ring of invariants of this group is known. The following result gives ring of

invariants SG in the first case.

Theorem 5.2.1. Let x1, . . . , x2n be the dual basis of V ∗ corresponding to the basis

e1, . . . , e2n of V . Suppose S = Fq[x1, . . . , x2n] and U = 〈e1, e2, . . . , em〉 as defined

above. Then SG ∼= Fq[x1, x2, . . . , xm]Sp(U, ξ|U )⊗Fq[xm+1, xm+2, . . . , x2n]Sp(U
⊥, ξ|

U⊥ ).

In the second case we define a homomorphism φ : G → GL(U) by φ(g) = g|U .

By Witt’s Lemma φ is onto. Therefore G/Kerφ ∼= GL(U). We take N = Kerφ and

R = Fq[y1, y3, . . . y2n−1, x2, x4, . . . , x2n, ξ1, . . . ξn−1] where yi =
∏

x∈(V/U)∗
(xi − x) and

ξi = x1x
qi

2 − x2x
qi

1 + · · ·+ x2n−1x
qi

2n − x2nx
qi

2n−1. We prove the following results.

Lemma 5.3.1. The following n− 1 relations hold in R:

ξq
n−i

i +
n∑
j=1

xq
n−i

2j y2j−1 +
n−i∑
j=1

(−1)j+i+1cn,n−j−iξ
qn−j−i

j +
i−1∑
j=1

(−1)jcn,n−jξ
qn−i

i−j = 0

where 1 ≤ i ≤ n− 1.

Theorem 5.4.9. Let S = Fq[x1, . . . , x2n] where x1, . . . , x2n is the dual basis of V ∗

corresponding to the basis e1, . . . , e2n of V . Then

SN = Fq[y1, y3, . . . y2n−1, x2, x4, . . . , x2n, ξ1, . . . ξn−1].

It may be possible to use it to find SG by the formula SG = (SN )G/N , but we

do not know about SG in this case. Thus this problem is still open.

Again in chapter 4 we consider the group

Aut(V,Q) = {g ∈ GL(V ) : Q(gv) = Q(v) ∀ v ∈ V }

and find its ring of invariants. Here V is a vector space over the finite field Fq and Q

is a singular quadratic form on V . Note that Aut(V,Q) is similar to the orthogonal

group: if the form Q is non-singular then Aut(V,Q) becomes the orthogonal group.

As discussed above the general case for the rings of invariants of the orthogonal

groups is in progress. In particular we prove the following result.
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Theorem 4.7.6. Suppose G = Aut(V,Q) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq[x1, . . . , xm, xm+1, . . . , xm+n] and U = RadQ = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/U)∗

(xi − x), we have SG ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]O(V/U, Q̄).

From Theorem 4.7.2, Theorem 4.7.4, Theorem 4.7.6 and Theorem 5.2.1 it is

clear that once we calculate the rings of invariants of the general linear, symplectic,

unitary and orthogonal groups we can calculate the rings of invariants of Aut(V, ξ),

Aut(V,H), Aut(V,Q) and G = {g ∈ Sp(V, ξ) : gU = U} where U = 〈e1, e2, . . . , em〉

as defined above.

In chapter 6 we generalize some of the results of [24]. In particular we prove the

following result.

Theorem 6.7.1. (i) Ω2n(X) =
∑2n

i=0(Λ2n,i)
2X(2l)

i

+δ, where δ ∈ F2l [ξ1, ξ2, . . . , ξ2n].

(ii) In the ring S we have Ω2n(X) = f2
∞Q(X).

(iii) Ω2n(X) = f2
∞Q

−(X)Q+(X), and Q−(X) and Q+(X) are irreducible elements

of the ring T (SP (U, B̄))[X].

(iv) f∞Q
−(X) and f∞Q

+(X) both belong to F2l [X, ξ1, . . . , ξ2n].

Theorem 6.7.1 is motivated by Theorem 4.7.6, since we do not know about

Fq[xm+1, . . . , xm+n]O(V/U, Q̄) when q = 2l, l ≥ 2. There are two advantages of

the above result. Firstly it helps us to calculate the ring of invariants over F2l , l ≥ 2

as we mentioned in the beginning that this problem is still open. The particular case

of Theorem 6.7.1 in [24] is used to prove the main results of that paper. Thus once

we prove this result we can calculate the main results of [24] over any finite field of

characteristic 2. In particular we can calculate SG of Theorem 4.7.6 when q = 2l,

l ≥ 2. Secondly, the proof of part (ii) of the above result appearing in [24] contains

an error and we give an argument to correct this.

The thesis is organized as follows. Chapter 1 consists of known background

material as well as basic results to be used in other chapters. In chapter 2, we give

a brief summary of work previously done in this area. In particular we discuss the
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rings of invariants of the general linear, symplectic and unitary groups, which were

computed in [16], [8] and [14] respectively. We also discuss the rings of invariants

of the orthogonal groups in odd characteristic, which were computed in [13]. In

chapter 3, we describe some properties of the rings of invariants of the symplectic,

unitary and orthogonal groups. In particular we can deduce from our presentations

by generators and regular sequences of relators that our rings are Cohen-Macaulay

and Gorenstein. In chapters 4, 5 and 6 we do our research work.



Chapter 1

Bilinear, hermitian, and

quadratic forms

Throughout this thesis we consider commutative rings with identity.

In this chapter we present basic definitions, results and review some of the back-

ground material, which will be of value for our later pursuits.

1.1 Sesquilinear and quadratic forms

In this section V is an n-dimensional vector space over a field F and θ is an auto-

morphism of F .

Definition 1.1.1. A sesquilinearform on V with respect to θ is a map f : V ×V →

F such that, for all u, v, w ∈ V and all a ∈ F :

f(u+ v, w) = f(u,w) + f(v, w) f(au, v) = af(u, v)

f(u, v + w) = f(u, v) + f(u,w) f(u, av) = aθf(u, v).

(i) The form f is said to be bilinear if θ = 1.

(ii) The form f is said to be hermitian if θ is an involution and f(u, v) = f(v, u)θ

for all u, v in V .

7



CHAPTER 1. BILINEAR, HERMITIAN, AND QUADRATIC FORMS 8

Definition 1.1.2. We define the left and right radicals of f to be the subsets

LRadf = {u ∈ V : f(u,w) = 0 ∀ w ∈ V }

RRadf = {v ∈ V : f(w, v) = 0 ∀ w ∈ V }

respectively.

We define the radical of f to be

Radf = {v ∈ V : f(u, v) = f(v, u) = 0 ∀ u ∈ V }.

Lemma 1.1.3. The left and right radicals of f form subspaces of V .

Proof. First note that 0 ∈ LRadf . Now suppose u, v ∈ LRadf and λ ∈ F , then

f(u − v, w) = f(u,w) − f(v, w) = 0. Thus u − v ∈ LRadf . Now f(λu,w) =

λf(u,w) = 0. Therefore λu ∈ LRadf .

Clearly 0 ∈ RRadf . Let u, v ∈ RRadf and λ ∈ F , then f(w, u− v) = f(w, u)−

f(w, v) = 0. Therefore u − v ∈ RRadf . Now f(w, λu) = λθf(u,w) = 0. Thus

λu ∈ RRadf .

Definition 1.1.4. A sesquilinear form f is said to be non-degenerate or non-singular

if its left and right radicals are zero.

Definition 1.1.5. A bilinear form B is symmetric if B(u, v) = B(v, u) for all u, v

in V .

Definition 1.1.6. A bilinear form B is skew symmetric if B(u, v) = −B(v, u) for

all u, v in V .

Definition 1.1.7. A bilinear form B is alternating if ∀ v ∈ V B(v, v) = 0.

It is easily shown that every alternating form is skew symmetric. See Lemma

1.2.10 for further information.

Definition 1.1.8. A bilinear form B is reflexive if and only if for all vectors

u, v ∈ V

B(u, v) = 0 implies and is implied by B(v, u) = 0.
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The following result is a particular case of Theorem 6.1.3 in [6], the proof of

which we present here.

Lemma 1.1.9. A non-degenerate reflexive bilinear form is either symmetric or al-

ternating.

Proof. Let B be a non-degenerate reflexive bilinear form. Then, for any vectors

u, v, w we have

B(u,B(u, v)w) = B(u, v)B(u,w) = B(u,w)B(u, v) = B(u,B(u,w)v),

and it follows that

B(u,B(u, v)w −B(u,w)v) = 0.

By reflexivity it follows that

B(B(u, v)w −B(u,w)v, u) = 0,

and therefore

B(u, v)B(w, u) = B(u,w)B(v, u). (1.1)

We call a vector u good if there exists a vector v such that B(u, v) = B(v, u) 6= 0.

From Equation (1.1) it follows that if u is a good vector then B(u,w) = B(w, u)

for all w. It follows that if u is good then all vectors w for which B(u,w) 6= 0 are

good. Suppose that u is a good vector and v is any non-zero vector. Then since

the form is non-degenerate, there exist vectors v′ and v′′ such that B(u, v′) 6= 0 and

B(v, v′′) 6= 0. So v′ is good. If B(v, v′) is non-zero then v is good. If B(u, v′′) is

non-zero then it follows that v′′ is good and therefore v is good. On the other hand,

if both B(v, v′) = 0 and B(u, v′′) = 0 then B(u, v′ + v′′) and B(v, v′ + v′′) are both

non-zero and hence again v is good. It follows that if there is a good vector then

every non-zero vector is good and the form is symmetric.

Putting u = v in Equation (1.1) we obtain the identity

B(u, u)(B(u,w)−B(w, u)) = 0.

and so, if there are no good vectors then B(u, u) = 0 for all u and the form is

alternating.
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Definition 1.1.10. Suppose B = {e1, . . . , en} is an ordered basis for V and B is a

bilinear form on V . Then B is completely determined by the n× n matrix

MB = (aij) = (B(ei, ej))

which is referred to as the matrix of the bilinear form B with respect to the ordered

basis B.

Observe that if u =
∑
ciei and v =

∑
djej , then

B(u, v) =
∑
i

∑
j

cidjB(ei, ej) =
∑
i

ci(
∑
j

aijdj) = [u]TBMB[v]B (1.2)

where [u]B and [v]B are the coordinate matrices of u and v respectively.

Notice also that B is symmetric if and only if its matrix MB = (aij) satisfies

aij = aji

for all 1 ≤ i, j ≤ n, that is, if and only if MB is a symmetric matrix. Similarly, B is

alternate if and only if the matrix MB = (aij) satisfies

aii = 0, aij = −aji (i 6= j);

such a matrix is referred to as alternate.

Theorem 1.1.11. (Theorem 2.12 in [35]). Let B = {e1, . . . , en} and C = {f1, . . . , fn}

be ordered bases for a vector space V . Then

[v]C = MB,C [v]B

where the change of basis matrix MB,C is the matrix whose ith column is [ei]C.

Now let us see how the matrix of the bilinear form behaves with respect to a

change of basis. Let C = {f1, . . . , fn} be an ordered basis of V . Then by the above

theorem, we have

B(u, v) = ([u]TCM
T
C,B)MB(MC,B[v]C)

= [u]TC (MT
C,BMBMC,B)[v]C ,
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and so

MC = MT
C,BMBMC,B.

This prompts the following definition:

Definition 1.1.12. Two matrices A,C ∈ Mn(F ) are said to be congruent if there

exists an invertible matrix P for which

A = PCP T .

Let us summarize.

Theorem 1.1.13. (Theorem 11.2 in [35]). If the matrix of a bilinear form B on V

with respect to an ordered basis B = {e1, . . . , en} is

MB = (B(ei, ej))

then

B(u, v) = [u]TBMB[v]B.

Furthermore, if C = {f1, . . . , fn} is also an ordered basis for V , then we have

MC = MT
C,BMBMC,B

where MC,B is the change of basis matrix from C to B, whose ith column is [fi]B.

Thus we have the following.

Theorem 1.1.14. (Theorem 11.3 in [35]). Two matrices A and C represent the

same bilinear form on V with respect to different choices of bases if and only if they

are congruent.

Definition 1.1.15. Let A be a matrix over a field F and θ an involution. Then A

is said to be a hermitian matrix if (AT )θ = A.

Now suppose {e1, . . . , en} is a basis for V , u =
∑
i
ciei and v =

∑
i
diei. Let H be

a hermitian form on V and Ĥ = (H(ei, ej)), then

H(u, v) =
∑
i

∑
j

ciH(ei, ej)d
θ
j = cT Ĥdθ (1.3)
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where c = (c1, . . . , cn)T and dθ = (dθ1, . . . , d
θ
n)T in Fn. Since H(u, v) = H(v, u)θ

for all u, v ∈ V we see that Ĥ = (ĤT )θ, and we say that Ĥ is a hermitian matrix.

Conversely a hermitian matrix Ĥ determines a hermitian form relative to the basis

{e1, . . . , en} for V by the above formula.

Definition 1.1.16. A quadratic form Q on V is a map Q : V → F such that:

(i) For all λ ∈ F and all v ∈ V ,

Q(λv) = λ2Q(v);

(ii) The map

B : V × V → F

defined by

B(u, v) = Q(u+ v)−Q(u)−Q(v)

is bilinear.

Here B is called the polarization of the quadratic form Q. It is always a symmetric

form.

Now If Q is a quadratic form on a vector space V over a field F , then the pair

(V,Q) is called a quadratic space.

Definition 1.1.17. If Q : V → F is a quadratic form, then its radical is defined as

RadQ = {v ∈ V : Q(u+ v)−Q(u)−Q(v) = 0 ∀ u ∈ V and Q(v) = 0}.

Lemma 1.1.18. RadQ is a subspace of V .

Proof. Clearly 0 ∈ RadQ. Let v, w ∈ RadQ and λ ∈ F , then

Q(u+ v)−Q(u)−Q(v) = 0 ∀ u ∈ V ; (1.4)

Q(u+ w)−Q(u)−Q(w) = 0 ∀ u ∈ V ; (1.5)

Q(v) = 0; (1.6)

Q(w) = 0. (1.7)
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Now

Q(u+v−w)−Q(u)−Q(v−w) = Q(u+v)−Q(u)−Q(v)−(Q(u+w)−Q(u)−Q(w)),

and

Q(u+ λv)−Q(u)−Q(λv) = λ(Q(u+ v)−Q(u)−Q(v)).

Thus by using Equation (1.4) and Equation (1.5), we get

Q(u+ v − w)−Q(u)−Q(v − w) = 0,

and

Q(u+ λv)−Q(u)−Q(λv) = 0.

Now putting u = −w in Equation (1.4), we have

Q(v − w)−Q(−w)−Q(v) = 0.

Also

Q(λv) = λ2Q(v).

Therefore by using Equation (1.6) and Equation (1.7), we get Q(v − w) = 0 and

Q(λv) = 0.

Definition 1.1.19. A quadratic formQ is said to be non-degenerate or non-singular

if its radical is zero.

1.2 Some properties of finite fields

In this section we define finite fields. We give some useful results. These results have

been taken from different sources: [25], [35] and [41].

Definition 1.2.1. A finite field or Galois field is a field which contains a finite

number of elements. We usually denote finite field with q elements by Fq.

Definition 1.2.2. The characteristic of a finite field is the smallest number m such

that m times the identity element is zero.
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Before stating properties of finite fields we are going to define field extensions.

Definition 1.2.3. A field extension is a monomorphism i : F → E, where F,E

are fields.

Usually we identify F with its image i(F ), and in this case F becomes a subfield

of E. We write E/F for an extension where F is a subfield of E.

Theorem 1.2.4. (Theorem 6.1 in [41]). If E/F is a field extension, then the oper-

ation

(λ, µ) 7→ λµ (λ ∈ F, µ ∈ E)

(u, v) 7→ u+ v (u, v ∈ E)

turns E into a vector space over F .

Definition 1.2.5. The degree [E : F ] of a field extension E/F is the dimension of

E considered as a vector space over F .

Definition 1.2.6. A finite extension is one whose degree is finite.

We now present some properties of finite fields which will be used in later

sections.

Lemma 1.2.7. (Theorem 2.2 in [25]). Let F be a finite field. Then F has pn

elements, where the prime p is the characteristic of F and n is the degree of F over

its prime subfield Fp.

Lemma 1.2.8. (Corollary 20.9 in [41]). The multiplicative group F ∗q = Fq \ {0} of

a finite field Fq is cyclic.

It follows that aq = a for all a ∈ Fq.

Lemma 1.2.9. (Theorem 11.18 in [35]). Let Fq be a finite field with q elements.

(i) If char(Fq) = 2, then every element of Fq is a square.

(ii) If char(Fq) 6= 2, then exactly half of the nonzero elements of Fq are squares.

Moreover, if x is any nonsquare in Fq, then all nonsquare elements have the

form r2x for some r ∈ Fq.
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Lemma 1.2.10. (Lemma 11.1 in [35]). Let V be a vector space over the finite field

Fq.

(i) If char(Fq) = 2, then a bilinear form on V is skew-symmetric if and only if

it is symmetric. Furthermore, an alternating bilinear form is symmetric (and

skew-symmetric).

(ii) If char(Fq) 6= 2, then a bilinear form on V is skew-symmetric if and only if it

is alternating.

Note that if the characteristic of the finite field Fq is not 2 then the quadratic

form Q can be recovered from its polarization by the formula Q(v) = 1
2B(v, v) and

there is a bijective correspondence between quadratic forms and symmetric bilinear

forms. If Fq has characteristic 2, then the polarization is an alternating form from

which the quadratic form cannot be recovered.

1.3 The dual vector space V ∗ and the symmetric algebra

This section is concerned with dual vector spaces and symmetric algebra. We give

some results on these. These results have been taken from [27] and [35]. At the end

of this section we prove a result which is old but we do not have a specific reference

for.

Definition 1.3.1. Let V be a vector space over a field F . A mapping φ : V → F is

termed a linear functional or linear form on V if for u, v ∈ V and every a, b ∈ F

φ(au+ bv) = aφ(u) + bφ(v).

In other words, a linear functional on V is a linear mapping from V into F .

The set of linear functionals on a vector space V over a field F is also a vector

space over F with addition and multiplication defined by

(φ+ δ)(v) = φ(v) + δ(v) and (αφ)(v) = αφ(v),
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where φ and δ are linear functionals on V and α ∈ F . This space is called the

dual space of V and is denoted by V ∗. Thus V ∗ has a dual space V ∗∗ called the

second dual of V , which consists of all the linear functionals on V ∗. Each v ∈ V

determines a specific element v̂ ∈ V ∗∗ defined by

v̂(φ) = φ(v).

Let us present some properties of dual spaces.

Definition 1.3.2. Suppose that V is finite dimensional, and let B = {e1, . . . , en}

be a basis of V . For each 1 ≤ i ≤ n, we define a linear functional xi ∈ V ∗ by the

orthogonality condition

xi(ej) = δij for j = 1, . . . , n,

where δij , known as the Kronecker delta function, is defined by

δij =

 1 if i = j

0 if i 6= j.

Theorem 1.3.3. (Theorem 3.11 in [35]). Let B = {e1, . . . , en} be a basis of V .

Then the linear functionals x1, . . . , xn defined by

xi(ej) = δij for j = 1, . . . , n

form a basis for the dual space V ∗. This basis B∗ = {x1, . . . , xn} is called the

dual basis for B.

Corollary 1.3.4. (See also corollary 3.12 in [35]). Let F be a field. If dimF V <∞,

then dimF V
∗ = dimF V .

Theorem 1.3.5. (Theorem 2.6 in [35]). Let V and W be vector spaces over F .

Then V ∼= W if and only if dimF V = dimF W .

It follows that V ∼= V ∗ whenever V has finite dimension.

Theorem 1.3.6. (Theorem 11.4 in [27]). If V has finite dimension, then the map-

ping v 7→ v̂ is a natural isomorphism of V onto V ∗∗.
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We are now going to define the symmetric algebra on a vector space V over a

field F .

Definition 1.3.7. Let F be a field and V a vector space. The symmetric algebra

on V , denoted by S(V ), is the quotient algebra over F of the tensor algebra T (V )

by the two sided ideal I generated by the elements v ⊗ u − u ⊗ v of T (V ), where

u, v ∈ V .

If V has basis e1, . . . , en then S(V ) is isomorphic to the polynomial ring F [e1, . . . , en].

We shall denote the symmetric algebra on V ∗ by F [V ].

We now describe some properties of the symmetric algebra on V ∗ which will be

used in later chapters.

Definition 1.3.8. Let V be a vector space over a finite field Fq where q = pn for

some prime p. We define the Frobenius map φ : Fq[V ]→ Fq[V ] by φ(x) = xp.

Lemma 1.3.9. The Frobenius map, φ is a monomorphism.

Proof. Let x, y ∈ Fq[V ]. Then

φ(xy) = (xy)p = xpyp = φ(x)φ(y).

Also

φ(x+ y) = (x+ y)p = xp + pxp−1y +

(
p

2

)
xp−2y2 + · · ·+ pxyp−1 + yp (1.8)

by the binomial theorem. We claim that the binomial coefficient(
p

r

)
is divisible by p if 1 ≤ r ≤ p− 1. To prove this, observe that the binomial coefficient

is an integer, and (
p

r

)
=

p!

r!(p− r)!

The factor p in the numerator cannot cancel unless r = 0 or p.

Hence the sum in Equation (1.8) reduces to its first and last terms, so

φ(x+ y) = xp + yp = φ(x) + φ(y).
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Therefore, φ is a homomorphism. Also Kerφ = 0 because the symmetric algebra is

an integral domain.

Corollary 1.3.10. The map

φ
′

: Fq[V ]→ Fq[V ]

defined by

x 7→ xq

where q = pn for prime p, is a monomorphism.

Proof. Follows from the above Lemma.

Definition 1.3.11. Given a basis x1, . . . , xn of V ∗ corresponding to the basis B =

{e1, . . . , en} of V . The general form of the quadratic form is

Q =
∑
i

∑
j

aijxixj .

Thus

Q = xTMx

where M is the matrix of the coefficients of the form and x is the column vector

with components x1, . . . , xn.

Now let v =
∑
dkek. If we form Q(v) = B(v, v) we find from Equation (1.2) that

Q(v) =
∑
i

∑
j

B(ei, ej)didj

=
∑
i

∑
j

B(ei, ej)xi(v)xj(v).

Thus, we have

Q =
∑
i

∑
j

aijxixj

where aij = B(ei, ej).
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1.4 Equivalence of bilinear, hermitian and quadratic forms

Definition 1.4.1. Let X be a set and let ∼ be an equivalence relation on X. If

x ∈ X, then the equivalence class of x modulo ∼ is the set [x]∼, defined as follows:

[x]∼ = {y ∈ X : y ∼ x}.

Definition 1.4.2. A right group action of the group G on the set X is determined

by a function X ×G→ X, where we write (x, g) 7→ x · g, satisfying the two axioms:

x · (gh) = (x · g) · h

and

x · 1 = x (x ∈ X, g, h ∈ G).

Lemma 1.4.3. Let G act on X. Define a relation ∼ on X by x ∼ y if and only if

there exists g ∈ G such that x · g = y. Then ∼ is an equivalence relation.

Proof. Firstly, x ∼ x as x · 1 = x. Now let x ∼ y. Then there exists g ∈ G such that

x · g = y. Thus x = y · g−1, so y ∼ x. Now let x ∼ y and y ∼ z. Then there exist

g, h ∈ G such that x · g = y and y · h = z. Now x · (gh) = (x · g) · h = y · h = z. So

we get x ∼ z.

Thus if G acts on X, then X is partitioned into blocks called orbits. We write

Orb(x) for the orbit of x ∈ X. These are the equivalence classes under the above

relation.

Definition 1.4.4. Let G act on X and let x ∈ X. Define the stabilizer of x in G

to be

Gx = {g ∈ G : x · g = x}.

It is easy to see that the stabilizer of x is a subgroup of G.

Theorem 1.4.5. (Theorem 3.19 in [36]). Let G act on the set X. Then for x ∈ X,

|Orb(x)| = |G : Gx|.
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The above theorem is called the orbit stabilizer theorem.

Definition 1.4.6. If V is an n-dimensional vector space over a field F , then GL(V )

denotes the general linear group of V , i.e the group of all invertible linear transfor-

mations on V .

Choosing a basis for V provides an isomorphism of GL(V ) with the group

GL(n, F ) of all invertible n× n matrices over F .

Definition 1.4.7. Two quadratic forms Q and Q
′

on a vector space V over a field

F are said to be equivalent if there exists g ∈ GL(V ) such that Q
′
(v) = Q(gv) for

all v ∈ V .

Now let v =
∑
dkek. From Definition 1.3.11, we have

Q(v) = [v]TM [v]

where M is the matrix of the coefficients of the form and [v] is the column vector

with components d1, . . . , dn. Therefore

Q
′
(v) = Q(gv)

= [gv]TM [gv]

= [v]T ([g]TM [g])[v].

Thus in other words Q
′

is equivalent to Q if Q
′

is obtained from Q by replacing the

matrix M by its conjugate [g]TM [g].

Definition 1.4.8. Two bilinear forms B and B
′

on a vector space V over a field F

are said to be equivalent if there exists g ∈ GL(V ) such that B
′
(u, v) = B(gu, gv)

for all u, v ∈ V .

Now from Equation (1.2)

B(u, v) = [u]TBMB[v]B.

Therefore we have

B
′
(u, v) = B(gu, gv)

= [gu]TBMB[gv]B

= [u]TB([g]TBMB[g]B)[v]B.
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In other words B
′

is equivalent to B if B
′

is obtained from B by replacing the matrix

MB by its conjugate [g]TBMB[g]B.

Definition 1.4.9. Two hermitian forms H and H
′

on a vector space V over a field

F are said to be equivalent if there exists g ∈ GL(V ) such that H
′
(u, v) = H(gu, gv)

for all u, v ∈ V .

Now from Equation (1.3)

H(u, v) = [u]T Ĥ[v]θ

where [u] and [v] are the coordinate matrices of u and v respectively. Thus

H
′
(u, v) = H(gu, gv)

= [gu]T Ĥ[gv]θ

= [u]T ([g]T Ĥ[g]θ)[v]θ.

In other words H
′

is equivalent to H if H
′

is obtained from H by replacing the

matrix Ĥ by the matrix [g]T Ĥ[g]θ.

Lemma 1.4.10. Let V be an n-dimensional vector space over a finite field F of

order q and characteristic p. Then

(i) V admits a non-degenerate alternating form B if and only if n is even, in which

case B is unique up to equivalence.

(ii) V admits a hermitian form H if and only if q is square with automorphism θ

of V defined by θ(x) = xp
m

. If H is non-degenerate then H is unique up to

equivalence.

(iii) If n is even V admits exactly two equivalence classes of non-degenerate quadratic

forms.

(iv) If n is odd then V admits a non-degenerate quadratic form precisely when p is

odd, in which case there are two equivalence classes of forms. All forms are

equivalent up to scalar multiplication.
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Proof. Follows from Theorem 21.6 in [1].

Remark 1.4.11. In the situation of (iii) and (iv), there are two types of non-degenerate

quadratic forms called +type and −type.

Definition 1.4.12. A field F is said to be perfect if either:

(i) F has characteristic zero or

(ii) F has characteristic p, and every element of F has a pth root in F .

Proposition 1.4.13. (Proposition 7.29 in [7]). Every finite field is perfect.

This can also be deduced from Lemma 1.3.9.

Theorem 1.4.14. Suppose that F is a perfect field of characteristic 2 and Q is a

non-degenerate quadratic form on V over F . Let V have basis e1, . . . , en and suppose

that V ∗ has corresponding basis x1, . . . .xn. Then Q takes one of the following three

forms:

(i) If n = 2m+ 1 is odd, then

Q = x1xm+1 + x2xm+2 + · · ·+ xmx2m + x2
2m+1.

(ii) If n = 2m is even, then either

(a) Q = x1xm+1 + x2xm+2 + · · ·+ xmx2m

or

(b) Q = x1xm + x2xm+1 + · · ·+ xm−1x2m−2 + x2
2m−1 + x2mx2m−1 + bx2

2m,

with x2
2m−1 + x2m−1 + b irreducible in F [x2m−1].

Proof. Follows from Theorem 12.9 in [20].

Remark 1.4.15. The quadratic forms in (a) and (b) are said to be of +type and

−type respectively.



CHAPTER 1. BILINEAR, HERMITIAN, AND QUADRATIC FORMS 23

1.5 Symplectic, unitary and orthogonal groups

In this section we define symplectic, unitary and orthogonal groups. We give the

orders of these groups along with the order of the general linear group in any char-

acteristic. We shall use these orders in chapter 6.

Definition 1.5.1. Let ξ be a non-degenerate alternating form on a vector space V

of even dimension n over a field F . Then the symplectic group is defined to be

SP (V, ξ) = {g ∈ GL(V ) : ξg = ξ},

where ξg is defined by

ξg(u, v) = ξ(gu, gv).

That is, SP (V, ξ) is the largest subgroup of GL(V ) under which ξ is invariant.

Definition 1.5.2. Let F be a field and θ an automorphism of F which is an in-

volution. Suppose H is a non-degenerate hermitian form on a vector space V of

dimension n over the field F . Then the unitary group is defined to be

U(V,H) = {g ∈ GL(V ) : Hg = H},

where Hg is defined by

Hg(u, v) = H(gu, gv).

That is, U(V,H) is the largest subgroup of GL(V ) under which H is invariant.

Definition 1.5.3. Let Q be a non-singular quadratic form on a vector space V of

dimension n over a field F . Then the orthogonal group is defined to be

O(V,Q) = {g ∈ GL(V ) : Qg = Q},

where Qg is defined by

Qg(v) = Q(gv).

That is, O(V,Q) is the largest subgroup of GL(V ) under which Q is invariant.
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Now from Lemma 1.4.10 and Theorem 1.4.14, it is clear that up to isomorphism

there is only one symplectic group and one unitary group corresponding to each space

V . Therefore we can write SP (n, F ) and U(n, F ) for the symplectic and unitary

groups corresponding to a vector space of dimension n. There is one orthogonal

group up to isomorphism when the dimension of V is odd and so we can write

O(n, F ) for the corresponding orthogonal group. There are two orthogonal groups

up to isomorphism when the dimension of V is even and so we can write O+(n, F )

and O−(n, F ) for the corresponding two orthogonal groups.

In the following results F denotes a field.

Proposition 1.5.4. If |F | = q is finite, then

|GL(n, F )| = qn(n−1)/2
n∏
k=1

(qk − 1).

Proof. Follows from Proposition 1.1 in [20].

Theorem 1.5.5. If |F | = q is finite, then

|SP (n, F )| = qm
2
m∏
i=1

(q2i − 1)

where n = 2m.

Proof. Follows from Theorem 3.12 in [20].

Theorem 1.5.6. (Theorem 11.28 in [20]). If |F | = q2 is finite and dimV = n, then

|U(n, F )| = qn(n−1)/2
n∏
j=1

(qj − (−1)j).

Theorem 1.5.7. (Theorem 14.2 in [20]). If F is a perfect field of characteristic 2

and V is a quadratic space of odd dimension n = 2m+1, then O(n, F ) ∼= SP (2m,F ).

Corollary 1.5.8. If |F | = 2l and dimV = 2m+ 1, then

|O(2m+ 1, F )| = (2l)m
2
m∏
i=1

((2l)2i − 1).
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Proof. Follows from Proposition 1.4.13, Theorem 1.5.5 and Theorem 1.5.7.

Theorem 1.5.9. (Theorem 9.11 in [20]). Suppose |F | = q and charF 6= 2. Then

(i) |O+(2k, F )| = 2qk(k−1)(qk − 1)
∏k−1
i=1 (q2i − 1).

(ii) |O−(2k, F )| = 2qk(k−1)(qk + 1)
∏k−1
i=1 (q2i − 1).

(iii) |O(2k + 1, F )| = 2qk
2∏k

i=1(q2i − 1).

Note that the orders of the orthogonal groups in odd characteristic are also given

in Theorem 6.17 in [21].

Theorem 1.5.10. Suppose that |F | = 2l and Q is a non-singular quadratic form on

a vector space V of even dimension n over the field F . If Q is a quadratic form of

+type, then

|O+(n, F )| = 2(2l)
n(n−2)

4 ((2l)
n
2 − 1)

n−2
2∏
i=1

((2l)2i − 1).

If Q is a quadratic form of −type, then

|O−(n, F )| = 2(2l)
n(n−2)

4 ((2l)
n
2 + 1)

n−2
2∏
i=1

((2l)2i − 1).

Proof. Follows from Theorem 14.48 in [20].



Chapter 2

Invariant rings of symplectic,

unitary & orthogonal groups

Let V be a vector space over the finite field Fq. Let S = Fq[V ] be the symmetric

algebra on the dual V ∗ of V . In this chapter we define the invariant ring SG where

G ≤ GL(V ). We discuss the invariant rings of the symplectic, unitary and orthogonal

groups. The ring of invariants of the symplectic group was calculated by Carlisle and

Kropholler in [8]. The ring of invariants of the unitary group was computed by Chu

and Jow in [14]. The ring of invariants of the orthogonal group in odd characteristic

was computed by Chu in [13]. Here we give a brief summary.

2.1 Invariant ring SG where G ≤ GL(V )

The group G ≤ GL(V ) acts on V as follows:

g · v = g(v).

This is a left action of G on V and this gives a right action of G on V ∗ as follows:

xg(v) = x(g · v).

The action of G on V ∗ extends to an action on S by ring automorphism as follows:

(i) (y + z)g = yg + zg;

26
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(ii) (yz)g = ygzg;

(iii) 1g = 1.

We define the invariant ring as follows:

SG = {f ∈ S : fg = f ∀ g ∈ G}.

The invariant ring of the general linear group GL(V ) was computed early in the

20th century by Dickson in [16]. For a more modern treatment see Wilkerson [43].

It was found to be a graded polynomial algebra on certain generators {cV,i}, called

the Dickson invariants.

Definition 2.1.1. The Dickson polynomial is defined as

DV (X) =
∏
x∈V ∗

(X − x).

Here V is a vector space of dimension n over Fq where q = pr and p is a prime. It

should be noted that DV (X) is invariant under the action of GL(V ) as any element

g ∈ GL(V ) merely permutes the elements of V ∗. It follows that the coefficients of

powers of X are also invariants. The coefficients are the Dickson invariants. Note

that DV (X) ∈ Fq[V ][X].

The following result is similar to Proposition 1.1 of [43]. In Proposition 1.1

instead of a finite field Fq the author considers a field F containing the Fq-vector

space V . Here we do the same calculations over the finite field Fq.

Lemma 2.1.2. Let DV (X) =
∏
x∈V ∗

(X − x). Then

DV (X) =

n∑
i=0

(−1)n−icV,iX
qi

where cV,i ∈ Fq[V ].

Proof. Let e1, . . . , en be a basis of V and suppose x1, . . . , xn is the dual basis of V ∗

corresponding to the basis e1, . . . , en of V. In this proof, we write Dn(X) for DV (X)
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and Dn−1−j(X) for D(V/〈en,...,en−j〉), where 0 ≤ j ≤ n. Consider the following matrix.

Fn(X) =



x1 xq1 xq
2

1 · · · xq
n

1

x2 xq2 xq
2

2 · · · xq
n

2

x3 xq3 xq
2

3 · · · xq
n

3

...
...

...
. . .

...

xn xqn xq
2

n · · · xq
n

n

X Xq Xq2 · · · Xqn


.

Now by taking the determinant of both sides, we have

det(Fn(X)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 xq1 xq
2

1 · · · xq
n

1

x2 xq2 xq
2

2 · · · xq
n

2

x3 xq3 xq
2

3 · · · xq
n

3

...
...

...
. . .

...

xn xqn xq
2

n · · · xq
n

n

X Xq Xq2 · · · Xqn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let x ∈ V ∗, then x =
∑n

i=1 aixi where ai ∈ Fq and

det(Fn(X)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 xq1 · · · xq
n

1

x2 xq2 · · · xq
n

2

x3 xq3 · · · xq
n

3

...
...

. . .
...

xn xqn · · · xq
n

n

X −
∑
aixi Xq −

∑
aix

q
i · · · Xqn −

∑
aix

qn

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By the linearity of the map x 7→ xq
i

(See Lemma 1.2.8 and Corollary 1.3.10), we get

det(Fn(X)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 xq1 · · · xq
n

1

x2 xq2 · · · xq
n

2

x3 xq3 · · · xq
n

3

...
...

. . .
...

xn xqn · · · xq
n

n

X − x (X − x)q · · · (X − x)q
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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It follows from above that each x ∈ V ∗ is a root of det(Fn(X)). Let ∆n(X) =

det(Fn(X)), then

∆n(X) = ∆n−1(xn)Dn(X).

Next we need to show that ∆n−1(xn) 6= 0. For this we use induction on n. For

n = 1, ∆0(x1) = x1 and x1 6= 0. Suppose the statement is true for vector spaces of

dimension less than n. Then

∆n−1(X) = ∆n−2(xn−1)Dn−1(X) 6= 0.

But the roots of ∆n−1(X) are the roots of the n − 1 dimensional subspace of V

generated by x1, . . . , xn−1. It follows that xn is not a root of ∆n−1(X). Thus

∆n−1(xn) 6= 0. Now define Υn,i to be the matrix obtained from Fn(X) by removing

the (n+ 1)th row and (i+ 1)th column. Then

∆n(X) =

n∑
i=0

(−1)n−idetΥn,iX
qi .

Therefore it follows that

Dn(X) =
n∑
i=0

(−1)n−icV,iX
qi

where cV,i =
detΥn,i

detΥn,n
.

Theorem 2.1.3. (Theorem 8.1.5 in [39]).

Fq[V ]GL(V ) = Fq[cV,n−1, . . . , cV,0]

where deg cV,i = qn − qi for i = 1, . . . , n.

2.2 The invariant ring of the symplectic group

Let q = pr where p is a prime and suppose V is a vector space over Fq of dimension

2n, with basis e1, . . . , e2n. Let G be the finite symplectic group SP (2n, Fq). In this

section we describe the calculation by Carlisle and Kropholler of the invariant ring

Fq[V ]SP (2n, Fq).
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Definition 2.2.1. If x1, . . . , x2n is the basis of V ∗ dual to e1, . . . , e2n, then we define

ξi = x1x
qi

2 − x2x
qi

1 + x3x
qi

4 − x4x
qi

3 + · · ·+ x2n−1x
qi

2n − x2nx
qi

2n−1.

The following results have been taken from [32] in which the author considers fi-

nite fields with odd characteristic but the results are still true when the characteristic

of the field is even.

Proposition 2.2.2. (Proposition 2.1 in [32]). For any natural number i ∈ N we

have ξi ∈ Fq[V ]SP (2n, Fq).

Lemma 2.2.3. (Lemma 2.2 in [32]). SP (2n, Fq) = {g ∈ GL(2n, Fq) : ξg1 = ξ1}.

Theorem 2.2.4. (Theorem 6.4 in [32]). The ring Fq[V ]SP (2n, Fq) is generated by

the elements

cV, n, . . . , cV, 2n−1, ξ1, . . . , ξ2n−1

subject only to the following relations:

i−1∑
j=0

(−1)jξq
j

i−jcV,j =
2n∑

j=i+1

(−1)jξq
i

j−icV,j (1 ≤ i ≤ n− 1).

2.3 The invariant ring of the unitary group

Let V be a vector space of dimension n over the finite field Fq2 . Let V have basis

e1, . . . , en and suppose that V ∗ has the corresponding basis x1, . . . , xn. Set ξ = xq+1
1 +

· · ·+xq+1
n . In [14] the authors simply state that this is a hermitian form, however this

statement needs to be amplified because there is no immediate connection between

this function of one variable and the sesquilinear Definition 1.1.1 which is a function

of two variables. For this reason we explain in more detail, the correspondence

between the two views of hermitian form. This ξ determines a function

h : V → Fq2

defined by

v → xq+1
1 (v) + · · ·+ xq+1

n (v).
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We shall show that h determines a hermitian form on V in both odd and even

characteristics. The idea comes from page 87 of [20]. In [20] the author considers the

field of complex numbers and do the calculations. Here we do the same calculations

over the finite field Fq2 .

If CharFq2 6= 2 choose j ∈ Fq2 \ {0} such that jq = −j. Now define

H : V × V → Fq2

by

H(u, v) =
1

4
(h(u+ v)− h(u− v) +

1

j
(h(u+ jv)− h(u− jv))).

If CharFq2 = 2 choose λ ∈ Fq2 \ {0} such that λq = λ−1 6= λ. Now define

H : V × V → Fq2

by

H(u, v) =
1

λ+ λ−1
h(u+ v) +

1

1 + λ+ λ2 + λ3
(λh(u+ λv) + λ2h(u+ λ−1v)).

Let u =
∑
aiei and v =

∑
biei, then in both cases we get

H(u, v) = a1b
q
1 + · · ·+ anb

q
n.

We can easily check that H is a non-singular hermitian form on V . In this section we

describe explicit generators and relations for the ring of invariants Fq2 [V ]U(n, Fq2 ).

Suppose ξn,i := xq
2i+1+1

1 + · · ·+ xq
2i+1+1
n . It is known that ξn,i ∈ Fq2 [V ]U(n, Fq2 ) and

it was computed in [9] that Fq2(V )U(n, Fq2 ) = Fq2(ξn,0, . . . , ξn,n−1). First of all we

construct a polynomial, which we will denote by G
′
n.

We consider the following matrix:

N =



X0 Xq
0 Xq

1 Xq
2 Xq

3 · · ·

X1 Xq2

0 Xq3

0 Xq3

1 Xq3

2 · · ·

X2 Xq2

1 Xq4

0 Xq5

0 Xq5

1 · · ·

X3 Xq2

2 Xq4

1 Xq6

0 Xq7

0 · · ·
...

...
...

...
...

. . .
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where (i, j)-entry of the above matrix is Xq2i−1

j−i−1, i < j;

Xq2j−2

i−j , i ≥ j.

Let Fn be the n-minor obtained by the first n columns and rows of N , then clearly

Fn ∈ Fq[X0, . . . , Xn−1]. For example

F1 = X0 and F2 = Xq2+1
0 −Xq

0X1.

Let F
′
n be the n-minor obtained from the first n columns and the second row to the

(n+ 1)th row of N , then clearly F
′
n ∈ Fq[X0, . . . , Xn]. For example

F
′
1 = X1 and F

′
2 = Xq2+1

1 −Xq2

0 X2.

Let Gn := F q
2−q+1

n − F ′n and define G
′
−2 = G

′
−1 = 1, G

′
0 = X0 and

G
′
n := Gn/G

′q3

n−3, n ≥ 1.

We are now going to state a result which confirms that G
′
n is a polynomial.

Theorem 2.3.1. (Lemma 1.3 in [14]).

(i) G
′q3

n−3|Gn, for n ≥ 1;

(ii) G
′
n is irreducible or a unit for n ≥ −2;

(iii) Fn = G
′q
n−2G

′
n−1 for n ≥ 0.

We now describe a connection between two results. These results concern deter-

minants and are very important in invariant theory.

Definition 2.3.2. Suppose M is an m× n matrix, S a subset of {1, 2, . . . ,m} and

T a subset of {1, 2, . . . , n}. Define MS;T to be the submatrix of M obtained by

removing the rows in S and the columns in T . If S = {i} and T = {j}, we take Mij

instead of MS;T .



CHAPTER 2. SYMPLECTIC, UNITARY & ORTHOGONAL INVARIANTS 33

Lemma 2.3.3. (Lemma 2 on page 108 in [19]). For any p× p matrices M and N ,

and 1 ≤ k ≤ p,

det(M) · det(N) =
∑

det(M
′
) · det(N

′
)

where the sum is over all pairs (M
′
, N

′
) of matrices obtained from M and N by

interchanging a fixed set of k columns of N with any k columns of M , preserving

the ordering of the columns.

Example 2.3.4. Let

M =

 2 1

4 3

 and N =

 5 2

6 9

 .
Then

detM · detN = 66.

By fixing the first column of N we get

∑
det(M

′
) · det(N

′
) =

∣∣∣∣∣∣ 2 5

4 6

∣∣∣∣∣∣
∣∣∣∣∣∣ 1 2

3 9

∣∣∣∣∣∣+

∣∣∣∣∣∣ 5 1

6 3

∣∣∣∣∣∣
∣∣∣∣∣∣ 2 2

4 9

∣∣∣∣∣∣
= 66.

Theorem 2.3.5. Let R be a ring and M ∈Mn(R). Let N ∈Mn−2(R) be the matrix

obtained by deleting the first row, the last row, the first column and the last column

from M . Then

det(M) · det(N) = |Mnn| · |M11| − |Mn1| · |M1n|.

Proof. Suppose n is even and let

M =



a11 a12 . . . a1 n−1 a1n

a21 a22 . . . a2 n−1 a2n

...
...

. . .
...

...

an−1 1 an−1 2 . . . an−1 n−1 an−1 n

an1 an2 . . . an n−1 ann
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and

N =



a22 a23 . . . a2 n−2 a2 n−1

a32 a33 . . . a3 n−2 a3 n−1

...
...

. . .
...

...

an−2 2 an−2 3 . . . an−2 n−2 an−2 n−1

an−1 2 an−1 3 . . . an−1 n−2 an−1 n−1


.

Now detM · detN =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1 n−1 a1n

a21 a22 . . . a2 n−1 a2n

...
...

. . .
...

...

an−1 1 an−1 2 . . . an−1 n−1 an−1 n

an1 an2 . . . an n−1 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0

0 a22 . . . a2 n−1 0
...

...
. . .

...
...

0 an−1 2 . . . an−1 n−1 0

0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By the above lemma for k = n− 1, we have detM · detN =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 . . . 0 0

a21 a22 . . . a2 n−1 0
...

...
. . .

...
...

an−1 1 an−1 2 . . . an−1 n−1 0

an1 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a12 . . . a1 n−1 a1n

0 a22 . . . a2 n−1 a2n

...
...

. . .
...

...

0 an−1 2 . . . an−1 n−1 an−1 n

0 an2 . . . an n−1 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 1 0 . . . 0 0

a21 0 a22 . . . a2 n−2 a2 n−1

...
...

...
. . .

...
...

an−1 1 0 an−1 2 . . . an−1 n−2 an−1 n−1

an1 0 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 a13 . . . a1n 0

a22 a23 . . . a2n 0
...

...
. . .

...
...

an−1 2 an−1 3 . . . an−1 n 0

an2 an3 . . . ann 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus detM · detN =

a11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a22 a23 . . . a2 n−1

a32 a33 . . . a3 n−1

...
...

. . .
...

an−2 2 an−2 3 . . . an−2 n−1

an−1 2 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|M11|+· · ·−an1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a22 a23 . . . a2 n−1

a32 a33 . . . a3 n−1

...
...

. . .
...

an−2 2 an−2 3 . . . an−2 n−1

an−1 2 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|Mn1|
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+L− L+K −K,

where L =

−a12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2 n−1

a31 a33 . . . a3 n−1

...
...

. . .
...

an−2 1 an−2 3 . . . an−2 n−1

an−1 1 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|M11|+· · ·+a1n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a22 . . . a2 n−2

a31 a32 . . . a3 n−2

...
...

. . .
...

an−2 1 an−2 2 . . . an−2 n−2

an−1 1 an−1 2 . . . an−1 n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|M11|

and K =

an2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2 n−1

a31 a33 . . . a3 n−1

...
...

. . .
...

an−2 1 an−2 3 . . . an−2 n−1

an−1 1 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|Mn1|+· · ·−an n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a22 . . . a2 n−2

a31 a32 . . . a3 n−2

...
...

. . .
...

an−2 1 an−2 2 . . . an−2 n−2

an−1 1 an−1 2 . . . an−1 n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|Mn1|.

Thus

detM · detN = |Mnn| · |M11| − |M1n| · |Mn1|+ Ω,

where Ω =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 1 0 . . . 0 0

a21 0 a23 . . . a2 n−1 0
...

...
...

. . .
...

...

an−1 1 0 an−1 3 . . . an−1 n−1 0

an1 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 0 a13 . . . a1n

a22 a22 a23 . . . a2n

...
...

. . .
...

...

an−1 2 an−1 2 an−1 3 . . . an−1 n

an2 0 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 1 0 . . . 0 0

a21 0 a22 . . . a2 n−2 0
...

...
...

. . .
...

...

an−1 1 0 an−1 2 . . . an−1 n−2 0

an1 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 . . . a1 n−1 0 a1n

a22 . . . a2 n−1 a2 n−1 a2n

...
. . .

...
...

...

an−1 2 . . . an−1 n−1 an−1 n−1 an−1 n

an2 . . . an n−1 0 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−L−K.
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Thus Ω =

an2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2 n−1

a31 a33 . . . a3 n−1

...
...

. . .
...

an−2 1 an−2 3 . . . an−2 n−1

an−1 1 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|Mn1|−a12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2 n−1

a31 a33 . . . a3 n−1

...
...

. . .
...

an−2 1 an−2 3 . . . an−2 n−1

an−1 1 an−1 3 . . . an−1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|M11|

+ · · ·+

a1 n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a22 . . . a2 n−2

a31 a32 . . . a3 n−2

...
...

. . .
...

an−2 1 an−2 2 . . . an−2 n−2

an−1 1 an−1 2 . . . an−1 n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|M11|−an n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a22 . . . a2 n−2

a31 a32 . . . a3 n−2

...
...

. . .
...

an−2 1 an−2 2 . . . an−2 n−2

an−1 1 an−1 2 . . . an−1 n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|Mn1|

−L−K

= L+K − L−K = 0.

In the same way we can do this when n is odd.

Note that there are two other proofs of the above result. See Lemma 5.5 of [3]

and Lemma 2.4 of [13] for details.

Corollary 2.3.6.

F q
2

n−2Fn = F qn−1Gn−1, n ≥ 3.

Proof. This is proved by applying the above theorem to Fn and then using the fact

that Gn−1 = F q
2−q+1

n−1 − F ′n−1.

For the sake of convenience, we define F0 = 1 so that the formula holds for n = 2.

Lemma 2.3.7. (Lemma 1.4 in [14]).

G
′
n(ξn,0, ξn,1, . . . , ξn,n) = 0.

Definition 2.3.8. Define the weight of the Xi as wtXi = q2i+1 + 1.
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It is easy to verify that Fn, F
′
n, Gn and G

′
n are all homogeneous with respect to

their weights, and it is easy to see that

wtG
′
n =

 (qn+2 − 1)(qn+1 + 1)/(q2 − 1), if n is even;

(qn+1 − 1)(qn+2 + 1)/(q2 − 1), if n is odd.

Definition 2.3.9. Define the polynomial

Q
′
n(T ) := G

′
n(X0 − T q+1, X1 − T q

3+1, . . . , Xn − T q
2n+1+1)

where Q
′
n(T ) ∈ Fq[X0, . . . , Xn][T ]. This polynomial is designed so that

Q
′
n−1(ξn,0, . . . , ξn,n−1, xn) = G

′
n−1(ξn,0 − xq+1

n , . . . , ξn,n−1 − xq
2n−1+1
n )

= G
′
n−1(ξn−1,0, . . . , ξn−1,n−1).

Thus, according to Lemma 2.3.7, we have

Q
′
n−1(ξn,0, . . . , ξn,n−1, xn) = G

′
n−1(ξn−1,0, . . . , ξn−1,n−1) = 0.

Definition 2.3.10. Define the polynomials Pn(T ), P
′
n(T ) and Qn(T ) as follows:

Pn(T ) := Fn(X0 − T q+1, X1 − T q
3+1, . . . , Xn−1 − T q

2n−1+1),

P
′
n(T ) := F

′
n(X0 − T q+1, X1 − T q

3+1, . . . , Xn − T q
2n+1+1),

Qn(T ) := Gn(X0 − T q+1, X1 − T q
3+1, . . . , Xn − T q

2n+1+1).

We now give the explicit form of Pn(T ) and P
′
n(T ) in the following theorem.

Theorem 2.3.11. (Lemma 1.7 in [14]).

(i) Let Fij be the (i, j)-minor of the n× n matrix defining Fn, 1 ≤ i, j ≤ n. Then

Pn(T ) = Fn +

n∑
i,j=1

(−1)i+j+1FijT
q2i−1+q2j−2

.

(ii) Let F
′
ij be the (i, j)-minor of the n× n matrix defining F

′
n, 1 ≤ i, j ≤ n. Then

P
′
n(T ) = F

′
n +

n∑
i,j=1

(−1)i+j+1F
′
ijT

q2i+1+q2j−2
.
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In the following result we are going to define Rn,i which has an important role

in Theorem 2.3.17 and Theorem 2.3.18.

Proposition 2.3.12. (Proposition 1.11 in [14]).

(i) Let wtT = 1, then Q
′
n is homogeneous and

wtQ
′
n =

 (qn+2 − 1)(qn+1 + 1)/(q2 − 1), if n is even;

(qn+1 − 1)(qn+2 + 1)/(q2 − 1), if n is odd.

(ii) Let Q
′
n(T ) =

∑N
k=0 gk(X0, . . . , Xn)T k, then gk(−Hn−1,0, . . . ,−Hn−1,n) = 0 for

all k.

(iii) Let Rn,i be the coefficient of T q
2n+1−2i+(−1)nqn in Q

′
n(T ). Then

Rn,0 = (−1)n+1G
′
n−1 is the leading coefficient of Q

′
n;

Rn,i = (−1)nRq
2

n−2,i−1Xn + fni(X0, . . . , Xn−1), 1 ≤ i ≤ [n+1
2 ], n ≥ 2;

R1,0 = X0;

R1,1 = Xq2−q+1
0 −X1;

R2,0 = −Xq2−q+1
0 +X1;

R2,1 = X
q5+1
q+1

0 −X2 +G
′
1f1(X0, X1).

(iv) All the coefficients of Q
′
n belong to the Fq2 [X0, . . . , Xn−1]-module generated by

Rn,0, . . . , Rn,[(n+1)/2].

Definition 2.3.13. Define a map Φn by the following rule:

Φn : Fq2 [X0, . . . , Xn−2, Y1, . . . , Y[n/2]]→ Fq2

[
X0, . . . , Xn−2,

Rn−1,1

Rn−1,0
, . . . ,

Rn−1,[n/2]

Rn−1,0

]

Xi → Xi, Yi →
Rn−1,i

Rn−1,0
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Definition 2.3.14. Define Am to be the m× (m+ 1) matrix



g1,2m−2 gq
2

1,2m−4 gq
4

1,2m−6 · · · · · · gq
2m−4

12 f q
2m−2

11 f q
2m−2

10

g2,2m−2 gq
2

2,2m−4 gq
4

2,2m−6 · · · gq
2m−6

24 f q
2m−4

23 f q
2m−4

22 f q
2m−4

21

...
...

gj,2m−2 gq
2

j,2m−4 · · · gq
2(m−j−1)

j,2j f q
2(m−j)

j,2j−1 f q
2(m−j)

j,2j−2 · · · f q
2(m−j)

j,j−1

...
...

...
...

gm−1,2m−2 f q
2

m−1,2m−3 f q
2

m−1,2m−4 · · · · · · · · · · · · f q
2

m−1,m−2

fm,2m−1 fm,2m−2 fm,2m−3 · · · · · · · · · · · · fm,m−1


whose (i, j)th entry is  gq

2j−2

i,2(m−j), 1 ≤ j ≤ m− i;

f q
2(m−i)

i,i−j+m, m− i < j ≤ m+ 1,

where fij ∈ Fq2 [X0, . . . , Xj ] and gi,2j ∈ Fq2 [X0, . . . , X2j ] are homogeneous polyno-

mials.

Note the following simple observation about Am: Define ϕ to be the operator

which sends any polynomial to its q2th power, and let ϕ operate on a matrix by

operating on each of its entries. Then if we remove the first column and last row

from Am, the resulting (m− 1)×m matrix is ϕ(Am−1).

Definition 2.3.15. A ring R is a unique factorization domain (UFD) if it is a

commutative domain and

(i) Every non-zero non-unit element r ∈ R can be written as a product

r = x1 . . . xn

of irreducibles in R; and

(ii) If r is a non-zero non-unit in R and

r = x1 . . . xn = y1 . . . ym,
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where x1, . . . , xn, y1, . . . , ym are irreducibles in R, then n = m and, after re-

ordering the yj if necessary, xi and yi are associates for i = 1, . . . , n.

Lemma 2.3.16. F [X1, . . . , Xn], where F is a field, is a unique factorization domain.

Proof. Follows from Corollary 4 on page 295 in [17].

Theorem 2.3.17. (Theorem En in [14]).

(i) The kernel of the ring homomorphism Φ2n in Definition 2.3.13 can be generated

by (n− 1) polynomials K2n,1, . . . ,K2n,n−1 which have the following form:
K2n,1

...

K2n,n−1

 =


g1,2n−2

...

gn−1,2n−2

+ ϕ(An−1)


Y1

...

Yn

 .
(ii) The ring

Fq2

[
X0, . . . , X2n−2,

R2n−1,1

R2n−1,0
, . . . ,

R2n−1,n

R2n−1,0

]
∼= Fq2 [X0, . . . , X2n−2, Y1, . . . , Yn]/〈K2n,1, . . . ,K2n,n−1〉

is a UFD.

(iii) Let R2n ⊆ Fq2 [V ] be the subring we get by substituting H2n,i for Xi in

Fq2
[
X0, . . . , X2n−2,

R2n−1,1

R2n−1,0
, . . . ,

R2n−1,n

R2n−1,0

]
, 0 ≤ i ≤ 2n− 1. Then R2n = Fq2 [V ]U(2n, Fq2 ).

Theorem 2.3.18. (Theorem On in [14]).

(i) The kernel of the ring homomorphism Φ2n+1 in Definition 2.3.13 can be gen-

erated by (n− 1) polynomials K2n+1,1, . . . ,K2n+1,n−1 which have the following

form: 
K2n+1,1

...

K2n+1,n−1

 =


g1,2n−1

...

gn−1,2n−1

+ ϕ(Bn−1)


Y1

...

Yn


where Bn−1 is an (n− 1)× n matrix whose (i, j)-entry is gq

2j−2

i,2(n−j)−1, 1 ≤ j ≤ n− i− 1;

eq
2(n−i−1)

i,i−j+n , n− i− 1 < j ≤ n.
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Here eij ∈ Fq2 [X0, . . . , Xj ] and gi,2j+1 ∈ Fq2 [X0, . . . , X2j+1] are homogeneous

polynomials.

(ii) The ring

Fq2

[
X0, . . . , X2n−1,

R2n,1

R2n,0
, . . . ,

R2n,n

R2n,0

]
∼= Fq2 [X0, . . . , X2n−1, Y1, . . . , Yn]/〈K2n+1,1, . . . ,K2n+1,n−1〉

is a UFD.

(iii) Let R2n+1 ⊆ Fq2 [V ] be the subring we get by substituting H2n+1,i for Xi in

Fq2
[
X0, . . . , X2n−1,

R2n,1

R2n,0
, . . . ,

R2n,n

R2n,0

]
, 0 ≤ i ≤ 2n. Then R2n+1 = Fq2 [V ]U(2n+1, Fq2 ).

2.4 The invariant ring of the orthogonal group

Let q = pr, p an odd prime, and suppose V is a vector space over Fq of dimension n

with basis e1, . . . , en. Let S = Fq[x1, . . . , xn] where x1, . . . , xn is a basis of V ∗ dual to

e1, . . . , en. It is known that all quadratic forms are equivalent to one of the following

two quadratic forms:

Q+
n = x2

1 − x2
2 + x2

3 − · · ·+ (−1)nx2
n−1 + (−1)n+1x2

n, n ≥ 1;

Q−n = x2
1 − εx2

2 + εx2
3 − · · ·+ (−1)nεx2

n−1 + (−1)n−1εx2
n, n ≥ 1

where ε is a non-square in F ∗q . Let O+(n, Fq) be the orthogonal group associated

with Q+
n . In this section we describe the invariant rings of O+(n, Fq) for all n.

Suppose

Qn = ε1x
2
1 + ε2x

2
2 + · · ·+ εnx

2
n

where εi ∈ F ∗q . Let O(n, Fq) be the orthogonal group associated with Qn. Suppose

Qn,i = ε1x
qi+1
1 + ε2x

qi+1
2 + · · ·+ εnx

qi+1
n

where εi ∈ F ∗q . It is well known that

Fq(x1, x2, . . . , xn)O(n, Fq) = Fq(Qn,0, Qn,1, . . . , Qn,n−1)

as was calculated in [9].
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Definition 2.4.1.

(i) The Legendre symbol is defined as follows:(
δ

q

)
= δ

q−1
2 = 1, if δ is a square in F ∗q ;(

δ

q

)
= δ

q−1
2 = −1, if δ is a non-square in F ∗q .

(ii) Define the weight of the variables as follows:

wtxi = wtyi = 1 for all i; wtXi = qi + 1, wtT = 1.

Our aim is to construct two polynomials g
′+ and g

′−. For this consider the

following matrix

M =



X0 X1 X2 X3 X4 · · ·

X1 Xq
0 Xq

1 Xq
2 Xq

3 · · ·

X2 Xq
1 Xq2

0 Xq2

1 Xq2

2 · · ·

X3 Xq
2 Xq2

1 Xq3

0 Xq3

1 · · ·

X4 Xq
3 Xq2

2 Xq3

1 Xq4

0 · · ·
...

...
...

...
...

. . .


whose (i, j)-entry is Xqmin(i−1,j−1)

|j−i| .

Suppose M (n) is the submatrix of the first n rows and n columns. Let f0 =

1 and define fn = detM (n). Similarly let f
′
0 = 1 and define f

′
n = detM

(n+1)
1 n+1. It is

clear that fn ∈ Fq[X0, X1, . . . , Xn−1] for n ≥ 1 and f
′
n ∈ Fq[X0, X1, . . . , Xn] for n ≥

1. For example, f1 = X0, f2 = Xq+1
0 −X2

1 ; f
′
1 = X1, f

′
2 = Xq+1

1 −Xq
0X2. It is easy

to show that

fn = −f qn−2X
2
n−1 + φ1(X0, X1, . . . , Xn−1), degXn−1

φ1 = 1 ∀ n ≥ 3;

f
′
n = (−1)n+1f qn−1Xn+f

′q
n−2X

q+1
n−1+φ2(X0, X1, . . . , Xn−1), degXn−1

φ2 = q ∀ n ≥ 3.

Definition 2.4.2.

g+
n =

 f
′
n − f

q+1
2

n , for n ≡ 0, 1 (mod 4)

f
′
n + (−fn)

q+1
2 , for n ≡ 2, 3 (mod 4);

g−n =

 f
′
n + f

q+1
2

n , for n ≡ 0, 1 (mod 4)

f
′
n − (−fn)

q+1
2 , for n ≡ 2, 3 (mod 4).
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Definition 2.4.3. Let g
′±
−1 = 1, g

′+
0 = X0, g

′−
0 = 1 and define g

′±
n as follows:

g
′±
n = g±n /(g

′∓
n−2)q ∀ n ≥ 1.

Theorem 2.4.4. (Lemma 2.5 in [13]).

(i) fn = (−1)[n
2

]g
′+
n−1g

′−
n−1,

(ii) (g
′∓
n−2)q|g±n .

It is clear from the above theorem that g
′±
n are polynomials.

Definition 2.4.5. Given ε ∈ F ∗q , define the following polynomials:

Fn,ε(X0, . . . , Xn−1;T ) := fn(X0 + εT 2, X1 + εT q+1, . . . , Xn−1 + εT q
n−1+1)

F
′
n,ε(X0, . . . , Xn;T ) := f

′
n(X0 + εT 2, X1 + εT q+1, . . . , Xn + εT q

n+1)

G±n,ε(X0, . . . , Xn;T ) := g±n (X0 + εT 2, X1 + εT q+1, . . . , Xn + εT q
n+1)

G
′±
n,ε(X0, . . . , Xn;T ) := g

′±
n (X0 + εT 2, X1 + εT q+1, . . . , Xn + εT q

n+1).

We now give the explicit form of Fn,ε(X0, . . . , Xn−1;T ) and F
′
n,ε(X0, . . . , Xn;T )

in the following theorem.

Theorem 2.4.6. (Lemma 2.8 in [13]). Let fij and f
′
ij be the (i, j)-minors of fn and

f
′
n, respectively, for 1 ≤ i, j ≤ n. Then

Fn,ε(X0, . . . , Xn−1;T ) = fn +

n∑
i,j=1

(−1)i+jεfijT
qi−1+qj−1

,

F
′
n,ε(X0, . . . , Xn;T ) = f

′
n +

n∑
i,j=1

(−1)i+jεf
′
ijT

qi+qj−1
.

We now describe the weights and T -degree of the polynomials defined in Defini-

tion 2.4.5.

Theorem 2.4.7. (Lemma 2.9 in [13]). By using the definition of weight, we have

that Fn,ε, F
′
n,ε, Gn,ε, G

′
n,ε are homogeneous polynomials. The weights are as follows:

(a) wtFn,ε = 2

(
qn − 1

q − 1

)
, wtF

′
n,ε = (q+1)

(
qn − 1

q − 1

)
, wtG±n,ε = (q+1)

(
qn − 1

q − 1

)
.
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(b) If n is odd, then

wtG
′±
n,ε =

(
qn+1 − 1

q − 1

)
.

(c) If n is even, then

wtG
′+
n,ε = (q

n
2 + 1)

(
q

n
2

+1 − 1

q − 1

)
,

wtG
′−
n,ε = (q

n
2

+1 + 1)

(
q

n
2 − 1

q − 1

)
.

Lemma 2.4.8. (Lemma 2.10 in [13]). Consider the polynomials Fn,ε, F
′
n,ε, G

±
n,ε and G

′±
n,ε

as polynomials in T . Then

(i) degFn,ε = 2qn−1, degF
′
n,ε = qn−1(q + 1).

(ii) degG+
1,ε = q−( εq ), degG−1,ε = q+( εq ); degG+

n,ε = degG−n,ε = qn−1(q+1), n ≥ 2.

(iii) If n is even, then

degG
′+
n,ε = qn + q

n
2 , degG

′−
n,ε = qn − q

n
2 .

(iv) If n is odd, then

degG
′+
n,ε = qn − ( εq )q

n−1
2 , degG

′−
n,ε = qn + ( εq )q

n−1
2 .

Lemma 2.4.9. (Lemma 2.12 in [13]). Let

Q+
n,i = xq

i+1
1 − xq

i+1
2 + xq

i+1
3 − · · ·+ (−1)nxq

i+1
n−1 + (−1)n+1xq

i+1
n , n ≥ 1

and

Q−n,i = xq
i+1

1 − εxq
i+1

2 + εxq
i+1

3 − · · ·+ (−1)nεxq
i+1
n−1 + (−1)n+1εxq

i+1
n , n ≥ 1

where ε is a non-square in F ∗q . Then

(i) g
′+
n (Q+

n,0, Q
+
n,1, . . . , Q

+
n,n) = 0;

(ii) g
′−
n (Q−n,0, Q

−
n,1, . . . , Q

−
n,n) = 0 for even n;

(iii) g
′+
n (Q−n,0, Q

−
n,1, . . . , Q

−
n,n) = 0 for odd n.
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Theorem 2.4.10. (i) For all n ≥ 1, G
′+
n−1,ε(Q

+
n,0, Q

+
n,1, . . . , Q

+
n,n−1;xn) = 0, where

ε = (−1)n;

(ii) For any positive even integer n, G
′+
n−1,ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn) = 0;

(iii) For any positive odd integer n, G
′−
n−1,−ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn) = 0.

Proof. (i) G
′+
n−1,ε(Q

+
n,0, Q

+
n,1, . . . , Q

+
n,n−1;xn)

= g
′+
n−1(Q+

n,0 + εx2
n, Q

+
n,1 + εxq+1

n , . . . , Q+
n,n−1 + εxq

n−1+1
n )

= g
′+
n−1(Q+

n−1,0, Q
+
n−1,1, . . . , Q

+
n−1,n−1).

Thus by using the above lemma, we get

G
′+
n−1,ε(Q

+
n,0, Q

+
n,1, . . . , Q

+
n,n−1;xn) = 0.

(ii) G
′+
n−1,ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn)

= g
′+
n−1(Q−n,0 + εx2

n, Q
−
n,1 + εxq+1

n , . . . , Q−n,n−1 + εxq
n−1+1
n )

= g
′+
n−1(Q−n−1,0, Q

−
n−1,1, . . . , Q

−
n−1,n−1).

So by using the above lemma, we have

G
′−
n−1,ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn) = 0.

(iii) G
′−
n−1,−ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn)

= g
′−
n−1(Q−n,0 − εx2

n, Q
−
n,1 − εx

q+1
n , . . . , Q−n,n−1 − εx

qn−1+1
n )

= g
′−
n−1(Q−n−1,0, Q

−
n−1,1, . . . , Q

−
n−1,n−1).

Therefore by again using the above lemma, we have

G
′−
n−1,−ε(Q

−
n,0, Q

−
n,1, . . . , Q

−
n,n−1;xn) = 0.

Definition 2.4.11. Define the polynomials R±n,i(X0, . . . , Xn) in the following way.

(i) If n is even, the polynomial G
′+
n,−1(X0, X1, . . . , Xn;T ) has degree qn + q

n
2 . Let

R+
n,i be the coefficient of T q

n−i+q
n
2 , i = 0, 1, . . . , n2 .
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(ii) If n is odd and
(
ε
q

)
= 1, the polynomial G

′+
n,ε(X0, X1, . . . , Xn;T ) has degree

qn − q
n−1
2 . Let R+

n,i be the coefficient of T q
n−i−q

n−1
2 , i = 0, 1, . . . , n−1

2 ; R+
n,n+1

2

is the constant term.

(iii) If n is odd and
(
ε
q

)
= −1, the polynomial G

′+
n,ε(X0, X1, . . . , Xn;T ) has degree

qn + q
n−1
2 . Let R−n,i be the coefficient of T q

n−i+q
n−1
2 , i = 0, 1, . . . , n+1

2 .

Definition 2.4.12. Define a k × (k + 1) matrix Ak as
p1,2k−1 pq1,2k−3 pq

2

1,2k−5 · · · pq
k−2

13 rq
k−1

12 rq
k−1

11

p2,2k−1 pq2,2k−3 pq
2

2,2k−5 · · · rq
k−2

24 rq
k−2

23 rq
k−2

22

...
...

...
. . .

...
...

...

rk,2k rk,2k−1 rk,2k−2 · · · rk,k+2 rk,k+1 rkk


whose (i, j)-entry is  pq

j−1

i,2k−2j+1, if j ≤ k − i;

rq
k−i

i,k+1+i−j , if j > k − i,

where pij and rij ∈ Fq[X0, X1, . . . , Xj ].

Theorem 2.4.13. (Theorem Ak in [13]). Let n = 2k + 1 be a positive odd integer,

Q+
n = x2

1 − x2
2 + x2

3 − · · ·+ x2
n−2 − x2

n−1 + x2
n a quadratic form and let O+(n, Fq) be

the orthogonal group associated to Q+
n . Then

(i) The invariant subring is

Fq[x1, x2, . . . , xn]O
+(n, Fq)

= Fq

[
Q+
n,0, Q

+
n,1, . . . , Q

+
n,n−2,

R+
n−1,1(Q+

n,0, . . . , Q
+
n,n−1)

R+
n−1,0(Q+

n,0, . . . , Q
+
n,n−2)

, . . . ,
R+
n−1,k(Q

+
n,0, . . . , Q

+
n,n−1)

R+
n−1,0(Q+

n,0, . . . , Q
+
n,n−2)

]
.

(ii) We have an isomorphism

φn : Fq[X0, X1, . . . , Xn−2, Y1, Y2, . . . , Yk]/〈Kn,1,Kn,2, . . . ,Kn,k−1〉 →

Fq

[
X0, X1, . . . , Xn−2,

R+
n−1,1(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

, . . . ,
R+
n−1,k(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

]
defined by

Xi 7→ Xi (0 ≤ i ≤ n− 2)
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Yj 7→
R+
n−1,j(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

(1 ≤ j ≤ k)

where the relations Kn,j are defined by
Kn,1

Kn,2

...

Kn,k−1

 = Akk;∅


1

Y1

...

Yk

 .

(iii) The polynomials pij and rij ∈ Fq[X0, X1, . . . , Xj ] are independent of n and

rk,2k = −X2k + ψ(X0, X1, . . . , X2k−1)

for some polynomial ψ.

Moreover, they are homogeneous with respect to the weight with wtpij = qj+1 + q
j+1
2
−i, j odd;

wtrij = qj + 1.

Theorem 2.4.14. (Theorem Ck in [13]). Let n = 2k be a positive even integer,

Q+
n = x2

1 − x2
2 + x2

3 − · · · − x2
n−2 + x2

n−1 − x2
n a quadratic form and let O+(n, Fq) be

the orthogonal group associated to Q+
n . Then

(i) The invariant subring is

Fq[x1, x2, . . . , xn]O
+(n, Fq)

= Fq

[
Q+
n,0, Q

+
n,1, . . . , Q

+
n,n−2,

R+
n−1,1(Q+

n,0, . . . , Q
+
n,n−1)

R+
n−1,0(Q+

n,0, . . . , Q
+
n,n−2)

, . . . ,
R+
n−1,k(Q

+
n,0, . . . , Q

+
n,n−1)

R+
n−1,0(Q+

n,0, . . . , Q
+
n,n−2)

]
.

(ii) We have an isomorphism

φn : Fq[X0, X1, . . . , Xn−2, Y1, Y2, . . . , Yk]/〈Kn,1,Kn,2, . . . ,Kn,k−1〉 →

Fq

[
X0, X1, . . . , Xn−2,

R+
n−1,1(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

, . . . ,
R+
n−1,k(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

]
defined by

Xi 7→ Xi (0 ≤ i ≤ n− 2)
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Yj 7→
R+
n−1,j(X0, X1, . . . , Xn−1)

R+
n−1,0(X0, X1, . . . , Xn−2)

(1 ≤ j ≤ k)

where the relations Kn,j are defined by
Kn,1

Kn,2

...

Kn,k−1

 = Ckk;∅


1

Y1

...

Yk

 .

where

Ck =


p
′
1,2k−2 p

′q
1,2k−4 p

′q2

1,2k−6 · · · p
′qk−2

12 r
′qk−1

11 r
′qk−1

10

p
′
2,2k−2 p

′q
2,2k−4 p

′q2

2,2k−6 · · · r,q
k−2

23 r
′qk−2

22 r
′qk−2

21

...
...

...
. . .

...
...

...

r
′
k,2k−1 r

′
k,2k−2 r

′
k,2k−3 · · · r

′
k,k+1 r

′
k,k r

′
k,k−1


whose (i, j)th entry is  p

′qj−1

i,2(k−j), if j ≤ k − i;

r
′qk−i

i,i−j+k, if j > k − i.

(iii) The polynomials p
′
ij and r

′
ij ∈ Fq[X0, X1, . . . , Xj ] are independent of n and

r
′
k,2k−1 = −X2k−1 + ψ(X0, X1, . . . , X2k−2)

for some polynomial ψ.

Moreover, they are homogeneous with respect to the weight with wtp
′
ij = qj+1 + q[ j+1

2
]−i, j even;

wtr
′
ij = qj + 1.



Chapter 3

Some properties of invariant

rings

One of the main reasons we want to calculate generators of invariant rings and the

relations among these generators is so that we can understand the structure of these

rings. In this chapter we define Cohen-Macaulay, Gorenstein and graded complete

intersection rings. We shall show that the information from Chapter 2 indicates

that the invariant rings of symplectic, orthogonal (in the odd characteristic case)

and unitary groups are Gorenstein and hence Cohen-Macaulay.

3.1 Projective and injective modules

In this section we define projective and injective modules. We give some examples

of projective and injective modules. We also describe some properties of these.

Before introducing the concept of projective modules it is useful to define free

modules.

Definition 3.1.1. Let R be a ring. For an R-module M the set E ⊆ M is a basis

for M if:

(i) E is a generating set for M ;

(ii) E is linearly independent.

49
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A free module is an R-module with a basis.

Example 3.1.2.

(i) Every vector space over a field F is free.

(ii) Let B be any non-trivial finite abelian group. Then B is not a free Z-module.

(For suppose B has a Z-basis {f1, . . . , fn}. Then ∃ m ∈ Z,m 6= 0 such that

f1m = f1m+ f20 + · · ·+ fn0 (take m to be the order of f1).)

(iii) Rn is a free R-module.

Definition 3.1.3. Let R be a ring. An R-module M is projective if it is a direct

summand of a free module.

Example 3.1.4.

(i) Any free module is projective.

(ii) If e = e2 is a non-zero idempotent in R then eR is projective. (Since R =

eR⊕ (1− e)R).

Let us state a result which gives equivalent conditions for projective modules.

Theorem 3.1.5. The following conditions are equivalent for an R-module M .

(i) M is projective.

(ii) The functor HomR(M, ) is exact. That is, the sequence

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ 0

is exact for every exact sequence

0→ A→ B → C → 0.

(iii) For every epimorphism f : N → N
′

and every module homomorphism g : M →

N
′

there exists a homomorphism h : M → N such that fh = g.
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Proof. Follows from the definition of projective module on page 33, Proposition 2.2.1

and Lemma 2.2.3 in [42].

Definition 3.1.6. Let R be a ring. An R-module J is called injective if and only

if HomR( , J) is an exact functor.

We now state a similar result to Theorem 3.1.5 but for injective modules.

Theorem 3.1.7. The following are equivalent for an R-module J .

(i) J is injective.

(ii) For any monomorphism f : I → I
′

and homomorphism g : I → J there exists

a homomorphism h : I
′ → J such that hf = g.

Proof. Follows from Proposition 3.1.2 part (a) and (b) in [5].

We now consider Z-modules and define divisible modules. See page 90 of [5].

Definition 3.1.8. Let A be a Z-module. We say that A is divisible if and only if

for all a ∈ A and 0 6= n ∈ Z there exists a
′ ∈ A with na′ = a.

Lemma 3.1.9. (Lemma 3.14 in [23]). Let J be a Z-module. Then J is injective if

and only if it is divisible.

Example 3.1.10. Q is injective as a Z-module.

3.2 Projective and injective resolution

In this section we define projective and injective resolutions. We give some examples

of these.

Definition 3.2.1. Let R be a ring. Given an R-module M , a projective resolution

of M is an exact sequence

· · · → Pn → · · · → P2 → P1 → P0 →M → 0

with all the P ,i s projective.
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Example 3.2.2. Consider

0→ Z f−→ Z g−→ Z/2Z→ 0

where f(n) = 2n and g(n) = n+ 2Z. This is a projective resolution of Z/2Z.

Definition 3.2.3. Let R be a ring. Given an R-module M , an injective resolution

of M is an exact sequence

0→M → I1 → I2 → I3 → · · · → In → . . .

with all the I ,is injective.

Example 3.2.4. Consider

0 −→ Z f−→ Q g−→ Q/Z→ 0

where f(n) = n and g(n) = n+ Z. This is an injective resolution of Z.

3.3 Ext functor

In this section our aim is to define Ext functor.

Before introducing the notion of Ext functor it is necessary to define chain com-

plex and cochain complex. The following two definitions have been taken from [23].

Definition 3.3.1. Let R be a ring. A chain complex (C•, d) of R-modules consists

of a family (Cn : n ∈ Z) of R-modules together with maps dn : Cn → Cn−1 for each

n ∈ Z such that the composite of any two consecutive maps is zero, i.e.

dn−1dn = 0 ∀ n ∈ Z.

So a chain complex looks like this

· · · → Cn+2
dn+2−−−→ Cn+1

dn+1−−−→ Cn
dn−→ Cn−1

dn−1−−−→ Cn−2 → . . .

The nth homology Hn(C•) is defined as.

Hn(C•) = Kerdn/Imdn+1.
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Definition 3.3.2. Let R be a ring. A cochain complex (C•, d) of R-modules consists

of a family (Cn : n ∈ Z) of R-modules together with maps dn : Cn → Cn+1 for each

n ∈ Z such that the composite of any two consecutive maps is zero, i.e.

dndn−1 = 0 ∀ n ∈ Z.

So a cochain complex looks like this

· · · → Cn−2 dn−2

−−−→ Cn−1 dn−1

−−−→ Cn
dn−→ Cn+1 dn+1

−−−→ Cn+2 → . . .

The nth cohomology is defined as

Hn(C•) = Kerdn/Imdn−1.

Consider a chain complex of projective modules

· · · → Pj → · · · → P2 → P1 → P0 → 0 (3.1)

such that

· · · → Pj → · · · → P2 → P1 → P0 →M → 0 (3.2)

is a projective resolution of a fixed module M . Let N be an R-module. By applying

HomR( , N) to the chain complex in Equation (3.1) one gets a cochain complex as

follows:

0→ HomR(P0, N)→ HomR(P1, N)→ HomR(P2, N)→ . . .

ExtnR(M,N) is defined to be

ExtnR(M,N) = Hn(HomR(P•, N)).

Now since P1 → P0 →M → 0 is exact, so

0→ HomR(M,N)→ HomR(P0, N)→ HomR(P1, N)

is exact. Therefore

Ker(HomR(P0, N)→ HomR(P1, N)) = Im(HomR(M,N)→ HomR(P0, N)).
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It follows that

H0(HomR(P•, N)) = Im(HomR(M,N)→ HomR(P0, N)).

But HomR(M,N) → HomR(P0, N) is injective. Therefore, we get Ext0
R(M,N) ∼=

HomR(M,N).

3.4 Noetherian and Artinian modules

We defined unique factorization domains in chapter 2. This section is concerned

with Noetherian and Artinian modules. We describe some properties of Noetherian

modules. We also give some results on unique factorization domains which we shall

use in chapter 5.

Definition 3.4.1. Let R be a ring. An R-module M in which all submodules are

finitely generated is called Noetherian.

A ring R which is Noetherian as an R-module is called a Noetherian ring.

Definition 3.4.2. Let R be a ring. An R-module M which satisfies the descending

chain condition with respect to inclusion is called Artinian.

A ring R which is Artinian as an R-module is called a Artinian ring.

Example 3.4.3.

(i) Fields and division rings are both Noetherian and Artinian.

(ii) Z is Noetherian.

Now let us state a well-known result called the Hilbert Basis Theorem.

Theorem 3.4.4. If R is a Noetherian ring, then so is the polynomial ring R[X].

Proof. Follows from Theorem 3.3 of [30].

Corollary 3.4.5. Let F be a field and X1, . . . , Xn indeterminates. Then F [X1, . . . , Xn]

is a Noetherian ring.
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Proof. By induction on n from the above theorem.

Lemma 3.4.6. Let R be an integral domain. Then

(i) Every prime element of R is irreducible.

(ii) If R is a UFD, every irreducible is prime.

It follows from above the lemma that prime and irreducible elements coincide in

a UFD.

Proof. Follows from Theorem 2.5.2 in [38].

Our next result is based on localization. Thus before stating it we define local-

iztion. The following definition has been take from [30].

Definition 3.4.7. Let R be a ring. A subset S of R is called a multiplicative closed

set if

(i) 1 ∈ S,

(ii) x, y ∈ S =⇒ xy ∈ S.

Define a relation ∼ on R× S as follows:

(a, s) ∼ (b, t) iff (at− bs)u = 0 for some u ∈ S.

It is easy to see that this is an equivalence relation. Let a/s denote the equivalence

class of (a, s), and S−1R denote the set of equivalence classes. Sums and products

are defined in S−1R as follows:

a/s+ b/t = (at+ bs)/st, a/s · b/t = ab/st.

This makes S−1R into a ring which is called the localization or ring of fractions.

Now define a map f : R→ S−1R by f(r) = r/1. We see that f is a homomorphism.

The kernel of this homomorphism is

Kerf = {r ∈ R : rs = 0 for some s ∈ S}.
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Hence f is injective if and only if S does not contain any zero-divisors of R. In

particular, the set of all non-zero-divisors S of R is a multiplicative set; the ring

fractions with respect to S is called total ring of fractions of R. If R is an integral

domain then its total ring of fractions is the same as its field of fractions.

Note that if P is a prime ideal of R and S = R−P then we denote the localization

by RP .

Lemma 3.4.8. (Lemma 6.3.1 in [4]). Suppose that R is a Noetherian integral

domain. If x ∈ R is a prime and R[x−1] is a unique factorization domain, then R

is also a unique factorization domain.

3.5 Dimension and height

In this section we define minimal prime ideals over any ideal I. We also define

equidimensional rings, height and dimension. We show that any polynomial ring

over a field is an equidimensional ring. We give two proofs. For this we have taken

some results from [22], [31] and [37]. The others results which have been taken from

[2] and [29] as well as some of the result from [22] and [37] will be used in later

sections.

Definition 3.5.1. Let R be a ring. The supremum of the lengths r, taken over all

strictly decreasing chains P0 ⊃ P1 ⊃ · · · ⊃ Pr of prime ideals of R, is called the

Krull dimension, or simply the dimension of R, and denoted as dimR.

Example 3.5.2.

(i) dimF = 0, where F is any field.

(ii) dimZ = 1.

If M is an R-module, we define the dimension of M by dimM = dim(R/ann(M))

where

ann(M) = {a ∈ R : am = 0 ∀ m ∈M}.

Lemma 3.5.3. (Corollary of Theorem 5.6 in [30]). dim(F [X1, . . . , Xn]) = n, where

F is any field.
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Definition 3.5.4. Let R be a ring. For a prime ideal P of R, the supremum of

the lengths, taken over all strictly decreasing chains of prime ideals P = P0 ⊃ P1 ⊃

· · · ⊃ Pr starting from P , is called the height of P , and denoted by htP .

It follows from this definition that htP = dimRP and htP + dim(R/P ) ≤ dimR.

What happens if P is not a prime ideal?

Definition 3.5.5. For an ideal I of a ring R, we define the height of I to be

htI = inf{htP : I ⊂ P ∈ SpecR}.

It follows that

htI + dim(R/I) ≤ dimR.

Lemma 3.5.6. (Theorem 47 in [29]). A Noetherian integral domain is a UFD if

and only if every height 1 prime ideal is principal.

We now present a nice result which gives a relation between height and dimension.

Proposition 3.5.7. (Proposition 15 on page 45 in [37]). Let R be a domain which

is a finitely generated algebra over a field F and n = dimR. For every prime ideal

P of R, we have

htP + dim(R/P ) = n.

Definition 3.5.8. A prime ideal P in a ring R is said to be minimal over an ideal

I if there are no prime ideals strictly contained in P that contain I. A prime ideal

is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.

Let us state some properties.

Lemma 3.5.9. Let R be a Noetherian ring and I an ideal in R. Then there are

only a finite number of prime ideals minimal over I.

Proof. Follows from Theorem 88 in [22].

Theorem 3.5.10. (Corollary 11.17 in [2]). Let R be a Noetherian ring and let x

be an element of R which is neither a zero-divisor nor a unit. Then every minimal

prime ideal P over 〈x〉 has height 1.
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The above theorem is called Krull’s principal ideal theorem.

We now state some results which will help us to show that every maximal ideal

in F [X1, . . . , Xn] has height n.

Lemma 3.5.11. (Corollary 2 on page 44 in [37]). Let R be a finitely generated

algebra over a field F , and let m be a maximal ideal of R. Then R/m is a finite

extension of F .

Lemma 3.5.12. (Lemma 1.26 in [31]). Let R be an integral domain that contains

a field as a subring. If R is a finite dimensional when viewed as a vector space over

F . Then R is a field.

Lemma 3.5.13. (Theorem 149 in [22]). Let R be a Noetherian ring and P a prime

ideal in R with htP = n. Denote by P ∗ = PR[X] the expansion of P to R[X], and let

Q 6= P ∗ be a prime ideal in R[X] with Q∩R = P . Then htP ∗ = n and htQ = n+ 1.

We are now going to prove that every maximal ideal in F [X1, . . . , Xn] has height

n. The idea comes from page 109 of [22].

Suppose F is a field and R = F [X1, . . . , Xn]. Let J be a maximal ideal in R and

S = F [X1, . . . , Xn−1]. Set I = J ∩ S. Then

S/I = S/(J ∩ S) ∼= (S + J)/J ⊆ R/J.

By Lemma 3.5.11 R/J is a finite field extension of F , therefore dimF (R/J) < ∞.

Now since

F ⊆ S/I ⊆ R/J

it follows that dimF (S/I) <∞ and S/I is an integral domain. Therefore by Lemma

3.5.12 S/I is a field and so I is a maximal ideal in S. Now we claim that IR ( J .

Define a map θ as follows:

θ : R→ (S/I)[Xn]∑
α

λαX
α1
1 . . . Xαn

n 7→
∑
α

λ̄αX̄
α1
1 . . . X̄

αn−1

n−1 Xαn
n .

It is an epimorphism and Kerθ = I[Xn]. It is easy to see that I[Xn] = IR so we

get R/IR ∼= (S/I)[Xn]. Since (S/I)[Xn] is a polynomial ring therefore IR ( J . By

induction, we may assume htI = n− 1. By the above lemma, htJ = n.
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Definition 3.5.14. A ring R is equidimensional if all maximal ideals have the same

height.

From our above discussion it is clear that F [X1, . . . , Xn] is an equidimensional

ring. We are now going to define saturated and maximal chains. The following

definition has been taken from [37].

Definition 3.5.15. A chain of prime ideals is called saturated if it is not contained

in any other chain with the same origin and extremity (in other words, if one cannot

interpolate any prime ideal between the elements of the chain). It is called maximal

if it is saturated, its origin is a minimal prime ideal, and its extremity is a maximal

ideal.

Notice that it can also be shown in the following way that F [X1, . . . , Xn] is an

equidimensional ring. The idea comes from the proof of Corollary 2 of Proposition

15 on page 45 in [37]. Let R = F [X1, . . . , Xn] and Pl be a maximal ideal in R.

Consider a maximal chain of prime ideals

Pl ⊃ · · · ⊃ P0.

Since it is maximal, we have P0 = 0. We therefore have

dim(R/P0) = dimR and dim(R/Pl) = 0.

Moreover, since the chain is saturated, one cannot interpolate any prime ideal be-

tween Pi and Pi−1; thus ht(Pi/P i− 1) = 1 and so by Proposition 3.5.7 we have

dim(R/Pi−1)− dim(R/Pi) = 1.

As dim(R/P0) = dimR and dim(R/Pl) = 0, we deduce that l = dimR. Thus it

follows that htPl = dimR. Therefore every maximal ideal in R has the same height

which is dimR.

Lemma 3.5.16. (Theorem 155 in [22]). Let P be a prime ideal in a Noetherian

ring R and let x be an element in P . Suppose the height of P in R is k. Then the

height of P/〈x〉 in R/〈x〉 is k or k − 1. If x is not contained in any minimal prime
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ideal of R (and so, in particular if x is a non-zero divisor) then the height of P/〈x〉

in R/〈x〉 is k − 1.

See Remark 3.6.12 for further details.

Lemma 3.5.17. Let R be a finitely generated graded commutative algebra over a field

F of Krull dimension d and a1, . . . , aj elements of R. Then dim(R/〈a1, . . . , aj〉) ≥

d− j.

Proof. Follows from Proposition 5.3.10 in [39].

It should be noted that a similar result holds when we consider R to be a local

ring with a maximal ideal m. In this case a1, . . . , aj ∈ m. See Corollary 10.9 in [18]

for further details.

3.6 Regular sequences, Depth and grade

In this section we define regular sequences, depth and grade. We give some useful

results on these. These results have been taken from [13] and [30].

Definition 3.6.1. Let R be a ring and M an R-module. An element a ∈ R is said

to be M -regular if ax 6= 0 for all 0 6= x ∈ M . A sequence a1, . . . , an of elements of

R is an M -sequence (or an M -regular sequence) if the following conditions hold:

(i) a1 is M -regular, a2 is (M/a1M)-regular,. . . , an is (M/(a1M + · · ·+ an−1M))-

regular;

(ii) M/
n∑
i=1

aiM 6= 0.

Example 3.6.2.

(i) Let R be a ring and S = R[X1, . . . , Xn]. Then X1, . . . , Xn is an S-regular

sequence.

(ii) Let F be a field and A = F [X,Y, Z]. Set a1 = X(Y − 1), a2 = Y and a3 =

Z(Y − 1), then a1, a2, a3 is a regular sequence but a1, a3, a2 is not.
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Thus it follows from the above example that a permutation of a regular sequence

need not be a regular sequence.

We are now going to state some results on regular sequences which will be used

in chapter 5.

Theorem 3.6.3. (Theorem 16.1 in [30]). Let M be an R-module and a1, . . . , an ∈ R.

If a1, . . . , an is an M -sequence then so is av11 , . . . , a
vn
n for positive integers v1, . . . , vn.

The following two results have been taken from [13] in which R = R1⊕R2⊕ . . .

is a positively graded ring.

Lemma 3.6.4. (Lemma 3.15 in [13]). Let x1, . . . , xn ∈ R be homogeneous elements

of positive degrees. If x1, . . . , xn is a regular sequence, then x1, . . . , xn is a regular

sequence in any order.

Lemma 3.6.5. (Lemma 3.17 in [13]). For any x ∈ R, we denote its homogeneous

component of the highest degree by in(x). Suppose x1, . . . , xn ∈ R, not necessarily

homogeneous. If in(x1), . . . , in(xn) is a regular sequence, then x1, . . . , xn is a regular

sequence.

Lemma 3.6.6. (Lemma 3.13 part (a) in [13]). Let R be a ring. If x1, . . . , xi . . . , xn

and x1, . . . , xi−1, x
′
i, xi+1, . . . , xn ∈ R are regular sequences. Then

x1, . . . , xi−1, xix
′
i, xi+1, . . . , xn ∈ R

is a regular sequence.

Definition 3.6.7. Let R be a ring. The depth of an R-module M is the length

of the longest regular sequence for M . The depth of the ring R is its depth as an

R-module.

Example 3.6.8. Let F be a field.

(i) depthF = 0.

(ii) depthF [X1, . . . , Xn] = n.
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The following two definitions have been taken from [28].

Definition 3.6.9. Let R be a Noetherian ring. We define the grade of an ideal I to

be the maximal length of an R-sequence in I on R and denote it GR(I). Similarly

for an R-module M we define GR(I,M) to be the length of a maximal R-sequence

in I on M .

Definition 3.6.10. Let R be a ring and M an R-module. Define

r(M) := inf{i : Exti(M,R) 6= 0}.

We now describe an important result which will be used in later sections.

Proposition 3.6.11. Let R be a Noetherian ring. Then G(I) = r(R/I) for every

ideal I of R.

Proof. Follows from Theorem 16.7 in [30].

Remark 3.6.12. Note that in Lemma 3.5.16 if x1, . . . , xt ∈ P is a regular sequence in

R then it follows by induction on n that the height of P/〈x1, . . . , xt〉 in R/〈x1, . . . , xt〉

is k − t.

3.7 Cohen-Macaulay and Gorenstein Rings

In this section we define Cohen-Macaulay and Gorenstein rings. We give some results

related to Cohen-Macaulay and Gorenstein rings which are useful here. The results

have been taken from different sources: [4], [5], [22], [28], [30] and [37]. At the heart

of this section we prove some results which are old but which we do not have specific

references for. We shall use these results in the last section.

Definition 3.7.1. Suppose that R is a Noetherian local ring and let M be a finitely

generated R-module. We say that M is a Cohen-Macaulay module (CM-module)

if M 6= 0 and depthM = dimM . If R itself is a CM-module, we say that R is a CM

ring or Macaulay ring.

What happens if R is not local?



CHAPTER 3. SOME PROPERTIES OF INVARIANT RINGS 63

Definition 3.7.2. A Noetherian ring R is said to be a CM ring if Rm is a CM local

ring for every maximal ideal m of R.

Example 3.7.3. Let F be a field.

(i) The ring F [X1, . . . , Xn] is Cohen-Macaulay.

(ii) The ring F [X4, X3Y,XY 3, Y 4] ⊂ F [X,Y ] is not Cohen-Macaulay.

We now present some properties of Cohen-Macaulay rings.

Theorem 3.7.4. (Theorem 151 in [22]). Let R be a ring. Then R is a CM ring if

and only if R[X] is a CM ring.

Corollary 3.7.5. Let R be a ring. Then R is a CM ring if and only if R[X1, . . . , Xn]

is a CM ring.

Proof. By induction on n from the above theorem.

Theorem 3.7.6. (Theorem 141 in [22]). Suppose that R is a Cohen-Macaulay ring

and x ∈ R is not a zero-divisor. Then R∗ = R/〈x〉 is a Cohen-Macaulay ring.

Corollary 3.7.7. Let x1, . . . , xn be a regular sequence in a Cohen-Macaulay ring R.

Then R∗ = R/〈x1, . . . , xn〉 is a Cohen-Macaulay ring.

Proof. By induction on n from the above theorem.

Lemma 3.7.8. (Theorem 1.1.11 in [28]). Let R be an equidimensional Cohen-

Macaulay ring. Then for any finitely generated module M

dimR = dimM + r(M).

Lemma 3.7.9. (Theorem 136 in [22]). Grade and height coincide for every ideal in

a Cohen-Macaulay ring.

Theorem 3.7.10. Let R be an equidimensional Cohen-Macaulay ring. Then for

any ideal I

dimR = dim(R/I) + htI.



CHAPTER 3. SOME PROPERTIES OF INVARIANT RINGS 64

Proof. From Lemma 3.7.8, we have dimR = dim(R/I)+r(R/I). But by Proposition

3.6.11, we have G(I) = r(R/I). Therefore dimR = dim(R/I)+G(I). Now by Lemma

3.7.9, we have G(I) = htI. Thus dimR = dim(R/I)+htI.

Corollary 3.7.11. Let R be an equidimensional Cohen-Macaulay ring. Suppose x

is an element of R which is neither a zero-divisor nor a unit. Then

dim(R/〈x〉) = dimR− 1.

Proof. By the above theorem, we have dimR = dim(R/〈x〉)+ht〈x〉 but according to

Theorem 3.5.10 we have ht〈x〉 = 1. Therefore we have dim(R/〈x〉) = dimR− 1.

Corollary 3.7.12. Let R be an equidimensional Cohen-Macaulay ring. Suppose

x1, . . . xr is a regular sequence in R. Then

dim(R/〈x1, . . . , xr〉) = dimR− r.

Proof. By induction on n from the above corollary.

It follows from page 3 of [28] that a local ring is equidimensional. Thus Theo-

rem 3.7.10, Corollary 3.7.11 and Corollary 3.7.12 are still true when R is a Cohen-

Macaulay local ring. Now we are going to state a similar result to Corollary 3.7.12

which gives an equivalent condition for Cohen-Macaulay rings. We shall use this

result in chapter 5.

Theorem 3.7.13. (Proposition 4.3.4 in [4]). Let R be a Noetherian ring and M a

finitely generated R-module. Suppose that one of the following conditions hold.

(i) R is local, with maximal ideal m, so that F = R/m is a field, or

(ii) R =
⊕∞

j=0Rj and M =
⊕∞

j=−∞Mj are graded, with R0 = F a field, and R is

finitely generated over F by elements of positive degree. In this case, we write

m for the ideal R+ generated by the elements of positive degree.

If M is Cohen-Macaulay then a sequence x1, . . . , xr is regular for M if and

only if

dim(M/(x1M + · · ·+ xrM)) = dimM − r.
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Let us state a similar result to Theorem 3.7.10. Here instead of an equidimen-

sional Cohen-Macaulay ring we consider a Cohen-Macaulay local ring.

Lemma 3.7.14. Let (R,m) be a Cohen-Macaulay local ring. For a proper ideal I

of R we have

htI + dim(R/I) = dimR.

Proof. Follows from Theorem 17.4 in [30].

Lemma 3.7.15. (Corollary 3 on page 67 in [37]) Let R be a local ring which is a

quotient of a Cohen-Macaulay ring. Let P
′ ⊃ P be two prime ideals of R. Then

all saturated chains of prime ideals joining P
′

to P have the same length, which is

dim(R/P )− dim(R/P
′
).

It follows from the above lemma that if R is a Cohen-Macaulay local ring, then

every maximal chain of prime ideals in R has the same length which is dimR.

Theorem 3.7.16. Suppose R = F [X1, . . . , Xn] and that S = R/I, where I =
t∑
i=1

Rρi and {ρ1, . . . , ρt} is a regular sequence. Then all maximal chains of prime

ideals in S have the same length which is dimS.

Proof. Let m̄ = m/I be a maximal ideal of S. Consider the localization Sm̄. Let

m̄Sm̄ ⊃ P̄rSm̄ ⊃ P̄r−1Sm̄ ⊃ · · · ⊃ P̄1Sm̄ (3.3)

be a maximal chain of prime ideals in Sm̄. According to the above lemma the length

of this chain is

dim(Sm̄/P̄1Sm̄)− dim(Sm̄/m̄Sm̄) = dim(Sm̄/P̄1Sm̄).

By Lemma 3.7.14 we have

dim(Sm̄/P̄1Sm̄) = dimSm̄ = htm̄.

Now by the Correspondence Theorem m is a maximal ideal of R and we know

that R is equidimensional. Thus htm = n and so by Remark 3.6.12 htm̄ = n − t.

From Corollary 3.7.12 dimS = n − t. Thus every maximal chain of prime ideals

in Sm̄ has the same length which is dimS. Now from Equation (3.3) we get the

following strict chain:
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m̄Sm̄ ∩ S ⊃ P̄rSm̄ ∩ S ⊃ P̄r−1Sm̄ ∩ S ⊃ · · · ⊃ P̄1Sm̄ ∩ S.

Since m̄Sm̄ ∩ S = m̄ and P̄iSm̄ ∩ S = P̄i so we get the strict chain

m̄ ⊃ P̄r ⊃ P̄r−1 ⊃ · · · ⊃ P̄1

which has the same length as the length of the chain in Equation (3.3). This com-

pletes the proof.

Note that a similar result holds if S is an integral domain which is a finitely

generated algebra. See Corollary 2 of Proposition 15 on page 45 in [37] for details.

A multiplicativey closed set S is said to be saturated if every divisor of x ∈ S is

in S. Following Kaplansky, we note that if M is a non-zero R-module and

S = {x ∈ R : mx 6= 0 ∀ 0 6= m ∈M}

then S is a saturated multiplicatively closed set and R \ S is a set-theoretic union

of prime ideals. The prime ideals maximal among these may be called the maximal

primes of zero-divisors of M .

Definition 3.7.17. Let R be a ring, M any non-zero R-module. The prime ideals

contained in and maximal within the zero-divisors of M are called maximal primes

of M . When M has the form R/I, I an ideal of R, we use the terminology maximal

primes belonging to I, rather than of R/I.

Lemma 3.7.18. (Theorem 137 in [22]). In a Cohen-Macaulay ring R let I be an

ideal of height n, which can be generated by n elements. Then all maximal primes

belonging to I have height n and are minimal over I.

Definition 3.7.19. Let (R,m,F ) be an n-dimensional Noetherian local ring with

maximal ideal m and F = R/m. Then R is said to be a Gorenstein ring if any of

the following equivalent conditions hold.

(i) ExtiR(F,R) = 0 for i 6= n and ExtiR(F,R) ∼= F for i = n.

(ii) ExtiR(F,R) = 0 for some i > n.
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(iii) ExtiR(F,R) = 0 for i < n and ExtiR(F,R) ∼= F for i = n.

(iv) R is a CM ring and ExtnR(F,R) ∼= F .

Note that the equivalence of the above conditions follows from Theorem 18.1 in

[30]. Again what happens if R is not local?

Definition 3.7.20. A Noetherian ring R is Gorenstein if its localization at every

maximal ideal is a Gorenstein local ring.

It is very clear from the definition that every Gorenstein ring is CM. Let us now

describe some properties of Gorenstein rings.

Theorem 3.7.21. If R is Gorenstein then so is the polynomial ring R[X].

Proof. This is exercise 18.3 in [30] and the solution is on page 294.

Corollary 3.7.22. If R is Gorenstein then so is the polynomial ring R[X1, . . . , Xn].

Proof. By induction on n from the above theorem.

Theorem 3.7.23. (Theorem 221 in [22]). Let R be a zero-dimensional local ring

with maximal ideal m. Then R is Gorenstein if and only if the annihilator of m is

one dimensional (as a vector space over R/m).

Example 3.7.24.

(i) The ring F [X1, . . . , Xn] is Gorenstein.

(ii) Let S = F [X,Y ]/〈X2, XY, Y 2〉, then S is CM but not Gorenstein.

Solution:

(i) Follows from Corollary 3.7.22.

(ii) Let m = 〈X,Y 〉/〈X2, XY, Y 2〉 which is a maximal ideal in S. Since m2 = 0

S is a local ring with maximal ideal m. Now dimFS = 3 therefore S is both

Noetherian and Artinian. Since S is Artinian dimS = 0 and so S is CM. Now

ann(m) = m and dimF (ann(m)) = 2. Thus according to Theorem 3.7.23 S is

not Gorenstein.
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Theorem 3.7.25. If R is Gorenstein and x1, . . . , xn is a regular sequence in R,

then R/〈x1, . . . , xn〉 is Gorenstein.

Proof. Follows from Proposition 3.1.19 part (b) in [5].

3.8 Graded complete intersection

In this section we define graded complete intersections. We prove a useful result

which gives an equivalent condition for graded complete intersections. We show that

the calculations in [8], [13] and [14] indicate that the invariant rings of symplectic,

orthogonal (in the odd characteristic case) and unitary groups are Gorenstein.

Definition 3.8.1. A finitely generated graded algebraR is said be a graded complete

intersection if the minimal number of generators minus the minimal number of gen-

erating relations between them is equal to the Krull dimension dimR.

Theorem 3.8.2. A finitely generated graded algebra is a graded complete intersec-

tion if and only if the relations in the generators form a regular sequence.

Proof. Suppose R = F [X1, . . . , Xn] and that S = R/I, where I =

t∑
i=1

Rρi and

{ρ1, . . . , ρt} is a regular sequence. We claim that it is a graded complete intersection.

By Corollary 3.7.12 we have dimS = n−t. Next we need to show that t is the minimal

number of generators of I. Suppose I can be generated by w elements with w < t.

Then dimS = dim(R/I) ≥ n−w by Lemma 3.5.17 and n−w > n− t = dimS. Thus

we get a contradiction.

Conversely suppose S = R/J , R = F [X1, . . . , Xn] where J has minimal generat-

ing set {z1, . . . , zr} and dimS = n− r. We claim that {z1, . . . , zr} is an R- sequence.

Suppose that {z1, . . . , zi} is an R-sequence, where 0 ≤ i < r; we need to show that

zi+1 is not a zero-divisor modulo
∑i

j=1Rzj . Let I =
∑i

j=1Rzj and R̄ = R/I. Now

R is an equidimensional Cohen-Macaulay ring so by Theorem 3.7.10 htI = i. Thus

by Lemma 3.7.18, the set of zero divisors of R̄ is ∪
λ∈Λ

Pλ where Pλ are minimal prime

ideals of R̄. Now R̄ is Noetherian so by Lemma 3.5.9 Λ is a finite set. Therefore the

set of zero-divisors of R̄ is P1∪· · ·∪Pm. In other words the set of regular elements of



CHAPTER 3. SOME PROPERTIES OF INVARIANT RINGS 69

R̄ is R̄\(P1∪· · ·∪Pm). Suppose z̄i+1 ∈ P1, then by Theorem 3.7.16 dim(R̄/R̄z̄i+1) =

dimR̄. Therefore dim(R/
∑i+1

j=1Rzj) = dim(R/
∑i

j=1Rzj). By using Lemma 3.5.17

we get dim(R/
∑r

j=1Rzj) > n− r which is a contradiction. Therefore z̄i+1 is not in

any minimal prime ideal and so zi+1 is regular modulo
∑i

j=1Rzj .

Notice that a similar result holds when instead of a finitely generated graded

algebra we consider a Noetherian local ring. See Theorem 21.2 and the definition of

complete intersection for a Noetherian local ring on page 171 of [30].

Corollary 3.8.3. A graded complete intersection finitely generated graded algebra

is Gorenstein and hence Cohen-Macaulay.

Proof. Let R = F [X1, . . . , Xn] and S = R/J where J has minimal generating set

{z1, . . . , zr} and dimS = n−r. We claim that S is Gorenstein. Since R is Gorenstein

by Corollary 3.7.22 and by the above theorem, {z1, . . . , zr} is a regular sequence.

Thus by Theorem 3.7.25, S is Gorenstein.

We are now going to state a useful result.

Lemma 3.8.4. (Corollary 5.4.4 in [39]). Suppose that G is a finite group, F a field

and V a finite-dimensional FG-module. Then the Krull dimension of F [V ]G is equal

to dimF V .

Remark 3.8.5. By the above lemma, Theorem 2.2.4, Theorem 2.4.13, Theorem 2.4.14,

Theorem 2.3.17 and Theorem 2.3.18, the invariant rings of symplectic, orthogonal (in

the odd characteristic case) and unitary groups are graded complete intersections,

and so in particular these are Gorenstein and Cohen-Macaulay.

Remark 3.8.6. It should be noted that in section 8 of [40] Stanley defines Gorenstein

rings. He discusses the work of other authors. Some of these authors describe neces-

sary conditions and some of them describe both necessary and sufficient conditions

for Gorenstein rings. Then he summarizes this work in Theorem 8.1 which gives

equivalent conditions for Gorenstein rings. In particular Stanley’s account can be

used to show that graded complete intersections are Gorenstein.



Chapter 4

Invariant rings of Aut(V, ξ),

Aut(V,H) and Aut(V,Q)

Let V be a vector space over the finite field Fq. Suppose S = Fq[V ] is the symmetric

algebra on V ∗. In chapter 2 we discussed the ring of invariants SG in the cases

when G is the the symplectic, unitary or orthogonal group (the latter in the odd

characteristic case). In this chapter we shall find the ring of invariants of the following

groups.

Aut(V, ξ) = {g ∈ GL(V ) : ξ(gv1, gv2) = ξ(v1, v2) ∀ v1, v2 ∈ V }

Aut(V,H) = {g ∈ GL(V ) : H(gv1, gv2) = H(v1, v2) ∀ v1, v2 ∈ V }

Aut(V,Q) = {g ∈ GL(V ) : Q(gv) = Q(v) ∀ v ∈ V }

where ξ is a singular alternating form, H is a singular hermitian form and Q is a

singular quadratic form.

4.1 Group actions

We defined group action in chapter 1. Here we describe some results related to group

actions which we shall use in our main results.

70
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Lemma 4.1.1. If G acts on X and N CG then G/N acts on XN and (XN )G/N =

XG.

Proof. For x ∈ XN , define gN ·x = g ·x. This is well defined because if g1N = g2N ,

then g−1
1 g2 ∈ N . Therefore g−1

1 g2 · x = x and so g1 · x = g2 · x. So we have an action

of G/N on XN . The second statement is clear.

Lemma 4.1.2. Let G1, G2 be two groups and S1, S2 be two rings. Suppose G1 acts

on S1 and G2 acts on S2. Then G1 ×G2 acts on S1 ⊗ S2.

Proof. Define a map S1 ⊗ S2 × (G1 ×G2) → S1 ⊗ S2 by (s1 ⊗ s2)(g1,g2) = sg11 ⊗ s
g2
2

where s1 ⊗ s2 ∈ S1 ⊗ S2 and (g1, g2) ∈ G1 ×G2. We can easily show that this is an

action.

4.2 Integrally closed domains

In this section we define integrally closed domains. We defined unique factorization

domain in chapter 2. Here we show that every unique factorization domain is inte-

grally closed. At the end of this section we shall show that every polynomial ring in

two or more indeterminates (up to a finite number of indeterminates) can be written

as a tensor product of two polynomial rings.

Definition 4.2.1. An integral domain R is said to be integrally closed if every

element θ of its field of fractions ff(R) which satisfies a monic polynomial with

coefficients in R is already in R itself.

Lemma 4.2.2. If R ⊆ R1 ⊆ S are integral domains such that

(i) S is integral over R

(ii) ff(R) = ff(R1)

(iii) R is integrally closed

then R = R1.
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Proof. Let α ∈ R1. By (i) choose a monic polynomial f(X) in R[X] such that

f(α) = 0. By (ii) α ∈ ff(R) and so by (iii) α ∈ R.

Lemma 4.2.3. If R is a UFD, then R is integrally closed.

Proof. Let R be a UFD with ff(R) the field of fractions. Let u ∈ ff(R) be integral

over R. Then for some a0, . . . , an−1 ∈ R,

un + an−1u
n−1 + · · ·+ a0 = 0

where u =
c

d
for some c, d ∈ R and c, d have no non-unit common divisor. Multiply-

ing both sides of the above equation by dn, we get

cn + an−1dc
n−1 + · · ·+ a0d

n = 0.

Thus

cn = −d(an−1c
n−1 + · · ·+ a0d

n−1).

Now since R is a UFD, d must divide c. But c and d have no non-unit common

divisor so d = ±1. Therefore u ∈ R and so R is integrally closed.

Lemma 4.2.4. Let F be a field. Then

F [X1, . . . , Xn, Xn+1, . . . , Xn+m] ∼= F [X1, . . . , Xn]⊗ F [Xn+1, . . . , Xn+m].

Proof. R.H.S = F [X1 ⊗ 1, . . . , Xn ⊗ 1, 1 ⊗ Xn+1, . . . , 1 ⊗ Xn+m]. Define a map by

X1 7→ X1 ⊗ 1, . . . , Xn 7→ Xn ⊗ 1 and Xn+1 7→ 1 ⊗ Xn+1, . . . , Xn+m 7→ 1 ⊗ Xn+m.

Then we can check that this is an isomorphism.

4.3 The Fundamental Theorem of Galois Theory

A good introduction to Galois Theory is given in [41]. We give a brief summary

here.

Definition 4.3.1. If F is a field and f is a polynomial over F , then f splits over

F if it can be expressed as a product of linear factors f(t) = c(t − α1) . . . (t − αn)

where c, α1, . . . , αn ∈ F .
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Definition 4.3.2. Let F be a field and let Σ be an extension of F . Then Σ is a

splitting field for the polynomial f over F if

(i) f splits over Σ and

(ii) If F ⊆ Σ
′ ⊆ Σ and f splits over Σ

′
, then Σ

′
= Σ.

The second condition is clearly equivalent to:

(iii) Σ = F (α1, . . . , αn) where α1, . . . , αn are the zeros of f in Σ.

Definition 4.3.3. A field extension E/F is normal if every irreducible polynomial

f over F that has at least one zero in E splits in E.

Theorem 4.3.4. (Theorem 17.10 in [41]). A field extension E/F is normal and

finite if and only if E is a splitting field for some polynomial over F .

Definition 4.3.5. An irreducible polynomial f over a field F is separable over F if

it has no multiple zero in a splitting field.

Definition 4.3.6. (i) An arbitrary polynomial over a field F is separable over F

if all its irreducible factors are separable over F . Otherwise, it is an inseparable

polynomial.

(ii) If E/F is an extension, then an algebraic element α ∈ E is separable over

F if its minimal polynomial over F is separable over F . Otherwise, α is an

inseparable elements.

(iii) An algebraic extension E/F is a separable extension if every α ∈ E is separable

over F . Otherwise, it is an inseparable extension.

Theorem 4.3.7. (Theorem 17.22 in [41]). If E/F is a field extension such that E

is generated over F by a set of separable algebraic elements, then E/F is separable.

Definition 4.3.8. Let E/F be a field extension. A F -automorphism of E is an

automorphism δ of E such that δ(c) = c for all c ∈ F . We say δ fixes c ∈ F .

Theorem 4.3.9. (Theorem 8.2 in [41]). If E/F is a field extension, then the set of

all F -automorphisms of E forms a group under composition of maps.
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Definition 4.3.10. The Galois group Gal(E/F ) of a field extension E/F is the

group of all F -automorphisms of E under the operation of composition of maps.

The importance of the Galois group is made clear by the fact that, under certain

extra hypotheses, we get a one-to-one correspondence between:

(i) Subgroups of Gal(E/F ) and

(ii) Subfields M of E such that F ⊆M.

If E/F is a field extension, we call any field M such that F ⊆ M ⊆ E an in-

termediate field. To each intermediate field we associate the group Gal(E/M)

of all M -automorphisms of E. Thus Gal(E/F ) is the whole Galois group, and

Gal(E/E) = 1, the group consisting of just the identity map of E. Clearly, if

M ⊆ N , then Gal(E/M) ⊇ Gal(E/N) because any automorphism of E which fixes

the elements of N certainly fixes the elements of M .

Conversely, to each subgroup H of Gal(E/F ) we associate the set

Fix(H) = {x ∈ E : δ(x) = x ∀ δ ∈ H}.

This is the fixed field of H.

Lemma 4.3.11. (Lemma 8.5 in [41]). If H is a subgroup of Gal(E/F ), then Fix(H)

is a subfield of E containing F .

It is easy to see that if H ⊆ H
′
, then Fix(H) ⊇ Fix(H

′
). Let E/F be a field

extension with Galois group G. Let F be the set of intermediate fields and let G be

the set of all subgroups H of G.

Theorem 4.3.12. (Fundamental Theorem of Galois Theory: Theorem 17.23 in

[41]). Let E/F be a finite separable normal field extension, with Galois group G.

Let H ∈ G and M ∈ F where G and F are as defined above. Then

(i) The Galois group G has order [E : F ].
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(ii) The maps

M 7→ Gal(E/M),

H 7→ Fix(H),

are mutual inverses, and set up an order-reversing one-to-one correspondence

between F and G.

(iii) [E : M ] = |Gal(E/M)| and [M : F ][E : M ] = |G|.

(iv) M/F is a normal extension if and only if Gal(E/M) is a normal subgroup of

G.

(v) If M/F is a normal extension, then the Galois group of M/F is isomorphic to

the quotient group G/Gal(E/M).

We now give an important result which will be used in later sections.

Proposition 4.3.13. (Proposition 1.2.4 in [39]). Suppose V is a finite dimensional

faithful representation of a finite group G over a field F . Let S = F [V ], then ff(S) is

a Galois (i.e., normal and separable) extension of ff(S)G with Galois group G. The

field ff(S)G is the field of fractions of SG, and SG is integrally closed in ff(S)G.

4.4 Algebraically independent elements

In this section we define algebraically independent elements and transcendental de-

grees. We state some properties of these. The results in this section have been taken

from [4], [30], [39] and [43]. We shall use these results in this chapter as well as in

chapter 5.

Definition 4.4.1. A set of polynomials is called algebraically independent if there

are no algebraic relations between them.

The following result gives us a sufficient condition for algebraically independent

elements. Note that in Proposition 5.21 of [33] the author proves this result over the

complex field.
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Lemma 4.4.2. (Lemma 5.6.1 in [39]). Let F be a field. If f1, . . . , fn ∈ F [z1, . . . , zn]

and ∣∣∣∣∣∣∣∣∣∣

∂f1

∂z1
· · · ∂fn

∂z1
...

. . .
...

∂f1

∂zn
· · · ∂fn

∂zn

∣∣∣∣∣∣∣∣∣∣
6= 0

then f1, . . . , fn are algebraically independent.

Definition 4.4.3. Let E/F be a field extension. The largest cardinality of an

algebraically independent subset of E over F is called the transcendental degree of

E over F . It is denoted by tr.degFE.

Lemma 4.4.4. (Theorem 5.6 in [30]). Let F be a field and R an integral domain

which is finitely generated over F , then

dimR = tr. degF (ff(R)).

Note that if R1 ⊆ R2 are integral domains which are finitely generated over F ,

then it follows from the above lemma that dimR1 ≤ dimR2.

Proposition 4.4.5. (Proposition 5.4.2 in [4]) Let x1, . . . , xn be algebraically inde-

pendent indeterminates over a perfect field F . If f1, . . . , fn are elements of F (x1, . . . , xn),

then F (f1, . . . , fn) ⊆ F (x1, . . . , xn) is a finite separable extension if and only if∣∣∣∣∣∣∣∣∣∣

∂f1

∂x1
· · · ∂fn

∂x1
...

. . .
...

∂f1

∂xn
· · · ∂fn

∂xn

∣∣∣∣∣∣∣∣∣∣
6= 0.

It follows from the above proposition and Lemma 4.4.2 that if F (f1, . . . , fn) ⊆

F (x1, . . . , xn) is a finite separable extension then f1, . . . , fn are algebraically inde-

pendent.

Lemma 4.4.6. (Lemma 3.2 in [43]) Let V be a vector space over the field Fq.

Suppose S = Fq[x1, . . . , xn] is the symmetric algebra on V ∗. Let R = Fq[z1, . . . , zn]

where zi are a set of algebraically independent polynomials in xi. Then the degree of

the field extension ff(R) ⊆ ff(S) is
∏

deg zi.
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4.5 Laurent expansion and Poincaré series

In this section we define Laurent expansions and Poincaré series. We state some

properties of these. We shall not use the results in this section in the thesis but they

are very important in invariant theory.

Definition 4.5.1. A Laurent expansion about t = 1 with coefficients in a field F

is an expression of the form

P =
∑
k

pk(1− t)k

where pk ∈ F and k ∈ Z.

Definition 4.5.2. Let F be a field. Suppose that R =
⊕∞

j=0Rj is a commutative

graded ring with R0 = F , and finitely generated over F by homogeneous elements

x1, . . . xs in positive degree k1, . . . , ks. Suppose that M =
⊕∞

j=−∞Mj is a finitely

generated graded R-module. The Poincaré series of M is defined as follows

P (M, t) =
∑
j∈Z

dimF (Mj)t
j .

We now give some examples.

Example 4.5.3.

(i) P (Fq[X], t) = 1 + t+ t2 + . . . and 1 + t+ t2 + · · · = 1

1− t
.

(ii) P (Fq[X1, . . . , Xn], t) =
1

(1− t)n
.

(iii) P (Fq[Y1, . . . , Yn], t) =
∏n
i=1

1

(1− tdi)
where di = deg Yi for i = 1, . . . , n.

Before giving the notion of degree for a finitely generated commutative graded

F -algebra R =
⊕∞

j=0Rj with R0 = F we are going to state some useful properties

of Poincaré series. The following two results have been taken from [4].

Theorem 4.5.4. (Theorem 2.1.1 in [4]). Let R and M be as in Definition 4.5.2.

Then the Poincaré series P (M, t) is of the form

f(t)∏s
j=1(1− tkj )

where f(t) is a polynomial in t with integer cofficients.
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Theorem 4.5.5. (Theorem 2.2.7 in [4]). Let R and M be as in Definition 4.5.2.

Then there exists homogeneous element f1, . . . , fn of positive degree in R, which

generate a polynomial subring F [f1, . . . , fn] in R/ann(M) over which M is finitely

generated as a module. The number n is equal to the order of the pole at t = 1 of

P (M, t) and is also equal to the krull dimension of M .

Definition 4.5.6. Let R =
⊕∞

j=0Rj be a finitely generated commutative graded

F -algebra with R0 = F . If the Krull dimension is n, then the value of the rational

function (1 − t)nP (R, t) at t = 1 is a non-zero rational number, called the degree

of R, written as deg(R). More generally, if M =
⊕∞
−∞Mj is a finitely generated

graded R-module, we define the rational number deg(M) by the Laurent expansion

about t = 1:

P (M, t) =
deg(M)

(1− t)n
+ . . . .

To explain the above concept we give some examples.

Example 4.5.7.

(i) deg(Fq[X1, . . . , Xn]) = 1.

(ii) deg(Fq[Y1, . . . , Yn]) =
1∏n
i=1 di

where di = deg Yi for i = 1, . . . , n.

We know that P (Fq[Y1, . . . , Yn], t) =

n∏
i=1

1

(1− tdi)
. Let us expand this in a Lau-

rent expansion about t = 1. First note that
n∏
i=1

1

(1− tdi)
=

1

(1− t)n
n∏
i=1

1

(1 + t+ · · ·+ tdi−1)

and
∏n
i=1

1

(1 + t+ · · ·+ tdi−1)
=

1∏n
i=1 di

when t = 1. Therefore

P (Fq[Y1, . . . , Yn], t) =
1∏n
i=1 di

· 1

(1− t)n
+ . . .

Let us describe some properties.

Lemma 4.5.8. (Theorem 5.5.3 in [39]). Suppose that G is a finite group and V is an

n-dimensional faithful representation of G over a field F . Then deg(F [V ]G) = 1
|G| .

Hence the Laurent expansion of the Poincaré series of F [V ]G about t = 1 is

P (F [V ]G, t) =
1

|G|(1− t)n
+ . . .
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Lemma 4.5.9. Let H = F [f1, . . . , fm]/〈h1, . . . , hk〉, where h1, . . . , hk is a regular

sequence of homogeneous elements in F [f1, . . . , fm]. If deg fj = lj and deg hi = ni,

then

P (H, t) =

∏k
i=1(1− tni)∏m
j=1(1− tlj )

.

Proof. Clear.

Thus by expanding this in a Laurent expansion about t = 1, we get

P (H, t) =

∏k
i=1 ni∏m
j=1 lj

1

(1− t)m−k
+ . . . .

Note that in Proposition 3.3.2 in [34] the authors take h1, . . . , hk to be alge-

braically independent and F [f1, . . . , fm] to be a free F [h1, . . . , hk]-module and get

the same result.

4.6 The invariant ring SN

Let V be a vector space over the field Fq. In this section we want to compute the

invariant ring SN where S = Fq[V ] and we shall define N in the following discussion.

Consider

0 ≤ U ≤ V

Let e1, . . . , em be a basis of U, extend this to the basis e1, . . . , em, em+1, . . . , em+n of

V . Let

G = {g ∈ GL(V ) : gU = U}.

Suppose x1, . . . , xm, xm+1, . . . , xm+n is the corresponding dual basis of V ∗. Now

define

φ : G→ GL(U)×GL(V/U)

by

g 7→ (g|U , ḡ)

where ḡ(v + U) = gv + U . Then φ is a homomorphism. Let N = Kerφ where

Kerφ = {g ∈ G : gu = u ∀ u ∈ U and gv − v ∈ U ∀ v ∈ V }.
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The matrix of N is

 IU ∗

0 IV/U

 .
Now if g ∈ N , then xgm+i = xm+i for 1 ≤ i ≤ n. Fix i with 1 ≤ i ≤ m, then

xgi = xi + something in (V/U)∗. Now

D
(V/U)

(xi) =
∏

x∈(V/U)∗

(xi − x) ∈ SN when 1 ≤ i ≤ m.

Suppose

R = Fq[y1, . . . , ym, xm+1, . . . , xm+n] where yi = D
(V/U)

(xi) for 1 ≤ i ≤ m.

Now R ⊆ SN ⊆ S.

(i) We need to show that S is integral over R. This is true because for xi ∈ S,

where m+1 ≤ i ≤ m+n, there exist polynomials Pi(X) = X−xi ∈ R[X] such

that Pi(xi) = 0. Now for xj ∈ S, where 1 ≤ j ≤ m, there exist polynomials

Pj(X) = D
(V/U)

(X − xj) ∈ R[X] such that Pj(xj) = 0.

(ii) We need to show that ff(R) = ff(SN ). Obviously ff(R) ⊆ ff(SN ). Thus we

need to show that ff(SN ) ⊆ ff(R). For this we need to check ff(R) ⊆ ff(S)

is finite separable normal field extension. The polynomials

Pj(X) = D
(V/U)

(X − xj) for 1 ≤ j ≤ m

split over ff(S), where these Pj(X) ∈ R[X], and it is easy to see that

ff(S) = ff(R)(x1, . . . , xm).

Thus by definition ff(S) is a splitting field for these polynomials and so by

Theorem 4.3.4 the extension ff(R) ⊆ ff(S) is finite and normal. Now the

elements x1, . . . , xm are separable. Therefore by Theorem 4.3.7 the extension

ff(R) ⊆ ff(S) is separable. Let H be the Galois group of the field extension

ff(R) ⊆ ff(S). On the other hand Proposition 4.3.13 shows that the field

extension ff(SN ) ⊆ ff(S) is Galois with Galois group N . Thus by Theorem
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4.3.12 N ⊆ H. Since the extension ff(R) ⊆ ff(S) is finite and separable, so

by the remark after Proposition 4.4.5 we have that y1, . . . , ym, xm+1 . . . , xm+n

are algebraically independent. Therefore by Lemma 4.4.6 and Theorem 4.3.12

part (ii) | H |=
∏

degyi but | N |=
∏

degyi. Thus H = N and so by Theorem

4.3.12 ff(R) = ff(SN ).

(iii) From the discussion in (ii) it is clear that R = Fq[y1, . . . , ym, xm+1, . . . , xm+n]

is a polynomial ring. Thus by Lemma 2.3.16 and Lemma 4.2.3 R is integrally

closed. Therefore according to Lemma 4.2.2 we have

SN = Fq[y1, . . . , ym, xm+1, . . . , xm+n].

Now consider the chain of subspaces of V below.

0 = U0 ≤ U1 ≤ · · · ≤ Un = V.

Let mi = dimFq Ui/Ui−1 for each i so that dimFq V = m1 + · · · + mn. Let

e1, . . . , em1+···+mn be a basis of V chosen by successively extending bases of the Ui

so that e1, . . . , em1+···+mi is a basis of Ui. Let x1, . . . , xm1+···+mn denote the dual

basis of V ∗. The chain of subspaces of V gives rise to a natural chain of subspaces

in V ∗:

0 = (V/Un)∗ ≤ (V/Un−1)∗ ≤ · · · ≤ (V/U0)∗ = V ∗

in which (V/Ui)
∗ has dimensionmi+1+· · ·+mn and basis xm1+···+mi+1, . . . , xm1+···+mn .

For definiteness we shall assume that mi ≥ 1 for each i so that the inclusions in our

chains of subspaces are strict.

Associated to any subspace W of V there is the Dickson polynomial D(V/W )(X)

in F [V ][X] as defined in Definition 2.1.1 and which has degree equal to the order

of (V/W )∗. Thus we have degD(V/Ui)(X) = |(V/Ui)∗| = qmi+1+···+mn . We are

interested in the rings of invariants of two groups. First, the group

G := {g ∈ GL(V ) : gUi = Ui ∀ i}

and secondly the kernel N of the natural surjective map

G→ GL(U1)×GL(U2/U1)× · · · ×GL(Un/Un−1)
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Note that the order of N is qd where

d =
∑

1≤i<j≤n
mimj .

We shall use Propositions 4.5.5 and 4.5.6 of [34] to compute the ring of invariants

of N . It will obviously work when n = 2 which we have done above by a different

method. We have used a different method in our above discussion for n = 2 because

we shall use part (ii) of the above discussion in chapter 5. Firstly we are going to

define homogeneous system of parameters. The following definition have been taken

from [40].

Definition 4.6.1. Let F be a field. Suppose R =
⊕∞

j=0Rj is a finitely gen-

erated commutative graded F -algebra with R0 = F . If the Krull dimension is

n, then a set f1, . . . , fn of homogenous elements of positive degree is said to be

homogeneous system of parameters if R is finitely generated module over the sub-

algebra F [f1, . . . , fn]

Lemma 4.6.2. The polynomials y(i, `) := D(Ui+1/Ui) . . . (D(V/Un−1)(x`)) and

xm1+···+mn−1+j generate the ring of invariants SN , where 1 ≤ i ≤ n−1, 1 ≤ j ≤ mn

and m1 + · · · + mi−1 < ` ≤ m1 + · · · + mi. [Note that m1 + · · · + mi−1 should be

interpreted as 0 when i = 1.]

Proof. We need to show that the y(i, `) and xm1+···+mn−1+i form a homogeneous

system of parameters. The number of y(i, `) and xm1+···+mn−1+i is
∑

imi = dimV

and the product of their degrees is qd where

d = m1(m2 + · · ·+mn) +m2(m3 + · · ·+mn) + · · ·+mn−1mn =
∑

1≤i<j≤n
mimj .

The result then follows from Proposition 4.5.5 of [34] .

In order to prove that y(i, `) and xm1+···+mn−1+i form a homogeneous system

of parameters, the key step, just as in Neusel and Smith’s proof of the Nakajima–

Stong Theorem (Proposition 4.5.6 of [34]) is to show that Fq[V ] is integral over the

ring generated by the y(i, `) and xm1+···+mn−1+i. First we show that y(i, `) and
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xm1+···+mn−1+i are invariants and Fq[V ] is integral over the ring generated by the

y(i, `) and xm1+···+mn−1+i.

If g ∈ N , then clearly xgm1+···+mn−1+i = xm1+···+mn−1+i for 1 ≤ i ≤ mn. The

y(n−1, `) := D(V/Un−1)(x`) where ` in the rangem1+· · ·+mn−2 < ` ≤ m1+· · ·+mn−1

all belong to the ring of invariants SN . To see this, suppose that g is any element of

N . Then for any x ∈ (V/Un−2)∗ we have xg = x+ z for some z = z(x, g) belonging

to (V/Un−1)∗. The additive behaviour of the Dickson polynomials yields

D(V/Un−1)(x
g) = D(V/Un−1)(x+ z) = D(V/Un−1)(x) +D(V/Un−1)(z)

and since D(V/Un−1) vanishes on (V/Un−1)∗ we have D(V/Un−1)(z) = 0. Therefore

D(V/Un−1)(x)g = D(V/Un−1)(x
g) = D(V/Un−1)(x).

This shows that the y(n−1, `) where ` in the range m1 + · · ·+mn−2 < ` ≤ m1 + · · ·+

mn−1 are invariant as claimed. Let R1 be the ring generated by the y(n−1, `) where

` in the range 1 ≤ ` ≤ m1 + · · ·+mn−1, and xm1+···+mn−1+j where 1 ≤ j ≤ mn. Then

Fq[V ] is integral over R1. In order to prove that it suffices to check that each xi

satisfies a monic polynomial with coefficients in the ring R1. For xj ∈ Fq[V ], where

m1 + · · ·+mn−1 +1 ≤ j ≤ m1 + · · ·+mn, there exist polynomials Pj(X) = X−xj ∈

R1[X] such that Pj(xj) = 0. Now for xj ∈ Fq[V ], where 1 ≤ j ≤ m1 + · · · + mn−1,

there exist polynomials Pj(X) = D(V/Un−1)(X − xj) ∈ R1[X] such that Pj(xj) = 0.

Now for each of dual space U∗i there is a natural short exact sequence

0→ (Ui/Ui−1)∗ → U∗i → U∗i−1 → 0.

We are going to identify each of the spaces U∗i with a certain subspace of the sym-

metric algebra Fq[V ]. First, U∗n is identified with V ∗, the degree one component of

the symmetric algebra. Now the Dickson polynomial

D(V/Un−1)(X) =
∏

x∈(V/Un−1)∗

(X − x)

determines a linear function V ∗ → F [V ] with kernel (V/Un−1)∗. Hence it is natural

to identify U∗n−1 with D(V/Un−1)(V
∗). This has the effect that elements of U∗n−1 have
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natural degree equal to the degree of D(V/Un−1). [Note that the degree of D(V/Un−1)

is equal to the order of the vector space (V/Un−1)∗]. We may then define like this:

D(Un−1/Un−2)(X) =
∏

x∈(Un−1/Un−2)∗

(X − x).

Then D(Un−1/Un−2) is a homogeneous polynomial provided we agree that the free

variable X has degree equal to the degree of D(V/Un−1). Just as D(V/Un−1), the new

polynomial D(Un−1/Un−2) defines a linear map from U∗n−1 to the symmetric algebra

with kernel (Un−1/Un−2)∗ and its image may be identified with U∗n−2. The degree of

D(Un−1/Un−2) is equal to the order of the vector space (V/Un−2)∗. Continuing in this

way we define Dickson polynomials D(Un−i+1/Un−i) for each i, each one determining

a linear map with domain U∗n−i+1, kernel (Un−i+1/Un−i)
∗ and image identified with

U∗n−i. The degree of D(Un−i+1/Un−i) is equal to the order of the vector space V/Un−i.

Now U∗n−1 is identified with the subspace generated by the y(n − 1, `) where `

in the range 1 ≤ ` ≤ m1 + · · · + mn−1. By the same argument above the elements

D(Un−1/Un−2)(y(n−1, `)) where ` in the range m1 + · · ·+mn−3 < ` ≤ m1 + · · ·+mn−2

are invariants of N . This means that the y(n− 2, `) where ` in the range m1 + · · ·+

mn−3 < ` ≤ m1 + · · · + mn−2 are invariants of N . Let R2 be the ring generated

by xm1+···+mn−1+i where 1 ≤ j ≤ mn, y(n − 1, `) where m1 + · · · + mn−2 < ` ≤

m1 + · · ·+mn−1 and y(n−2, `) where ` in the range 1 ≤ ` ≤ m1 + · · ·+mn−2. Then

R1 is an integral over R2. For xj ∈ R1, where m1+· · ·+mn−1+1 ≤ j ≤ m1+· · ·+mn,

there exist polynomials Pj(X) = X − xj ∈ R2[X] such that Pj(xj) = 0. Now for

y(n − 1, `) ∈ R1 where m1 + · · · + mn−2 < ` ≤ m1 + · · · + mn−1, there exist

polynomials P`(X) = X − y(n − 1, `) ∈ R1[X] such that P`(y(n − 1, `)) = 0. For

y(n− 1, `) ∈ R1, where 1 ≤ ` ≤ m1 + · · ·+ mn−2, there exist polynomials P`(X) =

D(Un−1/Un−2)(X − y(n− 1, `)) ∈ R2[X] such that P`(y(n− 1, `)) = 0.

Now U∗n−2 is identified with the subspace generated by the elements y(n− 2, `))

where ` in the range 1 ≤ ` ≤ m1 + · · · + mn−2. Now by the same argument above

D(Un−2/Un−3)((y(n − 2, `)) where ` in the range m1 + · · · + mn−4 < ` ≤ m1 + · · · +

mn−4 +mn−3 are invariants of N . This means that y(n− 3, `) where ` in the range

m1 + · · ·+mn−4 < ` ≤ m1 + · · ·+mn−4 +mn−3 are invariants. Let R3 be the ring
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generated by the xm1+···+mn−1+i where 1 ≤ j ≤ mn, y(n− 2, `) where ` in the range

m1 + · · · + mn−3 < ` ≤ m1 + · · · + mn−2 and y(n − 3, `))) where ` in the range

1 ≤ ` ≤ m1 + · · · + mn−3. Then by the same method as above R2 is integral over

R3. By induction we would get a ring which we let Rn−2 and Rn−2 is generated by

xm1+···+mn−1+i where 1 ≤ j ≤ mn, y(n − 1, `) where m1 + · · · + mn−2 < ` ≤ m1 +

· · ·+mn−1, y(n−2, `)) where ` in the range m1 + · · ·+mn−3 < ` ≤ m1 + · · ·+mn−2,

y(n − 3, `) where ` in the range m1 + · · · + mn−4 < ` ≤ m1 + . . .mn−3, . . . , y(2, `)

where ` in the range 1 ≤ ` ≤ m1 +m2.

Now U∗2 is identified with the subspace generated by the y(2, `) where 1 ≤ ` ≤

m1 + m2. By the same argument above D(U2/U1)(y(2, `)) where ` in the range 0 <

` ≤ m1 are invariants of N . This means that y(1, `) where ` in the range 0 < ` ≤

m1 are invariants. Let Rn−1 is generated by xm1+···+mn−1+i where 1 ≤ j ≤ mn,

y(n − 1, `) where m1 + · · · + mn−2 < ` ≤ m1 + · · · + mn−1, y(n − 2, `) where ` in

the range m1 + · · ·+mn−3 < ` ≤ m1 + · · ·+mn−2, y(n− 3, `) where ` in the range

m1 + · · ·+mn−4 < ` ≤ m1 + . . .mn−3,. . . ,y(2, `) where ` in the range m1 ≤ ` ≤ m2,

y(1, `) where ` in the range 0 < ` ≤ m1. Again by the same way Rn−2 is integral

over Rn−1. It follows that F [V ] is integral over Rn−1.

Next, consider the number of y(i, `) and xm1+···+mn−1+i and their degrees. For

each i there are mi possible values of ` and so the number of generators y(i, `) and

xm1+···+mn−1+i is
∑

imi = dimV . The degree of y(i, `) is equal to the product

of the degrees of D(Ui+1/Ui), . . . , D(V/Un−1) which is qmi+1+···+mn . The degree of

xm1+···+mn−1+i is one. Thus product of the degrees of all generators is qd where

d = m1(m2 + · · ·+mn) +m2(m3 + · · ·+mn) + · · ·+mn−1mn =
∑

1≤i<j≤n
mimj .

Lemma 4.6.3. Let G1 = {g ∈ GL(V ) : gU = U} where U = Radξ and G2 =

Aut(V, ξ). Then the maps φ1 : G1 → GL(U) × GL(V/U) and φ2 : G2 → GL(U) ×

GL(V/U) have the same kernels.

Proof. First we need to show that G2 ≤ G1. For this let g ∈ G2, then ξ(gw, gv) =

ξ(w, v) for all w, v ∈ V . Now let u ∈ U , then ξ(gu, v) = ξ(u, g−1v) = 0 for all v ∈ V .
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Thus gu ∈ U . Now it is easy to see that φ2 = φ1|G2 , so Kerφ2 = Kerφ1 ∩G2. Now

we need to show that Kerφ1 ⊆ G2. For this let e1, . . . , em be a basis of U , then we

can extend this to a basis e1, . . . , em, em+1, . . . , em+n of V . Now let g ∈ Kerφ1, then

(i) Suppose i, j ≤ m, then gei = ei, gej = ej . Thus ξ(gei, gej) = ξ(ei, ej).

(ii) Suppose i ≤ m and j > m, then gei = ei, gej = ej + u for some u ∈ U . Thus

ξ(gei, gej) = ξ(ei, ej + u) = ξ(ei, ej).

(iii) Suppose j ≤ m and i > m, then gei = ei + u for some u ∈ U , gej = ej . Thus

ξ(gei, gej) = ξ(ei + u, ej) = ξ(ei, ej).

(iv) Suppose i, j > m, then gei = ei + u, gej = ej + v for some u, v ∈ U . Thus

ξ(gei, gej) = ξ(ei + u, ej + v) = ξ(ei, ej).

Remark 4.6.4. If we replace Aut(V, ξ) by Aut(V,H) or by Aut(V,Q) in the above

lemma, then it still holds.

4.7 Main results

Now we are in a position to solve our main problems.

Definition 4.7.1. Let B be a singular bilinear form on a vector space V over the field

Fq. Let U = RadB, then we can define a bilinear form on V/U by B̄(v̄, w̄) = B(v, w).

It is easy to see that B̄ is well defined.

Theorem 4.7.2. Suppose G = Aut(V, ξ) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq[x1, . . . , xm, xm+1, . . . , xm+n] and U = Radξ = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/U)∗

(xi − x), we have SG ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]SP (V/U, ξ̄).

Proof. Define a map φ : G→ GL(U)×GL(V/U) by φ(g) = (g|U , ḡ) where ḡ(v+U) =

g(v) +U , then φ is a homomorphism. Let N = Kerφ, then by the first Isomorphism

Theorem, we have G/N ∼= Imφ. Further, we have Imφ = GL(U) × SP (V/U, ξ̄).
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Therefore, G/N ∼= GL(U) × SP (V/U, ξ̄). From Lemma 4.6.3, we have SN =

Fq[y1, . . . , ym, xm+1, . . . , xm+n]. So according to Lemma 4.1.2 and Lemma 4.2.4, we

have (SN )G/N ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]Sp(V/U, ξ̄). By applying

Lemma 4.1.1, we get SG ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]SP (V/U, ξ̄).

Definition 4.7.3. Suppose H is a singular hermitian form on a vector space V over

the finite field Fq2 . Let U = RadH, then we can define a hermitian form on V/U by

H̄(v̄, w̄) = H(v, w). It is easy to check that H̄ is well defined.

Theorem 4.7.4. Suppose G = Aut(V,H) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq2 [x1, . . . , xm, xm+1, . . . , xm+n] and W = RadH = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/W )∗

(xi−x), we have SG ∼= Fq2 [y1, . . . , ym]GL(W )⊗Fq2 [xm+1, . . . , xm+n]U(V/W, H̄).

Proof. Define a map φ : G → GL(W ) × GL(V/W ) as in Theorem 4.7.2. Let

N = Kerφ, then G/N ∼= Imφ. Further, we have Imφ = GL(W ) × U(V/W, H̄).

Therefore, G/N ∼= GL(W ) × U(V/W, H̄). From Remark 4.6.4, we have SN =

Fq2 [y1, . . . , ym, xm+1, . . . , xm+n]. By using Lemma 4.1.2 and Lemma 4.2.4, we have

(SN )G/N ∼= Fq2 [y1, . . . , ym]GL(W ) ⊗ Fq2 [xm+1, . . . , xm+n]U(V/W, H̄). So by Lemma

4.1.1, we get SG ∼= Fq2 [y1, . . . , ym]GL(W ) ⊗ Fq2 [xm+1, . . . , xm+n]U(V/W, H̄).

Definition 4.7.5. Let Q be a singular quadratic form on a vector space V over

the finite field Fq. Let U = RadQ. We can define a quadratic form on V/U by

Q̄(v̄) = Q(v). It is easy to check that Q̄ is well defined.

Theorem 4.7.6. Suppose G = Aut(V,Q) and x1, . . . , xm, xm+1, . . . , xm+n is the

dual basis of V ∗ corresponding to the basis e1, . . . , em, em+1, . . . , em+n of V . Let

S = Fq[x1, . . . , xm, xm+1, . . . , xm+n] and U = RadQ = 〈e1, . . . , em〉. Then for yi =∏
x∈(V/U)∗

(xi − x), we have SG ∼= Fq[y1, . . . , ym]GL(U) ⊗ Fq[xm+1, . . . , xm+n]O(V/U, Q̄).

Proof. Define a map φ : G → GL(U) × GL(V/U) as in the theorems above. Let

N = Kerφ. Then since Imφ = GL(U) × O(V/U, Q̄) we have G/N ∼= GL(U) ×

O(V/U, Q̄). By Remark 4.6.4, we have SN = Fq[y1, . . . , ym, xm+1, . . . , xm+n]. There-

fore by Lemma 4.1.2 and Lemma 4.2.4, we have (SN )G/N ∼= Fq[y1, . . . , ym]GL(U) ⊗
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Fq[xm+1, . . . , xm+n]O(V/U, Q̄). Thus by Lemma 4.1.1, we get SG ∼= Fq[y1, . . . , ym]GL(U)⊗

Fq[xm+1, . . . , xm+n]O(V/U, Q̄).

Remark 4.7.7. From Theorem 4.7.2 and Theorem 4.7.4 it is easy to see that SG

is a graded complete intersection, and so in particular it is Gorenstein and Cohen-

Macaulay. But from Theorem 4.7.6 SG is a graded complete intersection when the

characteristic of the field Fq is odd or q = 2 as we do not know about

Fq[xm+1, . . . , xm+n]O(V/U, Q̄) when q = 2l, l ≥ 2.



Chapter 5

Invariant rings of subgroups of

the symplectic group

Let V be a vector space over the field Fq. Suppose e1, . . . , e2n is a basis of V and

U is a subspace of V . Let ξ be the non-degenerate alternating form on the vector

space V with the following matrix:

0 1

−1 0

0 1

−1 0

. . .

0 1

−1 0


filled out with zeroes.

In this chapter we want to find the invariant ring SG where S = Fq[V ] and

G = {g ∈ Sp(V, ξ) : gU = U}. We shall consider the following two cases:

(i) U = 〈e1, e2, . . . , em〉 where m is even and less than 2n;

(ii) U = 〈e1, e3, . . . , e2n−1〉.

89
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5.1 The orthogonal complement and some related re-

sults

Definition 5.1.1. Let ξ be an alternating form on V . For a subspace U of V , we

denote the orthogonal complement of U by U⊥. This is defined as

U⊥ = {v ∈ V : ξ(u, v) = 0 ∀ u ∈ U}.

Now let us present some nice properties of the orthogonal complement which are

important.

Lemma 5.1.2. Let V be a vector space over the field Fq and ξ be a non-degenerate

alternating form on V . Suppose U is a subspace of V . If ξ|U is a non-degenerate

alternating form on U , then

(i) V = U ⊕ U⊥ and

(ii) ξ|U⊥ is a non-degenerate alternating form on U⊥.

Proof. Follows from Theorem 11.8 in [35].

Lemma 5.1.3. Let V be a vector space over the field Fq and ξ be a non-degenerate

alternating form on V . Suppose U is a subspace of V , then (U⊥)⊥ = U .

Proof. Follows from Theorem 11.7 in [35].

Theorem 5.1.4. Let H = {g ∈ Sp(V, ξ) : gU⊥ = U⊥}, then H = G.

Proof. If g ∈ G and w ∈ U⊥, then we have ξ(u, gw) = ξ(g−1u,w) = 0 for all u ∈ U .

This implies that gw ∈ U⊥. Conversely, suppose that g ∈ H and w ∈ U , then

ξ(u, gw) = ξ(g−1u,w) = 0 for all u ∈ U⊥. This implies that gw ∈ (U⊥)⊥ . Hence

gw ∈ U by Lemma 5.1.3.

We now state a useful result which is called Witt’s Lemma. Witt’s Lemma is

very important in invariant theory and we shall use this result in our later sections.

Theorem 5.1.5. (Witt’s Lemma on page 81 in [1]). Let V be an orthogonal, sym-

plectic or unitary space. Let U and W be subspaces of V and suppose α : U →W is

an isometry. Then α extends to an isometry of V .
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5.2 Main result in the first case

Theorem 5.2.1. Let x1, . . . , x2n be the dual basis of V ∗ corresponding to the basis

e1, . . . , e2n of V . Suppose S = Fq[x1, . . . , x2n] and U = 〈e1, e2, . . . , em〉 as defined on

page 88. Then SG ∼= Fq[x1, x2, . . . , xm]Sp(U, ξ|U )⊗Fq[xm+1, xm+2, . . . , x2n]Sp(U
⊥, ξ|

U⊥ ).

Proof. First note that ξ|U is non-degenerate on U . Define a map φ : G→ GL(U)×

GL(U⊥) by φ(g) = (g|U , g|U⊥) where g|U (u) = g(u) for all u ∈ U and g|U⊥(w) =

g(w) for w ∈ U⊥. We can check φ is a homomorphism. By Lemma 5.1.2 (i) φ is

injective with Imφ = Sp(U, ξ|U ) × Sp(U⊥, ξ|U⊥). Thus we have G ∼= Sp(U, ξ|U ) ×

Sp(U⊥, ξ|U⊥). Therefore by Lemma 4.1.2 and Lemma 4.2.4,

SG ∼= Fq[x1, x2, . . . , xm]Sp(U, ξ|U ) ⊗ Fq[xm+1, xm+2, . . . , x2n]Sp(U
⊥, ξ|

U⊥ ).

Remark 5.2.2. From the above theorem it is clear that SG is a graded complete

intersection, and so in particular it is Gorenstein and Cohen-Macaulay.

5.3 Research strategies for the second case

Consider U = 〈e1, e3, . . . , e2n−1〉. Here ξ|U is a degenerate alternating form on U

and U = U⊥. Define a homomorphism φ : G→ GL(U) by φ(g) = g|U . By Theorem

5.1.5 φ is onto. If N = Kerφ = {g ∈ G : g(u) = I(u) ∀ u ∈ U}, then G/N ∼= GL(U).

The matrix of N is



1 a12 0 a14 · · · a1 2n−2 0 a1 2n

0 1 0 0 · · · 0 0 0

0 a32 1 a34 · · · a3 2n−2 0 a3 2n

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1 0 0

0 a2n−1 2 0 a2n−1 4 · · · a2n−1 2n−2 1 a2n−1 2n

0 0 0 0 · · · 0 0 1


with a32 = a14, . . . , a2n−1 2 = a1 2n, a54 = a36, . . . , a2n−1 4 = a3 2n, . . . , a2n−1 2n−2 =

a2n−3 2n.
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Let g ∈ N , then xg2 = x2, . . . , x
g
2n = x2n. Now xgi = xi+ something in (V/U)∗

for all odd i in the range 1 ≤ i ≤ 2n− 1, where (V/U)∗ = 〈x2, x4, . . . , x2n〉. Look at

yi =
∏

x∈(V/U)∗
(xi − x) ∈ SN for i = 1, 3, . . . , 2n− 1. Also ξi ∈ SN for 1 ≤ i ≤ n− 1.

Let R = Fq[y1, y3, . . . , y2n−1, x2, x4, . . . , x2n, ξ1, . . . , ξn−1], then R ⊆ SN ⊆ S.

Before stating our next result it should be noted that it shall be convenient to use

cn,i instead of cV/U,i in the following result and in the later section in this chapter.

Lemma 5.3.1. The following n− 1 relations hold in R:

ξq
n−i

i +

n∑
j=1

xq
n−i

2j y2j−1 +

n−i∑
j=1

(−1)j+i+1cn,n−j−iξ
qn−j−i

j +

i−1∑
j=1

(−1)jcn,n−jξ
qn−i

i−j = 0

where 1 ≤ i ≤ n− 1.

Proof. We start by proving the first relation. For simplicity suppose n is even. Since

ξi = x1x
qi

2 − x2x
qi

1 + · · ·+ x2n−1x
qi

2n − x2nx
qi

2n−1,

then

ξq
n−1

1 = xq
n−1

1 xq
n

2 − x
qn−1

2 xq
n

1 + · · ·+ xq
n−1

2n−1x
qn−1

2n − xq
n−1

2n xq
n

2n−1.

Also

yi = xq
n

i − cn,n−1x
qn−1

i + cn,n−2x
qn−2

i − · · · − cn,1xqi + cn,0xi.

Multiplying yi by xq
n−1

i+1 for odd i in the range 1 ≤ i ≤ 2n− 1 and adding ξq
n−1

1 ,

we get

ξq
n−1

1 + xq
n−1

2 y1 + xq
n−1

4 y3 + · · ·+ xq
n−1

2n−2y2n−3 + xq
n−1

2n y2n−1

= xq
n−1

1 xq
n

2 + xq
n−1

3 xq
n

4 + · · ·+ xq
n−1

2n−3x
qn

2n−2 + xq
n−1

2n−1x
qn

2n−

cn,n−1(xq
n−1

1 xq
n−1

2 + xq
n−1

3 xq
n−1

4 + · · ·+ xq
n−1

2n−3x
qn−1

2n−2 + xq
n−1

2n−1x
qn−1

2n )+

cn,n−2(xq
n−2

1 xq
n−1

2 + xq
n−2

3 xq
n−1

4 + · · ·+ xq
n−2

2n−3x
qn−1

2n−2 + xq
n−2

2n−1x
qn−1

2n )−

· · · − cn,1(xq1x
qn−1

2 + xq3x
qn−1

4 + · · ·+ xq2n−3x
qn−1

2n−2 + xq2n−1x
qn−1

2n )+

cn,0(x1x
qn−1

2 + x3x
qn−1

4 + · · ·+ x2n−3x
qn−1

2n−2 + x2n−1x
qn−1

2n ).
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Thus, we have

ξq
n−1

1 +xq
n−1

2 y1+xq
n−1

4 y3+· · ·+xq
n−1

2n−2y2n−3+xq
n−1

2n y2n−1−cn,n−2ξ
qn−2

1 +· · ·+cn,1ξqn−2−cn,0ξn−1

= xq
n−1

1 xq
n

2 + xq
n−1

3 xq
n

4 + · · ·+ xq
n−1

2n−3x
qn

2n−2 + xq
n−1

2n−1x
qn

2n−

cn,n−1(xq
n−1

1 xq
n−1

2 + xq
n−1

3 xq
n−1

4 + · · ·+ xq
n−1

2n−3x
qn−1

2n−2 + xq
n−1

2n−1x
qn−1

2n )+

cn,n−2(xq
n−1

1 xq
n−2

2 + xq
n−1

3 xq
n−2

4 + · · ·+ xq
n−1

2n−3x
qn−2

2n−2 + xq
n−1

2n−1x
qn−2

2n )−

· · · − cn,1(xq
n−1

1 xq2 + xq
n−1

3 xq4 + · · ·+ xq
n−1

2n−3x
q
2n−2 + xq

n−1

2n−1x
q
2n)+

cn,0(xq
n−1

1 x2 + xq
n−1

3 x4 + · · ·+ xq
n−1

2n−3x2n−2 + xq
n−1

2n−1x2n).

Hence we need to show that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq

n−1

1 xq
n

2 +xq
n−1

3 xq
n

4 +· · ·+xq
n−1

2n−3x
qn

2n−2+xq
n−1

2n−1x
qn

2n)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq

n−1

1 xq
n−1

2 +xq
n−1

3 xq
n−1

4 +· · ·+xq
n−1

2n−3x
qn−1

2n−2+xq
n−1

2n−1x
qn−1

2n )

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq

n−1

1 xq
n−2

2 +xq
n−1

3 xq
n−2

4 +· · ·+xq
n−1

2n−3x
qn−2

2n−2+xq
n−1

2n−1x
qn−2

2n )



CHAPTER 5. SUB-SYMPLECTIC INVARIANTS 94

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq

n−1

1 xq2+xq
n−1

3 xq4+· · ·+xq
n−1

2n−3x
q
2n−2+xq

n−1

2n−1x
q
2n)

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq

n−1

1 x2+xq
n−1

3 x4+· · ·+xq
n−1

2n−3x2n−2+xq
n−1

2n−1x2n)

= 0.

Now L.H.S = ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

1 xq
n

2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

1 xq
n−1

2 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

1 xq
n−2

2

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

1 xq2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

1 x2
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+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
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. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

3 xq
n

4

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
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n−2
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n−2

2n−2 xq
n−2

2n

xq
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2 xq
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2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

3 xq
n−1

4 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
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4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

3 xq
n−2

4

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

3 xq4+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

3 x4

+ . . .

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−3x
qn

2n−2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
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...
. . .

...
...

xq
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n−2
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n
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−3x
qn−1

2n−2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3
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n−3
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xq
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−3x
qn−2

2n−2
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− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...
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n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−3x
q
2n−2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
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. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−3x2n−2

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−1x
qn

2n

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−1x
qn−1

2n +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−1x
qn−2

2n

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−1x
q
2n+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq

n−1

2n−1x2n.

Thus by expanding each determinant of L.H.S by the first column in part one,

by the second column in part two and so on, we shall get 0. In the same way we can

do this when n is odd.

Now we prove the last relation. For simplicity suppose n is odd, then

yi = xq
n

i − cn,n−1x
qn−1

i + cn,n−2x
qn−2

i − · · ·+ cn,1x
q
i − cn,0xi.
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Now

ξqn−1 = xq1x
qn

2 − x
q
2x
qn

1 + · · ·+ xq2n−1x
qn

2n − x
q
2nx

qn

2n−1.

Multiplying yi by xqi+1 for odd i in the range 1 ≤ i ≤ 2n − 1 and adding ξqn−1,

we get

ξqn−1 + xq2y1 + xq4y3 + · · ·+ xq2n−2y2n−3 + xq2ny2n−1

= xq1x
qn

2 + xq3x
qn

4 + · · ·+ xq2n−3x
qn

2n−2 + xq2n−1x
qn

2n−

cn,n−1(xq
n−1

1 xq2 + xq
n−1

3 xq4 + · · ·+ xq
n−1

2n−3x
q
2n−2 + xq

n−1

2n−1x
q
2n)+

cn,n−2(xq
n−2

1 xq2 + xq
n−2

3 xq4 + · · ·+ xq
n−2

2n−3x
q
2n−2 + xq

n−2

2n−1x
q
2n)−

· · · − cn,2(xq
2

1 x
q
2 + xq

2

3 x
q
4 + · · ·+ xq

2

2n−3x
q
2n−2 + xq

2

2n−1x
q
2n)+

cn,1(xq1x
q
2 + xq3x

q
4 + · · ·+ xq2n−3x

q
2n−2 + xq2n−1x

q
2n)−

cn,0(x1x
q
2 + x3x

q
4 + · · ·+ x2n−3x

q
2n−2 + x2n−1x

q
2n).

Thus, we have

ξqn−1+xq2y1+xq4y3+· · ·+xq2n−2y2n−3+xq2ny2n−1−cn,n−1ξ
q
n−2+cn,n−2ξ

q
n−3−· · ·−cn,2ξ

q
1+cn,0ξ1

= xq1x
qn

2 + xq3x
qn

4 + · · ·+ xq2n−3x
qn

2n−2 + xq2n−1x
qn

2n−

cn,n−1(xq1x
qn−1

2 + xq3x
qn−1

4 + · · ·+ xq2n−3x
qn−1

2n−2 + xq2n−1x
qn−1

2n )+

cn,n−2(xq1x
qn−2

2 + xq3x
qn−2

4 + · · ·+ xq2n−3x
qn−2

2n−2 + xq2n−1x
qn−2

2n )−

· · · − cn,2(xq1x
q2

2 + xq3x
q2

4 + · · ·+ xq2n−3x
q2

2n−2 + xq2n−1x
q2

2n)+

cn,1(xq1x
q
2 + xq3x

q
4 + · · ·+ xq2n−3x

q
2n−2 + xq2n−1x

q
2n)−

cn,0(xq1x2 + xq3x4 + · · ·+ xq2n−3x2n−2 + xq2n−1x2n).

Hence, we need to show that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq1x

qn

2 + xq3x
qn

4 + · · ·+ xq2n−3x
qn

2n−2 + xq2n−1x
qn

2n)
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−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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. . .
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qn−1
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qn−1

2n )

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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. . .
...
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qn−2
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− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
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2n−2 xq
3
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...
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. . .
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xq
n

2 xq
n
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n

2n−2 xq
n

2n
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(xq1x

q2

2 + xq3x
q2

4 + · · ·+ xq2n−3x
q2

2n−2 + xq2n−1x
q2

2n)

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
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. . .
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4 · · · xq
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2n−2 xq
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2n
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2 xq
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(xq1x

q
2 + xq3x

q
4 + · · ·+ xq2n−3x

q
2n−2 + xq2n−1x

q
2n)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
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. . .
...
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xq
n−1

2 xq
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4 · · · xq
n−1

2n−2 xq
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2n

xq
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n
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n
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n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(xq1x2 + xq3x4 + · · ·+ xq2n−3x2n−2 + xq2n−1x2n)

= 0.
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Now L.H.S = ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2 +
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− . . .
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−
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xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq1x2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−1 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x

qn

4

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x

qn−1

4 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x

qn−2

4
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− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n

xq
3

2 xq
3

4 · · · xq
3

2n−2 xq
3

2n

...
...

. . .
...

...

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x

q2

4 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x

q
4

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq3x4+· · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x

qn

2n−2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x

qn−1

2n−2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x

qn−2

2n−2

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n

xq
3

2 xq
3

4 · · · xq
3

2n−2 xq
3

2n

...
...

. . .
...

...

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x

q2

2n−2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x

q
2n−2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−3x2n−2+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x

qn

2n
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−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n
...

...
. . .

...
...

xq
n−2

2 xq
n−2

4 · · · xq
n−2

2n−2 xq
n−2

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x

qn−1

2n +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

...
...

. . .
...

...

xq
n−3

2 xq
n−3

4 · · · xq
n−3

2n−2 xq
n−3

2n

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x

qn−2

2n

− . . .

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq2 xq4 · · · xq2n−2 xq2n

xq
3

2 xq
3

4 · · · xq
3

2n−2 xq
3

2n

...
...

. . .
...

...

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x

q2

2n+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x4 · · · x2n−2 x2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x

q
2n

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xq2 xq4 · · · xq2n−2 xq2n

xq
2

2 xq
2

4 · · · xq
2

2n−2 xq
2

2n

...
...

. . .
...

...

xq
n−1

2 xq
n−1

4 · · · xq
n−1

2n−2 xq
n−1

2n

xq
n

2 xq
n

4 · · · xq
n

2n−2 xq
n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xq2n−1x2n.

Thus by expanding each determinant of L.H.S by the first column in part one,

by the second column in part two and so on, we shall get 0. In the same way we can

do this when n is even.

Similarly, we can verify the rest of the relations.

5.4 The Computation of the invariant ring SN

Let S = Fq[x1, . . . , x2n] and N = {g ∈ G : g(u) = u ∀ u ∈ U} as defined on

page 90. In this section we show that the generators and relators found above give

a presentation of SN . Before doing this we discuss an earlier failed attempt at a

proof. Our earlier attempt worked in dimension 4 but failed in dimension 6. The

investigation is described in the following results. The reader interested only in the
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general case may skip Theorem 5.4.3, Theorem 5.4.4 and Remark 5.4.5. The next

two results formed a part of our failed proof but are also essential for establishing

the presentation in general.

Lemma 5.4.1. Let R = Fq[y1, y3, . . . , y2n−1, x2, . . . , x2n, ξ1, . . . , ξn−1] and

S = Fq[x1, . . . , x2n]. Then S is integral over R.

Proof. For xi ∈ S, where i = 2, 4, . . . , 2n, there exist polynomials Pi(X) = X − xi ∈

R[X] such that Pi(xi) = 0. Also for xj ∈ S, where j = 1, 3, . . . , 2n− 1, there exist

polynomials Pj(X) = D(V/U)(X − xj) ∈ R[X] such that Pj(xj) = 0.

Theorem 5.4.2. Let R = Fq[y1, y3, . . . , y2n−1, x2, . . . , x2n, ξ1, . . . , ξn−1] and S =

Fq[x1, . . . , x2n], then ff(R) = ff(SN ).

Proof. Since R ⊆ SN ⊆ S, then obviously ff(R) ⊆ ff(SN ). Thus we need to

show that ff(SN ) ⊆ ff(R). For this we need to check that ff(R) ⊆ ff(S) is a

finite separable normal field extension. The polynomials Pj(X) = D
(V/U)

(X − xj) for

j = 1, 3, . . . , 2n− 1 split over ff(S), where Pj(X) ∈ R[X], and it is easy to see

that ff(S) = ff(R)(x1, x3, . . . , x2n−1). Thus by definition ff(S) is the splitting

field for these polynomials and so by Theorem 4.3.4 the extension ff(R) ⊆ ff(S) is

finite and normal. Now the elements x1, x3, . . . , x2n−1 are separable. Therefore by

Theorem 4.3.7 the extension ff(R) ⊆ ff(S) is separable. Let H be the Galois group

of the field extension ff(R) ⊆ ff(S). On the other hand Proposition 4.3.13 shows

that the field extension ff(SN ) ⊆ ff(S) is Galois with Galois group N . Thus by

Theorem 4.3.12 N ⊆ H. Let R
′

= Fq[y1, . . . , y2n−1, x2, . . . , x2n] and H
′
be the Galois

group of the field extension ff(R
′
) ⊆ ff(S). If we take U = 〈e1, e3, . . . , e2n−1〉 and

G
′

= {g ∈ GL(V ) : gU = U}, then from section 4.6 part (ii) we have H
′

= {g ∈

G
′

: gu = u ∀ u ∈ U and gv − v ∈ U ∀ v ∈ V }. By Theorem 4.3.12 H ⊆ H
′
. On

the other hand ξh1 = ξ1 for all h ∈ H. Thus by Lemma 2.2.3 it follows that H ⊆ N .

Therefore H = N and so by Theorem 4.3.12 ff(R) = ff(SN ).

Our first attempt to establish the presentation applied to the case n = 2.
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Theorem 5.4.3. Let S = Fq[x1, x2, x3, x4] where x1, x2, x3, x4 is the dual basis of

V ∗ corresponding to the basis e1, e2, e3, e4 of V . If R = Fq[y1, y3, x2, x4, ξ1], then R

is integrally closed.

Proof. We introduce formal variables Y1, Y3, X2, X4,Ξ1 and define a map

φ : T = Fq[Y1, Y3, X2, X4,Ξ1]→ R

by sending Yi to yi, Xi to xi and Ξ1 to ξ1. Obviously this is an epimorphism and so

T/Kerφ ∼= R. Let

ρ = Ξq1 − Ξ1C2,0 + Y1X
q
2 + Y3X

q
4 . (5.1)

Now T/Kerφ is an integral domain and T/Kerφ ⊆ S. Thus by Lemma 4.4.4

dim(T/Kerφ) ≤ 4. Let R
′

= Fq[y1, y3, x2, x4]. Now the polynomials Pj(X) =

D
(V/U)

(X − xj) for j = 1, 3 split over ff(S), where Pj(X) ∈ R′ [X], and it is easy to

see that ff(S) = ff(R
′
)(x1, x3). Thus by definition ff(S) is the splitting field for

these polynomials and so by Theorem 4.3.4 the extension ff(R
′
) ⊆ ff(S) is finite

and normal. Now the elements x1, x3 are separable. Therefore by Theorem 4.3.7 the

extension ff(R
′
) ⊆ ff(S) is separable. Since the extension ff(R

′
) ⊆ ff(S) is finite

and separable, so by the remark after Proposition 4.4.5 we have that y1, y3, x2, x4

are algebraically independent. Since R
′ ⊆ T/Kerφ, therefore again by Lemma 4.4.4

dim(T/Kerφ) ≥ 4. It follows that dim(T/Kerφ) = 4. Note that 〈ρ〉 ⊆ Kerφ. We

need to show that Kerφ = 〈ρ〉. By Proposition 3.5.7, htKerφ = 1, so by Lemma

3.5.6 Kerφ is a principal ideal. Also ρ is irreducible because if we consider it as a

polynomial in Y1, it is linear in Y1 and the coefficient Xq
2 of Y1 does not divide all

the other terms. Therefore, we have Kerφ = 〈ρ〉. Let X4 + 〈ρ〉 = X̂4 and consider

the localization T/〈ρ〉[X̂4
−1

] of T/〈ρ〉. Then

T/〈ρ〉[X̂4
−1

] = Fq[Ŷ1, X̂2, X̂4, X̂4
−1
, Ξ̂1]

as the relation ρ enables us to express Ŷ3 in terms of Ŷ1, X̂2, X̂4, Ξ̂1 and X̂4
−1

and so eliminate Ŷ3 from the generators of the ring. Note that the images of
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Y1, X2, X4, and Ξ1 in T/〈ρ〉 are algebraically independent as the only relations im-

posed on T/〈ρ〉 are multiples of ρ. Hence the sub-algebra L of T/〈ρ〉 generated by

the images of Y1, X2, X4, and Ξ1 is a polynomial algebra. But

L[X̂4
−1

] = T/〈ρ〉[X̂4
−1

].

Thus we see that T/〈ρ〉[X̂4
−1

] is a UFD, being a localization of a polynomial ring .

We observe that

T/〈ρ〉/〈X̂4〉 ∼= T/〈X4, ρ〉

= Fq[Y1, Y3, X2, X4,Ξ1]/〈X4, ρ〉

∼= Fq[Y1, Y3, X2,Ξ1]/〈Ξq1 + Y1X
q
2〉

where ρ0 = Ξq1 + Y1X
q
2 is irreducible since ρ0 is linear in Y1 and the coefficient Xq

2

of Y1 does not divide the other term Ξq1. Now since Fq[Y1, Y3, X4,Ξ1] is a UFD, by

Lemma 3.4.6, ρ0 is prime. Therefore Fq[Y1, Y3, X2,Ξ1]/〈Ξq1 + Y1X
q
2〉 is an integral

domain and so by Lemma 3.4.8 T/〈ρ〉 is a UFD. This completes the proof.

Theorem 5.4.4. Let S = Fq[x1, x2, x3, x4] as in the above lemma, then SN =

Fq[y1, y3, x2, x4, ξ1].

Proof. Follows from Lemma 5.4.1, Theorem 5.4.2, Theorem 5.4.3 and Lemma 4.2.2.

This completes the proof when n = 2 but does not solve the problem when n = 3

Remark 5.4.5. The case n = 3. Let S = Fq[x1, x2, x3, x4, x5, x6] where x1, x2, x3, x4, x5,

x6 is the dual basis of V ∗ corresponding to the basis e1, e2, e3, e4, e5, e6 of V . Let

R = Fq[y1, y3, y5, x2, x4, x6, ξ1, ξ2]. We are going to show that the method used in

Theorem 5.4.3 to show that R is integrally closed does not work here. We introduce

formal variables Y1, Y3, Y5, X2, X4, X6, Ξ1,Ξ2 and define a map

φ : T = Fq[Y1, Y3, Y5, X2, X4, X6,Ξ1,Ξ2]→ R

by sending Yi to yi, Xi to xi and Ξi to ξi. Obviously this is an epimorphism and so

T/Kerφ ∼= R. Let

ρ1 = Ξq
2

1 +Xq2

2 Y1 +Xq2

4 Y3 +Xq2

6 Y5 + C3,0Ξ2 − C3,1Ξq1 (5.2)
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and

ρ2 = Ξq2 +Xq
2Y1 +Xq

4Y3 +Xq
6Y5 + C3,0Ξ1 − C3,2Ξq1. (5.3)

We need to show that Kerφ = 〈ρ1, ρ2〉. Since 〈ρ1, ρ2〉 ⊆ Kerφ, we have

W = T/〈ρ1, ρ2〉
ψ
� T/Kerφ ⊆ SN .

Now T/Kerφ is an integral domain and it has Krull dimension 6. We would like to

prove that W is an integral domain of Krull dimension 6. Note that ρ1 and ρ2 can

be written as:

ρ1 ≡ Ξq
2

1 mod〈X2, X4, X6〉

and

ρ2 ≡ Ξq2 mod〈Y1, Y3, Y5,Ξ1〉.

It follows that ρ1, ρ2 is a regular sequence. Thus by Theorem 3.7.13 dimW = 6.

Equation(5.2) and Equation(5.3) can be written in matrix form as follows:

 X̂q2

2 X̂q2

4

X̂q
2 X̂q

4

 Ŷ1

Ŷ3

 =

 −Ξ̂q
2

1 − X̂
q2

6 Ŷ5 − Ĉ3,0Ξ̂2 + Ĉ3,1Ξ̂q1

−Ξ̂q2 − X̂
q
6 Ŷ5 − Ĉ3,0Ξ̂1 + Ĉ3,2Ξ̂q1

 .
Let

∆ =

 Xq2

2 Xq2

4

Xq
2 Xq

4

 and let δ = |∆|.

Since X2, X6,Ξ1,Ξ2 and X4, X6,Ξ1,Ξ2 are regular sequences, by Theorem 3.6.3 and

Lemma 3.6.6 Xq2

2 Xq
4 , X6,Ξ

q2

1 ,Ξ
q
2 is a regular sequence. Thus by Lemma 3.6.4 and

Lemma 3.6.5 it follows that ρ1, ρ2, δ is a regular sequence. To show that W is an

integral domain we need to show that the localization W [δ̂−1] is an integral domain.

Now

W [δ̂−1] = Fq[Ŷ5, X̂2, X̂4, X̂6, Ξ̂1, Ξ̂2, δ̂
−1]

since ρ1 and ρ2 enable us to express Ŷ1 and Ŷ3 in terms of Ŷ5, X̂2, X̂4, X̂6, Ξ̂1, Ξ̂2, δ̂
−1

and so eliminate Ŷ1 and Ŷ3 from the generators of the ring. Note that the images

of Y5, X2, X4, X6,Ξ1,Ξ2 in W are algebraically independent. Hence the sub-algebra

U generated by the images of Y5, X2, X4, X6,Ξ1,Ξ2 is a polynomial algebra. But
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U [δ̂−1] = W [δ̂−1]. Thus we see that W [δ̂−1] is a UFD, being a localization of a

polynomial ring. In particular, W is an integral domain. Thus we deduce that ψ

is an isomorphism. To prove W is integrally closed we would like to know that δ̂

generates a prime ideal in W . That is, we want to prove that T/〈ρ1, ρ2, δ〉 is an

integral domain. From Equation(5.2) and Equation(5.3), we get

(Xq2

2 Ξq2 −X
q
2Ξq

2

1 +Xq2

2 C3,0Ξ1 −Xq
2C3,0Ξ2 −Xq2

2 C3,2Ξq1 +Xq
2C3,1Ξq1) + 〈ρ1, ρ2, δ〉

= (Xq
2X

q2

6 −X
q2

2 Xq
6)Y5 + 〈ρ1, ρ2, δ〉.

Let δ
′

= Xq
2X

q2

6 −X
q2

2 Xq
6 . If ρ1, ρ2, δ, δ

′
is a regular sequence and if the images of

Y3, X2, X4, X6,Ξ1,Ξ2 in T/〈ρ1, ρ2, δ〉 are algebraically independent then T/〈ρ1, ρ2, δ〉

is an integral domain by the argument above. But ρ1, ρ2, δ, δ
′

is not a regular se-

quence because X2 appears in both δ and δ
′
, and the images of Y3, X2, X4, X6,Ξ1,Ξ2

in T/〈ρ1, ρ2, δ〉 are not algebraically independent because δ = Xq2

2 Xq
4 −X

q
2X

q2

4 and

so X̂q2

2 X̂q
4 − X̂

q
2X̂

q2

4 = 〈ρ1, ρ2, δ〉. Thus our method fails here.

Similarly if we consider

∆ =

 Xq2

2 Xq2

6

Xq
2 Xq

6

 or ∆ =

 Xq2

4 Xq2

6

Xq
4 Xq

6

 .
Then δ = Xq2

2 Xq
6 −X

q
2X

q2

6 or δ = Xq2

4 Xq
6 −X

q
4X

q2

6 . In both cases we can show that

ρ1, ρ2, δ is a regular sequence. If δ = Xq2

2 Xq
6 −X

q
2X

q2

6 , then from Equation(5.2) and

Equation(5.3) we get δ
′

= Xq2

4 Xq
6−X

q
4X

q2

6 but since X6 appears in both δ and δ
′
, we

see that ρ1, ρ2, δ, δ
′
is not a regular sequence. Also the images of Y1, X2, X4, X6,Ξ1,Ξ2

in T/〈ρ1, ρ2, δ〉 are not algebraically independent because δ = Xq2

2 Xq
6 −X

q
2X

q2

6 and

so X̂q2

2 X̂q
6 − X̂

q
2X̂

q2

6 = 〈ρ1, ρ2, δ〉. Now if δ = Xq2

4 Xq
6 − X

q
4X

q2

6 , then from Equa-

tion(5.2) and Equation(5.3) we get δ
′

= Xq
2X

q2

4 − X
q2

2 Xq
4 but since X4 appears in

both δ and δ
′
, we see that ρ1, ρ2, δ, δ

′
is not a regular sequence. Also the images

of Y5, X2, X4, X6,Ξ1,Ξ2 in T/〈ρ1, ρ2, δ〉 are not algebraically independent because

δ = Xq2

4 Xq
6 −X

q
4X

q2

6 and so X̂q2

4 X̂q
6 − X̂

q
4X̂

q2

6 = 〈ρ1, ρ2, δ〉.

Now if we insert one more generator ξ3 into R, then

R = Fq[y1, y3, y5, x2, x4, x6, ξ1, ξ2, ξ3].
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We get one more relation which is as follows:

ξ3 + x2y1 + x4y3 + x6y5 + c3,1ξ1 − c3,2ξ2 = 0.

In the same way we introduce formal variables Y1, Y3, Y5, X2, X4, X6, Ξ1,Ξ2,Ξ3 and

define a map

φ : T = Fq[Y1, Y3, Y5, X2, X4, X6,Ξ1,Ξ2,Ξ3]→ R

by sending Yi to yi, Xi to xi and Ξi to ξi. Obviously this is an epimorphism and so

T/Kerφ ∼= R. Let

ρ3 = Ξ3 +X2Y1 +X4Y3 +X6Y5 + C3,1Ξ1 − C3,2Ξ2. (5.4)

We need to show that Kerφ = 〈ρ1, ρ2, ρ3〉. Since 〈ρ1, ρ2, ρ3〉 ⊆ Kerφ, so we have

W = T/〈ρ1, ρ2, ρ3〉
ψ
� T/Kerφ ⊆ SN .

Now T/Kerφ is an integral domain and it has Krull dimension 6. We would like to

prove that W is an integral domain of Krull dimension 6. For this ρ3 can be written

as

ρ3 ≡ Ξ3 mod 〈Y1, Y3, Y5,Ξ1,Ξ2〉.

Thus it follows that ρ1, ρ2, ρ3 is a regular sequence. So by Theorem 3.7.13 dimW = 6.

Equation(5.2), Equation(5.3) and Equation(5.4) can be written in matrix form as

follows:


X̂q2

2 X̂q2

4 X̂q2

6

X̂q
2 X̂q

4 X̂q
6

X̂2 X̂4 X̂6



Ŷ1

Ŷ3

Ŷ5

 =


−Ξ̂q

2

1 − Ĉ3,0Ξ̂2 + Ĉ3,1Ξ̂q1

−Ξ̂q2 − Ĉ3,0Ξ̂1 + Ĉ3,2Ξ̂q1

−Ξ̂3 − Ĉ3,1Ξ̂1 + Ĉ3,2Ξ̂2

 .
Suppose

∆ =


Xq2

2 Xq2

4 Xq2

6

Xq
2 Xq

4 Xq
6

X2 X4 X6

 and let δ = |∆|.

By Theorem 3.6.3, Lemma 3.6.4, Lemma 3.6.5 and Lemma 3.6.6 we see that ρ1, ρ2, ρ3,

δ is a regular sequence. To show that W is an integral domain we need to show that
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the localization W [δ̂−1] is an integral domain. Now

W [δ̂−1] = Fq[X̂2, X̂4, X̂6, Ξ̂1, Ξ̂2, Ξ̂3, δ̂
−1]

since ρ1, ρ2 and ρ3 enable us to express Ŷ1, Ŷ3 and Ŷ5 in terms of X̂2, X̂4, X̂6, Ξ̂1,

Ξ̂2, Ξ̂3 and δ̂−1 and so eliminate Ŷ1, Ŷ3 and Ŷ5 from the generators of the ring. Note

that the images of X2, X4, X6,Ξ1,Ξ2 and Ξ3 in W are algebraically independent.

Hence the sub-algebra U generated by the images of X2, X4, X6,Ξ1,Ξ2 and Ξ3 is a

polynomial algebra. But U [δ̂−1] = W [δ̂−1]. Thus we see that W [δ̂−1] is a UFD, being

a localization of a polynomial ring. In particular, W is an integral domain. Thus

we deduce that ψ is an isomorphism. To prove that W is integrally closed we would

like to know that δ̂ generates a prime ideal in W . That is, we want to prove that

T/〈ρ1, ρ2, ρ3, δ〉 is an integral domain. For this, from Equation(5.2), Equation(5.3)

and Equation(5.4) we get

(Xq
2X

q2

4 −X
q2

2 Xq
4)Ξ3 + 〈ρ1, ρ2, ρ3, δ〉

= ((Xq2

4 −X
q2−1
2 X4)(X2Ξq2 +X2C3,0Ξ1 −Xq

2C3,1Ξ1 −X2C3,2Ξq1 +Xq
2C3,2Ξ2)+

(X2X
q
4−X

q
2X4)(−Ξq

2

1 −C3,0Ξ2+C3,1Ξq1+Xq2−1
2 C3,1Ξ1−Xq2−1

2 C3,2Ξ2))+〈ρ1, ρ2, ρ3, δ〉.

Let δ
′

= Xq
2X

q2

4 − Xq2

2 Xq
4 . If ρ1, ρ2, ρ3, δ, δ

′
is a regular sequence and if the im-

ages Y5, X2, X4, X6,Ξ1,Ξ2 in T/〈ρ1, ρ2, ρ3, δ, 〉 are algebraically independent then

T/〈ρ1, ρ2, ρ3, δ〉 is an integral domain by the argument above. But ρ1, ρ2, ρ3, δ, δ
′

is a

not a regular sequence because X2 and X4 appear in both δ and δ
′
, and the images of

Y5, X2, X4, X6,Ξ1,Ξ2 in T/〈ρ1, ρ2, ρ3, δ〉 are not algebraically independent because

δ = Xq2

2 Xq
4X6 −Xq2

2 X4X
q
6 −X

q
2X

q2

4 X6 +X2X
q2

4 Xq
6 +Xq

2X4X
q2

6 −X2X
q
4X

q2

6

and so

X̂q2

2 X̂q
4X̂6−X̂q2

2 X̂4X̂
q
6−X̂

q
2X̂

q2

4 X̂6+X̂2X̂
q2

4 X̂q
6+X̂q

2X̂4X̂
q2

6 −X̂2X̂
q
4X̂

q2

6 = 〈ρ1, ρ2, δ, δ
′〉.

Thus again our method fails here.
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Establishing the presentation in the general case

Now we state the result, to be found in Matsumura [30], which we use to show that

R = Fq[y1, y3, . . . y2n−1, x2, x4, . . . , x2n, ξ1, . . . ξn−1]

is integrally closed in the general case for all n ≥ 2.

Lemma 5.4.6. (Theorem 20.2 in [30]). Let R be a Noetherian integral domain, Γ

a set of prime elements of R, and let S be the multiplicative set generated by Γ. If

S−1R is a unique factorization domain then so is R.

Theorem 5.4.7. Let S = Fq[x1, . . . , x2n] where x1, . . . , x2n is the dual basis of V ∗

corresponding to the basis e1, . . . , e2n of V . If

R = Fq[y1, y3, . . . , y2n−1, x2, x4, . . . , x2n, ξ1, . . . , ξn−1],

then R is integrally closed.

Proof. We introduce formal variables Y1, Y3, . . . , Y2n−1, X2, X4, . . . , X2n,Ξ1, . . . ,Ξn−1

and define a map

φ : T = Fq[Y1, Y3, . . . , Y2n−1, X2, X4, . . . , X2n,Ξ1, . . . ,Ξn−1]→ R

by sending Yi to yi, Xi to xi and Ξi to ξi. This is an epimorphism and T/Kerφ ∼= R.

Let

ρi = Ξq
n−i

i +
n∑
j=1

Xqn−i

2j Y2j−1 +

n−i∑
j=1

(−1)j+i+1Cn,n−j−iΞ
qn−j−i

j +
i−1∑
j=1

(−1)jCn,n−jΞ
qn−i

i−j

(5.5)

where 1 ≤ i ≤ n − 1. We need to show that Kerφ = 〈ρ1, . . . , ρn−1〉. Since

〈ρ1, . . . , ρn−1〉 ⊆ Kerφ, so we have

W = T/〈ρ1, . . . , ρn−1〉
ψ
� T/Kerφ ⊆ SN .

We need to prove that ψ is an isomorphism. We know that T/Kerφ is an inte-

gral domain and T/Kerφ ⊆ S. Thus by Lemma 4.4.4 dim(T/Kerφ) ≤ 2n. Let
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R
′

= Fq[y1, . . . , y2n−1, x2, . . . , x2n]. Now the polynomials Pj(X) = D
(V/U)

(X − xj) for

j = 1, 3, . . . , 2n− 1 split over ff(S), where Pj(X) ∈ R
′
[X], and it is easy to see

that ff(S) = ff(R
′
)(x1, x3, . . . , x2n−1). Thus by definition ff(S) is the splitting

field for these polynomials and so by Theorem 4.3.4 the extension ff(R
′
) ⊆ ff(S)

is finite and normal. Now the elements x1, x3, . . . , x2n−1 are separable. Therefore

by Theorem 4.3.7 the extension ff(R
′
) ⊆ ff(S) is separable. Since the exten-

sion ff(R
′
) ⊆ ff(S) is finite and separable, so by the remark after Proposition

4.4.5 we have that y1, . . . , y2n−1, x2, . . . , x2n are algebraically independent. Since

R
′ ⊆ T/Kerφ, therefore again by Lemma 4.4.4 dim(T/Kerφ) ≥ 2n. It follows that

dim(T/Kerφ) = 2n. We would like to prove that W is an integral domain of Krull

dimension 2n. Since from Equation(5.5) we have

ρi ≡ Ξq
n−i

i mod〈X2, . . . , X2n〉

it follows that

ρi ≡ Ξq
n−i

i mod〈X2, . . . , X2n,Ξ1, . . . ,Ξi−1〉. (5.6)

Now

X2, . . . , X2n,Ξ1, . . . ,Ξn−1

is a regular sequence. By Theorem 3.6.3

X2, . . . , X2n,Ξ1, . . . ,Ξ
q
n−1

is a regular sequence. Thus by Equation(5.6)

X2, . . . , X2n,Ξ1, . . . ,Ξn−2, ρn−1

is a regular sequence. Again by Theorem 3.6.3

X2, . . . , X2n,Ξ1, . . . ,Ξ
q2

n−2, ρn−1

is a regular sequence. Thus again by Equation(5.6)

X2, . . . , X2n,Ξ1, . . . ,Ξn−3, ρn−2, ρn−1
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is a regular sequence. By continuing the process we eventually get that

X2, . . . , X2n, ρ1, . . . , ρn−1

is a regular sequence. So by Lemma 3.6.4 it follows that

ρ1, . . . , ρn−1, X2, . . . , X2n

is a regular sequence. Thus it follows that ρ1, . . . , ρn−1 is a regular sequence. There-

fore by Theorem 3.7.13 dimW = 2n. Write x̂ for the coset x+ 〈ρ1, . . . , ρn−1〉 where

x ∈ T . Then Equation(5.5) can be written in matrix form as follows:
X̂qn−1

2 X̂qn−1

4 . . . X̂qn−1

2n−2

X̂qn−2

2 X̂qn−2

4 . . . X̂qn−2

2n−2

...
...

. . .
...

X̂q
2 X̂q

4 . . . X̂q
2n−2




Ŷ1

Ŷ3

...

Ŷ2n−3



=


−Ξ̂q

n−1

1 − X̂qn−1

2n Ŷ2n−1 −
∑n−1

j=1 (−1)j+2Ĉn,n−j−1Ξ̂q
n−j−1

j

−Ξ̂q
n−2

2 − X̂qn−2

2n Ŷ2n−1 −
∑n−2

j=1 (−1)j+3Ĉn,n−j−2Ξ̂q
n−j−2

j + Ĉn,n−1Ξ̂q
n−2

1

...

−Ξ̂qn−1 − X̂
q
2nŶ2n−1 − (−1)n+1Ĉn,0Ξ̂1 −

∑n−2
j=1 (−1)jĈn,n−jΞ̂

q
n−j−1

 .

Suppose

∆ =


Xqn−1

2 Xqn−1

4 . . . Xqn−1

2n−2

Xqn−2

2 Xqn−2

4 . . . Xqn−2

2n−2

...
...

. . .
...

Xq
2 Xq

4 . . . Xq
2n−2

 and let δ = |∆|

Now as above

ρ1, . . . , ρn−1, X2, . . . , X2n

is a regular sequences. Let λn−1 6= 0, then it follows that

ρ1, . . . , ρn−1, X2, . . . , X2n−4,

n−1∑
i=1

λiX2i
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is a regular sequence. So by Lemma 3.6.4 it follows that

ρ1, . . . , ρn−1,
n−1∑
i=1

λiX2i, X2, . . . , X2n−4

is a regular sequence. It follows that

ρ1, . . . , ρn−1,
n−1∑
i=1

λiX2i

is a regular sequence. Now by comparing the definition of δ with the construction

of the Dickson invariants in section 2.1, we see that δ is a product of non-zero linear

combinations of X2, . . . , X2n−2. Thus by Lemma 3.6.6 it follows that ρ1, . . . , ρn−1, δ

is a regular sequences. To show that W is an integral domain we need to show that

the localization W [δ̂−1] is an integral domain. Now

W [δ̂−1] = Fq[Ŷ2n−1, X̂2, X̂4, . . . , X̂2n, Ξ̂1, . . . , Ξ̂n−1, δ̂
−1]

since the ρi enable us to express Ŷ1, . . . , Ŷ2n−3 in terms of X̂2, X̂4, . . . , X̂2n, Ξ̂1, . . . , Ξ̂n−1

and δ̂−1 and so eliminate Ŷ1, . . . , Ŷ2n−3 from the generators of the ring. Notice that

the images of Y2n−1, X2, X4, . . . X2n,Ξ1, . . . ,Ξn−1 in W are algebraically indepen-

dent. Hence the sub-algebra U generated by the images of Y2n−1, X2, X4, . . . X2n,

Ξ1, . . . ,Ξn−1 is a polynomial algebra. But U [δ̂−1] = W [δ̂−1]. Thus we see that

W [δ̂−1] is a UFD, being a localization of a polynomial ring. In particular, W is

an integral domain. By using Proposition 3.5.7 we have htKerψ = 0 and so we

deduce that ψ is an isomorphism. Let Γ = {X̂2, X̂4, . . . , X̂2n} and let S be the mul-

tiplicative set generated by all non-zero linear combinations of X̂2, X̂4, . . . , X̂2n. To

prove that W is integrally closed we use Lemma 5.4.6. We need to show that each

non-zero linear combination
∑n

i=1 λiX̂2i of elements of Γ is prime in W and that

S−1W is a unique factorization domain. By symmetry it is sufficient to show that∑n
i=1 λiX̂2i is prime when λn 6= 0. To see this note that if σ is any permutation of

{1, . . . , n} then the map e2i 7→ e2σ(i), e2i−1 7→ e2σ(i)−1 preserves the symplectic form

and induces the map x2i 7→ x2σ−1(i), x2i−1 7→ x2σ−1(i)−1 on V ∗. Therefore given an

arbitrary linear combination we can choose a permutation preserving the invariants

and moving it to one in which λn 6= 0. To prove that
∑n

i=1 λiX̂2i is prime in W we
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need to show that T/〈ρ1, . . . , ρn−1,
∑n

i=1 λiX2i〉 is an integral domain. Write x̄ for

the coset x+ 〈ρ1, . . . , ρn−1,
∑n

i=1 λiX2i〉 where x ∈ T . Then again Equation(5.5) can

be written in matrix form as follows:
X̄qn−1

2 X̄qn−1

4 . . . X̄qn−1

2n−2

X̄qn−2

2 X̄qn−2

4 . . . X̄qn−2

2n−2

...
...

. . .
...

X̄q
2 X̄q

4 . . . X̄q
2n−2




Ȳ1

Ȳ3

...

Ȳ2n−3



=


−Ξ̄q

n−1

1 − X̄qn−1

2n Ȳ2n−1 −
∑n−1

j=1 (−1)j+2C̄n,n−j−1Ξ̄q
n−j−1

j

−Ξ̄q
n−2

2 − X̄qn−2

2n Ȳ2n−1 −
∑n−2

j=1 (−1)j+3C̄n,n−j−2Ξ̄q
n−j−2

j + C̄n,n−1Ξ̄q
n−2

1

...

−Ξ̄qn−1 − X̄
q
2nȲ2n−1 − (−1)n+1C̄n,0Ξ̄1 −

∑n−2
j=1 (−1)jC̄n,n−jΞ̄

q
n−j−1

 .

Now again as above

ρ1, . . . , ρn−1, X2, . . . , X2n

is a regular sequence. Thus for λn−1 and λn 6= 0 it follows that

ρ1, . . . , ρn−1,
n−1∑
i=1

λiX2i,
n∑
i=1

λiX2i

is a regular sequence. Just as in the argument to show that ρ1, . . . , ρn−1, δ is a regular

sequence, we again use the fact that by comparing with the construction in section

2.1 we know that δ is a product of non-zero linear combinations of X2, . . . , X2n−2.

Thus it follows that

ρ1, . . . , ρn−1, δ,
n∑
i=1

λiX2i

is a regular sequence. By Lemma 3.6.4 it follows that

ρ1, . . . , ρn−1,

n∑
i=1

λiX2i, δ

is a regular sequence. Let W
′

= T/〈ρ1, . . . , ρn−1,
∑n

i=1 λiX2i〉. To show that W
′

is an integral domain it is sufficient to show that the localization W
′
[δ̄−1] is an

integral domain. Now since the ρi enable us to express Ȳ1, . . . , Ȳ2n−3 in terms of

X̄2, X̄4, . . . , X̄2n−2, Ξ̄1, . . . , Ξ̄n−1 and δ̄−1 so we get

W
′
[δ̄−1] = Fq[X̄2, X̄4, . . . , X̄2n−2, Ξ̄1, . . . , Ξ̄n−1, Ȳ2n−1, δ̄

−1]
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Note that the images ofX2, X4, . . . X2n−2,Ξ1, . . . ,Ξn−1, Y2n−1 inW
′
are algebraically

independent. Hence the sub-algebra U
′
generated by the images of X2, X4, . . . X2n−2,

Ξ1, . . . ,Ξn−1, Y2n−1 is a polynomial algebra. It is clear that U
′
[δ̄−1] = W

′
[δ̄−1], hence

we see that W
′
[δ̄−1] is a UFD, being a localization of a polynomial ring. In particular,

W
′

is an integral domain. Now

S−1W = S−1Fq[X̂2, X̂4, . . . , X̂2n, Ξ̂1, . . . , Ξ̂n−1, Ŷ2n−1]

since δ̂ ∈ S and so the ρi enable us to express Ŷ1, . . . , Ŷ2n−3 in terms of X̂2, X̂4, . . . , X̂2n,

Ξ̂1, . . . , Ξ̂n−1 and δ̂−1. It should be noted the images of X2, X4, . . . X2n,Ξ1, . . . ,Ξn−1,

Y2n−1 in W are algebraically independent. Hence the sub-algebra U generated by the

images of X2, X4, . . . X2n, Ξ1, . . . ,Ξn−1, Y2n−1 is a polynomial algebra. It is easy to

see that S−1U = S−1W , hence S−1W is a UFD, being a localization of a polynomial

ring.

Theorem 5.4.8. Let S = Fq[x1, . . . , x2n] where x1, . . . , x2n is the dual basis of V ∗

corresponding to the basis e1, . . . , e2n of V . Then

SN = Fq[y1, y3, . . . y2n−1, x2, x4, . . . , x2n, ξ1, . . . ξn−1].

Proof. Follows from Lemma 5.4.1, Theorem 5.4.2, Theorem 5.4.7 and Lemma 4.2.2.

Remark 5.4.9. It can be easily seen from the above theorem and Lemma 5.3.1 that

SN is a graded complete intersection, and so in particular it is Gorenstein and

Cohen-Macaulay.

Remark 5.4.10. We still do not know about SG in our second case. Thus this problem

is still open.



Chapter 6

Invariant rings of orthogonal

groups over F2l

Let V be a vector space over the field F2. We know SG where S = F2[V ] and G is the

orthogonal group preserving a non-singular quadratic form on V . It was computed

by Kropholler, Mohseni Rajaei and Segal in [24]. In this chapter we generalize some

of their results which will help us to compute SG over any finite field of characteristic

2.

6.1 The Steenrod algebra and Chern polynomials

Let V be a vector space over the field F2l and S = F2l [V ].

Definition 6.1.1. The Steenrod algebra is an F2l-algebra generated by elements

P i, for i ≥ 0 where P i is homogeneous of degree (2l − 1)i. The action on S is

determined by the following facts.

(i) P0 acts as the identity operation on S.

(ii) Each P i is a linear transformation.

(iii) For all x ∈ V ∗, P1(x) = x2l and Pn(x) = 0 for n ≥ 2.

115
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(iv) The Cartan formula holds: for all s and t in S,

Pn(st) =

n∑
i=0

(P is)(Pn−it).

(v) For any homogeneous element s of S of degree d, Pd(s) = s2l and Pj(s) = 0 if

j > d.

(vi) The total Steenrod operation P• = P0 +P1 +P2 + . . . acts as a ring endomor-

phism of S.

Definition 6.1.2. Suppose that S is a non-empty subset of V ∗ which contains d

elements. The Chern polynomial associated to S is the polynomial∏
x∈S, λ∈F ∗

2l

(X + λx).

Let’s write fi for the coefficient of X(2l−1)d−i so that∏
x∈S, λ∈F ∗

2l

(X + λx) = f0X
(2l−1)d + f1X

(2l−1)d−1 + · · ·+ f(2l−1)d.

Let’s write f∞ =
∏
x∈S

x. Then f2l−1
∞ = f(2l−1)d.

Lemma 6.1.3. For each i in the range 0 ≤ i ≤ d,

P i(f∞) = f∞f(2l−1)i.

Proof. Since P• is a ring homomorphism, by applying the total Steenrod operation

to f∞ we get

P•(f∞) =
∏
x∈S

(x+ x2l)

= f∞ ·
∏
x∈S

(1 + x2l−1)

= f∞ ·
∏

x∈S, λ∈F ∗
2l

(1 + λx)

= f∞ · (f0 + f1 + · · ·+ f(2l−1)d).

This completes the proof.
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6.2 Rank of a bilinear form

Definition 6.2.1. The rank of a bilinear form B is the rank of the matrix which

represents that form.

Lemma 6.2.2. The rank of an alternating matrix with entries in a field is even.

Proof. Follows from Corollary 1 of Theorem 6.3 in [21].

Note that alternating forms are determined up to equivalence by rank and ac-

cording to the above lemma, the rank is even.

Lemma 6.2.3. Let Q and Q
′

be quadratic forms on a vector space V over F2l. Then

the following are equivalent:

(i) Q and Q
′

have the same polarization;

(ii) Q+Q
′

= x2 for some x ∈ V ∗.

Proof. (i) =⇒ (ii) Let B and B
′

be the polarizations of Q and Q
′

respectively.

Since

(B +B
′
)(u, v) = B(u, v) +B

′
(u, v).

It is sufficient to prove that if (B +B
′
)(u, v) = 0, then Q+Q

′
= x2. Let

Q+Q
′

=
∑
i

∑
j

bijxixj .

Then

(B +B
′
)(ek, el) =

∑
i

∑
j

bijxixj(ek + el) +
∑
i

∑
j

bijxixj(ek) +
∑
i

∑
j

bijxixj(el)

=
∑
i

∑
j

bijxi(ek + el)xj(ek + el) +
∑
i

∑
j

bijxi(ek)xj(ek) +
∑
i

∑
j

bijxi(el)xj(el)

=
∑
i

∑
j

bij(δikδjk + δilδjk + δikδjl + δilδjl) +
∑
i

∑
j

bijδikδjk +
∑
i

∑
j

bijδilδjl

=
∑
i

∑
j

bijδilδjk +
∑
i

∑
j

bijδikδjl
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=
∑
j

bljδllδjk +
∑
j

bkjδkkδjl

= blk + bkl.

Therefore

(B +B
′
)(ek, el) = 0 =⇒ blk = bkl for l 6= k.

Thus

Q+Q
′

=
∑
i

biix
2
i .

By using Lemma 1.2.9 (i) each element of F2l is a square, so there exist aii ∈ F2l

such that bii = a2
ii. Therefore

Q+Q
′

=
∑
i

a2
iix

2
i .

Now using Lemma 1.3.9, we get

Q+Q
′

= (
∑
i

aiixi)
2.

So

Q+Q
′

= x2 for some x ∈ V ∗.

(ii) =⇒ (i) Let Q+Q
′

= x2 for some x ∈ V ∗, then it is sufficient to prove that

(B +B
′
)(u, v) = 0. Since

(B +B
′
)(u, v) = (Q+Q

′
)(u+ v) + (Q+Q

′
)(u) + (Q+Q

′
)(v)

= x2(u+ v) + x2(u) + x2(v)

= x(u+ v)x(u+ v) + x(u)x(u) + x(v)x(v)

= 0.

We consider quadratic forms in the presence of a fixed alternating form to which

it polarizes. We shall use the term symplectic space to refer to a finite dimensional

vector space endowed with an alternating form of maximum possible rank. The

group of automorphisms of a symplectic space is called a symplectic group. On a

symplectic space, we say that two quadratic forms Q and Q
′

are equivalent if and
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only if there exists some g in the symplectic group such that Q
′
(v) = Q(gv) for all

v. It follows from Theorem 1.4.14 (ii) that on a non-zero even dimension symplectic

space there are two types of non-singular quadratic forms up to equivalence, called

+type and −type.

Theorem 6.2.4. Let V be a vector space of dimension 2n over the field F2l. Given

a non-degenerate alternating form B on V , there are (2l)2n quadratic forms which

polarize to B, and of these quadratic forms 22ln−1 + 2ln−1 are of +type and 22ln−1−

2ln−1 are of −type.

Proof. It follows from the above lemma that there are (2l)2n quadratic forms which

polarize to B. Now let G = SP (2n, F2l) and Γ = {Q : Q is a quadratic form

polarizing to B}. Then G acts on Γ as Qg(v) = Q(gv) for g ∈ G and v ∈ V . Thus

we get two orbits, say Orb(Q+) and Orb(Q−), where

Orb(Q+) = {P+ ∈ Γ : P+ ∼ Q+}

= {P+ ∈ Γ : (P+)
g

= Q+ for some g ∈ G}

and

Orb(Q−) = {P− ∈ Γ : P− ∼ Q−}

= {P− ∈ Γ : (P−)
g

= Q− for some g ∈ G}.

Now let

GQ+ = {g ∈ G : (Q+)
g

= Q+}

and

GQ− = {g ∈ G : (Q−)
g

= Q−}.

Then by Theorem 1.4.5, we have

|Orb(Q+)| = |G : GQ+ |

and

|Orb(Q−)| = |G : GQ− |.

Thus the number of quadratic forms of +type is |G : GQ+ | = |G : O+|.
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Hence by using Theorem 1.5.5 and Theorem 1.5.10, we see that the number of

quadratic forms of +type is

(2l)n
2∏n

i=1((2l)2i − 1)

2(2l)n(n−1)((2l)n − 1)
∏n−1
i=1 ((2l)2i − 1)

= 22ln−1 + 2ln−1.

Now the number of quadratic forms of −type is |G : GQ− | = |G : O−|.

Hence by using Theorem 1.5.5 and Theorem 1.5.10, we see that the number of

quadratic forms of −type is

(2l)n
2∏n

i=1((2l)2i − 1)

2(2l)n(n−1)((2l)n + 1)
∏n−1
i=1 ((2l)2i − 1)

= 22ln−1 − 2ln−1.

6.3 Orthogonal and symplectic groups

In this section we state our definitions of symplectic and orthogonal groups and

consider some of their representations.

Let n be a positive integer. Henceforth we suppose that V has dimension 2n+ 1

over F2l and that ξ0 is a non-singular quadratic form on V . Let B denote the

polarization of ξ0. The radical of B is one dimensional. Choose a basis e0, . . . , e2n

of V where e0 is the non-zero vector in RadB.

We refer the reader to Cameron’s notes [6] for the background of the following

lemma and definition.

Lemma 6.3.1. It is possible to choose the ei for i ≥ 1 so that the matrix M with

(i, j)-entry bi,j = B(ei, ej) is
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0

0 1

1 0

0 1

1 0

. . .

0 1

1 0


filled out with zeros.

We write M0 for the non-singular alternating matrix obtained by omitting the

first row and column of M .

Definition 6.3.2. (i) O(V, ξ0) denotes the orthogonal group of automorphisms of

V which preserves the quadratic form ξ0.

(ii) SP (V,B) denotes the symplectic group of automorphisms of V which preserves

the alternating form B.

(iii) U denotes the quotient space V/〈e0〉. This space inherits the alternating form,

but it does not inherit any natural quadratic form.

(iv) SP (U, B̄) denotes the symplectic group of automorphisms of U which preserves

the inherited alternating form B̄.

Let x0, . . . , x2n be the basis of V ∗ which is dual to our chosen basis of V . Suppose

S = F2l [x0, . . . , x2n]. We remark that when the basis ei is chosen in accordance with

Lemma 6.3.1, then the quadratic form is given by

ξ0 = x2
0 + x1x2 + x3x4 + · · ·+ x2n−1x2n.

The canonical surjection V → U induces an injection U∗ → V ∗. We identify

U∗ with its image in V ∗: thus U∗ is the subspace of V ∗ spanned by x1, . . . , x2n.

The symmetric algebra on U∗ is the subring of S generated by x1, . . . , x2n. Let

T = F2l [x1, . . . , x2n].
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Now If V is an odd-dimensional symplectic space, then according to Theorem

1.4.14 (i) there is only one kind of non-singular quadratic form up to equivalence. If

ξ0 is such a form and B is its polarization, then according to Lemma 6.2.3, each form

having the same polarization is equal to ξ0 + x2 for some x ∈ V ∗. There are three

kinds of quadratic forms: the non-singular forms (all equivalent to ξ0), the singular

forms of +type, and the singular forms of −type.

Lemma 6.3.3. If dimV = 2n+ 1 ≥ 3 then

(i) 22ln−1 + 2ln−1 of these forms have +type, and each is equal to ξ0 + x2
0 + x2 for

some x ∈ U∗;

(ii) 22ln−1 − 2ln−1 of these forms have −type, and each is equal to ξ0 + x2
0 + x2 for

some x ∈ U∗;

(iii) 22ln+l − 22ln of these forms are non-singular, and each is equal to ξ0 + x2 for

some x ∈ V ∗ such that x 6= x0 + y for any y ∈ U∗.

Proof. (i) Suppose

ξ0 = x2
0 + x1x2 + x3x4 + · · ·+ x2n−1x2n

is a non-singular quadratic form on V . Now let

ξ = x1x2 + x3x4 + · · ·+ x2n−1x2n

be a singular quadratic form on V which is non-singular of +type on U . Thus

according to Lemma 6.2.3 if B is its polarization then each form having the

same polarization must be of the form ξ + x2 for some x ∈ U∗. Now ξ is of

+type, so according to Theorem 6.2.4 the number of such forms is 22ln−1+2ln−1.

Therefore 22ln−1 + 2ln−1 of these forms have +type, and each is equal to ξ+x2

for some x ∈ U∗. But ξ = ξ0 + x2
0. Therefore each of these forms is equal to

ξ0 + x2
0 + x2 for some x ∈ U∗.
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(ii) Suppose

ξ = x1x2 + x3x4 + · · ·+ x2n−3x2n−2 + x2
2n−1 + x2n−1x2n + βx2

2n

where x2
2n−1 + x2n−1 + β is irreducible in F2l [x2n−1]. Here ξ is a singular

quadratic form on V but is non-singular on U of −type. Thus according to

Lemma 6.2.3 each form having the same polarization must be of the form ξ+x2

for some x ∈ U∗. Now ξ is of −type, so according to Theorem 6.2.4 the number

of such forms is 22ln−1 − 2ln−1. Therefore 22ln−1 − 2ln−1 of these forms have

−type, and each is equal to ξ+x2 for some x ∈ U∗. But ξ = ξ0 +x2
0 +x2

2n−1 +

βx2
2n. Thus each of these forms is equal to ξ0 + x2

0 + x2
2n−1 + βx2

2n + x2 for

some x ∈ U∗. Now according to Lemma 1.2.9 (i) each element in F2l is a

square. So there exists β
′ ∈ F2l such that β

′2
= β. Thus each form is equal to

ξ0 +(x0 +x2n−1 +β
′
x2n+x)2 for some x ∈ U∗. Writing x

′
= x2n−1 +β

′
x2n+x,

then obviously x
′ ∈ U∗, so we see each form is equal to ξ0 + (x0 +x

′
)2 for some

x
′ ∈ U∗. This completes the proof.

(iii) From (i) and (ii) the number of quadratic forms of +type and −type having

the same polarization is equal to 22ln, but the total number of such forms is

22ln+l. Thus the number of quadratic forms which are non-singular on V is

22ln+l − 22ln. Now since ξ0 is a non-singular quadratic form on V then, again

according to Lemma 6.2.3, each form having the same polarization is equal to

ξ0 + x2 for some x ∈ V ∗. But the fact that x = x0 + y for any y ∈ U∗ makes

the form singular. Thus 22ln+l − 22ln of these forms are non-singular and each

is equal to ξ0 + x2 for some x ∈ V ∗ such that x 6= x0 + y for any y ∈ U∗

Definition 6.3.4. The sequence ξ1, ξ2, ξ3, . . . is defined recursively by

ξn = P(2l)
n−1

(ξn−1).

When the basis ei is chosen in accordance with Lemma 6.3.1, then

ξj = x
(2l)

j

1 x2 + x1x
(2l)

j

2 + x
(2l)

j

3 x4 + x3x
(2l)

j

4 + · · ·+ x
(2l)

j

2n−1x2n + x2n−1x
(2l)

j

2n
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for each j ≥ 1. In general, for j ≥ 1, each ξj belongs to the symmetric algebra on

U∗. For each j ≥ 1, ξj has degree (2l)
j

+ 1.

Now ∏
x∈U∗

(X + x) = X ·
∏

x∈S, λ∈F ∗
2l

(X + λx)

where S is a set consisting of one non-zero vector of U∗ from each 1-dimensional

subspace of U∗. But the number of k-dimensional subspaces of a vector space W

over a finite field Fq can be found by the following formula:(
n

k

)
q

=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
,

where n is the dimension of the vector space W . Therefore

| S | =
22ln − 1

2l − 1
.

Thus ∏
x∈U∗

(X + x) = f0X
22ln + f1X

22ln−1 + · · ·+ f(22ln−1)X.

Let f∞ =
∏
x∈S

x. Then f2l−1
∞ = f(22ln−1) and we have the following lemma.

Lemma 6.3.5. Let U = V/〈e0〉 as defined in Definition 6.3.2. For 0 ≤ i ≤ 2n

P
(2l)2n−(2l)i

2l−1 (f∞) = f∞cU,i.

Proof. By Lemma 6.1.3, for each i in the range 0 ≤ i ≤| S | we have

P i(f∞) = f∞f(2l−1)i.

But by Lemma 2.1.2, we have∏
x∈U∗

(X + x) =
2n∑
j=0

cU,jX
(2l)

j

.

This means that

cU,0 = f(22ln−1), cU,1 = f(22ln−2l), cU,2 = f(22ln−22l), . . . , cU,2n = f0

and the rest of fi
,s are zero. Thus for each 0 ≤ i ≤ 2n, we have

P
(2l)2n−(2l)i

2l−1 (f∞) = f∞cU,i.
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In the above lemma the cU,i
,s are Dickson invariants as we defined in the proof

of Lemma 2.1.2. Clearly cU,0 = f2l−1
∞ . Let N0 denote the matrix

x1 x2 x3 · · · x2n

x2l
1 x2l

2 x2l
3 · · · x2l

2n

x
(2l)

2

1 x
(2l)

2

2 x
(2l)

2

3 · · · x
(2l)

2

2n

x
(2l)

3

1 x
(2l)

3

2 x
(2l)

3

3 · · · x
(2l)

3

2n

...
...

...
. . .

...

x
(2l)

2n−1

1 x
(2l)

2n−1

2 x
(2l)

2n−1

3 · · · x
(2l)

2n−1

2n


,

then f∞ is a scalar multiple of detN0 and by appropriate scaling of one of the

vectors in S we may assume that detN0 = f∞. Thus f∞ ·
∏
x∈U∗

(X + x) is equal to

the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X x1 x2 x3 · · · x2n

X2l x2l
1 x2l

2 x2l
3 · · · x2l

2n

X(2l)
2

x
(2l)

2

1 x
(2l)

2

2 x
(2l)

2

3 · · · x
(2l)

2

2n

X(2l)
3

x
(2l)

3

1 x
(2l)

3

2 x
(2l)

3

3 · · · x
(2l)

3

2n

...
...

...
...

. . .
...

X(2l)
2n

x
(2l)

2n

1 x
(2l)

2n

2 x
(2l)

2n

3 · · · x
(2l)

2n

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Lemma 6.3.6. The following matrix identity holds.

NT
0



cU,0

cU,1

cU,2
...

cU,2n−1


=



x
(2l)

2n

1

x
(2l)

2n

2

x
(2l)

2n

3

...

x
(2l)

2n

2n


.

Proof. Clear.

For later use, we write N for the (2n+ 1)× 2n-matrix
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x1 x2 x3 · · · x2n

x2l
1 x2l

2 x2l
3 · · · x2l

2n

x
(2l)

2

1 x
(2l)

2

2 x
(2l)

2

3 · · · x
(2l)

2

2n

x
(2l)

3

1 x
(2l)

3

2 x
(2l)

3

3 · · · x
(2l)

3

2n

...
...

...
. . .

...

x
(2l)

2n−1

1 x
(2l)

2n−1

2 x
(2l)

2n−1

3 · · · x
(2l)

2n−1

2n

x
(2l)

2n

1 x
(2l)

2n

2 x
(2l)

2n

3 · · · x
(2l)

2n

2n


and we write N̂ for the (2n+ 1)× (2n+ 1)-matrix



x0 x1 x2 x3 · · · x2n

x2l
0 x2l

1 x2l
2 x2l

3 · · · x2l
2n

x
(2l)

2

0 x
(2l)

2

1 x
(2l)

2

2 x
(2l)

2

3 · · · x
(2l)

2

2n

x
(2l)

3

0 x
(2l)

3

1 x
(2l)

3

2 x
(2l)

3

3 · · · x
(2l)

3

2n

...
...

...
...

. . .
...

x
(2l)

2n

0 x
(2l)

2n

1 x
(2l)

2n

2 x
(2l)

2n

3 · · · x
(2l)

2n

2n


.

6.4 Some families of polynomials arising from determi-

nants

Let m be a positive integer. In the abstract commutative polynomial ring

Z[X, ξ1, ξ2, ξ3, . . . ],

consider the polynomial

Hm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2X ξ1 ξ2 ξ3 · · · ξm

ξ1 2X2l ξ2l
1 ξ2l

2 · · · ξ2l
m−1

ξ2 ξ2l
1 2X(2l)

2

ξ
(2l)

2

1 · · · ξ
(2l)

2

m−2

ξ3 ξ2l
2 ξ

(2l)
2

1 2X(2l)
3

· · · ξ
(2l)

3

m−3

...
...

...
...

. . .
...

ξm ξ2l
m−1 ξ

(2l)
2

m−2 ξ
(2l)

3

m−3 · · · 2X(2l)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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This is the determinant of a symmetric matrix. On passing to the ring

F2l [X, ξ1, ξ2, ξ3, . . . .]

the matrix is alternating. Since, according to Lemma 6.2.2, alternating matrices

have even rank, it follows that the determinant is zero modulo 2 whenever m is

even, and we can make the following definition:

Definition 6.4.1. For each even integer m ≥ 0, we write Ωm(X) for the image of

the polynomial 1
2Hm in F2l [X, ξ1, ξ2, ξ3, . . . ]. As an example, in case m = 2 we find

that

Ω2(X) = ξ2
1X

(2l)
2

+ ξ2
2X

2l + ξ
(2l+1)
1 X + ξ

(2l+1)
1 ξ2.

When m is odd, the image of Hm in F2l [X, ξ1, ξ2, ξ3, . . . ] is non-zero and does not

involve X. In fact it is the square of a polynomial in F2l [X, ξ1, ξ2, ξ3, . . . ].

Lemma 6.4.2. The determinant of an alternating matrix with entries in a field is

a square. We call the square root of this determinant the pfaffian.

Proof. Follows from corollary 1 of Theorem 6.3 in [21].

Thus we can make the following definition:

Definition 6.4.3. For each even integer m, we write Λm for the square root of the

image of the polynomial Hm−1 in F2l [X, ξ1, ξ2, ξ3, . . . ], that is, the pfaffian of the

matrix defining Λm. For example, Λ2 = ξ1, Λ4 = ξ
(2l)2+1
1 + ξ2l+1

2 + ξ2l
1 ξ3 etc.

6.5 How to understand Λm

Working in S, recall from section 6.3 that the matrix N0 has determinant equal to

f∞. As before let M0 denote the 2n× 2n matrix with (i, j)-entry B(ei, ej), i, j ≥ 1.

Then M0 is a non-singular alternating matrix and so it has determinant 1. Moreover
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N0M0N
T
0 =



0 ξ1 ξ2 ξ3 · · · ξ2n−1

ξ1 0 ξ2l
1 ξ2l

2 · · · ξ2l
2n−2

ξ2 ξ2l
1 0 ξ

(2l)
2

1 . . . ξ
(2l)

2

2n−3

ξ3 ξ2l
2 ξ

(2l)
2

1 0 · · · ξ
(2l)

3

2n−4

...
...

...
...

. . .
...

ξ2n−1 ξ2l
2n−2 ξ

(2l)
2

2n−3 ξ
(2l)

3

2n−4 · · · 0


and so

det(N0M0N
T
0 ) = f2

∞.

As N0M0N
T
0 is clearly congruent to the matrix of H2n−1 modulo 2, it follows that

Λ2n = f∞ in S and f∞ itself can be expressed as a polynomial in the SP (U,B)-

invariants ξ1, . . . , ξ2n−1. Playing this game with N in place of N0, we have

NM0N
T =



0 ξ1 ξ2 ξ3 · · · ξ2n−1 ξ2n

ξ1 0 ξ2l
1 ξ2l

2 · · · ξ2l
2n−2 ξ2l

2n−1

ξ2 ξ2l
1 0 ξ

(2l)
2

1 · · · ξ
(2l)

2

2n−3 ξ
(2l)

2

2n−2

ξ3 ξ2l
2 ξ

(2l)
2

1 0 · · · ξ
(2l)

3

2n−4 ξ
(2l)

3

2n−3

...
...

...
...

. . .
...

...

ξ2n−1 ξ2l
2n−2 ξ

(2l)
2

2n−3 ξ
(2l)

3

2n−4 · · · 0 ξ
(2l)

2n−1

1

ξ2n ξ2l
2n−1 ξ

(2l)
2

2n−2 ξ
(2l)

3

2n−3 · · · ξ
(2l)

2n−1

1 0


.

Definition 6.5.1. We define polynomials Λ2n,i for each n ≥ 2 and 0 ≤ i ≤ 2n by

Λ2n,i = P
(2l)

2n
−(2l)

i

2l−1 (Λ2n).

Lemma 6.5.2. Let U = V/〈e0〉 as defined in Definition 6.3.2 For each i in the

range 0 ≤ i ≤ 2n, we have Λ2n,i = f∞cU,i. Each Λ2n,i can also be interpreted as the

pfaffian coming from the appropriate 2n× 2n matrix obtained by omitting a row and

the corresponding column from NM0N
T .

Proof. We noted above that Λ2n = f∞. By Lemma 6.3.5 it follows that Λ2n,i =

f∞cU,i. The second statement is clear.
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6.6 The Chern Polynomials

In this section we define Chern polynomials whose coefficients can be plainly seen

to be invariants of the orthogonal group O(V, ξ0) and quadratic Chern polynomials

whose coefficients are plainly invariants of the symplectic group SP (U, B̄).

Definition 6.6.1. Let A+ denote the set

{x ∈ V ∗ : ξ0 + x2 has + type}

and let A− denote the set

{x ∈ V ∗ : ξ0 + x2 has− type}.

Let A = A+ ∪A−. Polynomials P+(t) and P−(t) in the polynomial ring S[t] in one

variable t of degree 1 are defined as follows:

P+(t) :=
∏
x∈A+

(t+ x), P−(t) :=
∏
x∈A−

(t+ x),

P (t) :=
∏
x∈A

(t+ x).

The orthogonal group O(V, ξ0) permutes the elements of A+ and A−, so it is clear

that the coefficients of P+(t) and P−(t) belong to the invariant ring SO(V, ξ0). Note

that P (t) = P+(t)P−(t).

Definition 6.6.2. Let C+ be the set of all quadratic forms on V of +type and C−

the set of all those of −type. Let C = C+ ∪ C−. From Lemma 6.3.3 we note that

C = {ξ0+x2
0+x2 : x ∈ U∗}. We define quadratic Chern polynomials Q+(X), Q−(X)

and Q(X) in the polynomial ring T [X] in one variable X of degree 2 as follows:

Q+(X) :=
∏
q∈C+

(X + q), Q−(X) :=
∏
q∈C−

(X + q),

Q(X) :=
∏
q∈C

(X + q).

The symplectic group SP (U, B̄) permutes the elements of C+ and C−. Thus the

coefficients of Q+(X) and Q−(X) are invariants of the symplectic group SP (U, B̄).

Note also that Q(X) = Q+(X)Q−(X).
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Lemma 6.6.3. (i) The coefficients of Q−(X) belong to the subring of F2l [x1, . . . , x2n]

generated by

ξ1, . . . , ξ2n−1, cU,2n−1, . . . , cU,n.

Moreover they are linear in the Dickson invariants cU,2n−1, . . . , cU,n.

(ii) The polynomial f∞Q
−(X) has all coefficients in the ring F2l [ξ1, . . . , ξ2n].

(iii) The coefficients of Q+(X) belong to the subring of F2l [x1, . . . , x2n], where l ≥ 2,

generated by

ξ1, . . . , ξ2n−1, cU,2n−1, . . . , cU,n.

Moreover they are linear in the Dickson invariants cU,2n−1, . . . , cU,n.

(iv) The polynomial f∞Q
+(X) has all coefficients in the ring F2l [ξ1, . . . , ξ2n] where

l ≥ 2.

Proof. (i) The coefficients of Q−(X) are symplectic invariants and so, by knowl-

edge of the invariants of the invariant ring for that case, these coefficients

lie in the subring F2l [ξ1, . . . , ξ2n, cU,2n−1, . . . , cU,n]. Since by Theorem 6.2.4

there are 22ln−1 − 2ln−1 quadratic forms of −type, the degree of Q−(X) is

2(22ln−1−2ln−1) = 22ln−2ln. On the other hand, the least degree of an element

of F2l [ξ1, . . . , ξ2n, cU,2n−1, . . . , cU,n] which is quadratic in the Dickson invariants

is deg c2
U,2n−1 = 2((2l)2n − (2l)2n−1) = 22ln + 22ln−1 + 22ln−2 + · · ·+ 22ln−(l−1)

and this is greater than the degree of Q−(X). Hence the coefficients of Q−(X)

are, at worst, linear in the cU,j .

(ii) We know that for each j, f∞cU,j belongs to F2l [ξ1, . . . , ξ2n] by Lemma 6.5.2.

Part (i) says that the coefficients are linear in the cU,j and so the result follows.

(iii) The coefficients of Q+(X) are symplectic invariants and so, by our knowledge

of the invariants of the invariant ring for that case, these coefficients lie in

the subring F2l [ξ1, . . . , ξ2n, cU,2n−1, . . . , cU,n]. Since by Theorem 6.2.4 there are

22ln−1 + 2ln−1 quadratic forms of +type, the degree of Q+(X) is 2(22ln−1 +

2ln−1) = 22ln + 2ln. On the other hand, the least degree of an element of
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F2l [ξ1, . . . , ξ2n, cU,2n−1, . . . , cU,n] which is quadratic in the Dickson invariants is

degc2
U,2n−1 = 2((2l)2n− (2l)2n−1) = 22ln + 22ln−1 + 22ln−2 + · · ·+ 22ln−(l−1) and

this is greater than the degree of Q+(X). Hence the coefficients of Q+(X) are,

at worst, linear in the cU,j .

(iv) We know that for each j, f∞cU,j belongs to F2l [ξ1, . . . , ξ2n] by Lemma 6.5.2.

Part (iii) says that the coefficients are linear in the cU,j and so the result follows.

Remark 6.6.4. A version of (iii) and (iv) is present in [24] when l = 1.

6.7 How to understand Ωm(X)

We shall study the image of Ωm(X) in the polynomial ring S[X] over our symmetric

algebra S, using the specialization

F2l [X, ξ1, ξ2, ξ3, . . . ]→ S[X]

defined by X 7→ X and ξi 7→ ξi.

Theorem 6.7.1. (i) Ω2n(X) =
∑2n

i=0(Λ2n,i)
2X(2l)

i

+δ, where δ ∈ F2l [ξ1, ξ2, . . . , ξ2n].

(ii) In the ring S we have Ω2n(X) = f2
∞Q(X).

(iii) Ω2n(X) = f2
∞Q

−(X)Q+(X), and Q−(X) and Q+(X) are irreducible elements

of the ring T (SP (U, B̄))[X].

(iv) f∞Q
−(X) and f∞Q

+(X) both belong to F2l [X, ξ1, . . . , ξ2n].

Proof. (i) Looking at the standard expansion of the determinant H2n we see first

that the coefficient of any term involving a product of two or more of the

diagonal entries will be divisible by 4. So these make zero contribution to Ω2n.

For 0 ≤ i ≤ 2n, we see that the coefficient of X(2l)
i

in Ω2n is precisely the

determinant of the matrix H2n,i obtained by omitting the ith row and column

(counting from 0 to 2n) from NM0N
T . This determinant is equal to (Λ2n,i)

2

as noted in the proof of Lemma 6.5.2.
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(ii) Recall from Definition 6.6.2 that Q(X) =
∏
q∈C

(X+q) where C = {ξ0 +x2
0 +x2 :

x ∈ U∗}. Using Lemma 2.1.2, we know that the zero set of the polynomial

D
′
(X) =

∑2n
i=0 c

2
U,iX

(2l)
i

is precisely {x2 : x ∈ U∗}. (Note that D
′
(x2) =

(DU (x))2.) Thus

Q(X) = D
′
(X + ξ0 + x2

0) = D
′
(X) +D′(ξ0 + x2

0).

We claim that Ω2n(X) = f2
∞Q(X). First, it follows from Lemma 6.5.2 that

f2
∞D

′
(X) =

∑2n
i=0(Λ2n,i)

2X(2l)
i

and by part (i), this coincides with the part of

Ω2n(X) which involves X. Therefore

f2
∞Q(X) + Ω2n(X)

does not involve X and to prove that it is zero it suffices to prove that

Ω2n(ξ0 + x2
0) = 0.

To this end we need to work over Z rather than F2l and we shall temporar-

ily work with two abstract polynomials rings and the ring homomorphism as

follows:

α : Z[X, ξ1, ξ2, ξ3, . . . ]→ Z[x1, x2, . . . , x2n]

where

α(ξi) =
n∑
k=1

(x
(2l)

i

2k−1x2k + x2k−1x
(2l)

i

2k )

and

α(X) =

n∑
k=1

x2k−1x2k.

Consider the matrices N and M0N
T and insert respectively a column and a

row of zeros to make the matrices square. Then clearly they have determinant

equal to zero, and further by using the Binomial Theorem we have a matrix

equation:
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2y0 ξ1 ξ2 · · · ξ2n

ξ1 2y1 + 4d1 ξ2l
1 + 2a1 · · · ξ2l

2n−1 + 2a2n−1

ξ2 ξ2l
1 + 2a1 2y2 + 4d2 · · · ξ

(2l)
2

2n−2 + 2b2n−2

...
...

...
. . .

...

ξ2n ξ2l
2n−1 + 2a2n−1 ξ

(2l)
2

2n−2 + 2b2n−2 · · · 2y2n + 4d2n



=



x1 x2 x3 · · · x2n 0

x2l
1 x2l

2 x2l
3 · · · x2l

2n 0

x
(2l)

2

1 x
(2l)

2

2 x
(2l)

2

3 · · · x
(2l)

2

2n 0
...

...
...

. . .
...

...

x
(2l)

2n

1 x
(2l)

2n

2 x
(2l)

2n

3 · · · x
(2l)

2n

2n 0





x2 x2l
2 x

(2l)
2

2 · · · x
(2l)

2n

2

x1 x2l
1 x

(2l)
2

1 · · · x
(2l)

2n

1

x4 x2l
4 x

(2l)
3

4 · · · x
(2l)

2n

4

...
...

...
. . .

...

x2n−1 x2l
2n−1 x

(2l)
2

2n−1 · · · x
(2l)

2n

2n−1

0 0 0 · · · 0


where yi = (x1x2+· · ·+x2n−1x2n)(2l)i for 0 ≤ i ≤ 2n and ai, bi, di ∈ Z[x1, x2, . . . , x2n].

Let L.H.S = A , then by using the multilinearity of determinants,

detA ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2y0 ξ1 ξ2 · · · ξ2n

ξ1 2y1 ξ2l
1 · · · ξ2l

2n−1

ξ2 ξ2l
1 2y2 · · · ξ

(2l)
2

2n−2

...
...

...
. . .

...

ξ2n ξ2l
2n−1 ξ

(2l)
2

2n−2 · · · 2y2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(mod 4).

Now from the right hand side of the above equation, we have detA = 0. There-

fore α(H2n) ≡ 0 mod 4 and hence α(1
2H2n) ≡ 0 mod 2. (Recall from the

remarks preceding Definition 6.4.1 that H2n is divisible by 2.) By definition,

Ω2n(X) := (1
2H2n) mod 2. Now the image of α(1

2H2n) under the map Z→ F2l

is Ω2n(ξ0 + x2
0) and hence Ω2n(ξ0 + x2

0) = 0 as required.

(iii) By part (ii), Ω2n(X) = f2
∞Q(X) = f2

∞Q
−(X)Q+(X). The quadratic Chern

polynomials Q±(X) are irreducible as the symplectic group transitively per-

mutes their factors.
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(iv) Follows from Lemma 6.6.3 (ii) and (iv).

Remark 6.7.2. Note that in part (ii) of the above proof we temporarily work over

Z rather than F2l . We multiply the two matrices and get another matrix. In [24]

the authors use the fact that (x + y)2 = x2 + y2 when they multiply the matrices

which is only true when x and y are elements of finite fields of characteristic 2. As

promised in the introduction, the proof of part (ii) here corrects this flaw.
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