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Preface

This thesis will be an account of work carried out by the author with support

from staff in the Institute for Gravitational Research at the University of Glas-

gow between October 2008 and October 2011, involving studies of materials

for use in future gravitational wave detectors.

The aim of this thesis is to investigate the suitability of hydroxide catalysis

bonding for jointing silicon suspension components in future cryogenic inter-

ferometric gravitational wave detectors.

In Chapter 1 the context of the research is introduced: a contribution to the

search for the direct evidence of gravitational waves, as predicted by Einstein.

In Chapter 2 the context of research reported in this thesis will be deepened

by focussing on one important noise source in gravitational wave detectors,

thermal noise, its relationship to mechanical dissipation and the influence it

has on the achievable sensitivity of interferometric gravitation wave detectors.

In Chapter 3 hydroxide catalysis bonding, and its role in the construction of

interferometric gravitational wave detectors and its potential for application

in the suspensions of future detectors is investigated. The strength testing re-

ported in this chapter of the bonds between silicon at both room and cryogenic

temperature was carried out jointly by the author and Dr. van Veggel. The

aim of this research was to determine if a minimum oxide layer thickness exists

for a reliable bond to form between silicon surfaces.
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influence of the type of oxide layer on the bond strength. The work for this

chapter was supported in a very similar way to the work in Chapter 3.

In Chapter 5, the mechanical loss of a pair of hydroxide catalysis bonded

silicon cantilevers was measured from room temperature down to cryogenic

temperatures. Analysis was then carried out to determine the mechanical loss

components of the oxide layers and bond material. This work was carried out

in Glasgow using an automated cryostat set up by Dr. Reid, Dr. Nawrodt and

Dr. Martin. Dr. Martin, Dr. Reid and Dr. van Veggel all provided advice for

the duration of the experiment. R. Jones designed the bonding jig for bonding

the cantilevers. The MATLAB code used to analyse the data generated was

written by M. Abernathy. The analysis of the data was done by the author

with help from Dr. Martin and Dr. Reid.

This thesis concludes by summarising the findings and developing recommen-

dations for future research.
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Summary

The quadrupolar nature of gravitational waves, predicted by General Relativ-

ity, produces fluctuating strains in space-time that can be searched for using

interferometric techniques.

Ground-based long-baseline gravitational wave detectors are being used to

search for gravitational waves produced by astronomical events, such as su-

pernovae explosions or binary systems. Masses, with highly reflective mirror

coatings, are freely suspended at the ends of perpendicular arms up to 4 km in

length. Laser interferometry is used to try to sense fluctuations in the relative

separation of the masses caused by the passage of a gravitational wave.

Currently there several long-baseline gravitational wave detector projects around

the globe, including the US LIGO project, where 4 km detectors have been op-

erated, the 3 km Virgo detector in Italy and a 600m UK/German detector

based in Germany, GEO600. The strain expected from gravitational waves is

expected to be less than ∼ 10−22, making detection of the resultant displace-

ment of the masses highly challenging.

In the operational frequency band of between a few Hertz and a few kiloHertz,

the thermal motion of the test masses and suspensions forms an important

limit to the sensitivity of such detectors. The level of thermal noise is related

to the mechanical loss of the test mass and suspension materials and the mirror

coatings.
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Summary

The first generation detectors are currently undergoing significant upgrades to

further increase their sensitivity by a factor of ten. These upgrades include

the installation of quasi-monolithic silica suspensions in an attempt to reduce

the thermal noise of the test masses and their suspensions. Fused silica fibres

are welded to fused silica interface pieces, called ‘ears’, which provide suitable

welding points onto the sides of the mirror when bonded to the mirror using

the high strength chemical jointing technique of hydroxide-catalysis bonding.

Plans are also developing for the design of potential ‘third generation’ detec-

tors. These detectors may operate at cryogenic temperatures to further reduce

thermal noise. Silicon is a prime candidate material for use in the test masses

and their suspensions because of its desirable thermo-mechanical properties in

the cryogenic regime. With some adaptation, hydroxide catalysis bonding may

also be a viable technique for use in third generation detectors; however, to

evaluate its suitability it is essential to quantify both the strength of silicon-

silicon bonds at cryogenic temperatures and the thickness of such bonds, as

the bond thickness has a direct effect on the contributions of the bond to the

overall thermal noise of a bonded suspension.

This research focuses on development and evaluation of the properties of the

technique of hydroxide catalysis bonding relevant to its application in future

cryogenic gravitational wave detectors. Chapter 1 introduces gravitational

waves and their possible sources and the techniques used for their detection.

In chapter 2 thermal noise, the dominant noise source in the mid-frequency

range, and how the materials in the suspension and test masses contribute to

the level of thermal noise in the system, is discussed. The remaining chapters

cover the experimental research: measuring the strength and mechanical loss

of hydroxide catalysis bonds at cryogenic temperatures.

In chapters 3 and 4 investigations of the strength of hydroxide catalysis bonds

between silicon blocks at room and cryogenic temperatures are described. To
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Summary

make bonding of silicon components possible, the bonding surfaces must ide-

ally have a thin coating of SiO2, with which the hydroxide can react to form

the bond. Chapter 3 investigates the minimum required thickness of SiO2 nec-

essary for a successful bond. The bond strength, tested using a 4-point bend

strength test, is found to reduce significantly with oxide layer thicknesses below

50 nm at cryogenic temperature. A Weibull analysis of the results showed a

characteristic strength of approximately 41MPa at 77K and 35MPa at room

temperature for samples with a minimum oxide layer of 50 nm.

In chapter 4 the effect on the oxide layer deposition method and the purity of

the silicon ingot on the strength of the bond are studied. Bend strength tests

were performed on hydroxide-catalysis bonds formed between silicon samples of

different crystallographic orientation and purity, that had been oxidised using

a range of methods. The three methods used were; dry thermal oxidation, ion

beam sputtering and e-beam deposition. It was found that the method used

influenced the strength of the resulting bond, with the e-beam deposited layers

producing the weakest samples. It is postulated that the reason for the lower

strength of the e-beam samples is correlated with the lower density of this type

of coating compared with other coating methods.

The mechanical loss of the bond between silicon cantilevers between 10K and

250K was measured in Chapter 5. The experimental set up is described, the

results are presented and then analysed to establish an upper limit of 0.12 for

the second bending mode below 100K. The lowest loss measured was 0.06 at

12K.

xv



Chapter 1

Gravitational Wave Detection

1.1 Introduction

The direct detection of gravitational waves would enable our universe to be

studied in a whole new way, opening up a new field in astronomy, and con-

firming directly a further prediction of Einstein’s General Theory of Relativity

(General Relativity).

The existence of gravitational waves was predicted in 1916 [1]. Many decades

later, a key measurement of the effects of gravitational waves was made by

Hulse and Taylor [2; 3] through the discovery and subsequent observation of the

evolution of the orbit of the binary pulsar PSR 1916+16. Their observations

agreed with the prediction of General Relativity to within 1% [2; 3], leading

to the award of the 1993 Nobel Prize for Physics to them. However, the first

direct detection of gravitational waves is still the subject of significant effort

by scientists around the globe.

Gravitational waves are deformations of spacetime due to the action of asym-

metrically accelerating mass. The gravitational force is very weak and pertur-

1



1.1 Introduction 2

bations of a detectable level require very large masses and associated acceler-

ations.

This limits potential sources of detectable gravitational waves to those of astro-

physical origin, such as supernova explosions, binary neutron stars and black

hole mergers. The gravitational waves from such sources produce fluctuating

strains in space. These strains are predicted to be very small, of the order of

10−21 or lower [4; 5] and as a result are very difficult to directly detect.

However, the weak interaction of gravitational waves with matter means that

they have reduced susceptibility to scattering and absorption compared to

electromagnetic radiation, making them a potentially valuable tool for as-

tronomers.

Gravitational waves are quadrupolar in nature. They are generated by asym-

metric acceleration of mass such that a passing gravitational wave will exert

a differential strain along perpendicular paths in space. There are two polari-

sations of gravitational wave: the “plus” polarisation and “cross” polarisation.

The strain patterns cause contraction of space in one transverse direction while

expanding it along the orthogonal direction in the transverse plane. The effect

this has on a ring of test particles suspended freely in space is illustrated in

Figure 1.1. Taking the change in length of the perpendicular axes to be ±∆L,

the total strain, h, is defined to be:

h =
2∆L

L
(1.1)

A direct detection would not only further verify Einstein’s General Theory of

Relativity, but it would also allow direct extraction of information about the

behaviour of the masses involved in astrophysical events such as supernova

explosions, coalescence of binary systems, rotation of pulsars and interactions

between black holes [6].



1.2 Sources of Gravitational Waves 3

Figure 1.1: The effect of a gravitational wave incident normal to the page on the
position of a ring of particles in space where the wave has a (a) plus
polarisation and (b) cross polarisation.

1.2 Sources of Gravitational Waves

Astronomical sources of gravitational waves detectable by ground based detec-

tors (producing gravitational waves the frequency range of a few Hz to a few

kHz) have been predicted to cause strains in space time of the order of 10−21

to 10−39 on arrival on Earth [7]. A brief overview of some important sources

follows.

Supernova explosions, some of the most violent astronomical events, formed

a key source motivating the development of initial gravitational wave detec-

tors [8]. Type II supernovae are believed to be triggered by the gravitational

collapse of the core of an evolved star. Some models predict the emission of

gravitational waves when the collapse is reversed in a ‘bounce’ once the core

reaches nuclear densities [7].

One resultant end state from a Type II supernova explosion is thought to

be a spinning neutron star, known as a pulsar [7]. A pulsar is considered to

be a potential source of periodic gravitational waves [9], associated with non-

axisymmetric rotation. Non-axisymmetric rotations may arise from a variety

of phenomena, such as: irregularities in the star’s crust or irregularities that
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have become frozen into the stars structure as it cooled; strains that have built

up as the star has spun down; or a mode of pulsation that is excited in some

way [8].

An extremely important potential class of gravitational wave source is that

of neutron stars and black holes in binary systems orbiting their common

centre of mass. Although black hole - black hole and black hole - neutron star

binary systems have yet to be observed, they are expected to exist and to emit

gravitational waves with a greater amplitude than neutron star - neutron star

systems due to the greater density and mass of black holes [8].

In addition to the sources above, a background of gravitational radiation is

expected to exist. This background will include the superposition of signals

from the discussed astrophysical sources as well as from the very early universe.

Such sources have been reviewed in detail by Allen [10] and Abbott et al. [11].

1.3 Gravitational Waves Detectors

1.3.1 Introduction

Initial experiments to detect gravitational waves were performed by Joseph

Weber [12; 13]. They involved aluminium ‘bar’ detectors which were, by their

design, sensitive in a range close to one resonant frequency of ≃ 1600Hz, a

frequency where the energy spectrum of the signals from collapsing stars was

predicted to peak. Piezoelectric crystals bonded around the centre of such

a bar were used to monitor oscillations of its fundamental resonant mode.

If a gravitational wave of sufficient amplitude passed through the bar, the

fundamental mode would be expected to be excited, with the piezoelectric

crystals detecting changes to the amplitude of motion of the bar.
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Weber claimed detection of gravitational waves in 1968 [13], when multiple

coincident events were observed in bars 2 km apart. Further coincident readings

were reported by Weber from larger bar detectors 1000 km apart [13; 14] but his

results could not be reproduced. It was later estimated that the bar detectors at

that time lacked the sensitivity to detect gravitational waves from any plausible

sources, however it sparked the development of many more gravitational wave

detectors in the scientific community.

Bar detectors were expected to be able to detect strains of the order of 10−16

[15], which was later improved to ≃ 10−21 by cooling the bar detectors to

cryogenic temperatures. Some of the low temperature detectors which have

been operated over a period of years include Allegro [16], EXPLORER and

NAUTILUS [17], NIOBE [18] and AURIGA [19; 20].

Of these, the AURIGA, EXPLORER and NAUTILUS bar detectors still func-

tion [21], however they were generally succeeded by detectors based on Michel-

son type interferometers. These kilometer scale interferometric gravitational

wave detectors were able to reach sensitivities of at least 10−21 at ≃ 200Hz by

2005, [21]. They are able to operate over a range of frequencies, an improve-

ment over the bar detectors which are limited to a narrow frequency band

around their resonant frequency. Interferometric detectors are discussed in

more detail in Section 1.3.2.

The ‘first generation’ interferometric detectors LIGO, GEO600, and Virgo op-

erated between a few Hz and a few kHz at room temperature. Presently,

LIGO and Virgo are undergoing major upgrades to ‘second generation’ detec-

tors. These detectors will be discussed in Sections 1.5.1.1, 1.5.1.3, and 1.5.1.2.

Plans for ground-based ‘third generation’ detectors and space based experi-

ments are also underway. The Einstein Telescope (ET) [22] and LISA mission

[23] are examples of such endeavours.



1.3 Gravitational Waves Detectors 6

ET is proposed to operate over a wider frequency range than the first and

second generation detectors. It is likely to be sited underground and operated

at cryogenic temperatures to further reduce environmental noise and increase

sensitivity beyond that planned for the second generation detectors. This is

discussed further in Section 1.5.2. Space-based experiments are expected to

operate below 1Hz [24] where sources such as the coalescence of massive black

holes and resolved and unresolved galactic binaries form interesting targets for

study.

This thesis will focus on investigations of some of the technology to be applied

in second generation ground based interferometric gravitational wave detectors

and the evolution of designs required for the implementation of third generation

cryogenic detectors.

1.3.2 Interferometric Detectors

Laser interferometry can be used to sense fluctuations in the relative separation

of freely suspended masses at the ends of perpendicular arms: laser light is

divided by a beam splitter and directed down the two arms. Test mass mirrors

placed at the end of each arm reflect the light back towards the beam splitter

where it is recombined and the resulting interference pattern is sensed using

a photodiode. When a gravitational wave passes, one arm will lengthen while

the other shortens. This causes a relative phase shift between the two reflected

beams and a change in intensity of the interference pattern at the photodiode.
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1.3.3 Interferometric Techniques

1.3.3.1 Introduction

Long-baseline gravitational wave detectors such as the LIGO [25; 26], Virgo

[27], TAMA [28] and GEO 600 [29] instruments have been designed to search

for the effects of gravitational waves by using laser interferometry to measure

fluctuations in the relative separation of suspended masses as described above.

LIGO, Virgo and TAMA have designs based on a Michelson interferometer

with Fabry-Perot cavities in the arms of the interferometer. An alternative

topology is seen in the GEO optical layout, which is an example of a Michelson

interferometer incorporating delay lines [30]. Examples of each kind of set-up

can be seen in Figure 1.2. In a Fabry-Perot cavity, the light is bounced many

times between mirrors forming a cavity in each arm with the light beams

following the same spatial path. In a delay line interferometer the multiple

beams are spatially separate, therefore for the same increase in arm length,

using a delay line interferometer requires a larger mirror diameter than the

Fabry-Perot cavity.

The configuration of a Michelson interferometer can be adapted to increase its

sensitivity in several ways, some examples of which are described in more detail

in the following sections. They include Fabry-Perot cavities, power recycling

[31] and signal recycling [32–34].

1.3.3.2 Fabry-Perot Arm Cavities

In order to enhance the phase change of the laser light due to a disturbance

(such as one caused by a gravitational wave), Fabry-Perot optical cavities can

be inserted into the arms of the interferometer. This results in the laser beam

being reflected back and forth inside the cavity, increasing the light storage
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Figure 1.2: Michelson interferometers with delay lines (left) and Fabry-Perot cavities
(right).

time in the arms and building up a light field in the cavity. This configuration

is shown in Figure 1.2.

The input mirror of each cavity is partially transmissive, in order to allow some

light to enter and leave the arm. The phase change that could be expected due

to the presence of a gravitational wave would be enhanced with each bounce

the light makes along the cavity.

1.4 Limitations of Interferometric Detectors

1.4.1 Introduction

Figure 1.3 shows the noise budget for the interferometers of the LIGO project,

as an example of the types of noise sources which can limit the sensitivities of

ground based interferometric gravitational wave detectors. In order to further

improve the sensitivity of ground based detectors it is necessary to reduce the

limiting noise sources.



1.4 Limitations of Interferometric Detectors 9

Figure 1.3: Advanced LIGO noise budget [35].

1.4.2 Gravitational Gradient Noise

At frequencies below approximately 10Hz, the interferometer test masses are

vulnerable to gravitational gradient, or Newtonian, noise. Variations in the

local gravitational field can directly induce motion in the test masses, which

cannot be completely shielded from such disturbances [36; 37]. The fluctuations

can be produced by sources such as surface waves in the Earth’s crust and also

by human activity in the vicinity of the detector, including road traffic and

aircraft flying overhead [7].

For ground based detectors on the surface of the Earth, gravity gradient noise

forms a significant limit to sensitivities below ∼10Hz [36]. Placing the detector

approximately 150m underground reduces the influence of surface waves in the

1-10Hz frequency band [38]. However, to achieve desired sensitivities below

∼1Hz, space based gravitational wave missions must be considered [6].

1.4.3 Seismic Noise

Ground-based interferometric detectors are sensitive to the environment in

which they are placed. Anthropogenic activity close to the detector sites can
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cause seismic vibrations which limit the detector sensitivity at the lower end

of the frequency band, between 1 and 10Hz. Thus, locations for ground based

gravitational wave detectors should be carefully considered and selected for

their distance from busy urban areas and geographical disturbances. Below

1Hz, micro-seismic noise is caused by in the impacts of ocean waves on conti-

nental coastlines [7].

The limitations in sensitivity due to seismic noise can be minimised by care-

ful design of the test mass suspensions. Isolation from seismic noise in the

horizontal direction can be obtained by suspending the test masses as simple

pendulums: when the vibrational disturbances occur at frequencies above the

resonant frequency of the pendulum, the transfer function for displacement

between horizontal motions of the suspension point and the pendulum mass

is proportional to 1/f 2. Suspending the mass on a vertical spring can provide

vertical isolation, and thus practical mirror suspensions typically incorporate

both types of mechanical isolation [39].

In addition to the passive isolation systems described above, a feed-forward

system can be applied. Measured environmental motion from seismometers on

the building foundations is transmitted to piezoelectric actuators in the legs

of the pendulum suspension structure to reduce the motion of the suspension

structure [40; 41]. ‘Active’ isolation can also be implemented alongside feed-

forward, where feedback servo loops attempt to null motion measured on the

payload [41].

1.4.4 Thermal Noise

Thermal noise is one of the primary limitations to the sensitivity of gravita-

tional wave detectors over the range of frequencies at which they are most

sensitive (a few Hz up to several hundred Hz) [42–44]. It is caused by the
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thermally driven motion of molecules in the test mass mirrors, their coatings

and suspensions.

Thermal noise in the mirror coatings can be considered to be present in two

broad forms. Firstly, thermal noise arising from the ‘mechanical loss’ of a

coated mirror, arising from defects in the structure of the material or associated

with the intrinsic structure of the material. Secondly thermal noise resulting

from the effects of local statistical fluctuations in temperature which can result

in local material deformations and thermo-optic noise[45].

The various resonant modes of a suspended test mass mirror can be driven by

thermal excitation, with each mode having on average 1
2
kBT of thermal energy

associated with it. The internal modes of the mirrors themselves are typically

at frequencies above the gravitational wave detection band, thus the thermal

noise contribution in the operating range of a gravitational wave detector comes

effectively from the tails of the resonant modes.

By concentrating the majority of the thermal noise near to the resonances of

the suspended test mass, the thermal motion off-resonance in the operational

frequency range of the detectors can therefore be reduced. This is achieved

through the use of low loss materials for the test mass and suspensions; ultra

pure fused silica is one such material suitable for use at room temperature

[46] and can be used as the substrate material for the test mass and for the

suspension fibres.

Hydroxide-catalysis bonding, which will be discussed in Chapter 3, is a jointing

technique suitable for use in a detector that uses silica fibres and test masses.

It enables the construction of quasi-monolithic suspensions, which reduces the

thermal noise associated with the suspension of the mirrors beyond that of a

wire suspension [47].

In principle, thermal noise can be reduced by cooling the test mass mirrors and
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using materials that have a low level of mechanical loss at low temperature.

This rules out the use of amorphous fused silica in future cryogenic detectors

due to its broad mechanical loss peak at ∼40K resulting from its internal

material structure [46]. As alternative test mass and suspension materials,

crystalline materials such as sapphire and silicon are of interest [48; 49].

Thermal noise will be discussed in greater detail in Chapter 2, and the applica-

tion of hydroxide-catalysis bonding for a silicon suspension at cryogenic tem-

perature, and its mechanical loss contribution, will be investigated in Chapters

3, 4 and 5.

1.4.5 Photoelectron Shot Noise

Changes in the lengths of the interferometer arms can be monitored through

the variations in the intensity of the interference patterns of the recombined

laser light detected at the output photodiode. The limit to the sensitivity of the

optical readout system is set by the fluctuations in the detected output signal.

Assuming the photoelectrons follow Poisson statistics, a signal containing N

photons detected by a photodiode would have an error of
√
N associated with

it.

In a simple Michelson interferometer, with laser of power P and wavelength

λ, it can be shown that the differential displacement ∆x, of the mirrors deter-

mined using equation 1.2 [31]:

∆x =

(

~cλ∆f

4πP cos2(φ/2)

)1/2

, (1.2)

where the phase difference between the light in the two arms of the interfer-

ometer at the point they combine is φ, and ~ = h/(2π) is the reduced Planck

constant.



1.4 Limitations of Interferometric Detectors 13

These factors limit the accuracy with which the differential displacement of the

test mass mirrors can be determined. Note from equation 1.2, that increasing

the laser power can reduce the displacement of the test mass mirrors due to

photo-electron shot noise.

1.4.5.1 Power Recycling

Operating an interferometer close to a dark fringe (where the recombined laser

light at the beam splitter interferes constructively toward the laser) is beneficial

as it improves the shot noise limited sensitivity of the system [31].

Beam 

splitter

Laser

Photodiode

Mirrors

Power 

recycling 

mirror

Figure 1.4: A Michelson interferometer with power recycling.

Placing a mirror between the laser and beam splitter (shown in Figure 1.4)

reflects the laser beam back into the interferometer, enabling light to build up

in the cavity formed between this ‘power recycling’ mirror and the interferom-

eter. The result is an increase in the light incident on the beam splitter of the

interferometer, and thus an increased sensitivity.

1.4.5.2 Signal Recycling

The recycling of ‘signal’ light at the output port can also offer improved sen-

sitivity, this time at particular frequencies [32–34]. When an interferometer is
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operating close to a dark fringe a disturbance, such as a gravitational wave,

that changes the phase of the returned light causes light to leak out of the

output port.

Beam 

splitter

Laser

Photodiode

Mirrors

Signal 

recycling 

mirror

Figure 1.5: A Michelson interferometer with signal recycling.

The presence of a ‘signal recycling’ mirror (shown in Figure 1.5) enables the

tuning of the response curve of an interferometer through the repositioning

of the mirror. Signals at specific frequencies can be resonantly enhanced at

the expense of others, allowing a detector to have enhanced sensitivity over

frequency ranges of interest.

1.4.6 Radiation Pressure Noise

A fluctuating radiation pressure force arises from zero-point fluctuations of

the amplitude of the vacuum electromagnetic field [50; 51]. If this light has

the correct phase it will increase the light intensity in one of the interferometer

arms while decreasing the intensity in the other arm, producing anti-correlated

fluctuations of the light intensity in each arm. These intensity fluctuations are

the differential driving force which results in radiation pressure noise.

For a simple Michelson interferometer, the differential displacement between

each test mass, m, resulting from fluctuation in the radiation pressure at an
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angular frequency ω, is given by [31]:

∆x =

(

16π~P∆f

λm2ω4c

)1/2

(1.3)

It can be seen that both increasing the laser power and decreasing the mass of

the mirrors can increase the displacement of the test mass mirrors caused by

radiation pressure noise.

1.4.7 The Standard Quantum Limit

Sections 1.4.5 and 1.4.6 describe statistically independent sources of optical

noise which decrease and increase, respectively, as a higher laser power is used.

At any frequency of observation, an optimum laser power can be set, where

the total quantum noise is at a minimum [31].

This sensitivity limit is known as the Standard Quantum Limit (SQL) and it

corresponds to the limit set by the application of the Heisenberg Uncertainty

Principle, in its position and momentum formulation [31; 50–52]. However, in

principle, it can be overcome by using techniques that introduce a correlation

between shot noise and radiation pressure [53; 54].

1.5 Current Interferometric Detectors

1.5.1 First and Second Generation Detectors

Over the past decade, kilometre-scale interferometric gravitational wave de-

tectors have been operating around the world. The first generation of such

detectors includes those of the LIGO project, based in the United States,
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Virgo and GEO600, based in Italy and Germany, respectively, and TAMA300

based in Japan.

Figure 1.6: Photographs of the two LIGO sites: Hanford (left) and Livingston
(right).

1.5.1.1 LIGO

The initial LIGO instruments comprised a 4 km and a 2 km detector located

in Hanford, Washington and a 4 km detector in Livingston, Louisiana (Figure

1.6). The initial detector systems used Fabry-Perot cavities, power recycling

and steel wire loop single stage suspensions. Six science runs have been com-

pleted. The first run, S1, starting in August 2002, and the latest run, S6,

finished in October 2010. The two 4 km detectors were partially upgraded

as part of the ‘enhanced’ LIGO project between 2007 and 2009, which in-

creased their sensitivity between S5 and S6, as shown in Figure 1.7, and tested

techniques for future, more substantial upgrades that would become part of

the second generation ‘Advanced LIGO’ project. The science runs were often

coincident with those of other detectors such as GEO600, Virgo and TAMA.

After the end of the S6 run, the two 4 km detectors were taken out of oper-

ation (the 2 km detector was taken offline in summer 2009) for the start of

construction of Advanced LIGO.
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Figure 1.7: The improvement in the sensitivity for the 4 km LIGO interfer-
ometers can be seen in the increased sensitivity for each science
run. Science run 6 is the sensitivity curve for Enhanced LIGO.
(http://www.ligo.caltech.edu/)

Advanced LIGO will enable major improvements in sensitivity over that of

initial LIGO, with a factor of ten to fifteen increase in sensitivity being an-

ticipated. The 2 km interferometer at Hanford will be extended to become a

third 4 km detector, with the first data from the upgraded systems expected

to be taken in 2014 [55]. The upgrades include, amongst other developments,

the introduction of signal recycling (discussed in section 1.4.5.2) to optimise

the detector sensitivity, a higher laser power to improve shot noise limited

sensitivity (section 1.4.5), silica suspensions replacing initial LIGO’s wire sus-

pensions to reduce the thermal noise in the system (section 1.4.4), and heavier

test masses to counter the increased radiation pressure noise from the higher

laser power (section 1.4.6) [55–57].

1.5.1.2 Virgo

The Virgo detector, built under a French-Italian collaboration, is sited near

Casina in Italy. It has 3 km long arms (Figure 1.8), and is based on a Fabry-
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Perot Michelson-type interferometer with power recycling.

Figure 1.8: The Virgo detector site in Italy.

A multiple-stage horizontal pendulum arrangement, known as a ‘superattenu-

ator’, with the lower stages suspended from an inverted pendulum with can-

tilever springs [58] providing seismic isolation and damping the pendulum

modes [59].

Virgo became ‘Virgo+’ in 2008 when a set of medium scale improvements

were made to the detector [60], and then in 2011 a major upgrade commenced

to form a second generation ‘Advanced Virgo’ system. The upgrades will be

similar in timescale to those proposed for Advanced LIGO and with a similar

sensitivity goal. More information regarding Advanced Virgo and Virgo+ can

be found in references [60] and [61].

1.5.1.3 GEO600

GEO600, a detector built under a German - UK collaboration has a shorter

arm length of 600m, is also based on a Michelson type interferometer design

but without Fabry-Perot cavities. Instead, it uses a four-pass delay-line optical

layout, and was the only first generation detector to use signal recycling [62]
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and silica suspensions. The silica suspensions, shown in Figure 1.9, consist of

fused silica fibres welded onto fused silica interface pieces (‘ears’) bonded onto

the side of the test masses using hydroxide-catalysis bonding. This provided

the detector with a much lower level of thermal noise contributed from the

suspensions, by way of forming a quasi-monolithic structure [63].

Fused silica test 

masses (approx. 

18 cm diameter)
Fused silica 

suspension fibres

Fused silica ‘ears’ 

bonded onto side of 

test masses

Figure 1.9: The GEO600 silica suspension.

The use of these novel technologies enabled GEO600 to take part in the first

full-scale data taking runs alongside LIGO and Virgo despite its shorter arm

lengths.

The technique of hydroxide-catalysis bonding and its contribution to the ther-

mal noise of a system, will be discussed in greater detail in Chapters 3 and 5, as

the focus of this thesis will be the potential application of hydroxide-catalysis

bonding in future gravitational wave detectors.
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GEO-HF, an upgrade program for GEO600 that will enable it to be used as

a test-bed for novel interferometric techniques, began in summer 2009. GEO-

HF participated alongside LIGO during the S6 science run in an overnight and

weekend mode [6].

1.5.1.4 TAMA300, CLIO and LCGT

TAMA300 was the first interferometric detector to start taking data with suffi-

cient sensitivity to potentially detect gravitational waves at the galactic centre

[64]. Optimally polarised gravitational waves emitted from coalescing binary

stars of at least 1.4M⊙ at a distance of 10 kpc, and gravitational waves with

a strain amplitude of ∼ 10−18 from supernova explosions could be detected by

TAMA [64].

Between August 1999 and January 2004 TAMA had nine data taking peri-

ods over which time its typical strain noise sensitivity, in its most sensitive

frequency band improved from ∼ 3×10−19 Hz−1/2 to ∼ 1.5×10−21Hz−1/2 [65].

The design was a Fabry-Perot Michelson interferometer similar to the designs

of LIGO and Virgo. Built mainly underground at the Tokyo Astronomical

Observatory, TAMA300 acts as a test bed for future larger scale detectors in

Japan.

The Large-scale Cryogenic Gravitational-wave Telescope (LCGT) is a planned

second generation detector to be based underground in the Kamioka mine,

Japan [66; 67]. With arms 3 km in length, and sapphire test mass mirrors and

suspensions, it will initially run at room temperature, before being cooled for

cryogenic operation. It is expected to have similar sensitivities to Advanced

LIGO and Virgo. The LCGT is currently under construction, and is antici-

pated to begin data taking in 2017 [68].

Technology for the LCGT is being demonstrated by the Cryogenic Laser In-
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Figure 1.10: Diagram showing the plans for the Japanese LCGT detector, based
on the technology from the CLIO detector. (http://gw.icrr.u-
tokyo.ac.jp/lcgt/)

terferometer Observatory (CLIO) [69], a 100m baseline interferometer also

situated in the Kamioka mine. CLIO will be able to demonstrate the low

levels of seismic noise in the mine, and the installation of sapphire test mass

mirrors suspended on aluminium wires cryogenically cooled to ∼ 14K [69].

1.5.2 Future Detectors

With the anticipation that the first gravitational waves will be detected by the

second generation detectors, plans are developing for the design of potential

‘third generation’ detectors (such as the Einstein Telescope1) [22; 70] that are

expected to have a factor of ten improvement over the advanced, second gener-

ation, detectors. In order to accomplish this, the limitations of the technologies

used in the advanced detectors need to be overcome, and new technologies for

reducing noise sources must be applied. Some of these are summarised below.

1http://www.et-gw.eu
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1.5.2.1 Quantum Noise

Figure 1.11: An artistic view (left)and draft scheme of three nested detectors (right)
of the proposed ET observatory. (http://www.et-gw.eu)

Figure 1.11 shows the conceptual design of the Einstein Telescope [22], an

underground interferometer with 10 km length arms using a nested triangle

formation, rather than the ‘L-shaped’ configuration of the first and second

generation detectors.

Two interferometers are present in each of the three detectors (known as a

xylophone configuration); one optimised for low frequency gravitational waves

(ET-LF) using a lower power laser, and another for high frequency waves (ET-

HF) using a higher laser power [71]. The use of a lower power laser at low

frequency reduces the radiation pressure noise over the frequency range where

it is most significant. Conversely, at higher frequencies, where the shot noise

is dominant, the use of a higher power laser reduces the shot noise limit to

sensitivity. The relationship between laser power and radiation pressure and

shot noise was discussed in Sections 1.4.6 and 1.4.5.
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1.5.2.2 Gravitational Gradient and Seismic Noise

Placing a detector underground can reduce the gravitational interactions be-

tween the optics and the surrounding ground (see Section 1.4.2). The longer

arm lengths reduce the effects of displacement noise and the triangle formation

allows the detector to be sensitive to both polarisations of gravitational wave

simultaneously (shown in Figure 1.1) [72].

A suspension design similar to the Virgo superattenuator is proposed for use in

the Einstein Telescope to minimise seismic noise. It is based on a multi-stage

pendulum, and would suppress the transmission of ground seismic vibrations

using an inverted pendulum top stage and mechanical seismic filters connected

by metallic suspension wires [73]. An artist’s impression of the ET suspension

system in place is shown in Figure 1.12.

Figure 1.12: Artist’s impression of the ET suspension system, showing the super-
attenuator. (http://www.et-gw.eu/)

1.5.2.3 Thermal Noise

Fused silica is the material of choice for room temperature advanced detectors

due to its low optical and mechanical loss at room temperature [74] and avail-
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ability in large sizes with high purity. This forms the substrate material chosen

for GEO600 [75], Advanced LIGO [56] and Advanced Virgo [22] detectors. The

designs for ET-HF, which will operate at room temperature, propose to use

fused silica for all optical components.

Since the sensitivity is expected to be limited by thermal noise below ∼400Hz,

ET-LF will operate at cryogenic temperature. The cooled optic and suspen-

sions will require a crystalline material for the test mass and suspensions, due

to an increase in mechanical loss which occurs with reduction in temperature

for fused silica [46; 76], peaking around ∼40K.

Two candidate materials with low intrinsic mechanical loss at low tempera-

ture are under consideration for use in ET-LF: silicon [77] and sapphire [78].

Sapphire is already in use as a test mass material in CLIO, in preparation for

use in the LCGT. However, silicon is the more promising of the two due to the

ease of availability of large bulk samples [79].

In order to realise a silicon suspension system, research and development is

underway for the manufacture and characterisation of silicon suspension fi-

bres [79; 80], and the bonding of silicon in order to create a quasi-monolithic

suspension [81–83]. The jointing technique must provide a bond with suffi-

cient strength to suspend the test mass, high thermal conductivity in order for

the heat from the laser to be transported away from the cryogenically cooled

mirror, and low mechanical loss, to minimise the thermal noise contribution.

The technique of hydroxide-catalysis bonding has been successfully used in this

context in the GEO600 detector, as described in section 1.5.1.3, and is being

used to construct low loss silica suspensions for Advanced LIGO and Virgo.

In this thesis the suitability of hydroxide-catalysis bonding for application in

jointing silicon - silicon components for ET-LF will be investigated.
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1.6 Summary

Astrophysical events such as supernova explosions, and binary systems of black

holes and neutron stars are potential sources of gravitational waves. A direct

detection of such waves would both verify Einstein’s General Theory of Rel-

ativity and enable astronomers to obtain direct and novel information about

the behaviour of massive astrophysical systems.

Interferometric gravitational wave detectors are currently undergoing major

upgrades to improve their sensitivities by a factor of ten from the initial de-

tectors, commissioned a decade ago.

This second generation of detectors is expected to be successful in the search

for the first detection of gravitational waves, as predicted in 1916 by Einstein.

Already, plans are underway for the third generation of ground based interfer-

ometric detectors, with the Einstein Telescope European Collaboration having

published a conceptual design study in 2011. The Einstein Telescope aims

to further improve sensitivity beyond that planned for the second generation

detectors by a factor of ten. For this to be achieved, the noise sources that

limit the first and second generation detectors must be overcome.

This research focuses on the characterisation of the strength and mechanical

loss of the hydroxide-catalysis bonding technique when applied to silicon com-

ponents and subjected to cryogenic temperatures to investigate its suitability

for quasi monolithic suspensions in future generation gravitational wave detec-

tors.



Chapter 2

Thermal Noise in Gravitational

Wave Detectors

2.1 Introduction

One of the fundamental limitations to the sensitivity of a gravitational wave

detector is set by the thermal noise, a generalisation of Brownian motion, of the

test masses and their suspensions. This limits the performance of the detector

between a few Hertz and several hundred Hertz.

The thermal displacement noise sensed at the surface of optical substrates

arises from dissipation arising from a combination of sources, which are com-

monly classified into three types. Brownian noise describes the fluctuations

resulting from localised sources of mechanical dissipation associated with, for

example, defects distributed inside the mirror substrate. Thermoelastic noise

is caused by the statistical temperature fluctuations which cause heat flow (and

therefore energy loss) in the substrate. Thirdly, the motion of the substrate

surface due to the temperature fluctuations causing thermal expansion and

contraction, as described by Braginsky [48].

26



2.1 Introduction 27

Key sources of thermal noise in interferometric detectors include dissipation

associated with the test mass substrate material noise, the mirror coating and

the suspensions used to support the test mass mirrors.

In the substrates and coatings thermal noise arises from the intrinsic mechan-

ical dissipation of the materials, and from thermoelastic and thermo-optic ef-

fects arising from temperature fluctuations. Thermal noise also occurs from

dissipation associated with the suspension fibres, where this can result in mo-

tions of the front face of the suspended mass.

2.1.1 Brownian Motion

Brownian motion was discovered by Robert Brown, who observed the erratic

motion of small grains of dust and pollen suspended in water [84]. The phe-

nomenon remained unexplained for many years, until Einstein was able to show

that the motion arose from fluctuations in the rate of impacts of individual

water molecules on the grains [85].

Equation 2.1 shows the mean-square displacement of a particle, x2
therm, con-

necting the molecular impacts to the dissipation of a grain’s thermal energy

(kBT ) as it moves through the fluid. Here, τ is the duration of the observation,

a is the radius of a spherical grain and η represents the viscosity of the fluid

in which the grains are suspended.

x2
therm = kBT

1

3πaη
τ (2.1)

2.1.2 The Fluctuation-Dissipation Theorem

Brownian motion embodies the link between fluctuations (e.g. in the position

of a particle) and dissipation (energy loss due to the viscosity of the fluid). In
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general, any parameters which characterise a linear system in thermal equilib-

rium are found to undergo spontaneous thermally driven fluctuations, whose

magnitude and frequency spectrum are related to the dissipative (i.e. real) part

of the impedance of the system.

For a linear system, the equation of motion in the frequency domain can be

written in terms of an external force, Fext(ω), necessary to cause the system

to move with a sinusoidal velocity of amplitude v(ω):

Fext(ω) = Z(ω)v, (2.2)

where the function Z(ω) is the mechanical impedance of the system. The

reciprocal of the impedance is the admittance; Y (ω) ≡ 1/Z(ω).

The Fluctuation-Dissipation Theorem, derived by Callen et al. [86–88], states

that the power spectrum F 2
therm(ω) of the fluctuating force is given by:

F 2
therm(ω) = 4kBTℜ(Z(ω)), (2.3)

where ℜ(Z) is the real (i.e. dissipative) part of the impedance and the power

spectrum of the system’s fluctuating motion can be given as:

x2
therm(ω) =

4kB
ω2

Tℜ[Y (ω)]. (2.4)

Taking a gas damped pendulum as an example [7], the equation of motion of

the system, neglecting the fluctuating force, can be written as:

F = mẍ+ bẋ+ kx, (2.5)

where k represents the spring constant (mω2
0) of the pendulum, and b is the

damping coefficient.
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The external force, Fext, necessary to establish a given velocity ẋ, can be

determined by expressing all of the forces in the frequency domain, and writing

each term in terms of velocity, ẋ, i.e:

x =
ẋ

iω
and ẍ = iωẋ (2.6)

The impedance, Z ≡ Fext/v, can now be calculated to be:

Z ≡ b+ iωm+
ik

ω
(2.7)

Using equation 2.7, the admittance of the system, Y (ω) ≡ Z−1(ω), becomes:

Y (ω) =
1

b+ iωm+ ik
ω

. (2.8)

Next, the denominator is rationalised:

Y (ω) =
b− iωm+ ik

ω

b2 + (ωm− k
ω
)2
. (2.9)

Thus, the real part of the admittance can be determined and by noting that

k = ω2
om, equation 2.4 becomes:

x2
therm(ω) =

4kBTb

ω2(b2 + (ωm− k
ω
)2)

, (2.10)

providing an expression for the thermal noise power spectral density of an

oscillator of resonant frequency ω0, in terms of its mass and damping coefficient.
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2.2 Dissipation from Internal Friction in Ma-

terials

The example above illustrates that the thermal noise is related to the damping

present in the system. In the case of a suspended mirror in a gravitational

wave detector, where sources of external damping are suitably minimised, the

relevant damping is the internal friction of the material.

Internal friction can be understood by considering the stress and strain in

a mechanical system. Hooke’s law (equation 2.11) defines the relationship

between force and displacement, where δx is the amount by which a spring

extends from a rest length of x upon the application of the force to the spring,

Fspr.

Fspr = −kδx (2.11)

The definition, a generalisation of Hooke’s law, of the relationship between

stress, σ, and strain, ε, is σ = εY , where Y is Young’s modulus. However, this

implies that a strain in the material is created instantaneously when stress is

applied, whereas a real material would demonstrate anelasticity; i.e. the strain

would lag behind the stress and the material would continue to stretch after

the applied stress is removed. In this process energy is dissipated.

If a periodic stress, σ, given by:

σ = σ0e
iωt, (2.12)

where σ0 is the stress amplitude and ω is the angular frequency of the oscillation
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is applied to an anelastic material, a strain response results, ε, such that:

ε = ε0e
i(ωt−φ), (2.13)

where φ is the loss angle, the angle by which the strain lags behind the stress.

The loss angle is related to the internal friction of the material and is a measure

of the fractional energy dissipated per cycle of oscillation [89].

m

k(1 + iφ)

Figure 2.1: A diagram showing a mechanical oscillator with a complex spring con-
stant k(1 + iφ).

The time delay between the applied stress and the strain response can be rep-

resented by a modified version of Hooke’s law using a complex spring constant

(shown in Figure 2.1). Thus, equation 2.11 becomes:

Fspr = −k(1 + iφ(ω))x, (2.14)

where φ(ω) represents the degree of anelasticity of the spring, and therefore

the damping present due to the internal friction of the spring material.

If the resonant modes of the suspended mirror system in a gravitational wave

detector are modeled as harmonic oscillators with internal damping, the equa-

tion of motion can be written as:

mẍ = −k(1 + iφ(ω))x+ F. (2.15)
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Using equation 2.6, the force, F , on the oscillator becomes:

F = iωmẋ+
k

iω
(1 + iφ(ω))ẋ, (2.16)

and the impedance is:

Z =
k − ω2m+ ikφ(ω)

iω
. (2.17)

By inverting equation 2.17, and rationalising the denominator, the admittance

can therefore be found:

Y =
ωkφ(ω) + i(ωk −mω3)

(k −mω2)2 + k2φ2(ω)
, (2.18)

with the real part being:

ℜ{Y } =
ωkφ(ω)

(k −mω2)2 + k2φ2(ω)
. (2.19)

Applying equation 2.4, and using k = ω2
0m, the thermal noise power spectral

density, x2(ω), for a harmonic oscillator with internal friction φ(ω) is therefore

given by:

x2
therm(ω) =

4kBTω
2
0φ(ω)

mω[φ2(ω)ω4
0 + (ω2

0 − ω2)2]
. (2.20)

2.3 Thermal Noise associated with a Single

Resonant Mode

There are many resonant modes present in the mirror suspension system for

a gravitational wave detector that can be thermally excited. These include

the pendulum modes of the suspension, which occur at frequencies below the

sensitive detection band of the interferometer, the violin modes of the suspen-

sion fibres, which lie within the detection band, and the internal modes of the
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test mass mirror, which lie above the detection band. It is therefore the off-

resonance thermal noise which limits the detector sensitivity for the pendulum

and internal mirror modes.

It is possible to simplify equation 2.20 by looking at the thermal noise for each

of the three cases: below the detection band, in the detection band and above

the detection band.

Below the detection band, ω ≪ ω0:

xtherm(ω) ≈
4kBTφ(ω)

mωω2
0(φ

2(ω) + 1)
. (2.21)

Above the detection band, ω ≫ ω0:

xtherm(ω) ≈
4kBTω

2
0φ(ω)

mω[φ2(ω)ω4
0 + ω4]

. (2.22)

In the detection band, ω ≈ ω0:

xtherm(ω) ≈
4kBTω

2
0φ(ω)

mφ2(ω)ω5
. (2.23)

Using a low-loss material results in φ2(ω) ≪ 1, and the thermal noise in the

detection band of the pendulum modes can be approximated as:

xtherm(ω) ≈
4kBTφ(ω)

mωω2
0

. (2.24)

Similarly, the thermal noise in the detection band due to the internal mirror

modes can be approximated as:

xtherm(ω) ≈
4kBTω

2
0φ(ω)

mω5
, (2.25)
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and the contribution from the violin modes:

xtherm(ω) ≈
4kBT

mω3
0φ(ω0)

. (2.26)

Equations 2.24 and 2.25 show that the thermal noise power spectral density

due to a resonance far from the detection band is directly proportional to the

mechanical loss φ(ω). Thus, the off-resonance thermal noise can be reduced

for these modes, by using materials with low mechanical loss.

However, equation 2.26 shows that when the resonant mode is in the detector

band, the power spectral density of thermal noise close to the resonance is

inversely proportional to the mechanical loss.

By reducing the mechanical loss of the system through using a low loss suspen-

sion material, the thermal noise from the violin modes is effectively confined

into a narrow frequency band centred on the resonance. This produces a

narrower and higher thermal noise peak at the resonant frequency and lower

off-resonance thermal noise. These peaks can then be easily filtered from the

interferometer signal, without significantly reducing the useful bandwidth of

the detector.

2.4 The Quality Factor, Q

The quality factor, Q, is a dimensionless measure of the dissipation of an

oscillator at a resonant frequency, f0. It can be defined as:

Q(f0) ≡
f0
∆f

≡ 2πEstored

Ediss

, (2.27)

where ∆f is the full width of the resonance peak in the frequency domain,

measured at the level of half of the maximum power, Estored is the total energy
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stored in the resonating system, and Ediss is the energy dissipated with each

cycle of oscillation. It can therefore be seen that an oscillator with a low level

of energy dissipation will have a narrow resonance.

The quality factor can be related to the loss angle, φ, of the system. The loss

angle is the angle by which the strain lags stress in an anelastic material and

represents the proportion of total energy dissipated per oscillatory cycle:

φ(ω) =
Ediss

2πEstored
. (2.28)

At a resonant frequency, ω = ω0, the mechanical loss angle is defined by

(1/Q(ω0)). Away from the resonant frequencies xtherm(ω) is proportional to

φ(ω). The integral over all frequencies of the displacement power spectrum is

independent of the amount of dissipation. By reducing the amount of dissipa-

tion (mechanical loss) in the test masses and suspensions, the thermal noise

displacement spectral density away from the resonances can also be reduced, at

the expense of an increase in the thermal noise spectral density at the resonant

frequency.

2.5 Thermal Noise in a Multi-Resonance Sys-

tem

Previous discussion, and the thermal noise model described by equation 2.20,

has focused on the thermal noise for a single resonance of a mechanical system.

However, in an interferometric gravitational wave detector, the total thermal

displacement from multiple resonant modes will be sensed by the laser beam

reflecting from the front face of the mirror.

The mechanical dissipation of a real mirror, due to the presence of areas of
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high loss such as the mirror coatings, or suspension fibre attachment points, is

spatially inhomogeneous and thus the total thermal noise cannot be calculated

by simply summing the individual modes [42].

Using the technique described by Levin [42], where a notional pressure of the

same spatial profile as the intensity of the sensing beam to the front face of the

substrate, the power spectral density of the thermal noise, Sx, can be written

as:

Sx(f) =
2kBTWdiss

π2f 2F 2
0

, (2.29)

where Wdiss is the power dissipated when a notional oscillatory force of peak

magnitude F0 acts on the face of a test mass mirror.

If the loss is considered to be homogenous, and the laser beam radius is consid-

erably smaller than the radius of the test mass, the test mass can be modeled

as being half-infinite and the power spectral density of the Brownian thermal

noise of the test mass can be shown to be [90]:

xtherm(ω) =
2kBT (1− σ2)

π3/2fY r0
φsubstrate(f) (2.30)

where the test mass properties are: φsubstrate(f) is the mechanical loss, Y is

the Young’s modulus, and σ is the Poisson’s ratio. r0 is the radius of the laser

beam where the electric field has fallen to 1/e of the maximum intensity.

Liu and Thorne [91] calculated a correction factor, CFTM , for equation 2.30

for a finite test mass case, such that xFTM
therm(f) = C2

FTMxITM
therm(f), where x

FTM
therm

is the thermal noise power spectral density of a finite test mass, as derived by

Bondu [90] and corrected by Liu and Thorne [91]:

xFTM
therm(f) =

4kBT

πf
φsubstrate(f)(Uo +∆U), (2.31)

where (Uo +∆U) represents the elastic deformation energy, defined explicitly
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by Liu and Thorne [91].

2.5.1 The Arrhenius Equation

Internal friction is influenced by the arrangement of molecules inside the ma-

terial. The time taken for an equilibrium strain to develop in response to an

applied stress to the material is dependent on internal properties which are

functions of the stress. Such properties include the density of point defects,

dislocations, grain boundaries and impurities. In order for a new state of stress

to be adjusted to, energy barriers of height ∆E must be overcome. This results

in an exponential relaxation to the new equilibrium value, with a characteristic

time τ which often obeys the Arrhenius equation [92]:

τ = τ0e
∆E/kBT , (2.32)

where τ0 represents the characteristic time between attempts at crossing the

energy barrier.

2.5.2 Debye Theory

Figure 2.2 shows a more accurate model of an anelastic material than the

model shown in Figure 2.1. If a spring has only one significant internal relax-

ation process with a clearly defined energy barrier of ∆E, its dynamics can

be represented using an undamped spring with constant k1 in parallel with a

Maxwell unit, a series combination of an undamped spring with constant k2,

and a pure velocity damping dashpot, α.

Zener [93] showed that for such a model, the loss angle φ with a characteristic
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m

k1

k2

α

Figure 2.2: A diagram representing a typical anelastic solid, with an ideal spring
connected in parallel with a spring-dashpot combination.

frequency dependence is given by:

φ ≈ ∆
ωτ

1 + ω2τ 2
, (2.33)

where ∆ ≡ k2/k1 is the relaxation strength, and τ = α/k2 is the relaxation

time. The Debye peak is the dissipation peak at frequency ωpeak = τ−1.

It has been reported that the internal friction is generally independent of fre-

quency [7; 94–96], which may appear to contradict the Debye peak occurring

at a characteristic frequency. It is possible, however, that a material may have

several Debye peaks at frequencies separated by several orders of magnitude.

At frequencies away from these peaks, the combined effect of the tails of the

peaks is effectively constant with frequency.
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2.6 Thermal Noise in a Gravitational Wave

Detector

2.6.1 Coating Thermal Noise

When a laser is incident on the surface of a test mass, equation 2.29 shows

that the level of thermal noise is directly related to the power dissipated in

the test mass when a notional oscillating pressure is applied to the surface.

At any point in the mass, the power dissipated is proportional to both the

elastic energy associated with the deformations caused by the pressure and

the mechanical loss at that point [42; 91].

The majority of the deformation will occur in the vicinity of the laser footprint

on the test mass, therefore a dissipation source in this area will contribute more

to the thermal noise read out by the laser beam than an identical source located

further away.

Multi-layer dielectric coatings on the surfaces on the front surfaces of silica test

masses in an interferometric gravitational wave detector have dissipation in the

order of 2 - 4×10−4 [43; 44; 97; 98] in comparison to the silica substrate, which

has dissipation of ∼ 1×10−9 [99]. Therefore, the thermal noise associated with

the coatings will be dominant over the contribution from the substrate.

2.6.2 Suspension Thermal Noise

As discussed in section 2.3, the violin modes and pendulum modes both con-

tribute to the thermal noise of the detector. Both of these sources arise from

the pendulum suspension of the mirror used in interferometric detectors, as

shown in Figure 2.3.
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(a) (b)

Figure 2.3: Simplified diagram of (a) the fundamental violin mode, and (b) the pen-
dulum mode of a suspended test mass.

The loss factor of a pendulum is lower than that of the material used in the

suspension fibres. This is because the majority of the energy in a pendulum is

stored as potential energy via the Earth’s gravitational field, which is lossless,

and only the fraction of the total energy stored in the flexing of the suspension

fibres can be dissipated. This effect is known as ‘dilution’. Equation 2.34

shows the mechanical loss of a pendulum:

φpendulum ≈ φfibre
Eflex

Egrav
. (2.34)

Similarly, the loss of a violin mode is reduced from the intrinsic loss of the

material by a dilution factor. If the loss in the suspension fibre is assumed to be

spatially homogeneous and the rocking mode of the pendulum is constrained,

the loss of the first violin mode will be twice that of the pendulum mode [100]

[101]. The violin mode thermal displacement couples to the displacement of

the test mass with a suppression factor of the ratio of the mass of the pendulum

and fibre: m
mfibre

.

Section 2.3 described the thermal noise contributions from the pendulum and

violin modes in equations 2.24 and 2.26, respectively. Another contributor to
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thermal noise is the attachment points, known as the interface ‘ears’ that are

bonded onto the side of the test masses in order for the suspension fibres to

be welded into place. These can been seen for the GEO600 detector in the

photograph in Figure 2.4.

Fused silica intermediate mass

Fused silica test mass mirror

Fused silica fibres

Fused silica ‘ears’

Figure 2.4: Photograph of the GEO600 silica suspension, including the fused silica
ears bonded onto the side of test masses. Credit: Albert Einstein Institute
Hannover.

2.6.3 Bond Loss

Experiments have shown that the method for attaching the suspension fibres

to the test masses must be low loss to avoid degrading the pendulum mode

loss factors [102]. Welding, which has been proved on small test masses, can

produce substantial thermal stresses, increasing the chance of the substrate

cracking [102].

An alternative technique, hydroxide-catalysis bonding, has been shown to be

a low loss and high strength jointing technique for silica suspensions [103].

Investigations have been made into the mechanical loss of a hydroxide-catalysis
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bond between both silica and sapphire [104], and it has been applied in the

GEO600 suspension, and included in the upgrades for LIGO and Virgo: fused

silica ‘ears’ are bonded onto the side of silica test masses to provide an interface

for the suspension fibre to be welded to.

Hydroxide-catalysis bonding, due to its desirable properties including high

strength and insensitivity to temperature [103], is under consideration for fu-

ture developments of gravitational wave detectors.

2.7 Conclusion

The sensitive operating band of an interferometric gravitational wave detec-

tor is limited in its most sensitive frequency range by thermal noise. The

mechanical loss of the materials used in the construction of the test masses

and suspension systems is directly related to the level of thermal noise in the

detector.

The use of low loss materials can therefore reduce the level of thermal noise, as

can a lower operating temperature, and the careful positioning of higher loss

sources away from the front face of the test mass mirror.

The construction of the pendulum suspension can also be a significant source of

thermal noise. The method of bonding the interface ‘ears’ onto the sides of the

test mass mirrors in order to create a quasi-monolithic suspension, will be the

focus of this thesis, with measurements of the mechanical loss of a hydroxide-

catalysis bond (as used in GEO600 and planned for use in Advanced LIGO and

Virgo) measured in Chapter 5, and the application of the process for future

generation gravitational wave detectors.



Chapter 3

Hydroxide-Catalysis Bond

Strength Testing

3.1 Introduction

The technique of hydroxide-catalysis (silicate) bonding was invented and patented

at Stanford University by Gwo [105; 106] for jointing fused silica pieces in the

Gravity Probe B space experiment [107]. The technique was adapted for use in

the construction of the final stages of the GEO600 suspension systems [103] due

to the high bond strength [106] and suitably low mechanical loss, and for the

high stability optical benches for the proposed ‘LISA’ mission, a space-based

gravitational wave detector [108], due to the ability of the bonds to withstand

the forces and thermal cycling associated with space launches and conditions

[107; 108].

In the GEO600 detector, the hydroxide-catalysis bonding technique was used

to joint the relevant silica attachments to the test masses as it was shown to

add very little additional noise to the suspension system, because of a combi-

nation of its level of mechanical loss [103; 104], small bond thickness and high

43
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mechanical strength [105]. Additionally it is vacuum compatible and allows

for precision alignment of pieces [108].

As discussed in Chapter 1, the technique is being used in a similar way in

upgrades to the suspensions of the LIGO [55] and Virgo [27] detectors to

form ‘Advanced’ detector systems which should be operational around 2014.

These advanced instruments should have a factor of 10 to 15 times better

sensitivity than first generation detectors [27; 55]. The technique of hydroxide-

catalysis bonding has also been proposed for use in the construction of silicon

suspensions in future generations of cryogenic gravitational wave detectors [79].

3.2 Hydroxide-Catalysis Bonding

The hydroxide-catalysis bonding technique achieves the formation of a bond

between surfaces through hydroxide-catalyzed hydration and dehydration. To

form a bond, hydroxide ions (ideally in an aqueous solution) are deposited

onto at least one of the surfaces. The two surfaces are then placed in contact

with each other such that a chemical bond can form between the surfaces to

be jointed. NaOH, KOH, and NH4OH, are all hydroxides suitable for this use

in an aqueous solution [106].

Ideally the surfaces to be jointed are required to be a material such as silica,

fused silica, silicon with a surface oxide layer, natural or fused quartz, that

can form a silicate-like network, or one which can be chemically linked to a

silicate-like network, through hydroxide-catalyzed hydration and dehydration.

These surfaces can be bonded together, or to another material such as alumina,

which has oxygen present at the bonding surface that is able to form bonds

with the silicate molecules. Alternatively, it is possible to bond two alumina

surfaces together through the addition of silicate to the bonding solution.
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The hydration and dehydration process can be catalyzed by H+, OH–, and

alkali metal ions. The use of a catalyst lowers the activation energy, Ea, of

the dehydration process to less than a few kBT (where kB is Boltzmann’s

constant and T is the temperature in Kelvin). This enables the hydration and

dehydration process to easily occur at room temperature.

Hydration of fused silica is shown in Figure 3.2. The bulk of fused silica com-

prises a network of siloxane bridges(Si—O—Si), some of which are highlighted

in red. When exposed to water and hydroxide ions (OH−), the silicon and

oxygen atoms can be hydrated to form Si—O—H groups, shown on the right

in Figure 3.2.

Si
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O O
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Figure 3.1: Fused silica (left) with siloxane bridges highlighted in red. When fused
silica is exposed to water and hydroxide ions, it becomes hydrated and
Si—O—H structural groups are formed (right, highlighted in blue).

The dehydration process is shown in Figure 3.2. Two hydrated fused silica

surfaces are placed close together, and an oxygen atom from one surface com-

bines with one hydrogen atom from each of the two surfaces and is removed as

a water molecule, resulting in the formation of a siloxane bridge. This process

of chemical bonding results in the surfaces being bonded together with great

strength.

The steps described in the text and figures above for fused silica can also be

represented using equations 3.1, 3.2 and 3.3.
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Figure 3.2: The formation of the silicate bond. On the left, hydrated fused silica is in
the presence of hydroxide ions. The red and blue atoms highlighted are
removed during the dehydration process to form water molecules, and a
siloxane bridge forms between the two surfaces.

SiO2 +OH− + 2H2O → Si(OH)−5 (3.1)

Si(OH)−5 → Si(OH)4 +OH− (3.2)

2Si(OH)4 → (HO)3SiOSi(OH)3 +H2O (3.3)

The bond will form if the two surfaces are close enough to each other; if both

surfaces are perfectly flat this requirement is met by simply placing the two

surfaces against each other. However, a perfectly flat surface is unlikely; in

reality such a surface does not exist. For surfaces whose figures are slightly

mismatched, the silicate-like networks that are formed (Figure 3.2) are able to
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fill small gaps.

Although alternative techniques exist for use in jointing pairs of surfaces that

have large amounts of surface mismatch (such as using a powder or slurry

of materials than can be hydrated to have surface hydroxyl groups). For the

application of hydroxide-catalysis bonding in the construction of suspensions in

gravitational wave detectors, the bonding surfaces ideally have global surface

figures that match to within 60 nm peak-to-valley. This enables bonds to be

created using an aqueous bonding solution in order to create very thin bonds

with high precision.

The time taken for a bond to form can be controlled by altering tempera-

ture and/or pH of the bonding solution used [106; 109]. The bond thickness

between fused silica surfaces of nominal flatness 60 nm has been found to be

approximately 60 nm - 100 nm when the bonding surfaces had a global flatness

of 6 λ/10, where λ = 633 nm [108; 110].

3.2.1 Hydroxide-Catalysis Bonds between Silicon

Untreated silicon cannot be reliably bonded using this technique. To make

bonding of silicon components possible, the bonding surfaces must ideally have

a surface coating of SiO2, with which the hydroxide can react to form the bond

[106].

A suitable layer can be deposited in a variety of ways. Previous studies of

bonding silicon and silicon carbide [111] seemed to suggest that the nature of

the silicon oxide layer played a role in determining the success of the bonding

process. In [112] it was postulated that if hydrogen formed during the bonding

process due to direct contact between silicon and aqueous hydroxide solution,

this might have a detrimental effect on the resulting bond strength.
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It was therefore proposed that oxide layer thickness might have an effect on

strength, i.e. that a minimum thickness of surface oxide layer is required to

create reliably strong bonds. In this chapter this hypothesis is investigated by

creating a number of samples whose surfaces have wet thermal oxide layers

of varying thickness applied to them, bonding pairs of such samples together,

and strength testing the resultant bonds.

Van Veggel et al. [111] showed bending strengths could be achieved averaging

23MPa in hydroxide-catalysis bonds between silicon carbide bonds and shear

strengths averaging 3.9MPa were achieved between silicon at room tempera-

ture [112]. However, the silicon samples were loaded in such a way that shear

forces dominated the experiments, the results of which were thought to be lim-

ited by the way the samples were clamped. The bending stress in silicon-silicon

bonds were measured by Dari et al. [82] to be approximately 8.7± 3.7MPa at

room temperature.

3.3 Thermal Oxidation of Silicon

3.3.1 Introduction

The Deal and Grove model [113] describes the thermal oxidation of silicon,

which typically occurs between 800 and 1200oC. Silicon with a surface oxide

layer of thickness D, will grow an oxide layer through the inward movement of

the species of oxidant rather than by the outward movement of silicon. The

transported species will go through three stages; initially it is transported from

the bulk of the oxidising gas to the outer surface where it reacts or is adsorbed.

Then, it is transported across the oxide film towards the silicon. Finally, it

will react at the silicon surface to form a new layer of SiO2 [113].

Silicon is easily oxidised in air: a native oxide of nanometre thickness grows on
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the silicon surface in a couple of hours or days, depending on surface conditions.

This native oxide, however, is limited in its thickness and is not stoichiometric

SiO2. High quality thermal oxides can be grown at temperatures above 800◦C

[114].

There are two basic schemes used for thermal oxidation of silicon; wet and

dry, the processes of which are described in equations 3.4 and 3.5 respectively,

where (s) and (g) denote a solid and a gas respectively. During dry thermal

oxidation, oxygen will diffuse through the SiO2 film and react at the SiO2/Si

interface. Si is consumed when silicon and oxygen react to form SiO2. For an

SiO2 layer of thickness D, a thickness of 0.45D of silicon is consumed.

Si(s) + 2H2O(g) → SiO2(s) + 2H2(g) (3.4)

Si(s) + O2(g) → SiO2(s) (3.5)

The rate at which an oxide layer will form on the surface of silicon is dependent

on several factors, including the orientation of the silicon ingot and the oxi-

dation method used. Oxygen molecules will diffuse through SiO2 faster than

water molecules. However as water solubility in SiO2 is four orders of magni-

tude larger than that of oxygen, the higher concentration of the oxidant in the

oxide results in wet thermal oxidation producing an oxide layer at a faster rate

than dry oxidation.

There are several other factors that can influence the oxidation rate, including

the doping level (highly doped silicon will oxidise faster than a lightly doped

material [114]), the pressure at which the oxidation takes place (a higher oxy-

gen pressure results in a faster oxide growth [114]) and the crystal orientation.

Silicon <111> will oxidise at a faster rate than silicon <100> because of a

higher number of silicon bonds being available at the surface. This also in-

fluences the quality of an oxide layer, and a slowly grown oxide layer is more
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dense and of a higher quality than an oxide layer grown quickly [115].

Here, all samples were oxidised at atmospheric pressure. The different crystal-

lographic orientations were not considered when selecting oxidation times due

to the small influence this was expected to have on the oxide layer growth rate

given the uncalibrated oxidation set-up [115].

3.3.2 Oxidation Procedure

For the strength tests rectangular silicon blocks of dimensions 20mm× 10mm× 5mm

cut from two different silicon ingots were used. Both ingots were manufactured

by Prolog; ingot one had a <111> crystal orientation, ingot two had a <100>

crystal orientation, as shown in Figure 3.3. The bonding surfaces were formed

from one of the 5mm× 10mm surfaces on each sample, so that after bonding

a composite sample was created with dimensions 40mm× 10mm× 5mm.

[100]

[001]

[010]

[100]

[001]

[010]

5 mm

20 mm

10 mm

(100) plane (111) plane

Figure 3.3: Diagram showing a ‘mixed’ ingot pairing. The bonding surface on each
block is 5mm x 10mm, and for a mixed ingot pairing, a < 111 > block
is bonded to a block of orientation < 100 >.

In order to remove any organic residue on the bonding surfaces prior to ox-

idation an acid clean, using a 1:7 volumetric ratio of hydrogen peroxide and

sulphuric acid, known as ‘piranha solution’, was performed on all samples.
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Nitrogen gas
Saturated nitrogen gas

Water at 100 C

Tube furnaceSample

Figure 3.4: Schematic for a wet thermal oxidation.

Figure 3.4 shows a schematic diagram for the wet thermal oxidation set up:

nitrogen gas is passed through boiling water and subsequently passed over the

samples which are contained in a furnace, over the samples. This introduces

water into the hot environment and as described in Section 3.3.1, accelerates

the growth of the oxide layer on the silicon surface.

The silicon blocks were placed on a fused silica ‘boat’ with the bonding surfaces

exposed to the environment (shown in Figure 3.5) and placed into the centre

of the tube once the temperature had reached 1000◦C, and the gas flow had

been started. The samples inside the furnace can be seen in Figure 3.6.

Fused 

silica boat

Silicon 

blocks

Bonding 

surfaces

Figure 3.5: Silicon samples on a fused silica boat, after oxidation. The bonding sur-
faces were exposed to the saturated nitrogen gas flow. The variations
in colour are due to different thicknesses of oxide layers present on the
surface.
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Fused silica boat

Silicon 

blocks

Nitrogen gas 

entry

Figure 3.6: Silicon samples in the furnace.

Previous experiments found the growth rate for an oxide layer on silicon in a

wet environment to be lower than that predicted by the model proposed by

Deal and Grove [112; 113]: samples oxidised for 18 minutes grew oxide layers

of approximately 84 nm [112]. Therefore, oxidation times were chosen to be

between 5 and 55 minutes to grow oxide layers up to ∼ 200 nm.

However, it was discovered that some of the oxide layers grown were not as thick

as expected. Therefore, in order to get a good range of oxide layer thicknesses,

it was necessary to re-oxidise some of the samples. The oxidised blocks were

put back into the tube furnace (in the same environment as before) to ‘top-up’

the oxide layer. The resulting oxide layer was measured and assumed to be a

single oxide layer and the oxidation time was considered to be the total time

the sample spent inside the furnace.

Figure 3.7 shows a plot of the oxidation time and resultant oxide layer thickness

for both the <111> and <100> ingots. It is apparent that the ingot with the

<111> crystallographic orientation formed an oxide layer at a greater rate

than the ingot with the <100> orientation. There are also anomalous results

for the samples oxidised for 30 minutes that do not follow the general trend.
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It is postulated that these are due to variations in the oxidation conditions.

For example, it is possible that when the nitrogen gas passes through the

boiling water, some water could get splashed into the pipe, preventing constant

gas flow into the furnace and also get passed into the furnace, increasing the

humidity inside the furnace.
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Figure 3.7: Plot showing the measured relationship between oxide layer thickness and
oxidation time in a wet thermal environment.

The oxide thicknesses were measured using ellipsometry. An ellipsometer mea-

sures the change in the polarisation state of light when it is reflected from a

sample. If linearly polarised light of a known orientation is reflected at an

oblique incidence from a surface, the reflected light is elliptically polarised.

The shape and orientation of the ellipse depends on the angle of incidence, the

direction of the polarisation of the incident light, and the reflection properties

of the surface. The presence of a thin film on the surface (such as an oxide

layer) will change the reflection properties such that the thickness of the film

can be determined. The thickness of the oxide layer grown on each sample was

measured at a central point on the oxidised bonding surface.
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3.4 Bonding Procedure

The bonding surfaces of all samples were polished to a nominal flatness of

λ/10 where λ=633 nm. The flatness of the bonding surface was measured

after oxidation using a Zygo GPI XP/D interferometer operating at 633 nm.

All samples were marked with identification numbers, to allow the bonds to

be characterized and tracked throughout the experimental process.

The Zygo interferometer was used to measure the flatness of each sample,

shown in Figure 3.8. Examples of the resulting images for samples with low

flatness peak-valley (PV) values are shown in Figure 3.9. High flatness values

are often caused by edge effects on the samples, shown in Figure 3.10.
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Figure 3.8: The measured flatness of the bonding surface of each silicon block after
oxidation.

The roughness of selected samples was also measured using a Veeco Wyko

NT1100 Optical surface profiler which uses a phase shift technique. The results

from the measurements, shown in Figure 3.11, showed the oxide layers grown

using the experimental set up shown in Figure 3.4 to be suitably smooth.
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(a) 27.02 nm PV flatness (b) 27.07 nm PV flatness

Figure 3.9: Two samples with Peak to Valley (PV) flatnesses of less than 30 nm.

(a) 116.78 nm (b) 111.86 nm

Figure 3.10: Two samples with features that produce flatnesses of above 100 nm.

The bonding procedure took place on a class 100 flow bench, and the bonding

surfaces were cleaned using a procedure consisting of polishing with cerium

oxide in de-ionised water followed by cleaning with sodium bicarbonate, a

methanol rinse and a methanol drag wipe immediately prior to bonding. By

ensuring the surface is hydrophillic prior to bonding, any hydrophobicity which

may be due to organic or silicone contamination, is minimised along with any

surface particulate contamination.

The bonding solution was dispensed onto the surfaces using a pipette, where

0.4 µl of solution per cm2 (0.2 µl for the strength test samples) was used. The

bonding solution was produced by diluting a commercially available sodium
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(a) Ra = 2.73 nm (b) Ra = 2.70 nm

Figure 3.11: Two samples with showing low levels of surface roughness, with Ra being
the arithmetic average of the absolute values of the vertical deviations
of the roughness profile from the mean line.

silicate solution (14% NaOH and 27% SiO2) with de-ionized water at a volu-

metric ratio of 1:6, a solution used previously [108].

Occasionally, localised point-like surface features in the oxidised surface were

seen on the bonding surface. An example of defects on the surface is shown

in Figure 3.12. These are postulated to be due to particulate contamination

during the oxidation process. Any surface features visible on the bonding

surface, such as the specks visible in Figure 3.12, were recorded.

Defects on 

bonding 

surface

Figure 3.12: Photograph of a block with specks visible on the oxidised bonding surface.
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All samples were left to cure at room temperature for a minimum period of 4

weeks in a clean room environment at room temperature.

3.4.1 Bonding Native Oxides

Some silicon blocks were bonded with no thermal oxide layer grown on the

bonding surface to investigate the minimum amount of oxide layer required for

a bond to form. It was noted that the cleaning procedure using cerium oxide

failed to make the native oxide layer hydrophillic, unlike the thermal oxide

layers, preventing the droplet of bonding solution from spreading across the

bonding surface. This effect is shown in Figure 3.13.

Six of the bonds involving samples with native oxides failed to form correctly.

Figure 3.14 shows the bonding surface of a failed bond between two native

oxide layers.

Bonding Jig

Silicon Block

Bonding Solution

Figure 3.13: Photograph showing the effect of hydrophillic surface conditions on the
spread of bonding solution. The image on the right shows a hydrophobic
bonding surface, due to cerium oxide cleaning procedure being ineffective
on the native oxide layer. On the left, a hydrophillic thermal oxide layer
is shown. The drop on the hydrophillic surface has spread much more
than that on the hydrophobic surface.



3.5 Four Point Bend Strength Tests 58

Figure 3.14: Image showing the surface of a sample of two native oxide blocks that
failed to bond.

3.5 Four Point Bend Strength Tests

3.5.1 Experimental Set-up

Force F
Force F

Samples

Sample holder

Loading arm

Bond
l

L

d

Figure 3.15: 3D and detail CAD images of the bending strength set-up. The sample
holder was placed in a teflon bath, which was filled with liquid nitrogen
for the cryogenic tests.

The bond strength was determined using a four point bend test whose geometry

is shown in Figure 3.15, which is consistent with ASTM standard C 1161-2C

[116] for breaking brittle materials (like ceramics and glass). The samples

were placed on the holder of the setup and a downwards force, F , was applied
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using Zwick-Roell static 2 kN and 200 kN machines through a loading arm and

measured until the sample broke. The supports underneath the sample are

placed at a distance L=34mm, and the force is applied equally through two

points on top of the sample at a distance l=20mm apart, with both distances

centered at the bond.

The strength was calculated using (3.6) below where F is the force, L is the

distance between the bottom supports, b is the width of the sample and d is

the thickness of the sample [116].

σmax =
3(L− l)F

2bd2
(3.6)

Measurements were performed at room temperature and at ∼77K. The latter

cryogenic measurements were performed by submerging the samples in liquid

nitrogen and waiting for thermal equilibrium by observing the settling of the

nitrogen after boiling before conducting the strength test.

Liquid Nitrogen BathLiquid Nitrogen Bath

Bonded Samples

Loading Arm

Bonded Samples

Figure 3.16: Image showing the test set up; to cool the samples down to ∼77K, the
bath was filled with liquid nitrogen.
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Ansys1 analysis was performed in order to predict the effect of the oxide layer

thickness on the bond strength, as shown in Figure 3.17. Ansys is a general pur-

pose finite element modeling package used for numerically solving mechanical

problems. However, the small size of the bond and oxide layers in comparison

to the overall sample size did not allow any conclusions to be drawn.

Figure 3.17: Ansys analysis showing the equivalent stress on the bonded sample, ap-
plying a 200N force.

3.5.2 Results

In total, 135 bonded samples were strength tested; 86 at ∼77K, and 49 at

room temperature. Five samples failed to bond. Figure 3.18 shows how the

breaking strength of the samples varied with the minimum oxide layer thick-

ness (tmin) found on the surface of each sample. Three main features can be

identified. Firstly, when looking only at the cryogenic temperature results,

there is a clear trend of decreasing strength once the minimum oxide layer is

less than 50 nm. Secondly, when comparing cryogenic to room temperature

1www.ansys.com/en uk
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results at comparable oxide layer thicknesses there appears to be no signifi-

cant difference in strengths indicating that the strength of the bonds is not

negatively influenced by thermal loading due to expansion differences between

the bond material (silicon dioxide and siloxane chains) and the bulk material

(silicon). Lastly, there appears to be a grouping of samples that lie in the

75 nm < tmin < 260 nm that have somewhat lower strength (less than 30MPa)

than the remainder of the samples.
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Figure 3.18: Plot showing the strength of all samples tested. When the minimum
oxide layer thickness exceeds 50 nm, the strengths appear to become, on
average, more reliable.

3.5.3 Analysis

Due to the brittleness of the samples, a statistical variation could be expected

to be seen in their strengths. This occurs because a fracture may originate

at flaws in the material itself and therefore the strength will depend upon the

probability of there being a flaw that is large enough to cause a fracture normal

to the direction of the maximum tensile stress.
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The variations in strength of such materials are generally modeled by a Weibull

distribution [117] rather than, for example, a Gaussian distribution. The

Weibull distribution is commonly used in modeling extreme or critical phe-

nomena or in survival and reliability analysis where one wishes to estimate

the ‘time to failure’ of an industrial or mechanical process. In particular the

Weibull distribution can be strongly skewed and is thus appropriate for mod-

eling statistical variations which are not symmetric with respect to some given

characteristic behaviour — such as one may encounter when considering the

distribution of breaking strengths.

The two-parameter Weibull distribution has a probability density function

(pdf), denoted P (F ), given by equation 3.7:

P (F ) =
m

F0

(

F

F0

)m−1

exp

[

−
(

F

F0

)m]

(3.7)

where the Weibull modulus, m, provides a measure of the variability of the

material property measured — with increasing Weibull modulus indicating

a smaller range of variability. The parameter F0 represents a characteristic

strength for the distribution. The combination of these two parameters permits

comparison between data sets acquired from similar experiments, in order to

explore and identify factors that might influence the strength of the data sets.

An example of a Weibull distribution is shown in Figure 3.19.

In previous literature on breaking strength (see [117]) estimation of m and

F0 has generally been carried out in terms of the cumulative distribution that

corresponds to the pdf of equation 3.7. The measured strengths and estimated

cumulative probabilities for the data set are transformed into new variables

related to m and F0 via a simple straight line dependence [117]. Fits to these

parameters are then obtained via, for example, linear regression. However

this approach generally assumes that the scatter about the regression line is
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Figure 3.19: An example of different Weibull distributions. Taken from [118].

Gaussian — an assumption that may be questionable given the highly skewed

nature of the original Weibull distribution.

In the analysis carried out here, an alternative approach using a Bayesian

analysis was carried out that simultaneously estimates m and F0 directly from

the Weibull pdf and requires no such Gaussian assumption. Moreover we use a

Markov Chain Monte Carlo method [119] to obtain confidence regions for our

fitted Weibull parameters. Equation 3.8 shows the joint likelihood function,

assuming that all the measured Fi values are independently and identically

distributed from the Weibull probability function (pdf). For a continuous

variable F , the pdf tells us the probability of any particular value of parameter

F , and is peaked at the most likely value.

L(F1,−, FN) =
N
∏

i=1

(

m

F0

)(

Fi

F0

)m−1

exp

[

−
(

Fi

F0

)m]

(3.8)
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Using Bayes’ theorem, inferences can be made about m and F0, using equation

3.9. This states the posterior probability p(m,F0|data) of a particular hypoth-

esis is based on the data, the prior probability p(m,F0), and the likelihood

function p(data|m,F0).

p(m,F0|data) = p(data|m,F0)p(m,F0) (3.9)

The prior pdf is taken to be broad and flat, as little is known about the

hypothesis prior to the analysis, resulting in the posterior being proportional

to the likelihood function. Since the maximum of the log likelihood is equal

to the maximum of the likelihood, we work with the log likelihood given by

equation 3.10.

ℓ(m,F0) = N ln(m)−mN ln(F0) + (m− 1)

N
∑

i=1

ln(Fi)− (F−m
0 )

N
∑

i=1

Fm
i (3.10)

Figure 3.21 shows estimates of the m parameter (top figure) and F0 param-

eter (bottom figure) for all data sets, determined by marginalizing the joint

posterior distribution of m and F0. Here the markers indicate the mode of

the marginalized posterior and the error bars indicate the central 68% of the

distribution (also visible in Figure 3.20). It can be seen that the values for

the Weibull modulus and characteristic strength vary when different factors

are taken into account. The low value of m for the full data sets indicates

that there may be several factors affecting the strength of the samples. Some

possible factors were identified during the experiment and filters were applied

in order to identify which of these factors influence the characteristic strength

and spread of results, as shown in Table 3.1. Initially, a minimum oxide layer

thickness filter was applied. The value of 50 nm was selected after inspection of

Figure 3.18 as discussed earlier, in which a clustering of low strength samples

for oxide thicknesses below 50 nm can be seen.
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Figure 3.20: Joint 68% confidence regions for the Weibull parameters m and F0,
obtained from a Bayesian analysis of all cryogenic (left) and room tem-
perature (right) strength results.

There appears to be no correlation between the minimum oxide layer thickness

on the pair of bonding surfaces for each sample and the strength of the sample

when the minimum oxide layer thickness on the bonding surfaces is between

50 nm and 250 nm. This is of importance because the goal is to minimize the

thickness of the overall oxide and bond layer as far as possible for application

in third generation gravitational wave detectors, due to the direct relation-

ship between the thickness of the oxide layer and bond and the thermal noise

resulting from the bond [120].

A significant limitation with this analysis is the small number of data points

after certain filters are applied. However, a clear effect is seen when considering

the results obtained at cryogenic temperature in Figure 3.21 when removing
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Temperature Filter 01 Filter 02 Data Set Size

77K 86
293K 49
77K tmin > 50 nm 33
293K tmin > 50 nm 37
77K tmin > 50 nm tdiff > 20 nm 7
293K tmin > 50 nm tdiff > 20 nm 17
77K tmin > 50 nm Diagonal Break 29
293K tmin > 50 nm Diagonal Break 33
77K tmin > 50 nm Bond Break 4
293K tmin > 50 nm Bond Break 5
77K tmin > 50 nm Re-oxidised 16
293K tmin > 50 nm Re-oxidised 14
77K tmin > 50 nm Not Re-oxidised 17
293K tmin > 50 nm Not Re-oxidised 24
77K tmin > 50 nm Same Ingot 25
293K tmin > 50 nm Same Ingot 20
77K tmin > 50 nm Mixed Ingot 8
293K tmin > 50 nm Mixed Ingot 18

Table 3.1: Data set sizes used in Figure 3.21

samples with a minimum oxide layer thickness of less than 50 nm: both the

characteristic strength and Weibull modulus increase. This is not seen for

the strengths measured at room temperature, possibly because only a very

small portion of the room temperature samples had oxide layers below 50 nm.

The complete sample set size having oxide thicknesses lower than 50 nm was

too small to allow statistically significant results to be obtained at both room

and low temperature, therefore measurements were predominantly made at

cryogenic temperature for this group of samples.

At both temperatures, the samples broke in two different ways; in a ‘bond’

break, where the fracture was along the bond of the sample, or in a ‘diagonal’

break, where the fracture went through the bulk material. Both of these types

of break are visible in Figure 3.22. A detailed image of the failed surfaces in

both bond and diagonal break is shown in Figure 3.23. Although it would
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Figure 3.21: Graphs showing the values for the Weibull modulus (top) characteristic
strength (bottom) for each data set, with error bars indicating the 68%
confidence limits. The key describing the filters applied to each data set
is shown in Table 3.1.

appear that different mechanisms caused the two samples to break, a similar

strength was obtained. However, it was observed that the majority of the

samples with a minimum oxide layer of less than 50 nm had a bond break in

comparison to the samples with thicker oxide layers mostly having a diagonal
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break pattern, suggesting that when the bonds were weak the sample would

break along the bond. This supports the hypothesis that there is a minimum

oxide layer needed for a bond to successfully form between the two surfaces.

diagonal break
bond break

Figure 3.22: Samples post- strength testing. The middle three samples broke through
the bulk, whereas the samples at either end broke along the bond.

Looking further at Figure 3.21 it was observed that when the difference between

the oxide layers on the bonding surfaces of each sample was greater than 20 nm,

although the characteristic strength (F0) only increases at room temperature

Figure 3.23: Samples R08 (left) and R01 (right) were both tested at room temperature
and although both failed in different ways, had strengths of 25.9MPa
and 26.5MPa respectively, showing that the nature of the break is not
solely indicative of a higher strength.
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(it remains the same at cryogenic temperature) the value of m increases by a

significant amount at both temperatures, showing a reduction in the spread

of strengths. The low grouping seen in Figure 3.18 is also eliminated. It is

hypothesized that there may be a geometrical effect resulting from the large

difference in oxide layer that is influencing these results.

The effect of re-oxidation does not consistently change the characteristic strength,

however the value of m decreases when considering the samples that were re-

oxidised, suggesting that the value of the characteristic strength is less reliable

when the samples have been re-oxidised. This could be caused by, for example,

an increased likelihood of contamination of samples before bonding or a weak

interface between layers.

There is a marked difference between the room temperature results for char-

acteristic strengths and Weibull modulus of samples from the same ingot in

comparison to those from different ingots; both the strength and modulus in-

crease when samples are from mixed ingots. At cryogenic temperature, the

strength does not appear to change. However, the Weibull modulus does in-

crease significantly for samples from mixed ingots. A possible explanation is

a geometrical effect in samples from mixed ingots due to differences in the

density of the oxide layer. A slowly grown thermal oxide layer will be denser

than one grown rapidly [115]. Silicon of orientation <111> will grow a thermal

oxide layer at a faster rate to silicon of orientation <100> and will therefore

have a slightly less dense thermal oxide layer. However, the exact mechanism

causing the improved value of m and the increase in characteristic strength at

room temperature is not yet known.
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3.6 Conclusion

Bend strength tests were performed on silicon samples jointed by hydroxide-

catalysis bonding, where the silicon surfaces being jointed had thermal ox-

ide layers of varying thicknesses. Strength test results show a characteristic

strength of approximately 41±2.4MPa at 77K and 35±1.5MPa at room tem-

perature for samples with a minimum oxide layer of 50 nm. The bond strength

reduced significantly with oxide layer thicknesses below 50 nm at cryogenic

temperature.

Van Veggel et al. [111] showed bending strengths averaging 23MPa in silicon

carbide-silicon carbide bonds. Those experiments were performed with similar

sample geometry and with a very similar 4-point bending set-up. The strengths

for silicon-silicon bonds reported by van Veggel et al. [112] averaged 3.9MPa

at room temperature. Those strengths are a factor of 10 lower than those

reported in this chapter. The experiments done by van Veggel et al. [112] were

however performed under different loading conditions; i.e. they were shear

experiments that were thought to be limited by the way the samples were

clamped. Performing shear strength experiments that will be less dominated

by the sample and loading geometry should shed light on the isotropy of the

bond strength under different loading conditions. The results in this paper

support the postulation by van Veggel et al. [112] that an oxide layer which is

too thin can negatively influence the bond strength.

The bending stress in silicon-silicon bonds have previously been measured by

Dari et al. [82] to be approximately 8.7± 3.7MPa at room temperature. The

results presented here use a different sample geometry and are significantly

higher, also demonstrating the need for an oxide layer to be present for a

successful bond to form.

In summary, it can be seen that the characteristic strength of all the samples
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studied at both cryogenic and at room temperature lies above 20MPa, and

there exists an opportunity for this to increase along with the Weibull modulus

once factors negatively affecting the bond can be identified and removed. It has

been shown that repeated oxidation, differences in oxide thickness and ingot

pairing can have effects on bond strength that would benefit from further

investigation.



Chapter 4

Influence of the Oxide Layer on

Bond Strength

4.1 Introduction

Previous investigations, described in Chapter 3, have shown hydroxide-catalysis

bonds between silicon at both room and cryogenic temperatures have a char-

acteristic strength of ∼ 36±3.9MPa [83]. The strengths obtained were higher

than have been found for hydroxide-catalysis bonds between silica samples of

the type currently used in the GEO600 gravitational wave detector and the

upgrades to the LIGO detectors [56]. However, part of the sample preparation

necessary to obtain reliable bonds between silicon samples involved thermal

oxidation of the silicon surfaces. When considering the construction of the

suspensions for the test masses for any future cryogenic gravitational wave

detector, it may not be practical or desirable to thermally oxidise a complete

silicon test mass for the purpose of bonding the suspension interface pieces

onto the side of a mirror substrate. In current designs for the test masses for

the ET-LF instrument, the mirror substrates are anticipated to be a minimum

72
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of 211 kg with diameters of approximately 620×180mm [79]. In order to apply

a thermal oxide layer onto the bonding surface, the whole test mass would need

to be placed inside a furnace, which would result in oxide layers being grown

on all exposed surfaces, including the front mirror face, potentially damaging

the mirror coatings or preventing their application.

In this chapter the results of investigations of the influence of different methods

of applying a silicon dioxide layer to the bonding surfaces of silicon samples

on the strength of bonds are presented. Also the influence of ingot purity and

orientation are studied.

There are various possible ways in which a layer of silicon dioxide may be

applied to the surfaces of silicon to be jointed. Here, three different techniques

were selected; e-beam deposition, ion beam sputtering, and the growth of a

dry thermal oxide. The strengths of bonds formed between samples whose

surfaces were treated using these methods were then measured and the results

compared to the bond strengths found in Chapter 3 in which wet thermal

oxidation was used.

In this chapter, first the coating methods and resulting oxide layers are de-

scribed; the bonding procedure and strength testing experiments are explained

in detail in Chapter Three so only notable changes are discussed. The results

are presented, and analysed using the same analysis method as in Chapter 3,

and conclusions are drawn regarding the appropriateness of each type of oxide

layer for use in future gravitational wave detectors.
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4.2 Experimental Set Up

4.2.1 Sample Preparation

Three different methods were employed to deposit a silicon dioxide layer onto

the bonding surfaces: thermal oxidation in a dry environment, ion-beam de-

position and e-beam sputtering. The thermal oxidation was carried out at the

University of Glasgow by the author; the ion-beam deposition and e-beam sput-

tering were carried out commercially by Gooch and Housego1 and Advanced

Thin Films2 respectively. The thickness of the oxide layer requested from each

vendor was 150 nm. The samples were ultra-sonically cleaned in acetone and

methanol to remove any dust from the scribing of identification numbers to

the sides of the samples prior to shipping to the respective companies.

For the strength tests described here, rectangular silicon blocks (of dimensions

20mm× 10mm× 5mm) from two different silicon ingots were used. The first

ingot was manufactured by Shin-Etsu3 and had a <100> crystallographic ori-

entation. The second ingot had a <111> crystallographic orientation, and

was manufactured by Prolog4. The Shin-Etsu ingot is float zone silicon doped

with n-type Phosphorous with resistivities in the range 56.0 - 76.0 Ohm-

cm. The ingot supplied by Prolog was grown using the Czochralski pro-

cess, with an unknown resistance. The bonding surface in each case was a

5mm× 10mm surface, so that after bonding a sample was created with di-

mensions 40mm× 10mm× 5mm, as shown in Figure 3.3.

25 samples of <111> orientation and 28 samples of <100> orientation had

SiO2 applied by ion beam sputtering. At the vendor the samples were cleaned

in detergent and wiped with acetone prior to placing them into the coating

1http://goochandhousego.com
2http://wwww.atfilms.com
3http://shinetsu.co.jp
4http://www.semicor.ukrpack.net/
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chamber. They were then cleaned in O2 plasma with an argon ion beam at

200-250V beam energy. The ion beam sputtering was then performed using the

argon ion beam and a GE124 fused quartz target. The temperature throughout

the process remained below 90◦C. However, the samples were heat treated at

450◦C in air after coating to reduce any stresses in the coatings.

For the e-beam deposition, 27 <111> and 27<100 > samples were drag wiped

with methanol and then inspected under a microscope before the coating pro-

cedure. The oxide layers were applied using electron beam evaporation using

silica ground granules as the target. The temperature during the process was

approximately 315◦C, and the coating was not subsequently heat treated.

For the dry thermal oxidation, any organic residue was removed through an

acid clean using a 1:7 volumetric ratio of hydrogen peroxide and sulphuric

acid. 31 <111> samples and 33 <100> were placed in batches in air in a tube

furnace at 1000◦C for seven hours to grow an oxide layer of approximately

150 nm to match the ion beam and e-beam samples.

The thicknesses of the oxide layers formed from each of the processes were

measured using ellipsometry. The e-beam samples were found to have oxide

layer thicknesses of 134.61 ± 0.75 nm, the ion beam samples had oxide layer

thicknesses of 154.06±0.74 nm and the dry thermal oxide layers were 167.93±
13.19 nm thick.

The flatness of the bonding surface on each sample was also measured using

the Zygo interferometer discussed in Section 3.4. The results are shown in

Figure 4.1.

As in the experiments discussed in Chapter 3, the bonding surfaces were made

hydrophilic prior to bonding through the same regime used in experiments de-

scribed in Chapter 3 of polishing with cerium oxide in de-ionised water followed

by cleaning with sodium bicarbonate and a methanol rinse. It was noticed that
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Figure 4.1: The results of the flatness measurements for the silicon blocks after the
oxide layers were applied.

during this procedure, the ion-beam and e-beam coatings were vulnerable to

such a coarse cleaning procedure and when a large force was applied during

the cerium oxide step, the coating was partly worn away. This is shown in Fig-

ure 4.2 on the left hand side. Measurements with the ellipsometer discussed

in Section 3.4 showed the oxide layer to have been reduced by approximately

20 nm in the centre of the bonding area and approximately 25 nm at the edges.

It was noticed that after the curing period of four weeks, a white residue was

present of the corners of some of the samples. This is shown in Figure 4.2 on

the right hand side. It is thought that this is due to excess bonding solution at

the edge of the bond drying out. The samples that showed degradation of the

oxide layer after the cleaning process, and that developed the white residue,

were marked to determine if this influenced the bond strength.

The bonding solution was dispensed onto the surfaces to be jointed immedi-

ately after they had been treated with a final methanol wipe. 0.4 µl of solution

per cm2 was used (0.2 µl for the strength test samples). The bonding solution

was produced by diluting a commercially available sodium silicate solution

(14% NaOH and 27% SiO2) with de-ionized water at a volumetric ratio of
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Figure 4.2: Two observations were made during the bonding process; the ion-beam
and e-beam coatings were occasionally worn away during the cerium ox-
ide step (left) and a white residue was seen around the edges of some
samples after the four week cure period (right).

1:6, a solution used previously [108]. All samples were left to cure at room

temperature for a minimum period of 4 weeks.

Samples were bonded like to like: i.e. a <111> sample with an e-beam coating

was only bonded to another <111> e-beam sample.

4.2.2 Strength Testing Procedure

The bond strength was determined using the same set up as previously reported

in Chapter 3, and shown in Figure 3.15 with the force, F , being applied through

a loading arm and measured until the sample broke using a Zwick-Roell static

2 kN machine. The supports below the sample were placed at a distance, L,

apart and the force was applied equally through two line contacts on top of

the sample at a distance l apart. Both distances were centered on the bond

and the strength was obtained from the maximum force using equation 3.6.

Figure 3.16 shows the bath that was filled with liquid nitrogen in order to cool

the set up and samples down to approximately 77K. This enabled measure-
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ments to be made at both room temperature and cryogenic temperatures using

the same set-up.

166 samples were strength tested; 82 at room temperature and 84 at ∼77K.

The samples were categorized by ingot orientation and oxidation technique.

Table 4.1 shows the details for each data set used in the analysis of the results.

These include the relevant results from Chapter 3, the allow for a comparison

to the wet thermal oxides as well.

Temperature Ingot Oxide Layer Data Set
Technique Size

77K Prolog <111> Wet thermal oxide 09
293K Prolog <111> Wet thermal oxide 11
77K Prolog <111> Dry thermal oxide 16
293K Prolog <111> Dry thermal oxide 15
77K Prolog <111> Ion beam sputtered 13
293K Prolog <111> Ion beam sputtered 12
77K Prolog <111> E beam deposited 14
293K Prolog <111> E beam deposited 11
77K Prolog <100> Wet thermal oxide 14
293K Prolog <100> Wet thermal oxide 06
77K Shin-Etsu <100> Dry thermal oxide 17
293K Shin-Etsu <100> Dry thermal oxide 16
77K Shin-Etsu <100> Ion beam sputtered 14
293K Shin-Etsu <100> Ion beam sputtered 14
77K Shin-Etsu <100> E beam deposited 14
293K Shin-Etsu <100> E beam deposited 13

Table 4.1: Data sets used in strength tests

4.3 Results

Figure 4.3 shows the strength results that were obtained in total from samples

treated by any of the three oxidation techniques. The results are presented

in four graphs, displaying separately the two different ingots and two differ-
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ent temperatures at which the strength was measured. The strengths of the

bonds formed between samples for which (a) the ion-beam and e-beam coat-

ings were worn away during the cleaning process and (b) the samples that

had a white residue around the edges of the bond did not show deteriorating

strength behaviour. Given this, they were included with the remainder of the

results.
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Figure 4.3: All strength test results, showing the results at both temperatures for the Shin-Etsu <100> samples (top) and Prolog
<111> samples (bottom).
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Figure 4.4 indicates that the average flatness of the bonding surfaces for each

sample does not have a direct effect on the strength of the bond formed be-

tween them. Thus, it is postulated that the lower level of flatness seen in the

dry thermal oxide samples in Figure 4.1 did not influence the strength of the

bonded samples.
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Figure 4.4: A plot showing the relationship between the average flatness of each pair
bonding surfaces and strength of the bond formed between them.

4.3.1 Analysis and Comparison to Wet Thermal Oxide

Results

A Weibull analysis of the results was performed. Due to the brittleness of the

samples, fracture is likely to originate at flaws in the material itself. Therefore,

the strength of the samples will depend upon the probability of there being

a flaw that is large enough to cause a fracture normal to the direction of

the maximum tensile stress. The statistical variation of such results can be

expected to be modeled by a Weibull distribution [117].
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The same Bayesian analysis used in Chapter 3 and published in [83] was car-

ried out, estimating m and F0 directly from the Weibull probability density

function, and a Markov Chain Monte Carlo method [119] was used to obtain

confidence regions for our fitted Weibull parameters.
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Figure 4.5: Results of Weibull analysis. On the left characteristic strength is shown,
and on the right the Weibull modulus is shown. The top row shows the
<111 >results, the bottom row the <100>results.

Figure 4.5 shows the results of the Weibull analysis. It also includes the results

from the wet thermal oxidised samples discussed in Chapter 3 for comparison.

In order for the comparison to be valid, only samples that had a minimum oxide

layer thickness greater than 50 nm and a difference in oxide layer thickness of

less than 20 nm were included. These results do include samples that were

re-oxidised, which was shown to negatively influence the Weibull modulus but

did not affect the characteristic strength. These samples were not removed as

this would have resulted in insufficient data for a comparison.
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From inspection of Figure 4.3, bonds between the samples coated using the e-

beam method consistently show the lowest strengths. This is confirmed by the

lower characteristic strength and also low Weibull modulus shown in Figure

4.5. Focussing on the top two graphs in Figure 4.5, two features are identified.

Firstly, although the ion beam sputtered and dry thermal oxide results exhibit

similar strengths, the dry thermal oxide produced a more consistent range of

strengths, as demonstrated by the higher value for m. Secondly, at cryogenic

temperature, the wet thermal oxide appears to contribute to a stronger bond.

The low value for m for the wet thermal oxide is likely due to the inclusion

of the re-oxidised samples from the previous experiment. Thirdly, cryogenic

strengths are consistently higher than room temperature strengths.

The bottom two graphs in Figure 4.5 show the results from the <100> crys-

tallographic orientation. Here, it should be noted that the wet thermal oxide

results are from a lower purity silicon ingot produced also with a different

method (Prolog, CZ P-type boron doped) than all other samples (Shin Etsu,

FZ N-type). We see a general downwards trend when moving from the ther-

mal oxide results, to the ion beam sputtered results, to the e-beam deposited

results and there is little difference in characteristic strength between the two

thermal oxides.

Though room temperature results show on the whole a downward trend in

strength when moving from wet thermal oxide to dry thermal oxide to ion beam

sputtering to e-beam deposition, the values of characteristic strengths when

comparing <111> to <100> results are mostly quite similar. The cryogenic

characteristic strengths of the Shin-Etsu <100> are notably higher (> 10 MPa

difference) than the cryogenic Prolog <111> results.

The samples broke in two different ways, ‘bond’ breaks, where a majority of the

bonding surface is exposed after strength testing, and ‘diagonal’ breaks where

the bulk silicon failed. Images of the two types of break can be seen in Figure
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4.6. Table 4.2 shows the proportion of bond breaks for each ingot and oxide

layer type. It has previously been suggested that samples that break along the

bond generally have a lower strength [112] than those that failed in the bulk

of the bonded silicon and this pattern is seen again here. The e-beam samples

that consistently showed lower strengths have the highest proportion of bond

breaks. In every case, the Prolog <111> samples had a higher proportion

of bond breaks, and at room temperature, samples were more likely to break

along the bond.

Figure 4.6: Bond break (top) and diagonal break (bottom).

Percentage of bond Percentage of bond
breaks at 293K breaks at 77K

Dry Oxide Shin-Etsu 100 24% 19%
Prolog 111 88% 33%

Ion Beam Shin-Etsu 100 36% 36%
Prolog 111 77% 92%

E-Beam Shin-Etsu 100 57% 54%
Prolog 111 93% 72%

Table 4.2: Percentage of bond breaks

Interestingly, as shown in Figure 4.7, the bond break surfaces for the e-beam

samples are distinctly different to those of the ion beam and dry thermal oxide

samples. The surface was uniform in colour on both parts of the sample, and
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measurements taken using ellipsometry show the majority of the original oxide

layer to still be unchanged in thickness on both surfaces, suggesting that the

bond failed, leaving the oxide layers in tact. The ion beam and dry thermal

oxide samples produced mirrored patterns, where sections of the exposed sur-

faces could be measured, showing the original oxide layer remained. However,

the majority of the surfaces showed evidence of multiple layers, indicating that

when the bond failed, parts of the oxide layers also broke away from the original

surfaces.

These results suggest that the reason for the lower strengths found in the e-

beam sputtered samples was the formation of a less strong bond than in the

ion beam and dry oxide samples and that it was not a problem in the adhesion

of the coating to the silicon surface.

Communications with the vendor suggests that e-beam coatings have voids,

thus it was decided to test if these voids could actually be identified, and if

hydrogen gas was being formed, by submerging unbonded but coated samples

in bonding solution for several hours. Using a Wyko NT1100 optical profiling

system5 it was found that only e-beam sputtered <100> samples showed voids,

typically 20 nm deep with a density of ∼60 voids/mm2. These could not be

seen in any of the other samples. The submergence tests did not reveal any

obvious hydrogen gas formation in any of the samples. We therefore believe

hydrogen formation was not the cause of the lower strength bonds.

Another possible reason for the strength could be a difference in the density

of coatings. Discussions with the vendors suggests e-beam deposition should

give the lowest density coatings, followed by ion beam sputtering and thermal

oxides should be the most dense.

Attempts were made to measure the density of the oxide layers by measuring

the weight of a coated sample before and after the coating was etched away.

5http://www.veeco.com
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Exact densities could not be obtained due to the weight change being too small

to accurately measure. However, the relative values were consistent with the

e-beam method producing the least dense oxide layer, and the thermal oxide

the most dense. The density of the oxide layer may contribute to the overall

strength of the bond as the lower the density, the lower the number of siloxane

chains that may be formed; further research is required to confirm this.

4.4 Discussion and Summary

Bend strength tests were performed on hydroxide-catalysis bonds formed be-

tween silicon samples of different crystallographic orientation that had been

oxidised using a range of methods. The three methods used were; dry ther-

mal oxidation, ion beam sputtering and e-beam deposition. These results were

compared with the previous results from samples with surfaces treated us-

ing wet thermal oxidation. It was found that the coating method used did

influence the strength of the resulting bond. The e-beam deposited layers pro-

duced the weakest samples, with strengths of 17±2MPa and 20±4MPa for

the Prolog <111> samples and 13±3MPa and 32±4MPa for the Shin-Etsu

<100> samples at room temperature and cryogenic temperature, respectively.

The dry thermal oxide produced the results with the smallest spread of values,

with strengths of 27±1MPa and 33±1MPa for the Prolog <111> samples and

33±2MPa and 47±1MPa for the Shin-Etsu <100> samples at room temper-

ature and cryogenic temperature, respectively. The ion beam sputtered layer

produced strengths of 24±3MPa and 34±2MPa for the Prolog <111> sam-

ples and 25±3MPa and 42±3MPa for the Shin-Etsu <100> samples at room

temperature and cryogenic temperature, respectively. These were compared

to the wet thermal oxide results from Chapter 3 of 35±2MPa and 41±2MPa

at room temperature and cryogenic temperature, respectively.
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These results are consistent with previous experiments, where a minimum

thickness of wet thermal oxide layer of 50 nm was established for reliable bonds

at cryogenic temperature [83] and with van Veggel et al. [111] who showed

bending strengths averaging 23MPa in silicon carbide-silicon carbide bonds.

It was observed that Shin-Etsu <100> ingot produced stronger bonds at cryo-

genic temperature, and that the dry thermal oxide layer produced the most

reliable results for both ingots. The reason for the large difference between the

room temperature and cryogenic temperature results for the Shin-Etsu <100>

is not yet understood.

It is postulated that the reason for the lower strength of the e-beam samples

is that the density is lower. Based on the photographs of samples broken on

the bond, the e-beam coating has adhered well to the silicon surface. This

must mean that the hydroxide-catalysis bond has not been adhered as well to

the oxides as was the case for the thermally oxidised and ion-beam sputtered

sample. It could be that fewer siloxane chains can be formed due to the reduced

density.

The results presented here show that the methods of ion beam sputtering, and

thermal oxidation may be considered to apply a layer of SiO2 onto the bonding

surfaces of a silicon test mass and suspension components. The three methods

produced strength of over 25MPa, showing that hydroxide-catalysis bonding

is a valid technique for the construction of silicon suspensions in cryogenic

gravitational wave detectors.
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Chapter 5

Mechanical Loss of

Hydroxide-Catalysis Bonds

5.1 Introduction

As discussed in Chapter 2, part of the thermal noise in gravitational wave

detectors results from the internal friction in the hydroxide-catalysis bonds of

the suspension interface pieces to the test masses. It is therefore important

to quantify the mechanical loss of hydroxide-catalysis bonds between relevant

materials.

The mechanical loss of a hydroxide-catalysis bond has previously been inves-

tigated and found to be between 0.18 and 0.54 for a bond between bulk silica

samples at room temperature [104]. In order for hydroxide-catalysis bonds to

be considered for use in the suspensions of cryogenic gravitational wave detec-

tors, the mechanical loss of the bond must be characterised at low temperature,

where the detector is likely to operate, and for silicon-silicon bonds in order to

estimate the level of thermal noise introduced by the bonds.

The mechanical loss of mirror coatings on cantilevers have been measured at

89
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cryogenic temperature using a well established method [121]. In this method

silicon cantilevers are clamped and excited to an amplitude A, and then the

excitation signal is removed and the resonance allowed to de-excite. The ex-

perimental set-up is discussed in more detail in Section 5.2.1.

At a resonant mode of a system, the mechanical loss can be calculated using

equation 5.1, where Estored is the total energy stored in the oscillating system,

and Edissipated is the energy dissipated with each cycle of oscillation.

φ(ω0) =
Edissipated

2πEstored
(5.1)

It is possible to measure mechanical loss through measuring the ring down

time of a resonant mode of angular frequency ω0 from an initial amplitude A0.

The time dependence of the amplitude decay A(t) is given by:

A(t) = A0e
−φ(ω0)ω0t/2. (5.2)

For a cantilever of thickness a, length L, Young’s modulus Y and density ρ,

the first five resonant frequencies can be calculated using equation 5.3 [122]

where knL = 1.875 (n=1), 4.694 (n=2), 7.853 (n=3), 10.996 (n=4) and 14.137

(n=5) [123].

ωn = (knL)
2 a

2
√
3L2

(

Y

ρ

)(1/2)

(5.3)

The above method can be adapted to determine the mechanical loss of a

hydroxide-catalysis bond in a pair of bonded silicon cantilevers. Preliminary

results [124] have suggested that the loss of the bond between 20 and 200K

had an upper limit of 0.2. The bonded cantilevers in this case had a bond

of irregular quality with voids visible throughout the bond. By measuring a
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higher quality bond, it is hoped that a more precise upper limit to the loss can

be established.

The benefit of using a silicon cantilever is the low dissipation of silicon at

cryogenic temperatures [49; 77; 125; 126]. However, in order to successfully

bond the cantilevers together, a layer of SiO2 (silica) is required on the bonding

surfaces [106]. Silica, although it has low dissipation at room temperature

[125; 127; 128], is known to have a dissipation peak at ∼ 30 − 50K [49]. It is

possible to take the loss of the oxide layers and substrate into account, and from

the measured loss of the bonded cantilever structure, extract the mechanical

loss of the bond layer.

5.2 Experimental Procedure

5.2.1 Experimental Set-Up

The experimental set-up for the measurement of mechanical loss of a cantilever

is shown in Figure 5.3. A cantilever (of approximate dimensions 45 × 5 ×
0.07mm) was clamped inside a cryostat, which was evacuated to a pressure

of approximately 1 × 10−6mbar to minimise any dissipative effects from gas

damping [129] and cooled to an initial temperature of 10K. The temperature

of the clamp was monitored using DT-670 silicon diode sensors.

The bending modes of the cantilever are excited electrostatically by applying

an oscillating high voltage signal at the frequency of each mode using the ex-

citer plate, shown in Figure 5.3. The motion of the excited cantilever can be

monitored by illuminating the clamped cantilever with a laser beam. The am-

plitude of the excited mode and subsequent ring down is recorded by measuring

the shadow of the cantilever as it bends that is cast onto a split photodiode
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sensor. An example of an excitation signal and the resultant ringdown is shown

in Figures 5.1 and 5.2.

The measured dissipation is calculated using Matlab software1 from an expo-

nential fit to the amplitude ring down using equation 5.2.

The loss value obtained using this method is that of the total of all the energy

dissipation mechanisms present in the sample. If the sample has an oxide

layer, or contains a hydroxide-catalysis bond; further analysis must be done to

extract the loss associated with these features, as will be described.
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Figure 5.1: An example of the raw data obtained from the experimental set up. A
ringdown of the second resonant mode at 40K is shown.

Loss measurements were made at 2K temperature steps from 10 to 50K, every

5K up to 100K and every 20K up to 240K. At each temperature step, the

clamp and sample were held at the specified temperature using a Lakeshore

340 temperature proportional integral derivative (PID) controller which used

the difference between the measured temperature and the set temperature to

adjust the heat supplied to the clamp from high wattage resistors, shown in

1http://www.mathworks.co.uk
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Figure 5.2: Example of the excitation signal (left) for a silicon cantilever and the
subsequent ringdown (right) of the amplitude of motion of the cantilever
at a resonant frequency.

Figure 5.4. Three ‘ringdowns’ at each measurable resonant frequency were

made before the clamp was heated up to the next temperature step.

After completing ringdowns at each temperature step, the cantilever was re-

clamped inside the cryostat and the process was repeated until three sets of

data were obtained. This allows assessment of any contribution to the me-

chanical loss from friction due to movement of the clamped end of the sample

in the clamping block so it can be minimised [130].

5.2.2 Measurement and Analysis Method

5.2.2.1 Introduction

The technique of calculating the mechanical loss of a coating applied on a

substrate is well established [121], and can be adapted to extract the loss

contribution of a silicate bond layer from the measured loss of a pair of bonded
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Figure 5.3: The experimental set up for the measurement of the mechanical loss of
a silicon cantilever.

oxidised silicon cantilevers.

The loss of the unoxidised cantilevers is measured and then loss measurements

are carried out again after oxidation such that the loss of the oxide layers

may be extracted. Measurements are repeated typically three times, over a

temperature range of 10K to 250K. The cantilevers are then bonded and after

a four week curing period, are measured again so that the bond loss can be

extracted. The process used to prepare the cantilevers for each step is described

in Section 5.2.3, and the analysis used to determine the losses of the oxide layer

and bond material is described below.

As the bonded sample vibrates, energy will be dissipated by internal friction in

the bond, the oxide layers and in the silicon. However, only the energy stored

in the bond can be dissipated in the bond thus it is necessary to calculate the

fraction of the total elastic energy stored in each region of the sample.

The product of the total mechanical loss of the bonded structure and the

total strain energy stored in the system is equal to the sum of the products

of the mechanical losses and stored strain energies for each mechanical loss
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Figure 5.4: Schematic diagram of the cryostat, with an inset showing details of the
clamp used to hold the cantilever samples.

component. This may be written as [131]:

Et φt = Es(φs + φsTE
) + Eb φb + Eo φo, (5.4)

where E is the strain energy, φ is the loss and the subscripts s, b and o represent

the substrate, bond layer and oxide layers respectively. φsTE
is the thermoe-

lastic loss contribution, as described in Section 5.2.2.2, and the subscript t

denotes the total strain energy and loss of the structure.
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The bond has a much smaller volume then the remainder structure, thus it can

be assumed that the silicon substrates store the majority of the elastic strain

energy of the structure, such that Es ≈ Et. Equation 5.4 therefore becomes:

φt = φs + φsTE
+

Eb

Et
φb +

Eo

Et
φo, (5.5)

where the energy ratios Eb/Et and Eo/Et are the scaling factor by which the

intrinsic component losses are multiplied. Both φs and φsTE
can be deter-

mined, φs through the measurement of unoxidised silicon cantilevers and φsTE

can be calculated from the known dimensions and material properties of the

cantilevers.

From measuring a silicon cantilever before and after oxidation, the loss of

the oxide layer (φo) on the silicon substrate can be calculated using equation

5.6 [121]. Here, the subscript m denotes the measured loss of the oxidised

cantilever. The thickness of the oxide layer (t) is taken to be the combined

thickness of both the top and bottom oxide layers of the cantilever, a is the

thickness of the silicon substrate, and Y represents the Young’s modulus.

φo(ω0) =
Ysa

3Yot
(φm(ω0)− φs(ω0)) (5.6)

5.2.2.2 Thermoelastic Damping

When a thin beam or fibre is deflected into an arc, the part of the beam under

compression will heat up, while the opposite side of the beam will expand and

cool down. This temperature difference causes a heat flow across the beam, and

a vibrating beam will have an oscillating heat flow as each side of the beam is

compressed and stretched in turn. This heat flow is the source of thermoelastic

dissipation and will peak at a frequency related to the time taken for heat to

flow across the beam. This is demonstrated in Figure 5.5.
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Figure 5.5: A schematic diagram of a bending beam. As the beam oscillates, the
sections undergoing compression and tension will experience heating and
cooling effects that alternate with each cycle of oscillation.

The level of thermoelastic dissipation, φTE, as calculated by Zener [132; 133]

in a flexure is shown in equation 5.7 where Y represents the Young’s modulus,

ρ is the density, C is the specific heat capacity and τ is the relaxation time.

φTE(ω) =
Y α2T

ρC

ωτ

1 + ω2τ 2
(5.7)

The relaxation time, which is the time taken for heat to flow across the beam,

sets a characteristic frequency, fchar = (2πτ)−1, at which the maximum ther-

moelastic loss occurs. The relaxation time for a fibre with a rectangular cross

section of thickness t is given by equation 5.8, and for a circular cross section

with diameter d is given by equation 5.9 [134].

τ =
ρCt2

π2κ
(5.8)

τ =
ρCd2

13.55κ
(5.9)

This theory can be directly applied in the estimation of the thermoelastic
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thermal noise for the suspensions of gravitational wave detectors.

5.2.2.3 The Elastic Strain Energy stored in the Oxide Layers and

Bond Layer

If the two component cantilevers to be bonded have thicknesses of a and b, the

bond layer can be thought of as starting a distance a below the surface of a

thin rectangular beam with a total thickness (a + b), as shown in Figure 5.6.

θ 

Figure 5.6: A schematic for the bending bonded structure, not to scale.

The energy ratio is calculated analytically using the geometry of the structure,

and the expression for the stored energy in the bond layer can be based upon

geometric corrections to the known expression for the elastic strain energy in

a coating applied to one surface of a cantilever [135]:

Eo =
Y tw

2L
∆L2, (5.10)

where Y is the Young’s modulus of the cantilever with thickness t and width

w, and ∆L is the change in length due to the applied strain.

Ec

Et
=

3 Yc tc
Ys ts

(5.11)
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The force exerted on the volume by the excitation can be calculated using equa-

tion 5.12, and the integral of the force, with respect to the resultant extension,

(∆L), is equal to the stored elastic energy in the volume [135]. Equation 5.12

can be applied to the bond layer in the pair of bonded cantilevers and using

the small angle approximation, the length of the unstressed bond, L, is equal

to θp.

F =
Y w t

L
∆L (5.12)

In the case of the pair of bonded cantilevers, where both cantilevers are made

of the same material, the neutral axis occurs halfway through the sample such

that L = θ (p+ 1
2
(a+ b)). Given that the thickness of the bond, h ≪ a, b, ∆L

does not change by a significant amount between the top and bottom surfaces

and equation 5.10 for the total energy stored in the bond layer can be written:

Eb =
Yb hw

2L
θ2
(

b− a

2

)2

. (5.13)

The two external oxide layers of the bonded structure, which can be considered

to have thicknesses of t1 and t4, can be treated as coatings on a substrate. The

energy ratios can therefore be written as shown in equations 5.14 and 5.15.

Eo1

Et
=

3 Yo t1
Ysts

(5.14)

Eo4

Et
=

3 Yo t4
Ysts

(5.15)

The oxide layers on the bonding surfaces of the cantilevers (i.e. they are internal

to the bonded structure) with thicknesses t2 and t3 should also be considered.

Assuming the oxide layer is not completely consumed during the bonding pro-

cess, they can both be treated in the same way as the bond layer, and the
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strain energy for each can be calculated as shown in equations 5.16 and 5.17:

Eo2 =
Yo t2w

2L
θ2

(

b− a

2

)2

(5.16)

Eo3 =
Yo t3w

2L
θ2

(

b− a

2

)2

, (5.17)

where θ2
(

b−a
2

)

represents the change in length experienced by the oxide layer.

This can be considered to be the same for both oxide layers and the bond, due

to the relative thicknesses of the oxide layers and bond layer to the cantilever

thickness as the difference in the change in length between each layer varies by

an insignificant amount.

Assuming the presence of the oxide and bond layers does not alter the overall

elastic behaviour, the bonded structure can be considered as a single cantilever

of thickness T = (a+b). Heptonstall [135] shows the energy stored in a bending

cantilever is given by:
Et

2
=

1

48

Ysw θ2 T 3

L
, (5.18)

and therefore:

Et =
1

24

Ysw θ2 (a+ b)3

L
, (5.19)

and the energy ratio Eb/Et:

Eb

Et
=

3 Yb

Yt

h(a− b)2

(a+ b)3
. (5.20)

Assuming the majority of the measured loss (φm) in the bonded structure arises

from the thermoelastic loss in the substrate, the loss of the bond layer and

the loss of the oxide layers, an upper limit to the bond loss can be calculated.

Equation 5.21 shows the sum of the products of the mechanical loss and energy

for such a case, where each of the four oxide layers are denominated by the
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subscript 1 - 4:

Et φm = Es φs+Eb φb+EsTE
φsTE

+Eo1 φo1+Eo2 φo2+Eo3 φo3+Eo4 φo4. (5.21)

Since each oxide layer will have the same loss value, φ1−4 can be replaced by

φo. It can also be noted that Eo1/Et = Eo4/Et. Dividing through by Et and

re-arranging equation 5.21 provides us with an equation for determining the

loss contributed by the bond layer:

φb =
Et

Eb

[

φm − φs − φsTE
− 2

Eo1

Et
φo −

Eo2

Et
φo −

Eo3

Et
φo

]

. (5.22)

5.2.3 Sample Preparation

In order to fabricate a sample that could be used to measure the mechanical

loss of a hydroxide-catalysis bond, two silicon cantilevers were manufactured

by Kelvin Nanotechnology with thicknesses measured to be 66µm and 26µm

respectively (see Figure 5.7). The surface of both cantilevers lies on the (100)

plane. The thicknesses of the cantilevers were calculated using equation 5.3,

after measuring the fundamental frequencies once the cantilevers were clamped

inside the cryostat. The Young’s Modulus of silicon was taken to be 164GPa

[136], and the density was taken to be 2330 kg/m3 [137].

By bonding cantilevers of unequal thicknesses, the hydroxide-catalysis bond

can be offset from the neutral axis, allowing the mechanical loss of the bond

to be measured.

The cantilevers were oxidised and bonded (see Figure 5.7) - these steps are

described in the following sections - and the loss then measured using the

setup shown in Figure 5.3.

The cantilevers were oxidised in the same way as that described in Chapter
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Figure 5.7: CAD schematic of (a) the individual cantilevers to be bonded and (b) the
bonded cantilever structure.

3; after cleaning the cantilevers in a piranha solution, a wet thermal oxidation

technique was used, and the cantilevers were held at ∼ 1000◦C for 45 minutes

with nitrogen gas saturated with water vapour passing through the furnace.

The cantilevers, after being cleaned in a piranha solution, were placed with

the bonding surface exposed to the air flow inside the furnace. Ellipsometry

showed oxide layers on both sides of the cantilever measured to be 231± 3 nm

in thickness.

Fused

silica boat
Cantilevers

Figure 5.8: Three cantilevers face down on a fused silica boat inside the furnace.
The base of each cantilever, which is the bonding surface, is completely
exposed to the saturated gas flow inside the furnace.
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The roughnesses of the oxidised top and bottom surfaces was measured for the

66µm cantilever (shown in Figure 5.9), using the Veeco Wyko NT1100 Optical

surface profiler. The results were taken as indicative of the 26µm cantilever,

which was not measured due its fragility.

Cantilever Base 

Ra = 7.53 nm

Cantilever Top Surface 

Ra = 40.56 nm

Figure 5.9: Roughness measurements of the two oxidised surfaces of a cantilever,
where Ra is the arithmetic average of the roughness profile. The base
of the cantilever is the bonding surface, which shows the roughness to be
low.

Due to the delicate nature of the cantilevers, the cerium oxide cleaning regime

detailed in Chapter 3 and typically used prior to bonding, could not be used.

It was therefore necessary to clean the cantilevers prior to bonding using the

same method that was used to clean the cantilevers before oxidation.

A piranha solution was prepared using a 7:1 ratio of sulphuric acid and hydro-

gen peroxide, and each cantilever was held in the solution for approximately

one minute. This is shown in Figure 5.10. The cantilevers were then held

in de-ionised water, to remove any traces of the piranha solution, and finally

rinsed with methanol.

In order to ensure that the piranha solution clean would enable the bonding

solution to be deposited on the surfaces, a series of tests were carried out on

an oxidised silicon wafer that had been cleaned in this manner.

It was unknown how quickly the drop of bonding solution would spread over
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Figure 5.10: The delicate nature of the silicon cantilevers required a change from
the cerium oxide cleaning regime. Thus, the cantilevers were held in
piranha solution prior to bonding.

the cantilever surface, so a range of drop sizes was used. These can be seen in

Figures 5.11 and 5.12. Approximately 1µl of bonding solution was required to

bond a surface area of 2.2 cm2 at the standard volume/area ratio, so the drop

sizes were chosen in order to be able to deposit the bonding solution in one,

two, three, four or five drops.

0.2 μl

0.25 μl

0.33 μl
0.5 μl

0.33 μl

0.25 μl

Figure 5.11: Experiments with bonding solution on oxidised silicon wafer cleaned
using piranha solution to determine the spread of the drop sizes from
0.2µl to 0.6µl.

A smaller number of drops is beneficial as this reduces the possibility of the

introduction of contaminants such as dust particulates in the lab environment

to the cantilevers during the period of time between the first drop of bonding
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Figure 5.12: The spread of a 1µl drop of bonding solution.

solution being deposited and the two cantilevers being bonded. Another con-

sideration is that the bonding process will begin within moments of the bonding

solution being deposited onto the cantilever surface. However, a larger drop

size may result in bonding solution wicking around the edges of the cantilevers

if the droplet spreads out to cover the width of the cantilever.

It was seen that using 1µl of solution produced a drop that was within the

width of the cantilever. A bonding trial was then performed using cantilevers

with similar dimensions as the ones that would be used for the loss measure-

ments but with equal thickness, to study the spread of the bonding solution.

The trial is pictured in Figure 5.13, and the bond quality is shown in Figure

5.14.

When bonding pieces of silica, air bubbles can clearly be seen moving towards

the edges of the bond during the first hours after bonding. This observation

cannot be made when bonding silicon components because they are opaque

to visible wavelengths. However, thermal imaging allows for bond quality to

be observed in cases where the components are sufficiently thin. Figure 5.14

shows the thermal images of the trial bond 20 minutes and 18 hours after

the bond was made. In this case, the thermal images show the bond to be
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Figure 5.13: Bonding a pair of cantilevers with 1µl of bonding solution. In the third
image, a small amount of bonding solution can be seen (circled) where
the pressure of the top cantilever caused bond solution to ‘wick’ around
to the top surface.

free of significant voids even after 20 minutes and the bonding technique was

successful, apart from the spreading of bonding solution on to the top surface

of the cantilever.

20 minutes 18 hours

Clamping block Light source

Figure 5.14: Thermal images showing the bond between two silicon cantilevers after
being bonded using one 1µl drop of bonding solution. Once the bond is
completely cured, if there are no voids or particulates between the two
surfaces, the appearance should be uniform.
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To avoid the wicking of bonding solution observed in the trial onto the top

surface of the cantilever, three drops of 0.33µl of bonding solution were used

for the cantilevers in the loss measurement experiment. Once the cantilevers

were bonded, the thinner cantilever appeared to be flexible enough to mould

itself around the air bubbles in the bond. This dimpled effect is visible in the

bottom photograph in Figure 5.15.

Figure 5.15: Top: Three drops of bonding solution, each 0.33µl were used. Bottom:
The bonded cantilever after 24 hours. Bonding solution that wicked
around on to the top is visible, as is a square ‘dimple’ - a surface defect
on the top surface of the cantilever due to the manufacturing process.

Thermal images (shown in Figure 5.16) were taken at several stages during the

four week curing period in order to monitor the changes in the bond. The lower

half of the bond (nearest the clamping block) showed a significant improvement

in bond quality during the curing period. The tip of the cantilever also showed

improvement. Bubbles or contaminants on the bonding surfaces in this area

however, resulted in a poorer quality of the bond.
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Figure 5.16: The changes in the bond during the curing period can be seen in thermal images. Although the majority of the change
is within 30 hours, some improvement is noted in the images taken 24 days after bonding.



5.3 Results and Interpretation 109

5.3 Results and Interpretation

5.3.1 Introduction

When exciting the bonded structure, only the second resonant mode was suc-

cessfully excited. Therefore, the measurements of the second resonant modes

for the unoxidised and oxidised cantilevers were used to calculate the loss of

the oxide and bond layer.

Figure 5.17 shows the measured losses for the second resonant mode of the

66µm thick unoxidised silicon cantilever, along with the expected thermoelastic

loss. The thermoelastic loss is calculated using equation 5.7, where the value

for Young’s Modulus is taken to be 164GPa [136], the density of silicon is taken

to be 2333 kgm−3 [137], the thermal conductivity was taken from Touloukian

[137], and the coefficient of thermal expansion and specific heat capacity were

taken from Hull [138]. The thermoelastic loss limits were calculated using the

minimum and maximum values for the thermal conductivity.

Previous measurements of uncoated silicon cantilevers have shown the me-

chanical loss can be somewhat lower than that shown in Figure 5.18 [136] at

low temperature, suggesting that the measured loss value for φs here is higher

than anticipated, possibly due to noise in the laboratory environment during

the experiment and energy from the excited mode of the cantilever coupling

into the clamping structure [136]. However, since the mechanical loss of a sili-

con substrate at high temperature is extremely close to the thermoelastic loss,

and the intrinsic loss of the bonded structure is expected to be several orders

of magnitude higher than the loss of the silicon substrate, the levels of φs seen

here are expected to be low enough to allow a bond loss level to be obtained.
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Figure 5.17: The loss measurements for the 66µm plain silicon cantilever, and the
thermoelastic loss for the second mode, at 572Hz.

5.3.2 The Mechanical Loss in the Oxide Layers

The 66µm thick cantilever was oxidised, and the loss of the mode at 572Hz

remeasured, as plotted in Figure 5.18. It can be seen, that at temperatures be-

low ∼75K, the effects of the loss of the oxide layer are clearly visible. However,

above ∼75K, the measured losses appear to be dominated by a combination of

the excess losses discussed, and the thermoelastic loss of the substrate. Thus,

values for the oxide loss were calculated predominantly over the temperature

range from ∼10K to 75K.

The calculated loss of the oxide layer, using equation 5.6, is shown in Figure

5.18.

5.3.3 Mechanical Loss of the Bond Layer

Figure 5.19 shows the measured loss for the bonded structure, at the second

resonant mode of 736Hz.
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Figure 5.18: The loss of the oxidised 66µm cantilever and the calculated oxide loss.
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Figure 5.19: The measured loss for the bonded structure.

Applying equation 5.22:

φb =
Et

Eb

[

φm − φs − φsTE
− 2

Eo1

Et
φo −

Eo2

Et
φo −

Eo3

Et
φo

]

,
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and using equations 5.14 - 5.20, the mechanical loss of the bond layer can

be determined. Due to the loss measurements of the 66µm cantilever being

dominated above 75K by excess losses, the results for the loss of the bond

layer are restricted to the temperature range of 10 - 75K.

Figure 5.20 show the mechanical loss of the bond layer, for the temperature

range 10 - 75K. The maximum loss measured between 10 and 75K was 0.17 at

75K, and the lowest loss measured was 0.04 at 20K. The apparent structure

visible in Figure 5.20 is attributed to the noise in the calculated loss of the

oxide layer.
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Figure 5.20: The mechanical loss of the bond layer for the second mode at 736Hz in
the temperature range 10 - 75K.

5.4 Conclusions

The results obtained provide a new upper limit of 0.17±0.004 for a hydroxide-

catalysis bond between silicon at temperatures below 75K. The minimum loss

of 0.04±0.008 was obtained at 20K. These are below the calculated mechan-
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ical loss of hydroxide-catalysis bonds between fused silica (0.49±0.05) [104],

currently used in the construction of Advanced LIGO.

These values were only obtained for the loss at the second resonant mode, as

this was the only mode of the bonded structure that could be cleanly excited

and of which the ring down could be recorded. The experiment was highly

repeatable; however, with each of the three clampings of the bonded structure

producing loss curves that were within a 5% of each other between 10 and

100K, showing that the results were indeed reliable for this mode.

The bond between the cantilevers was not a completely uniform bond, as voids

were visible in the top end of the cantilever. However, a large proportion of

the bonded area was free of voids as opposed to previously reported bond loss

values [124].

A more precise loss value over a wider temperature range could be obtained if

a more consistent bond without voids was present between the two cantilevers,

and multiple resonant modes were measured to further define the bond loss.



Chapter 6

Conclusions

An international scientific community has developed a global network of in-

terferometric gravitational wave detectors that are now undergoing significant

upgrades after completing initial searches for gravitational wave signals from

astronomical events. These detectors operate by searching for changes in the

positions of suspended mirrors, induced by the passge of gravitational waves.

The detector upgrades, which will form the second generation of instruments,

will increase the sensitivity of the first generation detectors by a factor of

∼10. These room temperature detectors will incorporate fused silica test mass

mirrors suspended from fused silica fibres, jointed to the masses through the

application of hydroxide-catalysis bonding, chosen due to a combination of its

properties including having sufficiently low mechanical losses and thus thermal

noise.

The thermal noise of an interferometer can potentially be further minimised by

reducing the operating temperature of the test mass mirrors and suspensions to

cryogenic temperatures. Research has begun into the development of cryogenic

interferometric gravitational wave detectors as a future generation of detector

system to improve upon the sensitivities expected from the second generation
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detectors. Silicon may replace fused silica as the material used for the test

mass mirrors and suspensions due to its low dissipation characteristics at cryo-

genic temperatures. This thesis focuses on the adaption of hydroxide-catalysis

bonding for jointing silicon in the construction of the test mass suspensions.

Silicon requires a layer of SiO2 on the bonding surface in order for a hydroxide-

catalysis bond to successfully form. The strength of bonds between silicon

samples and the minimum thickness of the layer required for a successful bond

was investigated. Silicon blocks of dimensions 5 × 10mm from Prolog ingots

manufactured using the Czochralski process with crystallographic orientation

<100> and <111> were thermally oxidised in a wet environment at 1000◦C

for varying periods of time in order to grown oxide layers with thicknesses

between 0 and ∼270 nm.

135 pairs of silicon blocks were bonded together such that a bonded sample

had the dimensions of 5 × 10 × 40mm. 86 were strength tested at ∼77K,

and 49 were tested at room temperature. The results from the strength tests

showed a clear trend of decreasing strength once the minimum oxide layer was

less than 50 nm and no significant difference in strength indicating that the

strength of the bonds is not negatively influenced by thermal loading due to

expansion differences between the bond and bulk material. The characteristic

strength of all the samples studied at both cryogenic and at room temperature

was above 20MPa, with the potential to increase this by the identification

and removal of factors negatively affecting the strength. This result showed

the potential for hydroxide-catalysis bonding to be a technique used in the

construction of silicon suspensions for a cryogenic gravitational wave detector

when the bonding surfaces had a minimum oxide layer thickness of 50 nm.

Once the minimum oxide layer for a successful bond had been established,

the nature of the oxide layer was investigated. Electron beam deposition, ion

beam sputtering and dry thermal oxidation were used to apply an oxide layer
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of approximately 150 nm onto silicon blocks. Silicon ingots of crystallographic

orientation <100> and <111> were used, with the <100> ingot being man-

ufactured by Shin-Etsu using the Float Zone method, and the <111> ingot

being manufactured by Prolog using the Czochralski process.

The ion beam and e-beam oxide layers proved vulnerable to the cerium oxide

cleaning procedure, with approximately 25 nm of oxide layer worn away after

cleaning. The e-beam samples were the weakest set of samples, at both cryo-

genic and room temperature, while the cryogenic strengths were consistently

higher than room temperature strengths. The dry thermal oxide produced the

strongest and most consistent range of strengths.

When samples broke along the bond, each oxide type produced distinctive

break patterns. The e-beam samples had bond break surfaces that were uni-

form in colour, and ellipsometry showed the thickness of the oxide layer to

be unchanged, suggesting the bond failed to form, leaving the oxide layers in

tact. This, combined with the low strength, implies that e-beam deposition

is not a desirable technique to be used in the construction of suspensions for

a gravitational wave detector. Ion beam sputtering and thermal oxides can

still be considered, however the cleaning technique would need to be carefully

adapted to prevent erosion of the ion beam sputtered oxide layer.

Further, the mechanical loss of a hydroxide-catalysis bond between silicon sam-

ples was measured to determine its loss, to enable its contribution to the overall

thermal noise of a suspension to be assessed. The mechanical loss of a can-

tilever can be measured through exciting its bending modes and measuring

the ringdown time of each mode in a vacuum. Two cantilevers of different

thicknesses were measured in this way at temperature steps between 10 and

250K before being thermally oxidised and re-measured in the same way. They

were then bonded together such that the bond was offset from the centre of the

bonded structure. By then measuring the ringdowns of the bonded structure,
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the loss of the bond can be extracted at each temperature step.

An upper limit of the loss of a hydroxide-catalysis bond between silicon of

0.18±0.004 was obtained at temperatures below 75K. The minimum loss of

0.04±0.008 was obtained at 20K. These low values, which are below those cal-

culated for the hydroxide-catalysis bonds between silica, show that hydroxide-

cataysis bonding may be a suitable jointing technique for future cryogenic

gravitational wave detectors.



Appendix A

Weibull Analysis Code

This code was written by Prof. Martin Hendry.

program weibul\\

implicit double precision(a-h,o-z)\\

double precision fdata(100),pdata(100)\\

double precision chain_m(1000000),chain_f0(1000000)\\

double precision m_sorted(1000000),f0_sorted(1000000)\\

double precision loglike(1000000), array(1000000)\\

double precision xdata(100),ydata(100)\\

double precision x_line(450),y_line(450)\\

double precision f_fit(10000),cdf_fit(10000),\\

*cdf_lin(10000)\\

integer nsample(18),index(1000000)\\

external uniform, gaussian, xllike, heapsort\\

common/mcmc/fdata,sumlnf,pts,npts\\

common/sort/array,index,n_mcmc

c *******************************************************************

nsample(1) = 80\\

nsample(2) = 49\\

nsample(3) = 33\\

nsample(4) = 37\\

nsample(5) = 7\\

nsample(6) = 17\\

nsample(7) = 29\\

nsample(8) = 32\\
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nsample(9) = 4\\

nsample(10) = 5\\

nsample(11) = 16\\

nsample(12) = 14\\

nsample(13) = 17\\

nsample(14) = 23\\

nsample(15) = 25\\

nsample(16) = 20\\

nsample(17) = 8\\

nsample(18) = 17\\

c ****** Commencing loop over samples

do nsamp = 1,18\\

print*,’ Beginning sample number ’,nsamp\\

npts = nsample(nsamp)\\

pts = dble(npts)\\

if(nsamp.eq.1)then\\

open(unit=99,file=’sample01.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata01.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.2)then\\

open(unit=99,file=’sample02.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata02.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.3)then\\

open(unit=99,file=’sample03.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata03.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.4)then\\

open(unit=99,file=’sample04.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata04.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.5)then\\

open(unit=99,file=’sample05.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata05.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.6)then\\

open(unit=99,file=’sample06.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata06.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.7)then\\

open(unit=99,file=’sample07.dat’,status=’unknown’)\\
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open(unit=98,file=’fitdata07.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.8)then\\

open(unit=99,file=’sample08.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata08.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.9)then\\

open(unit=99,file=’sample09.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata09.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.10)then\\

open(unit=99,file=’sample10.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata10.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.11)then\\

open(unit=99,file=’sample11.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata11.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.12)then\\

open(unit=99,file=’sample12.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata12.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.13)then\\

open(unit=99,file=’sample13.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata13.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.14)then\\

open(unit=99,file=’sample14.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata14.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.15)then\\

open(unit=99,file=’sample15.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata15.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.16)then\\

open(unit=99,file=’sample16.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata16.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.17)then\\

open(unit=99,file=’sample17.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata17.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.18)then\\
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open(unit=99,file=’sample18.dat’,status=’unknown’)\\

open(unit=98,file=’fitdata18.dat’,status=’unknown’)\\

endif\\

c ****** First sort the F values into increasing order

do ipt = 1,npts\\

read(99,*)fdata(ipt)\\

enddo\\

close(99)\\

do ipt = 1,npts\\

do jpt = ipt,npts\\

if(fdata(ipt).gt.fdata(jpt))then\\

ftemp = fdata(ipt)\\

fdata(ipt) = fdata(jpt)\\

fdata(jpt) = ftemp\\

endif\\

enddo\\

enddo\\

do ipt = 1,npts\\

c ****** Compute values of x and y, using the formula 2b

xdata(ipt) = dlog(fdata(ipt)) \\

pdata(ipt) = (dble(ipt) - 0.3d0)/(pts + 0.4d0)\\

ydata(ipt) = dlog(dlog(1.d0/(1.d0-pdata(ipt))))\\

write(98,1111)ipt,fdata(ipt),pdata(ipt),\\

*xdata(ipt),ydata(ipt)\\

enddo\\

1111 format(i2,1x,f14.8,1x,f14.8,1x,f14.8,1x,f14.8)\\

close(98)

c ****** Now compute best-fit straight line and convert\\

c ****** to corresponding m and F0 values\\

xsm = 0.d0\\

xsq = 0.d0\\

ysm = 0.d0\\

ysq = 0.d0\\

xysm = 0.d0\\

do ipt = 1,npts\\

xsm = xsm + xdata(ipt)\\
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ysm = ysm + ydata(ipt)\\

xsq = xsq + xdata(ipt)*xdata(ipt)\\

ysq = ysq + ydata(ipt)*ydata(ipt)\\

xysm = xysm + xdata(ipt)*ydata(ipt)\\

enddo\\

slope = (pts*xysm - xsm*ysm)/(pts*xsq - xsm*xsm)\\

zept = (ysm*xsq - xysm*xsm)/(pts*xsq - xsm*xsm)\\

fitted_m = slope\\

fitted_f0 = dexp(-zept/slope)\\

c ****** Given these fitted values compute a best-fit line\\

c ****** in the (x,y) plane\\

do ixy = 1,450\\

x_line(ixy) = 0.01d0*ixy\\

y_line(ixy) = slope*x_line(ixy) + zept\\

enddo\\

c ****** Write out data ready for MATLAB

if(nsamp.eq.1)then\\

open(unit=99,file=’linplot01.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.2)then\\

open(unit=99,file=’linplot02.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.3)then\\

open(unit=99,file=’linplot03.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.4)then\\

open(unit=99,file=’linplot04.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.5)then\\

open(unit=99,file=’linplot05.dat’,status=’unknown’)\\

endif\\

if(nsamp.eq.6)then

open(unit=99,file=’linplot06.dat’,status=’unknown’)

endif

if(nsamp.eq.7)then

open(unit=99,file=’linplot07.dat’,status=’unknown’)

endif

if(nsamp.eq.8)then

open(unit=99,file=’linplot08.dat’,status=’unknown’)
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endif

if(nsamp.eq.9)then

open(unit=99,file=’linplot09.dat’,status=’unknown’)

endif

if(nsamp.eq.10)then

open(unit=99,file=’linplot10.dat’,status=’unknown’)

endif

if(nsamp.eq.11)then

open(unit=99,file=’linplot11.dat’,status=’unknown’)

endif

if(nsamp.eq.12)then

open(unit=99,file=’linplot12.dat’,status=’unknown’)

endif

if(nsamp.eq.13)then

open(unit=99,file=’linplot13.dat’,status=’unknown’)

endif

if(nsamp.eq.14)then

open(unit=99,file=’linplot14.dat’,status=’unknown’)

endif

if(nsamp.eq.15)then

open(unit=99,file=’linplot15.dat’,status=’unknown’)

endif

if(nsamp.eq.16)then

open(unit=99,file=’linplot16.dat’,status=’unknown’)

endif

if(nsamp.eq.17)then

open(unit=99,file=’linplot17.dat’,status=’unknown’)

endif

if(nsamp.eq.18)then

open(unit=99,file=’linplot18.dat’,status=’unknown’)

endif

do ixy = 1,450

write(99,2222)x_line(ixy),y_line(ixy)

enddo

2222 format(f14.8,1x,f14.8)

close(99)

c ****** Now ready to begin MCMC search

sumlnf = 0.d0

do ipt = 1,npts
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sumlnf = sumlnf + dlog(fdata(ipt))

enddo

n_mcmc = 100000

iseed = -2

xm_init = fitted_m

f0_init = fitted_f0

c xm_init = uniform(0.d0,10.d0,iseed)

c f0_init = uniform(0.d0,100.d0,iseed)

xm_min = 0.d0

xm_max = 20.d0

f0_min = 0.d0

f0_max = 100.d0

prop_m_sig = 0.25d0

prop_f0_sig = 1.d0

chain_m(1) = xm_init

chain_f0(1) = f0_init

loglike(1) = xllike(xm_init,f0_init)

sum_m = chain_m(1)

sum_f0 = chain_f0(1)

c ****** Beginning MCMC loop

print*,’ Doing MCMC search for sample ’,nsamp

do imcmc = 2,n_mcmc

xm = chain_m(imcmc-1)

f0 = chain_f0(imcmc-1)

xllike_old = xllike(xm,f0)

446 xm_move = gaussian(0.d0,prop_m_sig,iseed)

xm_new = xm + xm_move

f0_move = gaussian(0.d0,prop_f0_sig,iseed)

f0_new = f0 + f0_move

if(xm_new.lt.xm_min.or.xm_new.gt.xm_max)goto 446

if(f0_new.lt.f0_min.or.f0_new.gt.f0_max)goto 446

xllike_new = xllike(xm_new,f0_new)

c ****** Now determine if new point should be included

diff = xllike_new - xllike_old

if(diff.ge.0.d0)then

chain_m(imcmc) = xm_new
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chain_f0(imcmc) = f0_new

loglike(imcmc) = xllike_new

else

c ****** In this case we accept the proposal point with prob R

c ****** First compute probability ratio

ratio = dexp(diff)

rat_check = uniform(0.d0,1.d0,iseed)

if(rat_check.le.ratio)then

chain_m(imcmc) = xm_new

chain_f0(imcmc) = f0_new

loglike(imcmc) = xllike_new

else

chain_m(imcmc) = xm

chain_f0(imcmc) = f0

loglike(imcmc) = xllike_old

endif

endif

sum_m = sum_m + chain_m(imcmc)

sum_f0 = sum_f0 + chain_f0(imcmc)

c frac = dble(imcmc)/100.d0 - idint(dble(imcmc)/100.d0)

c if(frac.eq.0.d0)then

c write(*,*)’ Doing ’,imcmc

c endif

c ****** Ready to move on to next point in chain

enddo

close(99)

c ****** Chain completed. Ready to sort values

print*,’ Sorting log likelihood pairs for sample ’,nsamp

do imcmc = 1,n_mcmc

array(imcmc) = loglike(imcmc)

index(imcmc) = imcmc

enddo

call heapsort

c ****** Now write out sorted values to new arrays
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do imcmc = 1,n_mcmc

loglike(imcmc) = array(imcmc)

m_sorted(imcmc) = chain_m(index(imcmc))

f0_sorted(imcmc) = chain_f0(index(imcmc))

enddo

xm_ml = m_sorted(1)

f0_ml = f0_sorted(1)

c ****** Writing out chain points: 68% truncated sample and full sample

if(nsamp.eq.1)then

open(unit=99,file=’mcmc_chain01.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc01.dat’,status=’unknown’)

endif

if(nsamp.eq.2)then

open(unit=99,file=’mcmc_chain02.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc02.dat’,status=’unknown’)

endif

if(nsamp.eq.3)then

open(unit=99,file=’mcmc_chain03.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc03.dat’,status=’unknown’)

endif

if(nsamp.eq.4)then

open(unit=99,file=’mcmc_chain04.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc04.dat’,status=’unknown’)

endif

if(nsamp.eq.5)then

open(unit=99,file=’mcmc_chain05.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc05.dat’,status=’unknown’)

endif

if(nsamp.eq.6)then

open(unit=99,file=’mcmc_chain06.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc06.dat’,status=’unknown’)

endif

if(nsamp.eq.7)then

open(unit=99,file=’mcmc_chain07.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc07.dat’,status=’unknown’)

endif

if(nsamp.eq.8)then

open(unit=99,file=’mcmc_chain08.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc08.dat’,status=’unknown’)

endif

if(nsamp.eq.9)then

open(unit=99,file=’mcmc_chain09.dat’,status=’unknown’)
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open(unit=98,file=’mcmc_trunc09.dat’,status=’unknown’)

endif

if(nsamp.eq.10)then

open(unit=99,file=’mcmc_chain10.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc10.dat’,status=’unknown’)

endif

if(nsamp.eq.11)then

open(unit=99,file=’mcmc_chain11.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc11.dat’,status=’unknown’)

endif

if(nsamp.eq.12)then

open(unit=99,file=’mcmc_chain12.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc12.dat’,status=’unknown’)

endif

if(nsamp.eq.13)then

open(unit=99,file=’mcmc_chain13.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc13.dat’,status=’unknown’)

endif

if(nsamp.eq.14)then

open(unit=99,file=’mcmc_chain14.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc14.dat’,status=’unknown’)

endif

if(nsamp.eq.15)then

open(unit=99,file=’mcmc_chain15.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc15.dat’,status=’unknown’)

endif

if(nsamp.eq.16)then

open(unit=99,file=’mcmc_chain16.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc16.dat’,status=’unknown’)

endif

if(nsamp.eq.17)then

open(unit=99,file=’mcmc_chain17.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc17.dat’,status=’unknown’)

endif

if(nsamp.eq.18)then

open(unit=99,file=’mcmc_chain18.dat’,status=’unknown’)

open(unit=98,file=’mcmc_trunc18.dat’,status=’unknown’)

endif

length = idint(0.68*n_mcmc + 0.5d0)

do imcmc = 1,length

write(98,667)imcmc,m_sorted(imcmc),f0_sorted(imcmc),

*loglike(imcmc)



128

667 format(i8,1x,f16.10,1x,f16.10,1x,f16.10)

enddo

do imcmc = 1,n_mcmc

write(99,667)imcmc,m_sorted(imcmc),f0_sorted(imcmc),

*loglike(imcmc)

enddo

c *************************************************************

print*,’ Sorting marginal m values for sample ’,nsamp

do imcmc = 1,n_mcmc

array(imcmc) = chain_m(imcmc)

index(imcmc) = imcmc

enddo

call heapsort

do imcmc = 1,n_mcmc

m_sorted(imcmc) = array(imcmc)

enddo

print*,’ Sorting marginal F0 values for sample ’,nsamp

do imcmc = 1,n_mcmc

array(imcmc) = chain_f0(imcmc)

index(imcmc) = imcmc

enddo

call heapsort

do imcmc = 1,n_mcmc

f0_sorted(imcmc) = array(imcmc)

enddo

c ****** Compute 68%, 95% errors

n68_hi = idint(0.16d0*dble(n_mcmc) + 0.5d0)

n68_lo = idint(0.84d0*dble(n_mcmc) + 0.5d0) + 1

n95_hi = idint(0.025d0*dble(n_mcmc) + 0.5d0)

n95_lo = idint(0.975d0*dble(n_mcmc) + 0.5d0) + 1

c ****** Ready to compute posterior pdf statistics

xm_sm = 0.d0

xm_sq = 0.d0

f0_sm = 0.d0

f0_sq = 0.d0

do imcmc = 1,n_mcmc

xm_sm = xm_sm + m_sorted(imcmc)
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xm_sq = xm_sq + m_sorted(imcmc)*

*m_sorted(imcmc)

f0_sm = f0_sm + f0_sorted(imcmc)

f0_sq = f0_sq + f0_sorted(imcmc)*

*f0_sorted(imcmc)

enddo

xm_mean = xm_sm / dble(n_mcmc)

xm_var = (xm_sq/dble(n_mcmc)) - xm_mean*xm_mean

f0_mean = f0_sm / dble(n_mcmc)

f0_var = (f0_sq/dble(n_mcmc)) - f0_mean*f0_mean

print*,’ RESULTS FOR SAMPLE ’,nsamp

print*,’ Linear fitted m = ’,fitted_m

print*,’ Linear fitted F0 = ’,fitted_f0

print*,’ Maxmimum likelihood estimates: ’

print*,’ m = ’,xm_ml

print*,’ F0 = ’,f0_ml

print*,’ ’

print*,’ Mean m = ’,xm_mean

xm68_lo = xm_mean - m_sorted(n68_lo)

xm68_hi = m_sorted(n68_hi) - xm_mean

print*,’ + 68% error = ’,xm68_hi

print*,’ - 68% error = ’,xm68_lo

xm95_lo = xm_mean - m_sorted(n95_lo)

xm95_hi = m_sorted(n95_hi) - xm_mean

print*,’ + 95% error = ’,xm95_hi

print*,’ - 95% error = ’,xm95_lo

print*,’ S.D. m = ’,dsqrt(xm_var)

print*,’ ’

print*,’ Mean f0 = ’,f0_mean

f068_lo = f0_mean - f0_sorted(n68_lo)

f068_hi = f0_sorted(n68_hi) - f0_mean

print*,’ + 68% error = ’,f068_hi

print*,’ - 68% error = ’,f068_lo

f095_lo = f0_mean - f0_sorted(n95_lo)

f095_hi = f0_sorted(n95_hi) - f0_mean

print*,’ + 95% error = ’,f095_hi

print*,’ - 95% error = ’,f095_lo

print*,’ S.D. f0 = ’,dsqrt(f0_var)

print*,’ ’

c ****** Open results file

if(nsamp.eq.1)open(unit=99,file=’results_samp01.dat’,
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*status=’unknown’)

if(nsamp.eq.2)open(unit=99,file=’results_samp02.dat’,

*status=’unknown’)

if(nsamp.eq.3)open(unit=99,file=’results_samp03.dat’,

*status=’unknown’)

if(nsamp.eq.4)open(unit=99,file=’results_samp04.dat’,

*status=’unknown’)

if(nsamp.eq.5)open(unit=99,file=’results_samp05.dat’,

*status=’unknown’)

if(nsamp.eq.6)open(unit=99,file=’results_samp06.dat’,

*status=’unknown’)

if(nsamp.eq.7)open(unit=99,file=’results_samp07.dat’,

*status=’unknown’)

if(nsamp.eq.8)open(unit=99,file=’results_samp08.dat’,

*status=’unknown’)

if(nsamp.eq.9)open(unit=99,file=’results_samp09.dat’,

*status=’unknown’)

if(nsamp.eq.10)open(unit=99,file=’results_samp10.dat’,

*status=’unknown’)

if(nsamp.eq.11)open(unit=99,file=’results_samp11.dat’,

*status=’unknown’)

if(nsamp.eq.12)open(unit=99,file=’results_samp12.dat’,

*status=’unknown’)

if(nsamp.eq.13)open(unit=99,file=’results_samp13.dat’,

*status=’unknown’)

if(nsamp.eq.14)open(unit=99,file=’results_samp14.dat’,

*status=’unknown’)

if(nsamp.eq.15)open(unit=99,file=’results_samp15.dat’,

*status=’unknown’)

if(nsamp.eq.16)open(unit=99,file=’results_samp16.dat’,

*status=’unknown’)

if(nsamp.eq.17)open(unit=99,file=’results_samp17.dat’,

*status=’unknown’)

if(nsamp.eq.18)open(unit=99,file=’results_samp18.dat’,

*status=’unknown’)

write(99,*)’ Linear fitted m = ’,fitted_m

write(99,*)’ Linear fitted F0 = ’,fitted_f0

write(99,*)’ ’

write(99,*)’ Maxmimum likelihood estimates: ’

write(99,*)’ m = ’,xm_ml

write(99,*)’ F0 = ’,f0_ml

write(99,*)’ ’
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write(99,*)’ Mean m = ’,xm_mean

xm68_lo = xm_mean - m_sorted(n68_lo)

xm68_hi = m_sorted(n68_hi) - xm_mean

write(99,*)’ + 68% error = ’,xm68_hi

write(99,*)’ - 68% error = ’,xm68_lo

xm95_lo = xm_mean - m_sorted(n95_lo)

xm95_hi = m_sorted(n95_hi) - xm_mean

write(99,*)’ + 95% error = ’,xm95_hi

write(99,*)’ - 95% error = ’,xm95_lo

write(99,*)’ S.D. m = ’,dsqrt(xm_var)

write(99,*)’ ’

write(99,*)’ Mean f0 = ’,f0_mean

f068_lo = f0_mean - f0_sorted(n68_lo)

f068_hi = f0_sorted(n68_hi) - f0_mean

write(99,*)’ + 68% error = ’,f068_hi

write(99,*)’ - 68% error = ’,f068_lo

f095_lo = f0_mean - f0_sorted(n95_lo)

f095_hi = f0_sorted(n95_hi) - f0_mean

write(99,*)’ + 95% error = ’,f095_hi

write(99,*)’ - 95% error = ’,f095_lo

write(99,*)’ S.D. f0 = ’,dsqrt(f0_var)

write(99,*)’ ’

close(99)

c ****** Compute fits to Weibull model CDF, both using

c ****** ML parameter estimates and best-fitting line

if(nsamp.eq.1)then

open(unit=99,file=’cdfplot01.dat’,status=’unknown’)

endif

if(nsamp.eq.2)then

open(unit=99,file=’cdfplot02.dat’,status=’unknown’)

endif

if(nsamp.eq.3)then

open(unit=99,file=’cdfplot03.dat’,status=’unknown’)

endif

if(nsamp.eq.4)then

open(unit=99,file=’cdfplot04.dat’,status=’unknown’)

endif

if(nsamp.eq.5)then

open(unit=99,file=’cdfplot05.dat’,status=’unknown’)

endif

if(nsamp.eq.6)then
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open(unit=99,file=’cdfplot06.dat’,status=’unknown’)

endif

if(nsamp.eq.7)then

open(unit=99,file=’cdfplot07.dat’,status=’unknown’)

endif

if(nsamp.eq.8)then

open(unit=99,file=’cdfplot08.dat’,status=’unknown’)

endif

if(nsamp.eq.9)then

open(unit=99,file=’cdfplot09.dat’,status=’unknown’)

endif

if(nsamp.eq.10)then

open(unit=99,file=’cdfplot10.dat’,status=’unknown’)

endif

if(nsamp.eq.11)then

open(unit=99,file=’cdfplot11.dat’,status=’unknown’)

endif

if(nsamp.eq.12)then

open(unit=99,file=’cdfplot12.dat’,status=’unknown’)

endif

if(nsamp.eq.13)then

open(unit=99,file=’cdfplot13.dat’,status=’unknown’)

endif

if(nsamp.eq.14)then

open(unit=99,file=’cdfplot14.dat’,status=’unknown’)

endif

if(nsamp.eq.15)then

open(unit=99,file=’cdfplot15.dat’,status=’unknown’)

endif

if(nsamp.eq.16)then

open(unit=99,file=’cdfplot16.dat’,status=’unknown’)

endif

if(nsamp.eq.17)then

open(unit=99,file=’cdfplot17.dat’,status=’unknown’)

endif

if(nsamp.eq.18)then

open(unit=99,file=’cdfplot18.dat’,status=’unknown’)

endif

do ixy = 1,10000

f_fit(ixy) = 0.01d0*ixy

cdf_fit(ixy) = 1.d0 -

*dexp(-(f_fit(ixy)/f0_ml)**xm_ml)
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cdf_lin(ixy) = 1.d0 -

*dexp(-(f_fit(ixy)/fitted_f0)**fitted_m)

write(99,3333)f_fit(ixy),cdf_fit(ixy),cdf_lin(ixy)

3333 format(f14.8,1x,f14.8,1x,f14.8)

enddo

close(99)

enddo

end

double precision function xllike(xm,f0)

implicit double precision(a-h,o-z)

double precision fdata(100)

common/mcmc/fdata,sumlnf,pts,npts

term3 = (xm-1.d0)*sumlnf

term4 = 1.d0/(f0**xm)

sumfm = 0.d0

do ipt = 1,npts

sumfm = sumfm + fdata(ipt)**xm

enddo

xllike = pts*dlog(xm) - xm*pts*dlog(f0) + term3 -

* term4*sumfm

return

end

double precision function uniform(a,b,idum)

implicit double precision(a-h,o-z)

external ran3

x = ran3(idum)

uniform = a + (b-a)*x

return

end

double precision function gaussian(a,b,idum)

implicit double precision(a-h,o-z)

external gasdev

x = gasdev(idum)

gaussian = a + b*x

return

end

double precision function gasdev(idum)

integer idum

integer iset
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double precision fac,gset,rsq,v1,v2,ran3

save iset, gset

data iset/0/

if (idum.lt.0) iset=0

if (iset.eq.0) then

1 v1=2.d0*ran3(idum)-1

v2=2.d0*ran3(idum)-1

rsq=v1**2+v2**2

if (rsq.ge.1.d0.or.rsq.eq.0.d0) goto 1

fac=sqrt(-2.d0*dlog(rsq)/rsq)

gset=v1*fac

gasdev=v2*fac

iset=1

else

gasdev=gset

iset = 0

endif

return

end

double precision function ran3(idum)

integer idum

integer mbig,mseed,mz

double precision fac

parameter(mbig=1000000000,mseed=161803398,mz=0,fac=1.d0/mbig)

integer i,iff,ii,inext,inextp,k

integer mj,mk,ma(55)

save iff,inext,inextp,ma

data iff /0/

if(idum.lt.0.or.iff.eq.0)then

iff = 1

mj = abs(mseed-abs(idum))

mj = mod(mj,mbig)

ma(55) = mj

mk = 1

do i = 1,54

ii = mod(21*i,55)

ma(ii) = mk

mk = mj - mk

if(mk.lt.mz)mk = mk + mbig

mj = ma(ii)

enddo

do k = 1,4
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do i = 1,55

ma(i) = ma(i) - ma(1+mod(i+30,55))

if(ma(i).lt.mz)ma(i)=ma(i)+mbig

enddo

enddo

inext = 0

inextp = 31

idum = 1

endif

inext = inext + 1

if(inext.eq.56)inext = 1

inextp = inextp + 1

if(inextp.eq.56)inextp = 1

mj = ma(inext)-ma(inextp)

if(mj.lt.mz)mj=mj+mbig

ma(inext) = mj

ran3 = mj*fac

return

end

subroutine heapsort

implicit double precision(a-h,o-z)

double precision array(1000000)

integer index(1000000)

common/sort/array,index,n_mcmc

nhalf = n_mcmc/2

do m = nhalf,1,-1

temp = array(m)

itemp = index(m)

i1 = m

i2 = m + m

1 continue

if(i2.lt.n_mcmc.and.array(i2+1).lt.array(i2))

*i2=i2+1

if(array(i2).lt.temp) then

array(i1) = array(i2)

index(i1) = index(i2)

i1 = i2

i2 = i1 + i1

else

i2 = n_mcmc+1

endif

if(i2.le.n_mcmc) goto 1
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array(i1) = temp

index(i1) = itemp

enddo

do i = n_mcmc,3,-1

temp = array(i)

itemp = index(i)

array(i) = array(1)

index(i) = index(1)

i1 = 1

i2 = 2

2 continue

if((i2+1).lt.i.and.array(i2+1).lt.array(i2))

*i2=i2+1

if(array(i2).lt.temp) then

array(i1) = array(i2)

index(i1) = index(i2)

i1 = i2

i2 = i1 + i1

else

i2 = i

endif

if(i2.lt.i) goto 2

array(i1) = temp

index(i1) = itemp

enddo

temp = array(2)

itemp = index(2)

array(2) = array(1)

index(2) = index(1)

array(1) = temp

index(1) = itemp

return

end
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[76] O. L. Anderson and H. E. Bömmel. Ultrasonic absorption in fused sil-
ica at low temperatures and high frequencies. Journal of the American
Ceramic Society, 38(4):125–131, 1955.

[77] D. F. McGuigan, C. C. Lam, R. Q. Gram, et al. Measurements of the
mechanical Q of single-crystal silicon at low temperatures. Journal of
Low Temperature Physics, 30(5):621–629, 1978.



BIBLIOGRAPHY 143

[78] T. Uchiyama, T. Tomaru, M. E. Tobar, et al. Mechanical quality factor of
a cryogenic sapphire test mass for gravitational wave detectors. Physics
Letters A, 261(1-2):5–11, 1999.

[79] ET Science Team. Einstein gravitational wave Telescope conceptual de-
sign study . Technical report, ET-0106C-10, 2011.

[80] M. Alshourbagy, P. Amico, L. Bosi, et al. First characterization of silicon
crystalline fibers produced with the µ-pulling technique for future gravi-
tational wave detectors. Review of scientific instruments, 77(4):044502–
044502, 2006.

[81] M. Lorenzini, E. Cesarini, G. Cagnoli, et al. Silicate bonding properties:
Investigation through thermal conductivity measurements. In Journal of
Physics: Conference Series, volume 228, page 012019. IOP Publishing,
2010.

[82] A. Dari, F. Travasso, H. Vocca, et al. Breaking strength tests on silicon
and sapphire bondings for gravitational wave detectors. Classical and
Quantum Gravity, 27(4):045010, 2010.

[83] N. L. Beveridge, A. A. van Veggel, M. Hendry, et al. Low-temperature
strength tests and SEM imaging of hydroxide catalysis bonds in silicon.
Classical and Quantum Gravity, 28:085014, 2011.

[84] R. Brown. A brief account of microscopical observations made in the
months of June, July and August, 1827, on the particles contained in
the pollen of plants; and on the general existence of active molecules in
organic and inorganic bodies. Philosophical Magazine, 4:161–173, 1828.

[85] A. Einstein. Investigations on the Theory of the Brownian Movement.
Dover Pubns, 1956.

[86] H.B. Callen and T.A. Welton. Irreversibility and generalized noise. Phys-
ical Review, 83(1):34–40, 1951.

[87] R.F. Greene and H.B. Callen. On the formalism of thermodynamic fluc-
tuation theory. Physical Review, 83(6):1231, 1951.

[88] H.B. Callen and R.F. Greene. On a theorem of irreversible thermody-
namics. Physical Review, 86:702–710, 1952.

[89] A.S. Nowick and B.S. Berry. Anelastic relaxation in crystalline solids,
volume 1. Academic Press, 1972.

[90] F. Bondu, P. Hello, and J.Y. Vinet. Thermal noise in mirrors of interfero-
metric gravitational wave antennas. Physics Letters A, 246(3-4):227–236,
1998.



BIBLIOGRAPHY 144

[91] Y.T. Liu and K.S. Thorne. Thermoelastic noise and homogeneous ther-
mal noise in finite sized gravitational-wave test masses. Physical Review
D, 62(12):122002, 2000.

[92] S. Arrhenius. On the reaction rates of the inversion of cane sugar by
acids. Z. physik. Chem, 4:226, 1889.

[93] C. Zener. Elasticity and anelasticity of metals. University of Chicago
Press, 1948.

[94] A. L. Kimball and D. E. Lovell. Internal friction in solids. Physical
Review, 30(6):948, 1927.

[95] T. J. Quinn, C. C. Speake, and L. M. Brown. Materials problems in
the construction of long-period pendulums. Philosophical magazine. A.,
65(2):261–276, 1992.

[96] Y. Huang and P.R. Saulson. A method for measuring the dependence of
internal friction on strain. Review of scientific instruments, 65(6):2102–
2106, 1994.

[97] S.D. Penn, P.H. Sneddon, H. Armandula, et al. Mechanical loss in tan-
tala/silica dielectric mirror coatings. Classical and Quantum Gravity,
20:2917, 2003.

[98] D. R. M. Crooks, G. Cagnoli, M. M. Fejer, et al. Experimental mea-
surements of coating mechanical loss factors. Classical and Quantum
Gravity, 21:S1059, 2004.

[99] A. Ageev, B.C. Palmer, A.D. Felice, et al. Very high quality factor mea-
sured in annealed fused silica. Classical and Quantum Gravity, 21:3887,
2004.

[100] J. E Logan, J. Hough, and N. A. Robertson. Aspects of the thermal
motion of a mass suspended as a pendulum by wires. Physics Letters A,
183(2-3):145–152, 1993.
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