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ABSTRACT 

The purpose of this thesis is to develop fixed point indices for A-proper semilinear 

operators defined on cones in Banach spaces and use the results to obtain existence 

theorems to semilinear equations. We consider semi linear equations of the form Lx = N x 

where L is a linear Fredholm operator of index zero, N a nonlinear operator such that 

L - N is A-proper at zero relative to a projection scheme fL. 

Chapter 1 is an introduction to basic concepts used throughout the thesis, including: 

Banach spaces, linear operators, A-proper maps, Fredholm operators of index zero, and 

the definition and properties of the generalised degree for A-proper m.aps. 

In Chapter 2, we define a fixed point jndex for A-proper maps on cones in terms of 

the generalised degree and derive the basic properties of this index. We then extend the 

definition to include unbounded sets. 

A more general fixed point index than that of Chapter 2 is developed in Chapter 3 

for A-proper maps based on limits of a finite dimensionally defined index. Properties of 

the index are given and a definition for unbounded sets is provided. 

Chapter 4 extends the Lan-Webb fixed point index for weakly inward A-proper at 0 

maps to semilinear operators. This index is also extended to include unbounded sets. 

Existence theorems of positive and non-negative solutions to semilinear equations on 

cones are established in Chapter 5 using the fixed point indices of Chapters 2, 3, and 4. 

Finally, in Chapter 6, we apply some of the existence theorems of Chapter 5 to several 

differential and integral equations. We prove the existence of: a positive solution to a 

Picard boundary value problem; a non-negative solution to a periodic boundary value 

problem; and, a non-negative solution to a Volterra integral equation. 
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Introd uction 

This thesis is concerned with the development and application of a fixed point index for 

semi linear equations in cones. 

Semilinear equations, also referred to as alternative problems, are operator equations 

of the form 

Lx = Nx (0.1 ) 

acting on certain topological vector spaces X and Y where L is a linear mapping and N 

nonlinear. They are abstract formulations of differential, integral or integro-differential 

equations which arise naturally in various areas of science and engineering. Initial in­

vestigations of these equations are attributed to Lyapunov [33] in the study of integral 

equations related to a problem in fluid dynamics and Schmidt [50] for theoretical research 

in nonlinear integral equations. The method they employed, now called the Lyapunov­

Schmidt method, involved applying certain projections P : X ---t X where im P = ker L 

(in contemporary notation) and Q : Y ---t Y where ker Q = im L. Then the spaces X 

and Y can be represented as X = ker L ED ker P, Y = im L ED im Q and every x E X can 

be expressed as x = Xo + Xl with Xo = Px E ker L and Xl = (I - P) x E ker P. Thus 

Lx = N x becomes equivalent to 

Lx=(1-Q)Nx, QNx=O 

or 

x-Px=Lll(1-Q)Nx, QNx=O (0.2) 

v 



where Ll1 (1 - Q) : Y --+ dom L n ker P. Whence we obtain the system 

Xl = Ll1 (1 - Q) N (xo + xt) 

and 

QN(xo+xt) =0. 

For a fixed Xo the first equation becomes a fixed point problem 

(0.3) 

for the operator SX1 = Ll1 (1 - Q) N(xo+xt) and, under certain conditions on S, may be 

solved using suitable fixed point theorems such as those of Banach, Schauder, Sadovskii 

etc., cf. [58] for a detailed account. If (0.3) has a unique solution Xl = T(xo), the solution 

of (0.1) reduces to solving the second equation of the system, QN (xo + T(xo)) = 0 for 

Xo E ker L. This last equation is finite dimensional if L is a Fredholm operator, q. v. 

Section 1.4, a condition we shall impose throughout this thesis. 

The class of Fredholm operators are of considerable importance in functional analysis; 

as aptly stated by Zeidler [58]: "The entire development of linear analysis in this century 

is intimately related to the concept of the linear Fredholm operator". These operators 

generalise certain properties of linear functions in IR n to operators on Banach spaces. 

The modern theory is based upon the results of I. Fredholm [17] who established the 

celebrated "Fredholm alternatives" for the solvability of a class of integral equations of 

the second type with regular kernel. In so doing, he showed that the operators were, 

in modern terminology, Fredholm of index zero. That is, the integral operators of his 

investigations were bounded linear operators whose kernels and coimages were of the 

same finite dimension. 

Fredholm operators of nonzero index were later discovered but because the correspon­

dence in dimension of the afore mentioned subspaces is lost, the transformation of L - N 

to I - T cannot be made and, consequently, degree theoretic arguments are not directly 
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applicable. We therefore confine our attention to Fredholm operators of index zero and 

refer to Deimling [13] for a discussion of operators of nonzero index. 

The existence of solutions to many problems in nonlinear analysis cannot be deter­

mined by purely analytic means and other techniques must be employed. A frequently 

useful and now fairly general topological method of proving the existence of solutions to 

equations is by use of a topological degree and related fixed point index. The basic pro­

cedure in such an argument is to first formulate the problem in terms of a 1nap for which 

a topological degree is defined: e.g. compact, contractive, condensing etc.; then show 

the degree of the map over a specified set is nonzero (usually employing the homotopy 

property of the degree). The existence property of the degree then implies the equation 

has a solution. 

The concept of a topological mapping degree was introduced by Brouwer [3] around 

1910 for a continuous map defined on a euclidean simplicial complex. He used this degree 

to prove that a continuous mapping of a sphere in IRn into itself has a fixed point. Like 

much else in mathematics, the idea was not completely new and for C can be traced back 

to the "winding number" or index of a plane closed curve surrounding some point. It is 

defined in terms of a Cauchy integral and gives an "algebraic count" (i. e. J counting +1 

for each positively oriented revolution and -1 for each negatively oriented revolution) of 

the number of windings a curve makes about that point. Let G be a simply connected 

region in C, J : G ---+ C be analytic and let, be a closed C1 curve in G. Kronecker [27], 

in what is now called the Kronecker existence principle, observed that if J(z) =1= 0 on " 

and the winding number of J ( ,) is not zero then J has a zero in Go, the region enclosed 

by ,. The winding number was also seen to possess another useful property; that of 

homotopy invariance. Together, these two properties form the basis of most applications 

of degree theory in nonlinear analysis. More details may be found in Zeidler [58]. 

The extension of the Brouwer degree to compact maps in infinite dimensional Banach 

.. 
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spaces was made by Leray and Schauder in 1934 [31]. Since a large number of differential. 

integral and integro-differential equations can be formulated in terms of compact opera­

tors on infinite dimensional Banach spaces, the Leray-Schauder degree has had wide and 

extensive use. More recent developments in degree theory include Nussbaum's degree 

for condensing maps, q. v., Section 1.2 for a definition, and the "coincidence degree" of 

Mawhin which extends the Leray-Schauder degree to certain semilinear maps. 

Another relatively recent degree theory and the one which is of particular importance 

to our results is that for A-proper maps, q. v., Section 1.3, developed by Browder and 

Petryshyn [4] in 1968. The class of A-proper maps was introduced by Petryshyn [39] in 

1968 and shown, under certain conditions and projection schemes, to include: compact 

perturbations of the identity, ,B-Lipschitz, monotone, and accretive type operators. Thus, 

results obtained for this class have some generality. An additional advantage of the A­

proper degree is that not only existence of a solution may be inferred if the degree is 

nonzero but also, by nature of the theory, constructjve solvability of the equation is 

obtained. 

In determining the existence of non-negative solutions to equations the notion of a 

cone proves useful. That is, a closed convex subset K of a Banach space X satisfying 

A[{ C [{ for all A > 0 and K n (-K) = {O}. Elementary examples are [{ = IR+ and 

the subset of non-negative functions in C [0, 1]. These cones have nonempty interior in 

their respective spaces; however, many other cones of interest have empty interior such 

as the subset of non-negative functions in LP [0, 1]. A somewhat problematic consequence 

of this is that topological degree theory, in its strict sense, cannot be applied directly to 

mappings defined on relatively open subsets of a cone with empty interior (an assumption 

in defining a degree is that Tx I: x on an, but an = n if n has empty interior). A concept 

closely related to the mapping degree but of broader definition is the fixed point index 

of a map. Essentially, like the degree, it is an algebraic count of the number of solutions 
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to the equation Tx = x in a given set, i.e., the number of points left fixed by T. In 

1928, Hopf [23] defined a fixed point index for a continuous map on a combinatorial 

manifold (a generalisation of polyhedra) and used it to considerably simplify the proof 

of the Lefschetz Fixed Point Theorem. He used a homeomorphism to map disjoint 

neighbourhoods of the fixed points of a continuous function onto balls in IRn, where the 

Brouwer degree is defined. For each fixed point, he then defined the fixed point index of 

the continuous function to be the value of the Brouwer degree on the corresponding ball 

in IRn. Since this connection was made, it has become common practice to define fixed 

point indices in terms of a topological degree that is not directly applicable for a given 

situation but where properties of a degree are desired. 

In [36], Nussbaum extended the definition of the fixed point index to condensing 

maps over closed convex subsets of a Banach space using a retraction argument. Since 

these sets include cones, he was able to use this index to prove some cone compression 

and expansion type existence theorems in [37] and obtain results for various nonlinear 

functional differential equations. He also pointed out that, in a particular form, this 

index is equal to the Leray-Schauder degree and hence an extension of it. 

Furthering these ideas, Amann, in his survey article [2], mentioned a fixed point index 

for compact operators mapping a retract into itself. He used a retraction argument to 

modify the Leray-Schauder degree so that the degree, and equivalently the index, could 

be determined over closed convex sets. 

As this extension of the Leray-Schauder degree is illustrative of the techniques we 

shall employ later using A-proper and Brouwer degrees, we provide a derivation of this 

fixed point index according to Amann [2]. We mention that all topological notions such 

as open, closed, boundary, etc. refer to the relative topology of K as a subspace of X. 

Let K be a retract of a Banach space X with retraction r, f : n --t K a compact 

map with n c K relatively open and assume f (x) 1= x on an. Then we may define the 

IX 



fixed point index of f over !1 with respect to K by 

i (f,!1, K) = i (fr, r- I (!1), X) = deg (I - fr, r- I (!1), 0) 

the Leray-Schauder degree for identity minus compact maps. 

Some of the important properties of this index are given in the next theorem. cf. 

Amann [2] for a proof. 

Theorem 0.0.1 Let K be a retract of a Banach space X, !1 c K an open set and 

f : !1 --+ K a compact map such that f (x) -=I- x on a!1. Then there exists an integer 

i (f, !1, I{) satisfying the following conditions: 

(i) (Normalisation) for every constant map f mapping n into !1, i (f,!1, K) = 1 

(ii) (Additivity) for every pair of disjoint open subsets !1I, !12 of!t such that f has no 

fixed points on !1 \ (!1I U !12), 

i (f,!1, K) = i (f, !11, I{) + i (f, !t2 , K) where i (f, !tn, K) = i (f Inn' !tn, K) for n = 1,2 

(iii) (Homotopy invariance) for every compact interval [a, b] C IR and every compact map 

h : [a, b] x !1 --+ K such that h ('\, x) -=I- x for ('\, x) E [a, b] x a!1, i (h ('\,.),!1, K) is well 

defined and independent of ,\ E [a, b]. 

The modern approach to index theory is rather axiomatic in that once an index is 

defined, it is then shown to satisfy various properties of the classical index. The ones 

we verify in this thesis are those most common and useful to the analyst, viz., existence, 

normalisation, additivity and homotopy. There are other properties that we don't discuss 

since we don't use them in our existence theorems, such as: commutativity, excision, and 

permanence; but may be proved following similar arguments used in proving the other 

properties (often appealing to the equivalent properties of the underlying degree). 

For more detailed-including historical-accounts of these topics, see: Gaines and Mawhin 

[18], Zeidler [58] for semilinear equations; Alexandrov and Hopf [1], Brown [6], Deimling 

[13] Dieudonne [14], and Zeidler [58] for topological degree and fixed point index theory. 
) 
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This thesis is organised into six chapters: the first is preparatory and concerns basic 

concepts; the second, third and fourth develop fixed point indices for A-proper maps and 

are ordered roughly according to increasing generality of application; the fifth establishes 

existence theorems; and the sixth is on applications. 

In Chapter 1, we introduce the basic ideas necessary in the development of our theory. 

We begin with a review of Banach spaces and linear operators then proceed to a discussion 

of A-proper maps, Fredholm operators of index zero and conclude with the definition and 

properties of the generalised degree for A-proper maps. 

Our first result, the content of Chapter 2, establishes a new fixed point index for 

A-proper (at 0) maps defined on cones. Our definition of this index places some re­

quirements on the retraction p mapping the Banach space X to the cone I{, viz.! 

II px - x II < 2 dist (x, K) and p (Xn) C Xn. The first condition seems to be satisfied 

by most retractions used in practice; however, the second is more restrictive and dis­

qualifies some common retractions and projection schemes. Examples of retractions and 

projection schemes that satisfy and fail these conditions are provided in the introduction 

to this chapter. Another requirement of this index is that the A-proper map T must be 

defined on all of the cone I{. This condition is used to prove the index is independent of 

the retraction chosen in the definition. Despite these limitations, an attractive feature of 

this index is that it is defined in terms of the generalised degree for A-proper maps and 

does not require any reduction to finite dimensional degree arguments. Assuming the 

above conditions on the retraction p : X -+ K, we define in Section 2.2 the fixed point 

index as follows. 

Let n C I{ be open bounded and K a cone in a Banach space X. Assume 1 - T is 

A-proper at 0 relative to a projection scheme f, T : I{ -+ K and Tx -=I=- x on an. Then 

we define the fixed point index of T over n relative to K as 

indK (T, n) = Deg (I - Tp, p-l (n), 0) 
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where the degree is that for A-proper maps defined by Browder and Petryshyn HJ. \Ve 

show that the index is well defined, independent of the retraction chosen provided it 

satisfies the stated conditions and has most of the properties of the classical fixed point 

index. 

In Section 2.3, we show that the semilinear equation Lx - N x = w where L is 

Fredholm of index zero, N nonlinear and L - N A-proper at 0 can be converted to the 

form (I - T)y = wand thereby extend the above index to semilinear operators. We 

conclude the chapter with the definition of the index on unbounded sets U. This is done 

in the usual way of taking an open bounded set V c U such that (I - T)-l (0) C V and 

defining 

indK (T, U) = indK (T, V) 

which is a consequence of the additivity over domains and excision properties of the 

index. We show that this definition extends to semilinear operators L - N. 

In Chapter 3, we develop an index for A-proper at 0 maps without the restrictions 

on the retraction p and the domain of T mentioned above; thus obtaining an index 

of greater application than that of Chapter 2. The method used is similar to that of 

Fitzpatrick and Petryshyn [16] where we first define a finite dimensional index and then 

obtain the infinite dimensional version through a limiting process. We add that the finite 

dimensional index also plays a part in defining the fixed point index for weakly inward 

A-proper at 0 maps in Chapter 4. As in Chapter 2, we first define the index for A­

proper at 0 maps T : nK --+ K c X (nK = n n K), then establish the index for maps 

L - N : dom L n nK --+ Y and end with the definition for unbounded sets. 

Chapter 4 extends the Lan-Webb [30] fixed point index for weakly inward A-proper 

at 0 maps to semilinear operators. With weakly inward maps, the previous requirement 

of Chapters 2 and 3, that the operators map cones to cones is relaxed. Weakly inward 

operators map closed convex sets K to so called weakly inward sets that contain K 

.. 
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(precise definitions will be found in Chapter 4). We show that the concept of a weakly 

inward map may be extended to semilinear maps and define a fixed point index for them. 

We also extend the Lan-Webb index to unbounded sets. 

Existence theorems for semilinear equations in cones are established in Chapter :3 

using the fixed point indices of the preceding chapters. In Section 5.2, we extend a 

general continuation theorem of Mawhin [34] and an existence result of Petryshyn [42] to 

cones. We then establish two corollaries of practical interest related to results of Cesari 

[9], Mawhin [34], Petryshyn [42], and Webb [54]. We also obtain an existence theorem for 

positive solutions and one for weakening a priori bound requirements. These theorems 

extend results of Webb [54]. Theorem 5.2.13 extends to semilinear maps a result of 

Petryshyn [41] which in turn extends results of Gatica and Smith [19], Nussbaum [37], 

and several others, cf [41] for a list. 

Section 5.3 involves existence theorems on quasinormal cones where we extend to 

semi linear equations many of the results established by Lafferriere and Petryshyn [28] 

for P-y -compact cone maps. The idea of quasinormality was introduced by Petryshyn in 

[43] where it proved to be useful in studying the existence of positive eigenvectors and 

fixed points of noncompact maps. Included in this section are several norm type cone 

compression and expansion theorems. 

We obtain existence theorems for weakly inward A-proper maps in Section 5.4 which 

extend results of Lan and Webb [30]. We use a variation of the Leray-Schauder boundary 

condition in Theorem 5.4.4 to prove the existence of a solution to Lx = N x. We also 

provide conditions which imply the index is 0 and, in conjunction with Theorem 5.4.4, 

obtain a result that gives a positive solution to a semilinear equation. Our last theorem 

in this chapter gives conditions that ensure the existence of at least two positive solutions 

but under the rather restrictive hypothesis; that (N + J- 1 P) (K) be bounded for a cone 

I{. 
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The final chapter, Chapter 6, is on applications of the existence theorems from Chap­

ter 5 to differential and integral equations. In our first application, we prove the existence 

of a positive solution to the second order boundary value problem 

-x" (t) = f (t, x (t), x' (t), x" (t)) where x (0) = x (1) = 0. (0.4) 

We convert the equation to an operator equation of the form L - N and use Theorem 

5.3.8 to obtain a positive solution to (0.4) in the cone 

K = {x E C2 [0, 1] : -x" (t) > 0, x (0) = x (1) = o}. 

Our second result determines a non-negative solution to the second order periodic bound­

ary value problem 

_X"(t) = f(t,x(t),x'(t)) where x(o) = x(l) and x'(O) = x'(l). (0.5) 

After converting (0.5) to an operator equation, we apply Corollary 5.2.7 to obtain a non­

negative solution in the Banach space X = {x E C2 [0, 1] : x (0) = x (1), x' (0) = x' (1 n. 
Lastly, using our weakly inward results, we prove the existence of a non-negative 

solution to the Volterra equation 

y(t)= l'k(t,s,X(S))dS, tEJ=[O,l] 

where k and yare IR n-valued. The problem, as we formulate it, is similar to one mentioned 

by Deimling [13] where he obtains a solution in the cone of non-negative functions in 

C [0, a] using a theorem valid only for cones with nonempty interior. Our index theory 

applies to cones with empty and nonempty interior thus enabling us to obtain a solution 

in the cone of non-negative a.e. functions of L2 [0,1]. 
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Chapter 1 

PRELIMINARY TOPICS 

1.1 Introduction 

We present the basic and relevant concepts used throughout this thesis concerning Banach 

spaces, A-proper maps, Fredholm maps of index zero, and topological degree theory. 

Standard references for this material are Taylor and Lay [52], Yosida [56] for Banach 

spaces; Petryshyn [47] for A-proper maps; Deimling [13], Dunford and Schwartz [15], 

Taylor and Lay [52] for Fredholm operators of index zero; and Cronin [10], Deimling [13], 

Lloyd [32] for topological degree theory. 

1.2 Banach spaces, linear operators, cones 

In the sequel, X and Y will denote Banach spaces with norms 1IIIx and lilly respectively. 

When there is no ambiguity, we shall simply write IIII to denote both of these norms. A 

Banach space is said to be separable if it has a countable dense subset. We note that 

every Banach space with a Schauder basis (see remark 1.3.3 below) is separable, the 

converse being false as proved by P. Enflo. The dual space X* of a Banach space X is 

the vector space of all bounded linear functionals x* : X -t lR with x* (x) = (x, x*) being 
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the value of x* at x. A Banach space is said to be reflexive if the canonical embedding 

F : X -+ X** defined by (x*, Fx) = x* (x) on X* is surjective. 

We define several Banach spaces of particular interest in applications to differential 

and integral equations. 

Let !1 c IRn be an open bounded set, !1 its closure. C (IT) denotes the space of 

continuous functions I : !1 -+ IR with norm Ilfll = maxxEIT II (x )1. Ck (!1), k > 1, denotes 

the space of k times continuously differentiable functions on !1 and C k (!1) denotes those 

I E C k (!1) all of whose partial derivatives of order < k have continuous extensions to !1. 

This space is endowed with the norm II I II = 2:7=0 maxxEIT I Di I ( x) I; here DO I = I and 

Di I stands for all partial derivatives of I of order i. When!1 = [a, b] c IR, Ck (IT) is 

written Ck [a, b]. 

For 1 < P < 00, LP (!1) is the space of (equivalence classes of) functions whose p-th 

power is Lebesgue integrable. When endowed with the norm 

LP (!1) forms a Banach space. DX) (!1) is the space of essentially bounded functions with 

norm 

11/1100 = ess sup II (x) I· 
xEn 

For 1 < P < 00, kEN, Wk,p (!1) is the space of all I E LP (!1) such that the 

distributional derivatives, DS I of order lsi = 2:7=1 ISil < k, belong to LP (!1). The norm 

is defined as 1 

II/lIk,p = (2:: iiD' f (xllP dX) P 
Isl~k n 

We define a cone K in a Banach space X as a closed convex subset of X such that 

)"K c I{ for all ).. > 0 and K n {-K} = O. The set K = {x (t) E C[O, 1] : x (t) > O} is 

a common example in applications. x < y iff y - x E I{ defines a partial ordering on 

X. For 0 < x < y, the norm on X is called monotone if IIxll < lIyll and semimonotone 
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if Ilxll < Illyll for I > O. A cone is said to be normal if IIII on X is semimonotone with 

respect to K c X. This is equivalent to Ilx + yll > Illyll for all x, y E K and some 

I E (0,1]' cf. Lafferriere and Petryshyn [28]. 

The terms map, transformation, and operator will be used synonymously. Maps will 

be denoted by the symbols T, L, N and I, the last representing the identity operator 

I x = x. A linear operator L satisfies L (ax + j3y) = aLx + j3 Ly for x, y E dom Land 

a, j3 E JR. A linear operator L : X --+ Y is bounded if there exists M E JR such that 

IILXlly < M Ilxllx for every x E domL. The norm of a bounded linear operator is 

defined as 

IILxlly 
IILII = sup II II . 

x#O x x 

A set 0 C X is said to be compact if every open covering of 0 has a finite subcovering. 

Equivalently, 0 C X is compact iff (if and only if) every sequence {xn } C 0 has a 

convergent subsequence with a limit in O. A set 0 is said to be relatively compact if 0 is 

compact. 

A linear operator L : X --+ Y is said to be compact if LO is compact for every bounded 

o C X. Equivalently, a linear operator L : X --+ Y is compact iff {Lxn } has a convergent 

subsequence for every bounded sequence {xn } . 

Let K C X and U C I{, then U is called relatively open in I{ if there exists an open 

set V C X such that U = K n V. Relatively closed sets are defined analogously. The 

boundary of U relative to K, denoted aKU, is the relative closure of U minus the relative 

interior of U. 

H is called a homeomorphism iff H is bijective and both Hand H- 1 are continuous. 

A projection is a linear operator P from X onto a subspace Xn which satisfies p 2 x = 

Px, for x E X and Px = x for x E X n . A set 0 C X is said to be a retract of X if 

there exists a continuous map R : X --+ 0 such that Rx = x for every x E O. The map R 

is called a retraction. An important consequence of the following theorem by Dugundji 
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is that every closed convex set in a normed linear space is a retract. This fact plays a 

crucial role in defining a fixed point index on cones. 

Theorem 1.2.1 (Dugundji [13]) Let X and Y be normed linear spaces, 0 C X closed 

and f : 0 ~ Y continuous. Then f has a continuous extension F : X ~ Y such that 

F(X) c conv(f(O)). 

For a bounded set 0 C X, we define the set measure of noncompactness a (0) and 

the ball measure of noncompactness {3 (0) as 

a (0) = inf {<5 > 0 : 0 admits a finite covering by sets of diameter < <5} ; 

{3 (0) = inf {<5 > 0 : 0 can be covered by finitely many balls of diameter < <5}. 

We note that a (0) = {3 (0) = 0 iff 0 is compact. 

A continuous bounded map T : X ~ Y is called a k-set contraction if there is a 

constant k > 0 such that for all bounded sets 0 C dom T, ay (T (0)) < kax (0) (the 

subscript indicates the space in which the measure is determined). If ay (T (n)) < ax (0) 

whenever ax (0) -# 0 then T is said to be a-condensing. Similar definitions exist for the 

ball measure of non-compactness {3. That is, a continuous bounded map T : X ~ Y is 

called a k-ball contraction if there exists a number k > 0 such that {3y (T (0)) < k{3x (0) 

for all bounded sets 0 C domT. T is called ball-condensing if {3y (T (0)) < (3x (0) unless 

o is compact. 

1.3 A-proper maps 

The solution to infinite dimensional operator equations of the form F (x) = y by limits of 

finite dimensional approximations Fn (xn) = Yn motivates the study of Approximation­

proper (abbreviated A-proper) maps introduced by Petryshyn in [39]. It has been shown 

that many commonly encountered operators in applications are A-proper relative to an 
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appropriate projection scheme. We precisely define such a scheme and the notion of 

A-proper maps. 

Definition 1.3.1 Let X and Y be separable Banach spaces, D a dense linear subspace 

of X, {Xn} C D and {Yn} C Y sequences of oriented finite dimensional subspaces such 

that dimXn = dim Yn for each n, dist (x, Xn) ---+ 0 for every xED and let Qn : Y ---+ Yn 

be a sequences of continuous linear projections such that QnY ---+ y in Y for every y E Y. 

The projection scheme r = {Xn' Yn, On} is then said to be admissible for maps from 

D C X to Y. (Also when the condition QnY ---+ Y holds the scheme is sometimes said to 

be projectionally complete.) 

Remark 1.3.2 Here D is allowed to be the whole space X. We need to include D when 

we consider densely defined operators, as we shall do below. 

Remark 1.3.3 If X and Y possess Schauder bases then there exist natural projection 

schemes. Recall that, a sequence {<Pi} is called a Schauder basis for X if, for each 

x EX, there exists a unique seq'uence of numbe1's {Xi} such that L:~=I Xi<Pi converges 

to x as n ---+ 00. Suppose that {<Pi} and {~i} are Schauder bases for X, Y respectively. 

Then we may take Xn = [<PI, ... , <Pn], Yn = [~I' ... , ~n], where [ ... J denotes linear span, and 
n 

Qn (y) = L: Yi~i' By the Uniform Boundedness Theorem [52}, there exists 0 < c < 00, 
i=1 

such that IIOnl1 < c for all n E N. 

Definition 1.3.4 Let S be a subset of D and T : SeX ---+ Y. T is called A-proper at 

y relative to the projection scheme r if 

(i) QnT : S n Xn ---+ Yn is continuous 

(ii) for any bounded sequence Xn C S n Xn such that QnTxn ---+ y for y E Y, there exists 

a subsequence xn] ---+ xES and which satisfies T x = y. T is called A -proper if it is 

A -proper at all points y E Y. 
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Remark 1.3.5 The set of A-proper maps with a given projection scheme dOEs not form 

a linear space, this is evident from the simple example that I and -I are A-proper but 

their sum, the 0 operator, is not. However, as we shall prove in our next theorem, if T is 

A-proper and C is compact, then T + C is A-proper. Also, it is clear that ifT is A-proper 

and A -# 0 then AT is A -proper. 

Theorem 1.3.6 (Petryshyn [39]) If T : SeX ---+ Y is A-proper with respect to f = 

{Xn' Yn, Qn} and C : SeX ---+ Y is compact then T + C is A-proper with respect to f. 

Proof Let {xn} E Xn be a bounded sequence such that Qn (T + C) Xn ---+ y E Y. 

Since C is compact, there exists a subsequence {Xnj} such that QnjCxn] ---+ Yo. Since T 

is A-proper, we may choose a subsequence, again denoted by {Xn]} converging to x such 

that Tx = y - Yo. By the continuity of C, CXnj ---+ Cx = Yo and therefore (T + C) x = y. 

Q.E.D. 

Definition 1.3.7 T is proper if T-l (K) is compact whenever I{ is compact. 

In [40], Petryshyn proved that continuous A-proper maps are indeed proper. We 

provide a proof of this assertion for completeness. 

Theorem 1.3.8 Let X and Y be Banach spaces, n c X open and T : n ---+ Y continuous 

and A-proper with respect to a projection scheme f = {Xn' Yn, Qn}. Then the restriction 

of T to every closed bounded subset of n is proper. 

Proof. Let M be a closed bounded subset of n. Suppose that {xn} is a sequence 

in M n T-l(K) where KeY is compact. Then {T(xn)} is a sequence in K which we 

may and do assume converges to y E K. For each kEN, choose Ek > 0 with Ek ---+ 0 

as k ---+ 00. By the continuity of T, there exists 6k > 0, 6k ---+ 0 as k ---+ 00 such that 

if liz - xkll < 6k for z E n, then IITz - TXkl1 < Ek. By the properties of the admissible 
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scheme, there exists Znk E X nk no, nk > k, with IITznk - TXkl1 < Ek and Ilznk - xkll < 6k. 

Thus 

IIQnkTznk - yll < IIQnkTznk - QnkTxkl1 + IIQnkTxk - Qnkyll + IIQnkY - yll 

< c IITznk - TXkl1 + c IITxk - yll + IIQnkY - yll 

since the projections Qn are uniformly bounded by a constant c. Then QnkTznk ---+ y 

as k ---+ 00 and by the A-properness of T, there exists x E 0 such that (choosing a 

subsequence if necessary) Znk ---+ x and Tx = y. Hence, Xk ---+ x and since M is closed, 

x E M n T- 1 (K) which is therefore compact. Q.E.D. 

The class of projectionally-compact (abbreviated P-compact) maps introduced by 

Petryshyn in [38] were prototypical in the development of A-proper maps and will appear 

later in Chapter 5. They are defined as follows. 

Definition 1.3.9 T : SeX -t Y is P-y-compact if the map >"1 - T : S ---+ Y is A-proper 

with respect to r for each >.. > I if I > ° or>.. > ° if I = 0. (For I = OJ T is simply said 

to be P-compact). 

Other examples of A-proper maps include strongly monotone and strongly accretive 

operators and their perturbations by compact or ball condensing maps, cf. Petryshyn 

[47]. 

Many of the proofs to our theorems involve homotopies that are A-proper; we define 

these maps as follows. 

Definition 1.3.10 A map H : [0,1] x SeX -t Y is called an A-proper homotopy at y 

relative to a projection scheme r if QnH : [0,1] x QnS -t Yn is continuous and if {xn} is 

a bounded sequence in Sand {tn} C [0,1] are such that QnH (tn' Xn) ---+ Y for some y E Y, 

then there exist subsequences xnj ---+ xES and tnj ---+ t E [0,1] such that H (t, x) = y. H 

is said to be an A -proper homotopy if it is A -proper at all points y. 

Remark 1.3.11 We shall be particularly interested in the case of A-proper at O. 
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1.4 Fredholm operators of index zero 

The study of certain integral equations, initiated by 1. Fredholm [17], when formulated as 

abstract operator equations, led to the general theory of Fredholm operators in Banach 

spaces. In this thesis we shall consider the subclass of Fredholm operators with index 

zero as the construction of our fixed point index depends on certain properties particular 

to them. We define these operators and mention some useful properties and their relation 

to A-proper maps. 

Definition 1.4.1 A closed, densely defined, linear operator T : dom(T) C X -t Y is 

said to be a Fredholm operator if dim(ker T) < 00 and codim (im T) = dim(Y jim T) < 

00. We denote the class of all Fredholm operators from dom(T) C X to Y by <I> (X, Y) 

or <I> (X) if X = Y. The index ofT E <1> (X, Y) is defined as dim(kerT) - dim(Yj im T). 

The subclass of Fredholm operators with index zero is denoted <1>0 (X, Y) . 

Some examples of Fredholm operators of index zero are: 

(i) T : X -t Y where T is a bounded linear bijection [52] 

(ii) T = I - C where C is compact [52] 

(iii) T = L - C where L E <1>0 (X, Y), C is compact and linear [25] 

(iv) if L : X -t X is a bounded linear operator and IAI > ress (L) where ress (L) 

sup {IAI : A E (Jess (L) the essential spectrum of L}, then AI - L E <1>0 (X) [35] 

(v) if L E <1>0 (X, Y) and T E <1>0 (Y, Z) then T L E <1>0 (X, Z) [52] 

(vi) T : X -t Y where T is a bounded linear A-proper map with kerT = 0 [47]. 

We provide a proof to example (vi) as it is of particular importance in our results and 

to illustrate the methods in general. 

Theorem 1.4.2 (Petryshyn !47j) If T : X -t Y is a bounded linear A-proper map 

relative to r = {Xn' Yn}with kerT = 0 then T is Fredholm of index zero. 
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Proof. We show that these conditions imply T is a homeomorphism whence the result 

readily follows. Since ker T = 0, T is injective. To prove T is also onto we demonstrate 

first that there exists a constant c > 0 and No E N such that IIQnTxnl1 > c Ilxnll for every 

Xn E Xn with n > No. To obtain a contradiction, suppose the contrary. Then there is a 

sequence {xn} which, by linearity of QnT, we may choose with Ilxnll = 1 for every n E N 

such that IIQnTxnl1 < ~ Ilxnll = ~ -+ 0 as n -+ 00. By the A-properness of T, there 

exists a subsequence {Xnj} and x E X such that Xnj -+ x with Ilxll = 1 and Tx = O. 

This contradicts the injectivity of T and so we have proved the existence of c and No. 

Now for n > No, QnT : Xn -+ Yn is injective and therefore onto since Xn and Yn are 

of equal finite dimension nand QnT is linear and continuous for such n. Thus, for each 

y E Y there exists a unique Xn E Xn such that QnTxn = QnY for every n > No. Now 

c Ilxnll < IIQnTxnl1 = IIQnyl1 < k Ilyll since the sequence {Qn} is uniformly bounded, cf. 

Remark 1.3.3. So {xn} is a bounded sequence and QnTxn = QnY -+ Y as n -+ 00. By 

the A-properness of T, there exists x E X and a subsequence Xnj -+ x with Tx = y. 

Hence T is onto and therefore a homeomorphism. 

Now since T is a homeomorphism, im T = Y which is closed and dim (Y/ im T) = 0 

so that T is Fredholm of index zero. Q.E.D. 

Remark 1.4.3 That the image ofT E <P (X, Y) is closed follows from codim (im T) < 00 

and Y is a Banach space {13}. 

We now discuss some important properties of Fredholm operators of index zero which 

are essential to our results and will recur frequently throughout this work. 

If L E <Po (X, Y), then using known results for such operators, cf. Deimling [13], X 

and Y may be expressed as direct sums; X = X OEBX1 , Y = YoEBll with continuous linear 

projections P : X -+ kerL = Xo and Q : Y -+ Yo. The restriction of L to dom L n Xl, 

denoted L1, is a bijection onto im L = II with continuous inverse Ll1 : Y1 -+ dom L n Xl 

which is also bijective. Since Xo and Yo have the same finite dimension, there exists a 
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continuous bijection J : Yo ---+ Xo. If we let H = L + J- 1 P then H : dom LeX ---+ Y is 

a linear bijection and H- 1 is bounded as we show in the following theorem. 

Theorem 1.4.4 The operator H : dom LeX ---+ Y where H = L + J-1 P is a linear 

bijection and H-1 is bounded. 

Proof. H is clearly linear as it is the sum of two linear operators Land J-1 P. We 

prove first that H is injective, i. e., one to one. Suppose H x = (L + J- 1 P) X = 0, then 

Lx + J-1 Px = 0 and we have Lx = -J-1 Px. Now, as Lx E im Land J-1 Px E Yo 

we must have Lx = 0 and J- 1 Px = 0 because they are direct sums. So x E ker Land 

J- 1x = 0 which gives x = 0 and hence H is injective. 

To prove H is surjective, the preceding discussion showed that H is injective and 

therefore ker H = {O}. Since H is Fredholm of index zero by (iii) above, dimker H = 

dim Y \ im H = O. Thus im H = Y and H is surjective. 

Finally, we prove the boundedness of H- 1
• We observe that H is closed since the 

graph of H is closed in X x Y and consequently, H-1 is closed as the graph of H-1 is 

closed in Y x X. Now as dom H-1 = Y, the Closed Graph Theorem [13] implies H-1 is 

continuous, i.e., bounded. Q.E.D. 

An admissible projection scheme fL can now be constructed for L E <Po (X, Y) such 

that L is A-proper with respect to fL as first shown by Petryshyn in [42]. Let Yn C Y be a 

sequence of finite dimensional subspaces and Qn : Y ---+ Yn a sequence of projections such 

that QnY ---+ Y as n ---+ 00 for each Y E Y. If we let Xn = H- 1 (Yn) then fL = {Xn, Yn, Qn} 

is an admissible scheme for maps L : dom LeX ---+ Y and L is A-proper relative to fL. 

We prove these assertions in the following two theorems. 

Theorem 1.4.5 (Petryshyn [42]) For L E <Po (X, Y), fL = {Xn' Yn, Qn} is an admissi­

ble scheme. 
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Proof We need only show that Xn and Yn have the same finite dimension and that 

dist (x, Xn) ---+ 0 for every x E X. Since H is a linear homeomorphism, H- 1 preserves 

subspace dimension so that dim Xn = dim H-1 (Yn) = dim Yn for each n E N. Now for 

each x E X, there exists Y E Y such that H-1 y = x and 

dist (x, Xn) dist(H- 1y, H-1(yn)) 

-1 inf IIH- 1y - H-1Ynll 
H Yn=xnEXn 

< inf IIH-1 1111y - Ynll 
YnEYn 

as n ---+ 00. Q.E.D. 

Theorem 1.4.6 {Petryshyn {42}}If L E <Po (X, Y)J then L is A-proper with respect to 

rL. 

Proof. Let {xn} C Xn be a bounded sequence such that QnLxn ----t y E Y. Then Xn = 

H- 1Yn for some Yn E Yn. L will be A-proper if we can find a subsequence Xnj ----t x such 

that Lx = y. Let H = L+C where C = J-1 P, then QnHxn = Qn (L + C) Xn = QnLxn+ 

QnCxn. As C is compact, there exists a subsequence {Xnj} such that QnCXnj ----t z E Y 

and QnLxnj + QnCXnj ----t y + z = hEY. So QnjHXnj ----t h, that is QnJYnj = Ynj ----t h, 

therefore, Xnj = H-1Ynj ----t H- 1h = x for some x E X. By the continuity of C, Cx = z 

so that H x = Lx + Cx = y + z and therefore Lx = y. Q.E.D. 

As many of the results of this thesis involve maps of the form L - AN, the next 

theorem by Petryshyn [42] gives conditions on N so that L - AN is A-proper. 

Theorem 1.4.7 Let L E <Po (X, Y)J n be an open bounded set in X with n n dom L =I=- 0J 

r L as constructed above an admissible projection scheme for L and let N : n ----t Y be a 

bounded continuous map. Then each of the following conditions implies T).. = L - AN : 
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D n dom L --+ Y is A -proper relative .to f L for each A E (0, 1]. 

(i) Either N or L -1 : im LeY --+ X is compact. 

(ii) N is k-ball contractive with k E [0, I (L)) where 

I(L) = sup{r E jR+: rj3(D) < j3(L(D)) for each boundedD C domL} 

and IIQnl! = 1. 

(iii) N (L + C)-I: H (D n dom L) --+ Y is ball condensing and IIQnl1 = 1. 

(iv) Y = X, D = domL = X, Xn = Yn, Qn C Qn+l, IIQnl1 = 1, fL = r, L = I and 

N c-dissipative for c E (0,1) (i.e. (N x - Ny,j (x - y)) < c Ilx - Yl12 for some c E (0,1) 

and any normalised duality mapping j : X --+ 2x*}. 

Proof. We provide a proof to (i) and (ii) as we shall refer to them later whilst proofs 

to the last two may be found in Petryshyn [42]. 

(i) If N is compact and as L is A-proper, Theorem 1.3.6 implies L - AN is A-proper 

with respect to rL = {Yn, Qn}. Now suppose Lll is compact and A E (0,1] is fixed. 

Let {xn} be a bounded sequence in Xn = H- l (Yn) such that Qn (L - AN) Xn = Yn --+ 

y E Y. Since QnHx = (L + J- l P) x for every x E Xn we have Yn = HXn - AQnNxn­

QnJ-l PXn --+ Y E Y. The compactness of J- l P and completeness of the projection 

scheme r L imply LXn - AQnN Xn Yn --+ y. Then applying (I - Q) to the equation 

gIves 

Hence 

and z E Xl ndomL. Since ALII (I - Q) and P are compact and the sequences {xn} and 

{QnN xn} are bounded we may assume PXn --+ Xo E ker L and ALII (I - Q) Qn N Xn --+ 

Xl E Xl. Thus 
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or 

By the continuity of N, NXn -+ Nx and by property of Qn, QnNx -+ Nx so QnNxn -+ 

Nx and 

in Y. Now since L is closed, x E dom L so x E n n dom L and Lx = y + AN x. Hence 

Lx - AN x = y and L - AN is A-proper. 

(ii) Assume N is k-ball contractive with k < l (L) and let {xn} be a bounded sequence 

in Xn = H-1 (Yn) such that QnLxn - AQnN Xn - Yn -+ Y E Y. As in (i), since QnH x = 

H x for every x E Xn and J-1 P is compact, we may assume that LXn - AQnN Xn -

fin -+ Y E Y. From the ball measure of noncompactness, {3, we obtain the inequalities 

{3 ({ Qn N xn}) < {3 ({ N xn}) < k{3 ({ xn}). Writing the preceding identity as QnLxn = 

Yn + AQnN Xn and noting the sequential compactness of Yn, these inequalities imply 

(3({QnLxn}) < Ak{3({xn}) < k{3({xn}). Since k < l(L), we have (3({xn}) = 0 which 

implies {xn} is relatively compact so we may assume Xn -+ x E n c X. Thus LXn = 

fin + AQnN Xn -+ Y + AN x in Y and since L is closed, x E dom L so x E n n dom L. Hence 

Lx - AN x = Y and L - AN is A-proper with respect to rL. Q.E.D. 

Remark 1.4.8 Similarly) if we have /1ok < l(L) for some /10 > 1 then L-AN is A-proper 

for 0 < A < /10, 

1.5 Topological degrees 

As the principal results of this thesis concern fixed point indices for A-proper maps which 

we define in terms of the topological degree, we shall mention those relevant concepts of 

the theory required in the sequel. We assume some knowledge of the classical Brouwer 

degree for continuous maps in finite dimensional spaces and the Leray-Schauder degree for 
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identity minus compact maps in infinite dimensional spaces. We shall use a modification 

of the degree theory in Banach spaces so that the degree is determined over closed convex 

sets and cones in particular. 

Comprehensive accounts of degree theory may be found in Cronin [10], Deimling [13] 

and Lloyd [32]. 

A generalised topological degree theory for A-proper maps was developed by Browder 

and Petryshyn [4]. This degree forms the basis of our definition of a fixed point index in 

Chapter 2 so we present the definition and pertinent properties here for future reference. 

The particular version of the degree we state is from Petryshyn [47] for densely defined 

A-proper maps. 

Definition 1.5.1 ( Petryshyn [47]) Let X, Y be Banach spaces, n c X open bounded 

such that n n dom T = G -=I- 0 and T : G c X --+ Y A -proper at y with respect to 

r = {Xn' Yn, Qn}. Write G = n n domT, 8G = 8n n domT and assume y ~ T (8G) 

and Gn = G n Xn -=I- 0, then the A-proper degree Deg(T, G, y) is defined to be the set 

where deg(·,·,·) is the finite dimensional Brouwer degree. That is, Deg (T, G, y) is the 

set of all limit points of {deg (Tn' Gn, QnY)} (including ±oo). 

Remark 1.5.2 The A-properness ofT and the assumption Y ~ T (8G) imply there exists 

no such that for all n > no, QnY ~ QnT (8Gn) so that deg (Qn T iGn , Gn, QnY) is defined 

for all n > no. Since QnT may not converge uniformly to T on G, the Deg (T, G, y) is in 

general multivaluedj for example Deg (-I, Bl (0),0) = {-I, I}. Consequently, the usual 

properties of classical degree theory must be modified in the multivalued context, but the 

utility of the theory remains. 
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Remark 1.5.3 It is well-known that the definition of degree can be extended to deal with 

unbounded sets n provided the set T- l (0) is bounded, for example f13}. For details of 

how this extension is carried out we refer to §2.4. 

The following properties of the A-proper degree are from Petryshyn [47]. 

Theorem 1.5.4 Assuming the notation and conditions of the preceding definition, then: 

P 1. If Deg (T, G, y) =I {O}, then there exists x E G such that Tx = y. 

P2. IfG C Gl UG2 , G = Gl UG2 with Gl and G2 open bounded sets such that Gl nG2 = 0 

and y 1. T(8Gl ) U T(8G2 ) then Deg(T,G,y) C Deg(T,Gl,y) + Deg(T,G2 ,y) with 

equality if either of the terms on the right is a singleton (defining 00+( -00) = ZU{±oo }). 

P3. If H : [0,1] X G -t Y is an A-proper homotopy such that H (t~ x) =I y for t E [0,1] 

and x E 8G, then Deg(H(O,x),G,y) = Deg(H(I,x),G,y). 

P 4. If G is symmetric about 0, ° E G and T : G -t Y is A-proper and odd and ° 1. T (8G) 

then Deg (T, G, 0) is odd, i.e., 2m 1. Deg (T, G, 0) for every m E Z. 

For a proof of these properties see Petryshyn [47]. We point out that, in general, P2 

is not an equality. To clarify this further, we provide a complete (new) proof of a rather 

more precise statement. We will show that equality holds if one of the degrees is a finite 

singleton or if one of the degrees is +00 (resp. -00) and the other does not contain -00 

(resp. +00). 

Proof of equality in P2. Suppose Deg (T, G l , y) is a finite singleton, {m} say. Then 

d~ := deg (Tn' G~, Yn) -t m so that there exists nl such that d~ = m for every n > nl' 

Then 

Deg (T, G, y) limit points of {d~ + d;} 

m + limit points of {d~} 

m + Deg (T, G2 , y) 
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so equality holds in this case. Note that this includes the possibility that 00 or -x are 

in Deg (T, G2 , y). 

Now suppose Deg (T, Gl, y) = {oo}. We claim equality holds provided {-oo} t/:. 

Deg (T, G2 , y). Observe that the only limit point of {d~} is 00, that is, d~ -+ 00 as 

n -+ 00. Now suppose that {-oo} t/:. Deg (T, G2 , y). Then {d;} is bounded below, that 

is, there exists M such that d; > - M for every n. We claim that d~ + d; -+ 00 so that 

Deg (T, G, y) = {oo}. Indeed, given MI > 0 there exists nl such that d~ > MI + M for 

every n > nl and therefore d~ + d; > MI for every n > nl. This proves that 

00 = Deg (T, G, y) = Deg (T, GI , y) + Deg (T, G2 , y) 

(since 00 + I = 00 for I -# -00). A similar argument, also resulting in equality, applies 

if Deg (T, G I , y) = {-oo} and {oo} t/:. Deg (T, G2 , y). 

If {-oo} E Deg (T, G2 , y) we cannot expect equality in general. Q.E.D. 

We conclude this section with a theorem by Petryshyn [42]. 

Theorem 1.5.5 Let L E <I> 0 (X, Y) and let n c X be an open bounded set with G = 

n n dom L -# 0, let F : X -+ Y be a bounded linear map such that L - F : dom L -+ Y 

is A-proper with respect to fL and ker (L - F) = {O}, then Deg (L - F, G, 0) = {O} if 

o t/:. G and Deg(L - F,G,O) C {±1} if 0 E G. 

Proof. Since ker (L - F) = {O}, L - F is injective (one to one) so that Lx - Fx -# 0 

for all x -# 0 and Deg (L - F, G, 0) is well defined for any open bounded set G C X with 

o t/:. aGo Now if 0 t/:. G, then PI from above and the assumption Deg (L - F, G, 0) -# {O} 

imply the existence of x E G such that Lx - Fx = 0 and x -# 0 which contradicts 

ker (L - F) = {O}. 

Suppose now 0 E G, then 0 E G for all n and by the injectivity of Qn (L - F) : 

Xn -+ Yn, it follows that deg (Qn (L - F) ,Xn n G, 0) = 1 or -1 for all n. Hence 

Deg (L - F, G, 0) c {±1}. Q.E.D. 
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Chapter 2 

A FIXED POINT INDEX 

DEFINED IN TERMS OF THE 

A-PROPER DEGREE 

2.1 Introduction 

In this chapter we define a fixed point index based upon the generalised topological degree 

of Browder and Petryshyn [4]. In our definition we use a retraction p : X ---+ K with 

the properties that IIx - pxll < 2 dist (x, I{) and p (Xn) C X n. The following corollary 

of Theorem IS.I, cf. Krasnosel'skii and Zabreiko [26], shows that a retraction satisfying 

the inequality always exists. 

Corollary 2.1.1 If I{ is a closed convex subset of a Banach space X then there is a 

continuous retraction p : X ---+ I{ with the property that Ilx - pxll < 2 dist (x, K). 

However, the condition p (Xn) C Xn is more restrictive and precludes the use of some 

retractions and projection schemes commonly employed in applications. An example of 

a retraction and projection scheme where this condition fails follows. 
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Let X = C [0, 1] and Xn C X be the finite dimensional subspace of all x E X which 

are linear in the n equidistant subintervals partitioning [0, 1]. If p : X ----+ K is a retraction 

onto I{ = {x EX: x (t) > O} defined by px = Ix (t)1 then p (Xn) ct X n. This is clear 

when one considers the action of p on a line segment that crosses the x-axis. The negative 

part is reflected above the x-axis creating another subinterval beginning at the reflection 

point. Thus, for such x, p maps to a higher dimensional subspace Xm where m > n. 

We shall use this retraction and projection scheme in an application to differential 

equations in Chapter 6 but using results proved by the less restrictive index developed 

in Chapter 3. To prove that a retraction and projection scheme does exist that satisfy 

our requirements and has applications, we provide the following example similar to one 

from De Figueiredo [12]. 

Let 5 be an open cube in }Rn, X = LP (5) and 5(k) = {51, ... , 5 2nk}, kEN, be a family 

of disjoint n-cubes covering 5 obtained by successively dividing each length of 5 by one 

half. E.g., for 5 = {x E }Rn : ai < Xi < bi, 1 < i < n} then 5(1) is the family of half open 

sub cubes of the form {x E }Rn: ai < Xi < (ai + bi) /2 or (ai + bi) /2 < Xi < bi, 1 < i < n}. 

Let X k C X be the finite dimensional subspace generated by the characteristic functions 

Xl, ... ,X2nk on the sets of 5(k) and define the projection Pk : X ----+ X k by 

We prove that the projection Pk has norm 1 as follows: 

By Holder's inequality we obtain 

IIPkxlltp < ~ I' (5,)I-P [Is, Ix (T )IP dT] I' (5,) ~ 
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2nk 

= L llx (T)IP dT. 
i=1 Si 

It follows that 

and hence IIPkl1 = 1. 

To prove Pkx -+ x in LP as k -+ 00, we shall first use following definition and theorem 

from Rudin [48], to prove pointwise almost everywhere convergence. 

Definition 2.1.2 Suppose t E lRn, then a sequence {Si} of Borel sets in lRn is said to 

shrink to t nicely if there is a number a > 0 with the following property: Each Si lies in 

an open ball Bri (t) with centre at t and radius at ri > 0 such that 

f-l (Si) > af-l (Bri (t)), i = 1,2, ... 

and ri -+ 0 as i -+ 00 where f-l is Lebesgue measure on lRn. 

Theorem 2.1.3 Suppose x E L1 (lR n). Define the Lebesgue set Lx of x to be the set of 

all to E lR n such that 

lim /) ( Ix (t) - x ( to) I dt = 0 
~-too f-l Si } Si 

for every sequence {Si} that shrinks to to nicely. Then almost all to E lRn belong to Lx. 

We now show that Pkx(t) -+ x(t) pointwise a.e. for each x E LP. We have 

2nk 

IPkx(t) -x(t)1 = 8 f1/Si) 1, x(T)dTXi -x(t) (2.1 ) 

and for a fixed to E S, (2.1) reduces to 

/S ) { (x (t) - x (to)) dt < ts ) ( I x (t) - x (to) I dt 
f-l t } Si f-l t } Si 

where to E Si. By Theorem 2.1.3, 
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noting that {Sj} is a sequence that shrinks nicely to to. 

Since J-l (Sj) -+ 0 as j -+ 00, we have for every k > ko (t), IPkx (to) - x (to)1 < t, and 

this holds for almost all to E S, that is, we have pointwise almost everywhere convergence. 

For a function x and r > 0 we define the truncation of x at level r by 

-r if x(t) < -r, 

x(r)(t) = x(t) if - r < x(t) < r, 

r if x(t) > r. 

Then x(r)(t) -+ x(t) pointwise and because Ix(r)(t)1 < Ix(t)l, by the dominated conver­

gence theorem Ilx(r) - xllLP -+ 0 as r -+ 00. 

By the above, for every fixed r > 0, Pkx(r)(t) -+ x(r)(t) for almost every t and since 

x(r) is bounded, by the dominated convergence theorem, II Pkx(r) - x(r) IILP -+ 0 as k -+ 00. 

For t > 0 first choose r = r(t) so that Ilx(r) - xllLP < t and then choose ko (depending on 

t and r( t) hence only on t) so that II Pkx(r) - x(r) IILP < t for all k > ko. Then for k > ko 

since IIPkl1 = 1. This proves that Pkx -+ x in LP(S) as k -+ 00. 

This projection scheme can be extended to LP (n), where n c IRn is any bounded 

measurable set by choosing an n-cube S containing n and defining x (t) = x (t) for tEn 
and x (t) = 0 elsewhere. 

Let K = {x EX: x (t) > 0 a.e.} and define p : X -+ K by px = x+ (t) = max {x (t) , O}. 

We show that p satisfies the conditions Ilx - pxll < dist (x, K) and p (Xk ) C X k • Now 

from the inequality Ix (t) - px (t)1 < Ix (t) - y (t)1 for every y E K, we obtain 

1 1 

IIx - pxllv = (Dx (t) - px (t)I P dty < (Is Ix (t) - y (t)IP dty 

for every y E K. Hence 
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Finally we show p (Xk) C Xk. Let 

then it is clear that PXk E X k as those terms of the summation which had negative 

average value then have average value 0, so that dimension is preserved by p. 

In our development of the fixed point index, we shall treat the simplest case first, 

viz. maps T : Y ~ Y with I - T A-proper. We then demonstrate that certain A-proper 

maps of the form L - N can be converted to the form I - T and construct a fixed point 

index for such maps. 

When L is an unbounded linear operator, H = L + J-1 P is no longer a homeomor­

phism and Hn may be unbounded in Y for open bounded sets n eX. To remedy 

this inconvenience we conclude the chapter by modifying the index so that the A-proper 

degree is determined over open bounded sets V in Hn such that (I - T)-l (0) C V. 

A fixed point index for P-compact maps was first defined by Wong [55], using his 

version of the generalised degree developed in that paper. As the difference, AI - T 

where T is P-compact is A-proper for each A > 0, we shall obtain and extend this result 

by letting n = Y, though without equality in the additivity over domains property of 

the index. 

An early investigation involving generalised degree theory on possibly unbounded sets 

was Browder and Nussbaum's paper [5]. They considered continuous maps T such that 

I - T is locally compact and obtained results for strictly contractive maps. Fitzpatrick 

and Petryshyn [16] defined an index for A-proper maps of the form I - T where T maps 

a closed convex set into itself. This index was later extended to include unbounded sets 

by Lafferriere in [28]. The derivation of this index is analogous to that of the generalised 

degree for A-proper maps but uses limits of the finite dimensional Brouwer index instead 

of the Brouwer degree. In this chapter, we make use of the already established generalised 

degree for A-proper maps in defining a fixed point index but shall return to the idea of 
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constructing an index in terms of limits of finite dimensional Brouwer degrees in Chapter 

3. 

2.2 Definition and properties of the index 

Let D c Ii be open bounded and K a cone in a Banach space X. Unless otherwise 

stated, all topological notions for subsets of Ii refer to the relative topology of K, so for 

example, aD means aKD the boundary of D relative to K. 

Assume I - T is A-proper at 0 relative to a projection scheme r, T : I{ -+ I{ and 

Tx #- x for x E an. Let p : X -+ K be a retraction such that Ilx - pxll < 2 dist (x, I{) 

and p (Xn) C X n. 

Remark 2.2.1 There is nothing special about the number 2, we could use any constant 

larger than 1 but 2 is a simple choice that seems to be always satisfied in the applications. 

Here and henceforward it will always be assumed, either explicitly or tacitly, that 

Qn (K) C K where Qn is the projection used in the projection scheme r or rL. 

Definition 2.2.2 We define indK (T, D) = Deg (I - Tp, p-l (D) ,0) where the right hand 

side is the degree for A-proper at 0 maps from Definition 1.5.1 and Remark 1.5.3. 

We shall show that the A-properness of I - T at 0 and the conditions Ilx - pxll < 

2 dist (x, K) , p (Xn) C Xn and T : Ii -+ K imply I - T p is A-proper at O. We then 

proceed to show that the index does not depend on the retraction chosen in the definition. 

Finally, we show that the index has the following properties of the classical Brouwer fixed 

point index which we prove in Theorem 2.2.7. 

Proposition 2.2.3 1. (Existence) IfindK(T,D) #- {O}, then T has a fixed point in D. 

2. (Normalisation) If Xo E D, then indK (xo, D) = {l} where Xo (x) = Xo for all xED. 
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3. (Additivity) If 0 = 0 1 U O2 , 0 1 and O2 open bounded with 0 1 n O2 = (/) and T,T =I- x 

for x E a0 1 U a02 , then indK (T, 0) C indK (T, Od + indK (T, O2 ). 

4. (Homotopy) If H(t, x) : [0,1] x 0 --+ K is such that I -H(t, x) is an A-proper homotopy 

at ° and H(t, x) -1= x for x E a~, t E [0,1]' then indK (H (0, x), 0) = indK (H (1, x), n). 

We prove first that if I - T is A-proper at a point y E K relative to a projection 

scheme r and the previous assumptions hold, then I - T p is also A-proper at y relative 

to r. 

Theorem 2.2.4 Let I{ be a cone in X, let p : X --+ I{ be a retraction such that 

IIx - pxll < 2dist (x,K) and p(Xn) C X n. Suppose T : K --+ K is such that 1- T 

is A-proper at a point y E I{. Then I - Tp is A-proper at y. 

Proof. Let {xn E Xn} be a bounded sequence in X such that (I - QnTp) Xn = Yn --+ 

y E K. Then 

Since Xn - QnTpxn --+ Y E K and QnTpxn E K, we have 

Hence Ilxn - PXnl1 < 2tn --+ 0. Then 

By the A-properness of I - T applied to pXn, there exists pXnj --+ Xo E K such that 

(I - T)xo = y and since Ilxn - PXnl1 --+ 0, there exists xnj --+ Xo. Therefore 1- Tp is 

A-proper at y. Q.E.D. 

The next theorem shows that the index is independent of the retraction chosen in the 

definition provided it satisfies Ilx - pxll < 2 dist (x, K) and p (Xn) C X n. We point out 
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that the proof requires convexity for the domain of T, consequently, in this chapter we 

define T on all of K. This limitation will be removed in defining the fixed point indices 

of Chapters 3 and 4. 

Theorem 2.2.5 Suppose 0 C I{ is open and bounded and p and T are retractions of X 

onto K satisfying the conditions above. If T : K ---+ K is a map such that I - T is A­

proper at 0, then Deg (I - Tp, p-1 (0),0) = Deg (I - TT, T- 1 (0),0), i.e., the generalised 

degree and hence the index is independent of the retraction chosen. 

Proof Let 0 C K be open, bounded and let p and T be retractions of X onto 

K. Note that the fixed points of Tpx on p-1 (0) and TTX on T- 1 (0) are contained in 

G = p-1 (0) n T- 1 (0). By the additivity of the degree, it suffices to prove 

Deg (I - Tp, G, 0) = Deg (I - TT, G, 0). 

Define H(t, x) = x - T (tpx + (1 - t) TX) for x E G and t E [0,1]. Then H(t, x) is A­

proper relative to r, which we will prove in the following lemma. Assuming this for the 

moment, we continue the proof. 

Now let x E G and assume H(t, x) = ° for some t E [0,1], then T (tpx + (1 - t) TX) = 

x. Since px and TX are in K and T : I{ ---+ K, we have x E I{. This implies that px = x 

and TX = x so that T (tpx + (1 - t) TX) reduces to T (tx + (1 - t) x) = Tx = x. Since 

Tx =1= x for x E ao we have x E 0 and noting that p-1x = x and T- 1
X = x we see that 

x E G. By the invariance under homotopy property of the degree, we have 

Deg (I - Tp, G, 0) = Deg (I - TT, G, 0). Q.E.D. 

It remains to prove the A-properness of H (t, x). 

Lemma 2.2.6 Assume the conditions of the theorem hold, then H(t, x) : [0,1] x K ---+ K 

where H(t, x) = x - T (tpx + (1 - t) TX) is A-proper at y E K. 
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Proof Let {xn} be a bounded sequence in X, tn C [0,1]' such that 

Write Wn = tnpxn + (1 - tn) TX n. Since p and T map X to I{ and K is convex, we see 

that Wn E I{. As T : I{ --+ I{, and Qn(K) C K, QnTwn + y E K. Now 

so dist (xn, K) < En and we have 

IIXn - [tnpxn + (1 - tn) Txn]11 

< tn Ilxn - PXn\l + (1 - tn) \lxn - TXn\l 

Then 

By the A-properness of I - T applied to W n , there exists wn · --+ W E K such that 
] 

(I - T) W = y, and since \lxn - wn\l --+ 0, there exists xn] --+ W which proves H(t, x) is 

A-proper at y. Q.E.D. 

\Ve now formally present the properties of the fixed point index in the following 

theorem along with their proofs. 

Theorem 2.2.7 Let 0 c K be open bounded and T : I{ --+ K be a map such that I - T 

is A-proper at 0 and assume Tx i x on a~. Then the fixed point index of Definition 

2.2.2 has the following properties. 

Pl. (Existence) If indK (T, 0) i {O}) then T has a fixed point in O. 

P2. (Normalisation) Ifxo E 0) then indK(xo,O) = {I} where xo(x) = Xo for X E o. 

P3. (Additivity) If 0 = 0 1 U O2 ) 0 1 and O2 are open bounded) 0 1 n O2 = 0 and Tx i x 
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for x E an1 U an2 , then indK (T1 n) C indK (T, n1) + indK (T, n2 ) with equality if either 

of the indices on the right is a singleton. 

P4· (Homotopy) If H(t,x) : [0,1] x n --+ I{ is such that 1- H(t,x) is an A-proper 

homotopy at 0 and H(t,x) =1= x for x E an, t E [0,1]' then indK(H(O,x),n) = 

indK (H (1, x), n). 

Proof. PI. By definition, indK (T,n) =1= {O} implies Deg(I - Tp,p-l (n) 10) =1= {O}. 

Then if the degree is non-zero, there exists x E p-l (n) such that Tpx = x with px E n. 

Since p : X --+ I{ and T : K --+ K we have px = x. By hypothesis, Tx =1= x on an, 
consequently, Tx = x for x E n. 

P2. Since QnXO E nnXn for every n > no, the Brouwer degree deg (I, n n X n, QnXO) = 

1. The equation IXn = QnXO however is equivalent to IXn -Qnxo = 0 or (I - QnXO) (x) = 

o where Xo is the constant mapping Xo (x) = xo. Hence 

for every n > no which implies Deg (I - xo, n, 0) = {I}. Now as Xo Ene I{ and p is 

the identity on I{, we have 

Deg(I - xo,n,O) = Deg (I - XOp,p-l (n) ,0) = {I}. 

P3. It suffices to show 

Deg (I - Tp,p-l (n) ,0) c Deg (I - Tp,p-l (nd ,0) + Deg (I - Tp,p-l (n2 ) ,0). 

This follows immediately from the additivity over domains property of the A-proper 

degree. Also, equality is obtained if either of the degrees, and consequently the indices, 

on the right is a singleton. 

P4. By definition of the index, it suffices to prove that 

Deg (I - H(O, px), p-l (n) ,0) = Deg (I - H(l, px), p-l (n) ,0) . 
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We show that if H(t,px) = x for some x E p-1 (n), t E [0,1], then H(t,x) = x and 

x ~ op-l(n). So assume H(t,px) = x for some x E p-l (n), t E [0,1]. Since p: X ~ I{ 

we have px E n and since H : K ~ I{, x E K. Now p is the identity on K so px = x 

and H(t,px) = H(t,x) = x. But by assumption, H(t,x) -=I x for x E an, thus x E n, 
so px = x E n and x E p-1 (n). It follows from the homotopy property of the A-proper 

degree that the two degrees are equal. To prove that I - H( t, px) is A-proper at a point 

y E K; let {xn} be a bounded sequence in X and {tn} a sequence in [0,1] such that 

Xn - QnH(tn' pXn) = Yn ~ Y E I{. Then 

We know that IIxn - pxnll < 2dist (xn,K) < 2t:n and 

By the A-properness of I - H(t, x), there exist subsequences PXnj ~ x E K and tnj ~ 

t E [0,1] with x - H( t, x) = y. Since Ilxn - pXn II < 2t:n there exists a subsequence Xnj of 

Xn with Xnj ~ x. Therefore, I - H( t, px) is A-proper at y. Q.E.D. 

2.3 The index extended to maps of the form L-N 

We now consider A-proper maps of the form L - N where L : dom LeX ~ Y is 

Fredholm of index zero and N is continuous and nonlinear. We are interested in solutions 

to the equation Lx - N x = w that lie in a cone K in X. Using the operators and subspaces 

of X and Y constructed previously for Fredholm operators of index zero, we rewrite the 

equation Lx - N x = w as follows. 

Lx + J- 1 Px - (N + J- 1 p) X w 

Hx - (N + J-1 p) X W 
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Y - (N + J-Ip) H-Iy w 

([ - T) y w 

We will utilize the operator T : Y ---+ Y, Ty = (N + J-I P) H-I y and the corre­

sponding cone KI = H (K n dom L) in Y. Let PI : Y ---+ [{I be a retraction such that 

Ily - Plyll < 2 dist (y, [{I) and PI (Yn) C Yn. 

We verify first that [{I is indeed a cone in Y. To this end, let YI and Y2 be elements 

of Kl and a, j3 E JR+. We show that aYI + j3Y2 E KI and that KI is closed in Y. Since 

YI E [{I there exists Xl E K with H Xl = YI and similarly there exists X2 E K with 

H X2 = Y2· Then aYI + j3Y2 = aH Xl + j3H X2 = H (aXI + j3X2)' Now since K is a cone, 

aXI + j3X2 E K and hence aYI + j3Y2 E K I . Finally, we prove KI is closed in the following 

proposition. 

Proposition 2.3.1 [{I = H (K n dom L) is closed in Y. 

Proof· Suppose Yn ---+ Y E Y where {Yn} C H ([{ n dom L) = [{I. Now Yn = H Xn 

for Xn E K n dom L so that H Xn ---+ Y and since H maps onto Y, Y = H X for some 

X E domL. Then H-I(H$n) ---+ H-Iy and hence Xn ---+ X E domL. Since Xn E [{ and 

K is closed, X E [{. Thus X E [{ n dom L and we have H X = Y E H (K n dom L) = KI 

which proves KI is closed. Q.E.D. 

Next we show that the A-properness of L - N at a point w E Y relative to r L implies 

[ - T is A-proper at w relative to r. It will then follow that [ - T PI is A-proper at w 

provided certain operators map cones to cones. 

Lemma 2.3.2 Let Land N be as mentioned and assume L - N is A-proper at w E Y 

relative to r L. Then [ - T is A -proper at w relative to r. 

Proof. Let {Yn} E Yn be a bounded sequence in Y such that 
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and QnHxn = HXn so 

that is 

By the A-properness of L - N, there exists a subsequence xnj -t x with Lx - N x = w. 

Now Xnj -t x implies NXnj -t Nx and QnNxnJ -t Nx because IIQnll < M and QnY --+ y. 

Then 

HX nj -t w + Nx + J- 1 px 

and hence Ynj -t Y with Y - Ty = w which proves 1 - T is A-proper at w. Q.E.D. 

Before proving 1 - T P1 is A-proper at w relative to r, we introduce a lemma and a 

proposition which we shall require. 

Lemma 2.3.3 Nx + J- 1 Px = Hx where x = (P + JQN) x + Ll1 (1 - Q) Nx = Xo + Xl 

and x is uniquely determined. 

Proof. Suppose 

for x, x E X, x = Xo + Xl where Xo E ker L and Xl E Xl. Then 

Px+JQNx=xo=PX 

and 

Ll1 (1 - Q)Nx = Xl = (1 - P)x. 
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Now 

and 

so 

or 

Lx L (Xl + xo) = L1 X1 

LILlI (I - Q) Nx = (I - Q) Nx 

J- 1 Px = J-1 (Px + JQNx) = J-1 Px + QNx 

Lx + J- 1px (I - Q) Nx + J- 1px + QNx 

Nx + J- 1px 

Hx = (N + J-1 p) x. 

Now x is uniquely determined since H is injective. Q.E.D. 

Proposition 2.3.4 The following three assertions are equivalent. 

(i) P + JQN + L11 (I - Q) N maps K n domL to K n domL. 

(ii) N + J- 1 P maps K n dom L into 1{1. 

(iii) T maps K1 to K1. 

Proof. We have T = (N + J- 1 P) H-1 maps K1 to 1{1 iff N + J- 1 P maps K n dom L 

into 1{1 (so (ii) {:} (iii)). By the preceding lemma, N + J-1 P maps I{ n dom L to K1 

iff Hx E K1 for every x E I{ n domL where x = (p + JQN + L11 (I - Q) N) x so that 

Hx E K1 iff P + JQN + L11 (I - Q) N maps K n domL to K n domL (hence (ii) {:} 

(i)). Q.E.D. 

Lemma 2.3.5 1 - TP1 is A-proper at w E K1 relative to r if P + JQN + L11 (I - Q) N 

maps K to I{ and P1 (Yn ) c Yn . 
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Proof. This is an immediate consequence of Lemma 2.3.2 and Theorem 2.2.4. Q.E.D. 

We can now extend the definition of the index to A-proper maps of the form L - A 

acting on cones. We begin by assuming L to be bounded. The consequence of this is 

that H becomes a homeomorphism and a very simple correspondence between f! in X 

and U = Hf! in Y results, most importantly, H maps open bounded sets in X to open 

bounded sets in Y. The case where L is unbounded requires some modification as the 

A-proper degree is not defined on unbounded sets. We will consider this case later in 

Section 2.4. 

Definition 2.3.6 Let K be a cone in a Banach space X and f! c I{ an open (relative to 

K) bounded set such that f! #- 0. Let L : dom L = X -1- Y be a bounded Fredholm operator 

of index zero and N : f! -1- Y be continuous and nonlinear such that L - N is A-proper at 

o relative to fL. Assume Lx #- Nx for x E OKf!, P + JQN + LII (I - Q) N maps K to 

K and write U = Hf!. We define indK ([L, lV], f!) = Deg (I - TPl, PI I (U), 0) where the 

degree is that for A-proper mappings defined by Browder and Petryshyn !4J, PI : Y -1- Kl 

is a retraction satisfying Ily - Plyll < 2dist (y, I{d and PI (Yn ) c Yn . 

Before giving the properties of this index we show that the condition Lx #- N x on 

OKf2 implies (I - Tpl) y#-O on oPI l (U) so that the index is well defined. With this 

objective, assume Lx #- Nx for x E OKf! and let y E oPI l (U). Then if y = TplY we 

have y E I{l since PI : Y -1- I{l and T : Kl -1- I{l so that PlY = Y and Ty = y on au. 
By construction, this is equivalent to Lx = N x on OKf!, a contradiction. 

Theorem 2.3.7 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. If indK ([L, N] ,f2) #- {OL then Lx = N x has a solution in f!. 

P2. If Xo E f!, then indK ([L, -J-l P + yo], f!) = {1} where Yo = Hxo and Yo (x) = Yo 

for every x E f2. 
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P3. Ifn = 0.1 un2 ) 0.1 and 0.2 are open and bounded in I{ with 0.1 nn2 = 0 and Lr =f. .\'.1' 

on anI U an2 then indK ([L, N] ,0.) C indK ([L, N] ,nI) + indK ([L, N] ,0.2) with equality 

if either of the indices on the right is a singleton. 

P4· If L - N (-\, x) is A-proper for -\ E [0,1], (N (-\, x) + J-l P) H- 1 : I{l ---+ [{I and 

° ~ (L - N (\ x)) (dom L n an) then indK ([L, N (\ x)]' 0.) is independent of -\ E [0,1]. 

Proof. PI. By definition, indK ([L,N],n) =f. {o} implies Deg (I - Tpl,Pl l (U) ,0) =f. 

{O}. Then there exists Y E PI I (U) such that TplY = y. Since PI : Y ---+ I{l and 

T : [{I ---+ [{I we have Y E Kl and so PlY = Y so Ty = Y for some Y E U and there exists 

x = H-ly E H-1U = 0. satisfying Lx = Nx. 

P2. We have 

as in the proof to P2 of Theorem 2.2.7. 

P3. It suffices to show 

where Ul = Hn l and U2 = Hn 2 . Since Hn = Hn l U Hn 2 and Hn l n Hn 2 = 0, the 

additivity over domains property of the A-proper degree implies the desired result. The 

proof of equality is analogous to the proof of P3, Theorem 2.2.7. 

P4. We first note that the A-properness of L - N (\ x) implies I - T). is A-proper 

where T). = (N (\ x) + J- l P) H- l
. This follows from Lemmas 2.3.2 and 2.3.5. We 

show that if T)'PlY = Y for some Y E PI I (U), -\ E [0,1] then T).y = y and y ~ au. 
Consequently, by the invariance under homotopy property of the A-proper degree we'll 

have 

Deg (I - TOPl,Pl l (U) ,0) = Deg (I - TlPl,Pl l (U) ,0). 

So assume T)'PlY = Y for some Y E PI I (U) and -\ E [0,1]. Since PI : Y ---+ K1, PlY E 

U C I{l so PlY = Y and as T). : I{l ---+ I{l, Y E I{l. Whence T)'PlY = T).y = Y or 
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Hx = N(A.,x) + J-lpx which implies Lx = N(\x). By hypothesis, Lx #- /V(A..x) 

on an so that T>-y #- yon au. Hence indK ([L,N(A.,x)] ,0.) is invariant for A. E [0,1]. 

Q.E.D. 

2.4 The index defined on unbounded sets 

We now consider the case where L is unbounded and N is bounded. Since H is no longer 

a homeomorphism, Hn = U may be unbounded for open bounded sets D. To remedy this 

inconvenience, we modify the index so that the A-proper degree is determined over open 

bounded sets V in U such that (I - T)-l (0) C V. That such V exist is a consequence 

of the boundedness of N as we demonstrate in the following proposition. 

Proposition 2.4.1 If Lx = .Nx for x E DJ 0. c K open and bounded such that D n 

domL #- 0 and N boundedJ then (I - T)-l (0) is bounded in Y. 

Proof. Vve observe that y = Ty, y E U gives IIHxl1 = II(N + J-lP) xii < IINxl1 + 
IIJ- l Pxll < M where x = H-ly E D. Q.E.D. 

Definition 2.4.2 Let K be a cone in a Banach space X and D C K be an open (relative 

to K) bounded set such that 0. n dom L #- 0. Let L : dom LeX ---t Y be an unbounded 

Fredholm operator of index zero and N : D n dom L ---t Y a bounded continuous nonlinear 

operator such that L - N is A-proper at 0 and Lx #- N x on 8K D n dom L. Assume P + 
JQN + L"1l (I - Q) N maps K to K. Then we define indK ([L, N], D) = indK1 (T, V) = 

Deg(I -Tpl,Pll (V),O) where V C H(domLnn) is any bounded set open relative to 

Kl = H (dom L n K) with (I - T)-l (0) C V and PI : Y ---t Kl is a retraction satisfying 

Ily - Plyll < 2 dist (y, K l ) and PI (Yn ) c Yn . 

In the following theorem we show that the index is well defined and that it is inde­

pendent of the choice of V. 
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Theorem 2.4.3 The index in the preceding definition is well defined and is independent 

of the choice of V, where V is any open bounded set such that (1 - Tr l (0) c V. 

Proof. Let Y E apI I (V) where (1 - T)-l (0) C V and assume TpIY = y. Then 

Y E KI since PI : Y ~ KI and T : KI ~ 1{1. Now for Y E K I , PlY = Y so TpIY = Ty = Y 

and since PI is the identity on 1{1, pIly = Y so Y E avo But this gives Ty = y on aF 

which is a contradiction. Hence the degree and consequently the index is well defined. 

Now we prove the index is independent of the choice of V. Suppose (1 - T)-l (0) C VI 

and (1 - T)-l (0) C V2 where VI and 112 are open bounded sets in U = Hn. Then 

(1 - T)-l (0) C VI n V2 = Wand W is an open bounded set in U. By the additivity and 

excision properties of the A-proper degree, 

Deg (I - T PI, PI 1 (Vi) ,0) 

Deg (I - TpI,PI I (W) ,0) + Deg (1 - TPI,PI 1 (VI \ W) ,0) 

Deg (1 - TpI,Pl l (W) ,0). 

Note that equality holds as Deg (1 - TPI, PI 1 (VI \ W), 0) = {O} is a singleton. 

Similarly, 

Deg (1 - TPI,PI 1 (112) ,0) 

Deg (1 - TpI,PI I (W) ,0) + Deg (1 - TPI1PI I (V2 \ W) ,0) 

Deg (1 - TPI,PI 1 (W) ,0). 

Thus indKl (T, Vi) = indKl (T,V2) which proves the index is independent of the choice of 

V. Q.E.D. 

The usual properties of the classical fixed point index remain valid for this index 

defined on unbounded sets and are provided in the next theorem. 

Theorem 2.4.4 Assume the conditions and notation of Definition 2·4·2. Then the in­

dex thus defined has the following properties. 
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Pl. If indI{ ([L, N],!1) = indK1 (T, V) #- {O}, then there exists x E 0 :J H-1 (V) such 

that Lx = Nx. 

P2. If Xo E !1, then indK ([L, -J-1 P + Yo],!1) = indK1 (Yo, V) = {I} where Yo = H Xo 

and yo (x) = Yo for every x E !1. 

P3. If!11 C !1 and !12 C !1 with !11 n!12 = 0 and Lx #- N x for x E 0 \ (01 U O2) 

then indK ([L, N] ,!1) C indK ([L, N] ,!1d + indK ([L, N] ,!12) with equality if either of the 

indices on the right is a singleton. 

P4- If L-N (\ x) is an A-proper homotopy on!1 for A E [0,1] and (N (\ x) + J-1 P) H- 1 : 

I{l --+ K 1 , V C H!1 open bounded with (I - TA)-l (0) C V, then indK ([L, N (A, x)], 0) = 

indK1 (TA' V) is independent of A E [0,1]. 

Proof. PI. From the definition, indK1 (T, V) #- {O} implies Deg (I - T PI, Pi1 (V) ,0) #­

{O}. Then if the degree is non-zero there exists y E Pi1 (V) such that T PI y = y. Since 

PI : Y --+ 1{1 and T : 1{1 --+ I{l we have PlY = Y so Ty = y for some y E V. By the 

construction of 1 - T, this is equivalent to Lx = N x for x = H-1y E H-1 V C o. 

P2. We have 

indK1 (Yo, V) = Deg (I - YOPl, Pi1 (V) ,0) = {I} 

as in the proof to P2 of Theorem 2.2.7. 

P3. We observe that Lx #- N x for x E !1\(!11 U !12) implies Ty #- y for y E U\(U1 UU2 ) 

where U1 = H!11 and U2 = H!1 2 . By definition, indK ([L, N],!1) = indK1 (T, V) where 

(I - T)-l (0) eVe Y. We consider the subsets VI = V n U1 and V2 = V n U2 , then Vl 

and 112 are open bounded and disjoint. So 

indK1 (T, V) Deg (I - TP1, Pi1 (V) ,0) 

C Deg (I - TPl,Pi l (Vd ,0) + Deg (I - Tpl,Pi l (112) ,0) 

+ Deg (I - TPl, Pi1 (V \ (Vi U 112)),0) 
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where the last degree is ° since V \ (VI U V2 ) c U \ (UI U U2 ) and (I - T)-I (0) i. 
U \ (U1 U U2 ). Hence 

The proof of equality is analogous to the proof of P3, Theorem 2.2.7. 

P4. We note first that if L - N (,\, x) is A-proper then the A-properness of I -

T)"PI follows frorn Lemmas 2.3.2 and 2.3.5 with N (,\, x) replacing N (x) and T),. = 

(N (,\, x) + J- 1 P) H- 1
. We show that if T)"PIY = Y for some Y E PI I (V), ,\ E [0,1]' 

then T),.y = y for y E V and y ~ BpI I (V). Then by the invariance under homotopy 

property of the A-proper degree we'll have 

So assume T)"PIY = Y for some Y E PI I (V), ,\ E [0,1]. By the continuity of PI, PlY E 

V C K 1 . Now T),. : I{l ---+ I{l so TpIY E I{l and PlY = Y and y E V. Since T).y =I- y on 

BV we have y E V and y ~ BpI I (V). Q.E.D. 
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Chapter 3 

A FIXED· POINT INDEX 

DEFINED IN TERMS OF LIMITS 

OF THE FINITE DIMENSIONAL 

BROUWER INDEX 

3.1 Introduction 

In the previous chapter, the definition of the index required the retraction Pl : Y -t Kl 

to map Yn to Yn and that T be defined on all of K l . In this chapter we define an 

index without these restrictions obtaining a result of greater generality in applications 

but with some cost in simplicity of definition. However, the definition in this chapter 

fits into the A-proper methodology of obtaining results by means of finite dimensional 

approximations. We first define a finite dimensional index for continuous maps similar 

to that of Amann [2], and then, using A-proper theory, extend the definition to A-proper 

maps in infinite dimensional spaces. Once we establish the index for operators T acting 
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on the same space X, we consider operators of the form L - N from the space X to } -. 

As we mentioned in the introduction to Chapter 2, Fitzpatrick and Petryshyn in [16] 

defined a fixed point index for A-proper maps based on limits of the corresponding finite 

dimensional Brouwer index. We shall use a similar method but with some differences in 

the Brouwer degree and index we use. We conclude this chapter by modifying the index 

to include unbounded sets in Y. This was done by Lafferriere [28] to Fitzpatrick and 

Petryshyn's index where T : X --+ X. 

3.2 Definition and properties of the finite dimen­

sional index 

Let K C X be a closed convex set (for example, a cone) in a finite dimensional Banach 

space X and D C X be open and bounded with D n I{ = DK -# 0. Let T : DK --+ K be 

continuous such that Tx -# x on 8K D, the boundary of D relative to K. Let p : X --+ K 

be an arbitrary retraction. 

Definition 3.2.1 We define 

iK (T, D) = deg (I - Tp, p-l (D), 0) 

where the degree is the Brouwer degree for continuous maps. 

Remark 3.2.2 This is essentially a special case of results in Amann {2} but we sketch 

the simpler case here for completeness. 

The following lemma and proposition show that the index is well defined. 
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Proof. p-1nK is open in X because p is continuous. Then 

p-l (nK ) \p-l (nK ) in X 

C p-l (nK ) \ p-l (nK ) by continuity of p 

p-l (nK \ nK ) by property of inverse image 

p-l (aKn) . Q.E.D. 

Proposition 3.2.4 If Tx =1= x for all x E aKn then T px #- x for all x E a (p-l nK)' 

Proof. (By contrapositive argument) We have T px = x for x E a (p-1n K) C 

p-l (aKn) implies px E OKn and Tpx E I{ so that x E K and px x. Therefore 

x E aKn and Tx = x. Q.E.D. 

We prove that the index defined above is independent of the retraction p. 

Theorem 3.2.5 The index of Definition 3.2.1 does not depend on the retraction chosen 

from X to K. 

Proof. Let p and r be retractions of X to K and assume T : nK ---t [{. We note 

that the fixed points of Tp and Tr are contained in D = p-1nK n r-1nK. We define 

the homotopy H ('\, x) : nK ---t [{ by H (\ x) = (1 - ,\) Tpx + >.Trx and show that 

H (\ x) #- x on aKD. If not, then (1 - >.) Tpx + >.Trx = x for some x E aD and since 

px E nK and rx E nK and T : nK ---t I{, by convexity of K, (1 - >.) Tpx + >.Trx E K so 

x E K and hence p(x) = x and r(x) = x. Thus H (>., x) = x on aKD reduces to Tx = x 

on aKn which is excluded by hypothesis. Then by the homotopy invariance property of 

the Brouwer degree we have 

deg (I - Tp, D, 0) = deg (I - Tr, D, 0). 

Hence the index is independent of the retraction chosen. Q.E.D. 

We accordingly frame the properties of this index in the next theorem. 
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Theorem 3.2.6 Let T : OK ---+ K be continuous and such that Tx -=1= x on OKO, thtn 

the index defined above has the following plopelties. 

Pl. IfiK(T,O) -=1= 0, then T has a fixed point in OK. 

P2. If Xo E OK, then iK (xo, 0) = 1 whele Xo (x) = Xo fOI evelY x E OK. 

P3. If 0 1, O2 ale lelatively open disjoint subsets of OK such that Tx -=1= x JOI X E 

OK \ (01 U O2 ), then 

P 4. IJ H ().., x) : [0,1] x OK ---+ K is a continuous homotopy such that H ().., x) -=1= x on 

OKO JOI).. E [0,1], then iK (H ().., x), 0) is independent oJ).. E [0,1]. 

Ploof. PI. If iK (T, 0) -=1= 0, then by definition the Brouwer degree 

deg (I - Tp, p-l (OK), 0) -=1= ° which implies the existence of x E p-l (OK) such that 

Tpx = x with px E f1K. Since p : X ---+ I{ and T : OK ---+ K we have px = x. By 

hypothesis, Tx -=1= x on OKO, consequently, Tx = x for x E OK. 

P2. For Xo E OK we have deg (I, OK, xo) = 1 by property of the Brouwer degree. The 

equation Xo = x is equivalent to Xo - x = ° or (I - xo) x = 0. Thus 

deg (I, OK, xo) = deg (I - xo, OK, 0). 

Now as Xo E OK and p is the identity on K, we obtain 

P3. If Tx -=1= x for x E OK \ (01 U O2 ) then Tx -=1= x on 001 U 002 and by Proposition 

3.2.4, T px -=1= x on Op-1 (f11) U Op-1 (02). We note that since 0 1 n O2 = 0, p-1 (Od n 

p-1 (02 ) = 0 so that the additivity property of the Brouwer degree gives 

deg (I - Tp,p-1 (OK) ,0) = deg (I - Tp,p-1 (Od ,0) + deg (I - Tp,p-1 (02 ) ,0). 
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The result then follows from the definition of the index. 

P4. Suppose H (\px) = x for some x E p-l (OK) and A E [0,1]. Since p : ); ---+ I{ 

we have px E nK and since H : OK ---+ K, x E K. Now p is the identity on K so px = x 

and H (A, px) = H (A, x) = x. By assumption, H (\ x) -1= x on OKO so x E OK. Hence, 

by the homotopy property of the Brouwer degree 

deg (I - H (O,px) ,p-l (OK) ,0) = deg (I - H (l,px) ,p-l (OK) ,0) 

from which the result follows. Q.E.D. 

3.3 The index defined for infinite dimensional spaces 

Let K be a cone in an infinite dimensional Banach space X with projection scheme r 

such that Qn (I{) C K for every n E N. Let p : X ---+ I{ be an arbitrary retraction and 

o c X an open bounded set such that OK = 0 n I{ -1= 0. Let T : OK ---+ K be such 

that I - T is A-proper at 0. Write I{n = I{ n Xn = QnK and OKn = OK n X n. Then 

QnP : Xn ---+ Kn is a finite dimensional retraction. 

Definition 3.3.1 If Tx -1= x on OKO then we define 

where the finite dimensional index is that defined in the previous section. 

The following lemma indicates that the index is well defined. 

Lemma 3.3.2 Let T : nK ---+ K be such that I - T is A-proper at 0 and that Tx -1= x 

on OKO. Then there exists no E N such that for every n > no, QnTx -1= x for x E OKn On 

and QnT(QnP)x -1= x on O(Qnp)-l (nKn )· 

41 



Proof· If the assertion is false, then there exists a sequence {xn} C OKno'n such that 

Xn - QnTxn = 0. Since I - T is A-proper at 0, there is a subsequence x --+ x with 
n} 

Tx = x. Now for each n, OKno'n C OKo' which is closed so we have x E OKo' and we 

obtain a contradiction to our hypothesis. Then, by Proposition 3.2.4, QnTx i- x on 

OKno'n for every n > no implies QnT(QnP)x i- x on 0 (Qnp)-l (o'Kn)' Q.E.D. 

Remark 3.3.3 That the index thus defined is independent of the retraction chosen fol­

lows from the finite dimensional result. 

The usual properties of this index are stated in the next theorem. 

Theorem 3.3.4 Let T : OK --+ K be such that I - T is A-proper at 0 and that Tx i- x 

for x E OKO. Then the index defined above has the following properties. 

Pl. IfindK (T, 0,) i- {O}, then T has a fixed point in o,K. 

P2. If Xo E OK, then indK (xo, 0,) = {I} where Xo (x) = Xo for every x E o,K. 

P3. If 0 1 and O2 are disjoint relatively open subsets of o'K such that Tx =I x for x E 

o'K \ (0,1 U O2), then 

with equality if either of the two indices on the right is a singleton. 

P4. If H (.\, x) : [0,1] x OK --+ K is such that I - H (\ x) is an A-proper at 0 homotopy 

and H (.\, x) i- x on OKO, .\ E [0,1], then indK (H (\ x), 0,) is independent of.\ E [0,1]. 

Proof. PI. If indK (T, 0,) i- {O} then there exists a subsequence {nj} C N with 

nj --+ 00 such that the sequence of finite dimensional indices {iKn (QnT , o'n)} has non-zero 

terms. Consequently, there exist Xnj E (QnjP) -1 (o,Knj ) such that QnjTQnjpxnj = xnj · 

Since QnjP : X --+ K and QnjT : o'K --+ K we have QnjPXnj = Xnj so that QnjTxn} = Xnj 

and Xn E Qn K . By the A-properness of I -T, there exists a subsequence xnJk --+ x E o'K 
J J 

such that Tx = x. 
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P2. Since QnXO E DKn for every n E N, iKn (QnXo, Dn) = 1 for every n E N and hence 

indK (xo, D) = {I}. 

P3. If Tx i= x for x E DK \ (Dl U D2 ) then Tx i= x on oKD1 U oKD2. The A­

properness of I - T implies that there exists no such that for every n > no, QnTxn #- Xn 

on oKnDlnUOKnD2n· By Proposition 3.2.4, we have QnTQnpxn #- Xn on o(Qnp)-l (Dln)U 

O(Qnp)-I(D2n) where Din = Di n X n, i = 1,2. We note also that for every n E N, 

DIn n D2n = 0 so that p-l (DIn) n p-l (D2n) = 0 and the additivity property of the finite 

dimensional index gives 

Then passing to limits we obtain 

The argument for equality is essentially the same as that in the proof of P3, Theorem 

2.2.7, interchanging degree for index. 

P4. We have H ('\, x) i= x on oKD and the A-properness I - H (,\, x) imply there 

exists no E N such that for every n > no, QnH ('\, xn) #- Xn on OKnDn, ,\ E [O,lJ. Then 

by Proposition 3.2.4, QnH (,\, Qnpxn) i= Xn on O(Qnp)-1 (DKn) for ,\ E [O,lJ so that 

iKn (Qn H ('\, Qnpxn) , Dn) is well defined and independent of ,\ E [0,1] for every n > no. 

Hence indK (H ('\, x) ,D) is independent of ,\ E [0,1]. Q.E.D. 

3.4 The index extended to maps of the form L-N 

We now extend the index to the L - N case and assume L to be bounded making 

H = L+J-1 P a homeomorphism. We make the following assumptions in this section. Let 

K be a cone in the Banach space X, let D c X be open, bounded and such that DK #- 0, 

let L : X --+ Y be a bounded Fredholm operator of index zero, N : DK --+ Y a bounded 
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continuous nonlinear operator such that L - N is A-proper at 0 and N + J-1 P : J{ ---t h-. 

Using the construction in Section 2.2, we write Lx - N x = w as y - Ty = w in Y where 

T = (N + J-1 P) H- 1
. By Lemma 2.3.2, I - T is A-proper at 0 relative to f if L - X is 

A-proper at 0 relative to fL. By Proposition 2.3.4, T maps Kl to Kl where J{l = H (K). 

Definition 3.4.1 Under the above assumptions) let PI be a retraction from Y to Kl and 

assume Qn I{l C I{l and Lx i- N x on 8K o'. We define the fixed point index of L - N 

over o'K as 

indK ([L, N] ,0,) = indK1 (T, U) 

where U = Ho'K and the index on the right is that defined in the previous section. 

The index is well defined since Lx i- N x on 8K fJ implies Ty i- y on 8K1 U and the 

A-properness of I - T means there exists no such that for every n > no, QnTYn i- Yn on 

8K1 Un. 

We list the properties of this index in the following theorem. 

Theorem 3.4.2 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. If indK ([L, N], fJ) = indK1 (T, U) i- {O}) then there exists x E fJK such that Lx = 

Nx. 

P2. If Xo E o,K ) then indK ([L, -J-1 P + Yo], fJ) = indK1 (Yo, U) = {l} where Yo = Hxo 

and Yo (y) = yo for every y E U. 

P3. If Lx i- N X for x E fJK \ (fJ1 U 0,2) where fJ 1 and fJ2 are disjoint relatively open 

subsets of fJK then 

indK ([L, N] ,0,) C indK ([L, N] ,o'd + indK ([L, N] ,0,2) 

with equality if either of the indices on the right is a singleton. 

P 4. If L- N ().., x) is an A-proper homotopy on o'K for).. E [0,1] and (N ().., x) + J-
1 
P) H-

1 

44 



: Kl --t [{1 and 0 t/:- (L - N (A, x)) (dom L n 8K n) for A E [0,1]' then indK ([L, S (A, x)]. D) 

= indK1 (TA' U) is independent of A E [0,1] where TA = (N (\ x) + J-1 P) H-l. 

Proof. PI. If indK1 (T, U) -=I- {O} then T has a fixed point in U by PI of Theorem 

3.3.4, i. e., Ty = y for y E U and y = H x. By construction, this is equivalent to Lx =-: S x. 

where x = H- 1y E nK . 

P2. Let H Xo = Yo E HnK = U, then indK1 (Yo, U) = {I} by P2 of Theorem 3.3.4. 

P3. We note first that Lx -=I- N x for x E nK \ (n1 u n2 ) implies Ty -=I- y for y E 

U \ (U1 U U2 ) where U = HnK , and Ui = Hni , i = 1,2. Now noting that U1 n U
2 

= 0, 

P3 of Theorem 3.3.4 gives 

The result then follows by definition of the index for L - N. The argument for equality 

is analogous to the proof of P3, Theorem 2.2.7. 

P4. We observe that if L - N (A, x) is A-proper then the A-properness of 1 - TA 

follows from Lemma 2.3.2 with N (\ x) replacing N (x). By hypothesis, Lx -=I- N (\ x) 

on 8K n so that H x -=I- (NA + J-1 P) x on 8K n which implies y -=I- TAy on 8K1 U. Then 

by P4 of Theorem 3.3.4, indK1 (TA' U) is independent of A E [0,1] and consequently 

indK ([L, N(A, x)]' n) is also. Q.E.D. 

3.5 The index defined on unbounded sets 

We conclude this chapter by extending the definition of the index to maps L - N where L 

is unbounded and the set U = HnK is unbounded in Y. Let n c X be open and bounded 

such that nK n dom L -=I- 0, L : dom LeX --t Y an unbounded Fredholm operator of 

index zero, N : nK n dom L --t Y a bounded continuous operator such that L - N is A­

proper relative to fL at O. Using the construction in Section 2.2, we write L - N as 1 - T 

in Y and assume P + JQN + L11 (1 - Q) N maps K to K. Let K1 = H ([{ n dom L) 
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where H = L + J-
1 
P and P1 be a retraction from Y onto 1{1. Assume Qn(I{t) C 1\"1 and 

Lx -=1= Nx on OKn. 

Definition 3.5.1 We define 

indK ([L, N] ,n) = indKl (T, V) 

where V c Y is an open bounded set relative to K1 containing (I - T)-1 (0). 

Theorem 3.5.2 The index of Definition 3.5.1 is well defined and independent of the 

choice of the open bounded set ~I containing (I - T)-1 (0). 

Proof· The conditions (I - T)-1 (0) C V and V open imply Ty i- y on oV so that 

Ty i- y on OKl V C OV. Thus, by Definition 3.3.1, i Kl (QnT, Vn) is defined for every 

n > no and so indKl (T, V) = indK ([L, N], n) is well defined. 

We need also show that the index is independent of the choice of V. Suppose 

(I - T)-1 (0) C V1 and (I - T)-1 (0) C .\12 where VI,V2 are open bounded sets in Y. 

Then (I - T)-1 (0) C \Ii n 112 = Wand W is an open bounded set in Y. Now Ty i- y 

on oW so Ty i- y on OKl W. Since I - T is A-proper, there exists no such that for every 

n > no, (I - QnT) Yn i- 0 on OKl Wn. By Proposition 3.2.4, (I - QnTQnpt) Yn i- 0 on 

a (QnP1)-1 (WKl ) for every n > no. By the additivity and excision properties of the finite 

dimensional index of Definition 3.2.1, we have 

Similarly, 

i Kl (QnT, Wn) + i Kl (QnT , \lin \ Wn) 

i Kl (QnT, Wn) . 
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Since this is true for all n > no, we have 

indK ([L, N], 0) = indK1 (T, Vi) = indK1 (T, \1;). Q.E.D. 

We present the usual properties of this index in the following theorem. 

Theorem 3.5.3 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. If indK ([L, N], 0) = indK1 (T, V) i=- {O}, then there exists x E OK such that 

Lx = Nx. 

P2. If Xo E OK, then indK ([L, -J-1 P + Yo] ,0) = indK1 (Yo, V) = {I} where Yo = H Xo 

and Yo (x) = Yo for every x E OK. 

P3. If 0 1 , O2 are disjoint relatively open subsets of OK such that Lx i=- N x for x E 

OK \ (01 U O2 ) then 

with equality if either of the indices on the right is a singleton. 

P 4· If L-N (A, x) is an A-proper homotopy on OK for A E [0,1] and (N (A, x) + J- 1 P) H-1 

: Kl ---1- I{l and (I - T),)-l (0) C V for every A E [0,1], V C Y open and bounded and 

o ~ (L-N(A,x))(domLnBKO)) thenindK([L,N(\x)]'O) = indK1(T)"V) is inde­

pendent of A E [0,1]. 

Proof. PI. By properties of the earlier index defined for T in Theorem 3.3.4 we 

have indK1 (T, V) i=- {O} implies T has a fixed point y E VK1 . Now (I - T)-l (0) C 

H (OK n dom L) so that x = H-1y E OK. Hence Lx = N x has a solution in OK. 

P2. This follows from P2 of Theorem 3.3.4, noting that H Xo = Yo E H (OK n dom L). 

P3. We note that Lx i=- N x for x E OK \(01 U O2 ) implies Ty i=- y for y E U\(U1 U U2 ) 

where U = HOK and Ui = HOi, i = 1,2. Now by definition, indK ([L, N] ,0) = 

indK (T, V) where (I - T)-l (0) eVe Y and V is open and bounded. We consider 
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the subsets Vi = V n U1 and \12 = V n U2 of V, then \Ii and V2 are open, bounded and 

disjoint. So, by the additivity and excision properties of the index in Theorem :3.:3.-1. we 

have 

indK1 (T, V) C indKl (T, \Ii) + indK1 (T, \12) + indKl (T, V \ (VI U \12)) 

where the last index is 0 since (1 - T)-1 (0) ~ V \ (\Ii U \12). The result then follows 

from the definition of the index for L - N. The argument for equality is analogous to 

the proof of P3, Theorem 2.2.7. 

P4. We observe that if L-N (A, x) is A-proper, then the A-properness of 1 -T).. follows 

from Lemma 2.3.2 with N (A, x) replacing N (x) and T).. = (N (A, x) + J-1 P) H- 1 • The 

condition 0 1. (L - N (A, x)) (domL n oKD) implies (1 - T)..)-1 (0) ~ U\ V, U = Hfh, so 

that by the invariance under homotopy property of Theorem 3.3.4 we have indK1 (T).., V) 

independent of A E [0,1]. Hence it follows that indK ([L, N()", x)], 0) is also independent 

of ).. E [0,1]. Q.E.D. 
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Chapter 4 

A FIXED POINT INDEX FOR 

WEAKLY INWARD A-PROPER 

MAPS OF THE FORM L-N 

4.1 Introduction 

The results of this chapter extend the fixed point index for weakly inward A-proper maps 

defined by Lan and Webb in [30] to maps of the form L - N. Weakly inward maps were 

apparently introduced by Halpern and Bergman [20] and have been extensively studied 

by Caristi [8], Deimling [13], Hu and Sun [24], Lan and Webb [30], Sun and Sun [51], 

and Webb [53]. Fixed point indices for weakly inward maps have been studied by Hu 

and Sun [24] for compact maps, Sun and Sun [51] for maps defined on compact convex 

sets, and by Lan and Webb [30] for A-proper maps. 

Definition 4.1.1 Let K c X be a closed convex set. For each x E K) the set IK (x) = 

{x + c (z - x) : z E I{, c > O} is called the inward set of x with respect to K. A map 

T : I{ --+ X is called inward (respectively) weakly inward) if for all x E K) Tx E IK (x) 
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(TXEIK(X)). 

Remark 4.1. 2 Geometrically! the inward set of x is the union of all rays originating at 

x and passing through some other point z of I{. If x is an interior point of I{ then h: (,T) 

forms the whole space X. 

Definition 4.1.3 A map T : OK 4- X is said to be inward (respectively! weakly inward) 

on OK relative to I{ if Tx E IK (x) (respectively! Tx E IK (x)) for x E OK where 0 C X 

is open and bounded with OK = 0 n I{ -=J 0. 

The following two theorems give conditions for a map T : K C X 4- X to be weakly 

inward. The first involves a hypothesis of flow invariance from the theory of differential 

equations in Banach spaces. 

Theorem 4.1.4 (Caristi [8]) Let K c X be a closed convex set in a Banach space X 

and T : I{ 4- X. Then T is weakly inward iff 

lim hI dist (x + h (Tx - x) ,I{) = 0 
h-tO+ 

for all x E I{. 

Proof. (The argument follows that of Deimling [13]) Suppose 

lim ~ dist (x + h (T x - x) , K) = 0 
h-tO+ h 

for all x E K. Given E > 0, for each 5 E (0,1) there exists y E K such that 

Ilx + 5 (Tx - x) - yll < dist (x + 5 (Tx - x), K) + 5E. 

Then 

II Tx - [(1 - 5-1
) X + 5-1yJ II < 5-1 dist (x + 5 (Tx - x) , K) + E 

and as E was chosen arbitrarily, this and the assumed limit condition imply Tx E IK (x). 

Now suppose T is weakly inward, let x E I{, E > 0, and choose y E IK (x) such that 
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Ily - Tx II < E. Since y E IK (x) and I{ is convex, there exists 80 > 0 such that x + 
8 (y - x) E K for 0 < 8 < 80 . Then 

8-1 dist (x + 8 (Tx - x) ,K) < 8-1 II (1 - 8) x + 8Tx - [x + 8 (y - x)] II 

< 8- 1 118Tx - 8YII = IITx - yll < E 

for 8 E (0,80], Hence, we have proved the converse. Q.E.D. 

The second theorem is formulated in terms of tangent functionals and is often useful 

in applications and may be found in Deimling [13]. 

Theorem 4.1.5 Let K c X be a closed convex set in a Banach space X. Then T : 

K --t X is weakly inward iff x E 8 K, x* E X* and x* (x) = SUPyEK x* (y) together imply 

x* (Tx - x) < O. 

Proof. Suppose T is weakly inward and Tx = w = limn -+oo Wn where 

Wn = X + Cn (zn - x) , 

Zn E K, Cn > 0 and x E 8I{. Then for each n E N, 

x* (x) + cnx* (zn - x) 

x* (x) + en [x* (zn) - x* (x)] 

< x*(x), 

since x* (x) > x* (zn) for all n. Thus x* (Tx) < x* (x) and x* (Tx - x) < o. 
We shall prove the converse by contradiction. Suppose T is not weakly inward and 

the conditions of the theorem hold, then there exists an x E I{ such that Tx ~ IK (x). 

Now by the separation theorem for convex sets, there exists x* E X* such that 

sup x* (z) < x* (Tx), 
zEIK(x) 
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noting that IK (x) is convex and that there exists p < dist (T"x, IK(x)) with Bp (T,r) n 
IK (x) = 0. Then 

x*(Tx-x) x* (Tx) - x* (x) 

> x* (x + c (y - x)) - x* (x) 

cx* (y - x) 

for all c > 0, and all y E I{. Hence, taking c = 0, x* (Tx - x) > 0 and taking c arbitrarily 

large, x* (y - x) < 0 for all y E K which contradicts our hypotheses. Q.E.D. 

Before considering an index for the L - N case, we discuss the derivation, definition 

and properties of the index established by Lan and Webb [30] for reference. 

In this chapter, we adopt conventions corresponding to the notation of Lan and Webb 

for convenience. Denote QnT as Tn, 0 n I{ as OK and OK n Xn as OKn • 

We begin by recalling the Lan-Webb definition of an index for weakly inward maps 

in finite dimensional spaces and then, in a manner analogous to the index derived by 

Fitzpatrick and Petryshyn [16], extend the definition to the infinite dimensional case. 

The definition of the index requires a special retraction which we now mention. 

Definition 4.1.6 An t-retraction of X onto K is a continuous map r : X --+ I{ which 

satisfies 

IIx - rx\\ < (1 + t) dist (x, K) for every x E X. 

Remark 4.1. 7 t-retractions exist for every t > 0 by Dugundji's extension theorem, cf., 

{26}. For locally uniformly convex spaces, one may take t = 0 and a O-retraction (equiv­

alently, a metric projection) is possible. 

The following lemma can be used to help show that an index can be defined which is 

independent of the t-retraction chosen provided t is sufficiently small. 
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Lemma 4.1.8 Let I{ be a closed convex set in a finite dimensional space X and Itt D bE 

a closed bounded subset of I{. Let h : [0,1] x D ---t X be continuous and such that h (t . . ) 

is weakly inward on D relative to K for each t E [0,1]. Then, if h (t, x) =f x for all XED 

and t E [0,1]' there exists EO > ° such that re (h (t, x)) =f x for all XED, t E [0,1]. and 

E < EO. 

Proof. If this were false, there would be sequences En ---t 0, Xn ED, tn E [0,1] such 

that re (h (tn' xn)) = xn. Thus 

Ilren(h (tn, xn) - h (tn, xn)11 

< (1 + En) dist (h (tn, Xn) ,I{) . 

Passing then to subsequences, we may suppose that Xn ---t xED, tn ---t t. Then 

h (tn, xn) ---t h (t, x) and we obtain Ilx - h (t, x)11 < dist (h (t, x), K). 

Now Lemma 2.2 of [30] states: if f(x) E IK(x) and f(x) 1. [{ for x E [{, then 

dist (f (x), ]{) < Ilf (x) - xii. The proof, for completeness, is as follows. 

Let f (x) = lim Wn where Wn = (1 - an) x + anYn for some Yn E I{ and an > 1. Choose 

N sufficiently large so that Ilf (x) - wN11 < Ilf (x) - xii. Then 

dist (f (x), K) < Ilf(x) - YNII = f(x) - [a>N + (1- a~) xl 
< ~ II f (x) - W Nil + (1 - _1 ) II f (x) - x II 

aN aN 

< Ilf(x)-xll· 

Hence we obtain a contradiction unless h (t, x) E I{. But this implies h (t, x) = x 

which contradicts our hypothesis and, therefore, proves the result. Q.E.D. 

We now define the index for finite dimensional spaces which will later be extended to 

the infinite dimensional case. 
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Definition 4.1.9 Let 0 c X be an open bounded set of the finite dimensional space 

X such that OK =I- 0. Suppose that f : OK ---+ X is continuous and weakly intca rd 

on OK and suppose that f (x) =I- x for all x E OKO. Define the fixed point indu' by 

iK (f, 0) = iK (rtf, 0) for ( sufficiently small where iK (rtf, 0) is the fixed point indu' 

defined in Section 3.2 above. 

Remark 4.1.10 Lemma 4·1.8 implies the index is well defined and, by considering a 

homotopy argument, e.g., h(t,x) = trtlf(x) + (1-t)rt2f(x), it follows that the inde:r 

is independent of the (-retraction chosen for ( sufficiently small. If a continuous metric 

projection ro exists, then the index equals iK (rof, OK) for 0 open and bounded and n n 

In [30], this finite dimensional index is shown to have the standard fixed point index 

properties, viz., existence, normalisation, additivity, and homotopy, as well as a fifth 

property which states criteria for the index to equal one. 

Let K be a closed convex set in a Banach space X with projection scheme r = 

{Xn' Qn} and 0 an open bounded set in X such that nK =I- 0. Let T : nK ---+ X be a 

weakly inward map where I - T is A-proper at 0 and such that Tx =I- x on OKn. 

The fixed point index for weakly inward A-proper maps is then defined in terms of 

limits of these finite dimensional indices. An important step in the construction is the 

proof that if T : OK ---+ X is weakly inward relative to K, then QnT : nK n Xn ---+ Xn 

is weakly inward relative to I{n = I{ n X n. This is evident if QnIK (x) C IKn (x) for 

every x E Kn which Lan and Webb prove to be true iff QnK C I{. As this assumption 

has been made throughout this thesis, it is not restrictive for our purposes and is usually 

easy to verify in applications. 

Definition 4.1.11 Write Tn for the map QnT restricted to n Kn . We define the fixed 

point index of T over OK with respect to K as follows: 

iK (T, OK) = {m E ZU {±oo} : iKnJ (Tnj' nnJ ---+ m for some nj ---+ 00 } 
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where iKn (Tn, nn) is the fixed point index of Definition 4.1.9. 

Remark 4.1.12 The A-properness of I -T at 0 and the condition Tx =J x on onK imply 

Tnxn =J Xn for all n > no so that the indices iKn (Tn' nn) are well defined for such n. 

This index generalises that of Fitzpatrick and Petryshyn [16} and is equivalent if T maps 

nK to K and I - T is A-proper on X. Note that this index is) in general) multivalued 

as the derivation is similar to that of the degree for A -proper maps. 

The properties of this index are the content of the next theorem. We shall extend 

them to maps of the form L - N in the next section. 

Theorem 4.1.13 (Lan and Webb [30)) Let T : nK ---+ X be a weakly inward map where 

I - T is A-proper at 0 and such that Tx =J x for x E OKn. Then the index defined above 

has the following properties. 

Pl. (Existence) If iK (T, n) =J {O}, then T has a fixed point in nK . 

P2. (Normalisation) Ifxo E nK , theniK(xo,n) = 1) wherexo(x) = xoforeveryx E nK · 

P3. (Additivity) If n1 , n2 are disjoint relatively open subsets of nK such that Tx =J x 

for x E nK \ (n1 U n2 ), then iK (T, n) C iK (T, nd + iK (T, n2) with equality holding if 

either iK (T, nd or iK (T, n2) is a singleton. 

P4. (Homotopy property) Let H : [0,1] X nK ---+ X be such that H (t,.) : nK ---+ X zs 

weakly inward for each t E [0,1] and I x - H (t, x) is an A-proper homotopy at O. If 

H(t,x)=JxforxEoKn andtE [0,1], theniK (H(O,.),n)=i K (H(l,.),n). 

P5. Suppose T (I{) is bounded) then there exists ro > 0 such that iK (T, Br (0) n K) = {1} 

for all r > ro) and hence T has a fixed point in I{. 

Proof. We prove properties P1 and P4 to illustrate the methods and refer to [30] for 

further details. 

Pl. If iK (T, n) =J {O} then there exists a subsequence {nj} C N with nj ---+ 00 such 

that the sequence {iKnJ (Tnj' nnj) } has non-zero terms. Consequently, there exists xnJ E 
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OKn) such that Tnjx nj = xn)' Since 1 - T is A-proper at 0, there exists a subsequence 

xnjk ---t x E DK with Tx = x. As Tx i=- x on 8KD we have x E DK which proves the 

result. 

P4. From the definition of an A-proper homotopy, the condition H (t, x) i=- x on 8
K

O. 

t E [0,1] implies Pn H (t, x) i=- x for all x E 8Kn D, for sufficiently large n. Therefore, for 

such n, Pn H (t, x) is defined on Xn and independent of t E [0,1]. Hence iK (H (t, x). 0) 

is independent of t E [0,1]. Q.E.D. 

4.2 The index defined for maps of the form L-N 

In this section we assume L to be bounded and develop an index and the corresponding 

properties accordingly. The case where L is unbounded will be the subject of a subsequent 

section. We begin by defining the concept of weakly inward for maps of the form L - N 

on a closed convex set; in particular a cone K. 

Let X, Y be Banach spaces with projection scheme fL = {Xn' Yn, Qn}. Let I{ C X 

be a cone and D c X be open bounded such that DK n dom L i=- 0. Let L : dom L --+ Y 

be a bounded Fredholm operator of index zero and N : OK n dom L --+ Y a bounded 

continuous nonlinear operator such that L - N is A-proper at ° relative to fL. 

Definition 4.2.1 We say the pair {L, N} is weakly inward on OK relative to K if 

(N + J- 1 P) x E IKl (Hx) for every x E OK. 

Remark 4.2.2 It'hen L is bounded, this is equivalent to 

Px + JQNx + L11 (I - Q) Nx E IK (x) for x E OK. 

Proof of remark 4.2.2. Since Hand H- 1 are continuous, H (IK (x)) = H (IK (x)) so 

that if we write (P + JQN) x + L11 (I - Q) Nx = i E IK (x) then Hi E H (IK (x)) = 

IKl (Hx). By Lemma 2.3.3, Hi = (N + J- 1 P) X. 
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Now assuming (N + J- 1P) x E IKI (Hx) for every x E nK , we have Hi: E IKJ (Hx) 

by Lemma 2.3.3 since Hi: = (N + J-1 P) x. Also, IKI (Hx) = H (IK (x)) so i: E IK (x). 

Then by Lemma 2.3.3, i: = (P + JQN) x + Ll1 (I - Q) Nx E IK (x), which proves 

equivalence. Q.E.D. 

The justification for this definition is that we shall require the map T in Y to be 

weakly inward on U = HnK relative to I{l = H( dom L n I{) in order to define our index. 

The following lemma shows that if the conditions of the preceding definition are satisfied, 

then T is indeed weakly inward on U. 

Lemma 4.2.3 If (N + J- 1 P) x E IKI (H x) for every x E DK) then Ty E IKI (y) for 

every y E U C I{l. 

Proof. Using the construction and notation of Section 2.2 and letting y = Hx, we 

have (N + J- 1 P) x E IKI (H x) for every x E DK is equivalent to (N + J- 1 P) H- 1 (y) E 

IKI (y) for every y E U and hence Ty E h<l (y) for every y E U, i.e., T is weakly inward 

on U relative to I{l. Q.E.D. 

We now define the index for weakly inward A-proper maps of the form L - N as 

follows. 

Definition 4.2.4 Assume {L, N} is weakly inward on DK relative to I{) Lx -# N x on 

aKD) Qn (I{d C I{l for n E N and write U = HDK. Under the above hypotheses) 

we define indK ([L, N] ,n) = i Kl (T, U) the fixed point index for weakly inward A-proper 

maps from Definition 4·1.11. 

Remark 4.2.5 By Lemma 2.3.2) I - T is A-proper with respect to fL and Lemma 4·2.3 

shows that T is weakly inward on the set U relative to K 1 . As was shown in Section 2.2) 

the condition Lx -# N x on aKn implies Ty -# y on au so that the index is well defined. 
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In virtue of these definitions and remarks, we list the following properties of the index 

which extend those of Theorem 4.1.13. 

Theorem 4.2.6 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. If indK ([L, N] , D) -=1= {O}, then there exists x E DK such that Lx = Nx. 

P2. Ifxo E DK, then indK ([L,-J- 1P+Yo],D) = {I} where Hxo = Yo and Yo (x) = Yo 

for every x E DK. 

P3. If fh, D2 are disjoint relatively open subsets of DK such that Lx =I- N x for x E 

nK\(DI U D2), then indK ([L, N], D) C indK ([L, 2V] ,Dt)+indK ([L~ N], n2 ) with equality 

if one of the indices on the right is a singleton. 

P4. If L - N (>..., x) is A-proper for>'" E [0,1] and N (>..., x) + J- 1 Px E IKI (H x) for every 

x E K, >... E [0,1] and ° ff- (L - N (>..., x)) (8KO) , >... E [0,1], then indK ([L, N (>..., x)], n) is 

independent of >... E [0,1] . 

Proof. PI. If indK ([L, N] ,0) = iKl (T, U) -=1= {O}, then there exists y E U such that 

Ty = y which is equivalent to Lx = N x for x = H- 1y E OK. 

P2. By definition, 

indK ([L, _J-1 P + yo] ,0) = iKl (yo, U) = {I} 

since Yo = Hxo E U. 

P3. From Lx -=1= N x for x E OK \ (01 U O2) we have Ty -=1= y for y E U \ (U1 U U2 ), 

where U = HDK and Ui = HD i , i = 1,2, noting that HOI n Hn 2 = 0 since H is a 

homeomorphism and that HOI and H0 2 are open bounded subsets of HnK. Then 

indK ([L, N] ,D) iKl (T, U) 

C iKl (T, U1 ) + iKl (T, U2 ) 

indK ([L, N] ,Ot) + indK ([L, N] . O2 ) . 
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The argument for equality is analogous to the proof of P3, Theorem 2.2.7. 

P4. The first condition implies I - T>. where T>. = (N (A, x) + J-1 P) H-1 is A-proper 

at 0 by Lemma 2.3.2 with N (A, x) replacing N while the second condition implies T>. is 

weakly inward by Lemma 4.2.3. From 0 tJ. (L - N (A, x)) (OnK) we have T>.y i- y on oU 
for A E [0, 1]. Then by the invariance under homotopy property, 

or equivalently, 

indK ([L, N (0, x)] ,n) = indK ([L, N (1, x)] ,n) . 

Q.E.D. 

We include a fifth property in the event that (N + J-1 P) (I{) is bounded where J< is 

a closed convex set. We shall use this property in the proof to Theorem 5.4.13 to obtain 

multiple non-zero solutions to the equation Lx = N x. 

Theorem 4.2.7 P5. If (N + J-1 P) (J<) is bounded and L - AN is A-proper for A E 

[0,1], then there exists ro > 0 such that indK ([ L, N] , Br (0)) = {1} for every r > roo 

Proof. Since (N + J-1 P) (J<) is bounded we have T (H J<) = T (Kd bounded in Y 

so 

indK ([L, N] , Br (0)) = iK1 (T, H Br (0)) = {I} 

by P5 of Theorem 4.1.13. Q.E.D. 

4.3 The index extended to unbounded sets 

Let I{ c X be a closed convex set in a Banach space X with projection scheme r = 

{Xn' Qn}. Let n c X be an open bounded set such that nK i- 0 and T : nK -t X be 

a weakly inward map on nK relative to I{ such that I - T is A-proper at O. Assume 

(I - T)-l (0) is bounded and Tx i- x on oKn. 
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Definition 4.3.1 Define the fixed point index ofT over nK relative to I{ as iK (T.!1) = 

iK (T, W) where W = nK n VK and V c X is open, bounded such that (I - Ttl (0) C '". 

Remark 4.3.2 T is weakly inward on W relative to I{ since W c nK and Tx #- x on 

aw since (I - T)-l (0) c nK n VK = Wand W is the intersection of two reZutively open 

sets. Thus the index is well defined. 

We show that the index is independent of the choice of the open bounded set V and 

consequently, W. Suppose (I - T)-l (0) C V1 and (I - T)-l (0) C 112 and let WI = 

VI n nK and W2 = 112 n n K, then (I - T)-l (0) C WI n W2 = Wo0 Now T is weakly 

inward on Wi, i = 0,1,2, relative to K and Tx #- x on awi, since Wi are open and 

(I - T)-l (0) C Wi. By the additivity and excision properties of the Lan-Webb index we 

have 

Similarly, 

iK (T, WI) = iK (T, WI \ Wo) + iK (T, Wo) 

iK (T, Wo). 

iK (T, W2 ) = iK (T, W2 \ Wo) + iK (T, Wo) 

iK (T, Wo). 

Hence the index is independent of the choice of V and W. 

The properties of this index are given in the next theorem. 

Theorem 4.3.3 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. IfiK (T,n) = iK (T, W) #- {O} then T has a fixed point in nK . 

P2. If Xo E nK then iK (xo, n) = iK (xo, W) = {I}, where Xo (x) = Xo for every x E nK· 
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P3. If 0 1 , O2 are disjoint relatively open subsets of OK such that Tx #- x for :r E 

OK \ (01 U O2 ) then 

with equality if either of the indices on the right is a singleton. 

P 4· Let H : [0,1] X OK -t X be such that H (A, .) : OK -t X is weakly inward relative to 

K for every A E [0,1] and Ix - H (A,X) is an A-proper homotopy at O. If H (\x) #-;1: 

for x E 8KO and A E [0,1] then iK (H (0,,),0) = iK (H (1,,),0). 

Proof P1. If iK (T, n) = iK (T, W) #- {O} then P1 of Theorem 4.1.13 implies T has 

a fixed point in W. Since W C nK we have Tx = x for some x E nK. 

P2. Since V is chosen such that (I - T)-I (0) = (I - XO)-I (0) C V we have Xo E l" 

so that Xo E vn OK = W. Then P2 of Theorem 4.1.13 implies iK(xo, W) = {I}. 

P3. By definition iK (T, n) = iK (T, W) where W = V n nK and V C X is open 

bounded and (I - T)-1 (0) C V. We consider the subsets WI = n1nw and W2 = n2nw, 

then WI and W2 are relatively open, bounded and the fixed points of T (if there are 

any) in 0 1 are in WI and the fixed points of T (if there are any) in n2 are in W2• So 

that iK (T, n1 ) = iK (T, Wt) and iK (T, n2 ) = iK (T, W2 ). We observe that Tx #- x for 

x E nK \ (01 u n2 ) implies Tx #- x for x E W \ (WI U W2 ) since W \ (WI U W2 ) C 

OK \ (n1 U n2)' By the additivity and excision properties of the Lan-Webb index 

The argument for equality is analogous to the proof of P3, Theorem 2.2.7. 

P4. We show that iK (H (\ x), 0) = iK (H (\ x), W) is independent of A E [0,1]. If 

H (\ x) #- x for x E 8Kn, A E [0,1] then H (\ x) #- x for x E 8KW since (I - H>.)-I (0) C 

nKnv = W where V C X is open bounded such that (I - H>.)-l (0) C V. Now H (A, x) 

is weakly inward on W since W C nK . Then by P4 of Theorem 4.1.13 
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Which proves the result. Q.E.D. 

We now consider the L - N case, assuming L to be unbounded and develop an index 

in a manner similar to that of Sections 2.4 and 3.5. 

Let I{ c X be a cone and n c X be open bounded such that n K n dom L =f 0. 

Let L : dom LeX -t Y be an unbounded Fredholm operator of index zero and AT : 

nK n dom L -t Y a bounded continuous nonlinear operator such that L - N is A-proper 

at ° relative to rL. Define 1<1 = H (dom L n 1<). 

Definition 4.3.4 Assume Lx =f Nx on domLnaKn and (N + J-1P)x E IKl (Hx) for 

every x E nK . We define indK ([L, N] ,n) = iK1 (T, U) where U = HnK and the inde.r 

is that of Definition 4.3.1. 

Remark 4.3.5 Lemma 2.3.2 implies that I - T is A-proper at 0 while Lemma 4.2.3 

implies T is weakly inward on U = HnK relative to K 1 • Also, Ty =f y on au since 

(I - T)-l (0) C U and U is open. Hence the index is well defined. 

Theorem 4.3.6 Assume the conditions and notation of the preceding definition. Then 

the index thus defined has the following properties. 

Pl. IfindK ([L, N], n) = iK1 (T, U) =f {O}, then there exists x E nK such that Lx = Nx. 

P2. If Xo E nK, then indK ([L, -J- 1 P + Yo], n) = iK1 (Yo, U) = {I} where Hxo = Yo 

and Yo (x) = Yo for every x E nK. 

P3. If n1 , n2 are disjoint relatively open subsets of nK such that Lx =f N x for x E 

n K\(n l U n 2 ) , then indK ([L, N] ,n) c indK ([L, N] ,nd+indK ([L, N], n2 ) with equality 

if one of the indices on the right is a singleton. 

P 4. If L - N ().., x) is an A-proper at 0 homotopy for).. E [0,1] and N ().., x) + J- 1 Px E 

IKl (H x) for every x E nK,).. E [0,1] and ° tt (L - N ().., .)) (dom L n aKn) for).. E [0,1] . 

then indK ([ L, N ().., x)] , n) is independent of ).. E [0, 1]. 
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Proof· PI. If iKl (T, U) -=I- {O}, then T has a fixed point in U = HnK by PI of 

Theorem 4.3.3, i. e., Ty = y for some y E U and y = H x. This is equivalent to Lx = .\'.1' 

for x = H-1y and as y E HD. K , X E D. K . 

P2. Since Yo E U, the result follows from P2, Theorem 4.3.3. 

P3. We note first that the condition Lx -=I- N x for x E D.K \ (0.1 U 0.2 ) implies Ty -=I- y 

for y E U \ (U1 U U2 ) where Ui = HD.i , i = 1,2. Now since U1 n U2 = 0, P3 of Theorem 

4.3.3 implies 

which proves the result. The argument for the equality case is analogous to the proof of 

P3, Theorem 2.2.7. 

P4. The first condition implies I - T),. is an A-proper at ° homotopy by Lemma 2.3.2 

with T),. = (N (>., x) + J-1 P) H- 1
• The second condition implies T),. is weakly inward on 

U = HD.K by Lemma 4.2.3. From ° t/:. (L - N (>., .)) (domL n aKn) we have '1"\.y -=I- y 

on au for A E [0,1]. Then by the invariance under homotopy property, P4 of Theorem 

4.3.3, we have 

that is 

indK ([L, N (0, x)] ,0.) = indK ([L, N (1, x)] ,0.) . 

Q.E.D. 
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Chapter 5 

EXISTENCE THEOREMS FOR 

SEMILINEAR EQUATIONS IN 

CONES 

5.1 Introduction 

In this chapter we use our fixed point indices to extend the existence theorems established 

by Webb [54] for semilinear equations in cones and, at the same time, obtain simpler 

proofs. We also extend a fixed point result of Petryshyn [41] and obtain a continuation 

theorem similar to that of Mawhin [34] for A-proper maps which we shall apply in Chapter 

6 to the solution of an ordinary differential equation. 

In Section 5.3, we extend some of the results of Lafferriere and Petryshyn [28] obtained 

for P -y-compact maps to semi linear maps of the form L - N. 

The contents of Section 5.4 concern weakly inward A-proper maps. We apply the 

results of Chapter 4 to obtain existence theorems related to those of Lan and Webb [30] 

but applicable to semilinear operator equations acting on different spaces. 
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5.2 Some existence and continuation theorems 

We begin with a theorem and several simple lemmas which we shall need in the sequel. 

Throughout this chapter the operator notation is that which was introduced in Section 

1.4 and the index used in the proofs may be that of Chapters 2, 3 or 4 but in practice. 

the index of Chapter 2 would depend on the retraction and projection scheme employed. 

Theorem 5.2.1 If L : dom LeX ---+ Y is Fredholm of index zero) I{ C X is a cone 

and 0 C X is an open bounded set such that nK n dom L # 0) then 

ind ([L -J- 1p] 0) = {{I} if 0 E OK, 
K, , {O } if 0 tf- OK. 

Proof. From the results of Chapter 2, L + J-1 P = H is a linear bijection that maps 

dom L n K c X ---+ I{1 C Y and L + J- 1 P is A-proper since it is the sum of a linear 

Fredholm operator and a compact map. We note that ker(L + J- 1 P) = {O} so that 

Lx + J-1 Px # 0 for x E 8K O. Thus indK ([L, _J-1 P] ,n) is well defined. 

Now for 0 E OK, we have indK ([L, -J-1 P], 0) = indK1 (0, Hn) = {I} by P2 (the 

normalisation property) of the index with Xo = 0 and Yo = 0, i.e., the mapping ° (x) = 0 

for every x E OK. 

If 0 tf- OK and indK ([L, -J-1 P] ,n) # {O}, then PI (the existence property) of 

the index implies there exists x E OK such that (L + J- 1 P) X = 0 and x # O. This 

contradicts ker(L + J-1 P) = {O}, therefore indK ([L, -J-1 P], 0) = {O}. Q.E.D. 

Many of the proofs to our theorems require certain homotopies to map cones to cones. 

The subsequent lemma and propositions provide conditions that ensure this. 

Lemma 5.2.2 If P + JQN maps I{ to [{) then J-1 P + QN maps K to K 1 • 

Proof. Let x E K and assume (P + JQN) x = i E K. Since P and JQN map to 

ker L, i E ker L and Hi = (L + J- 1 P) i = J- 1 Pi = J- 1i E Kl as H maps K to K 1 . 

Now J-1 (P + JQN) x = J-1i E I{I. Q.E.D. 
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The following propositions are consequences of the preceding lemma P ·t·) ·3 1 , ropOSI IOn :... ... -1 

and the definition and properties of a cone I{. 

Proposition 5.2.3 If (1 - A) (P + JQN) maps I{ to I{ for A E [0,1]' then 

(1- A) (J- 1 P + QN) maps I{ to I{l for A E [0,1]. 

Proof. By Lemma 5.2.2, if (P + J Q N) x E I{ then (J-1 P + Q N) x E I{l for every 

x E I{ so (1- A) (P + JQN)x E I{ and (1- A) (J- 1p + QN)x E K1 for A E [0
1

1] since 

K and I{l are cones and (1 - A) > 0. Q.E.D. 

Proposition 5.2.4 If A [Ll1 (I - Q) N + P + JQN] maps I{ to I{ for A E [0,1], then 

A (N + J-1P) maps K to K1 for A E [0,1]. 

Proof. By Proposition 2.3.4, if [Ll1 (I - Q) N + P + JQN] x E K then (N + J- 1 P) x 

E I{l for every x E I{. Since K and I{1 are cones, A [Ll1 (I - Q) N + P + JQNJ x E I{ 

and A (N + J- 1 P) x E I{l for every x E I{, A > 0. Q.E.D. 

Proposition 5.2.5 If P + JQN and Ll1 (I - Q) N + P + JQN map K to I{) then 

(1-A)(P+JQN)+A[L11(I-Q)N+P+JQN] maps I{ to I{ forA E [0,1] and 

(1 - A) (J- 1 P + QN) + A (N + J- 1 P) maps I{ to K1 for A E [0,1]. 

Proof. If (P + JQN) x E I{ and [Ll1 (I - Q) N + P + JQN] x E K for every x E K, 

then (l-A)(P+JQN)x + A[L11(I-Q)N+P+JQN]x E K for every x E K 

and A E [0,1] since cones are closed under addition and non-negative scalar multipli­

cation. Then by Propositions 5.2.3 and 5.2.4 and the aforementioned properties of a 

cone, (1 - A) (J- 1 P + QN) x + A (N + J- 1 P) x E K1. Q.E.D. 

The theorems and corollaries which follow extend those found in Webb [54] where 

the map L - AN R is assumed to be A-proper and a generalised degree is employed. We 

shall use our fixed point index instead of the degree to weaken the hypothesis L - AN R 
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A-proper and require only L - AN A-proper. Thus we avoid any explicit mention of a 

retraction in the formulation of our theorems. 

We begin with a continuation theorem related to that of Mawhin [34] and Petryshyn 

[42] for semilinear equations where we extend their results to cones. The theorem pre­

supposes the existence of an open bounded set n which is often difficult to establish in 

practice. Corollary 5.2.9 below provides a means of determining such a set. 

Theorem 5.2.6 Suppose that L - AN is A-proper for A E [0,1] with N : nK ---+ Y 

bounded and 0 E nK where n c X is open bounded such that nK n dom L -=I- 0. Assume 

that: 

(a) Lx -=I- ANx for x E [)Kn, A E [0,1] 

(b) QNx -=I- 0 for x E [)Kn n ker L 

(c) indK ([L, Q N] ,n) -=I- {O} 

(d) P + JQN + L11 (1 - Q) Nand P + JQN map I{ to I{. 

Then there exists x E I{ n dom L such that Lx = N x . 

Proof. We show that the A-proper homotopy H1 (A, x) = Lx - (1 - A) Q N x - AN x -=I- 0 

on [)Kn for A E [0,1]. To obtain a contradiction, assume there exists Ao E [0,1] and 

Xo E [)Kn such that H1 (Ao, xo) = O. By (a), Ao -=I- 1. If Ao = 0, then H1 (0, xo) = 

Lxo - QNxo = 0 so Lxo = QNxo and QNxo E imL n 12 so that QNxo = 0, which 

contradicts (b). Now if Ao E (0,1), then Lxo - AoNxo = (1 - Ao) QNxo -=I- 0 by (a), 

hence QNxo #- O. Applying Q to this relation, we obtain -AoQNxo = (1 - Ao) QNxo 

which is impossible for 0 < Ao < 1, Q N Xo -=I- O. By the hornotopy property of the index, 

we have indK ([L, N] ,n) = indK ([L, QN] ,n) -=I- {O} by (c). Then by PI (the existence 

property) of the index, there exists x E nK such that Lx = Nx. Q.E.D. 

Condition (c) of the preceding theorem assumed indK ([L, QN], n) -=I- {O}, in the 

following corollary we shall replace this condition with one that implies it employing 
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a certain bilinear form. We assume that there is a continuous bilinear form [y. x] on 

y X X such that y E imL iff [y,x] = 0 for each x E kerL. This condition implies that 

if {Xl,X2, ... , xn} is a basis in ker L, then the linear map J : Yo -+ ker L, Y = Yo EB im L. 

defined by Jy = /1 L~1 [y, Xi] Xi, /1 E R+, is an isomorphism and that if y = 2: 7=dli Xi 

then [J- 1
y, Xi] = yi/ /1 for 1 < i < n. This idea has been used by Cesari [9], Mawhin [34L 

and Petryshyn [42]; our results extend those of the last two. 

Corollary 5.2.7 Assume all conditions of Theorem 5.2.6 hold except (c) and assume 

(Cl) [QNx, x] < 0 for every X E ker L n OKn. 

Then the same conclusion holds. 

Proof· We show that (cd implies (c), i.e., indK ([L,QN] ,0,) 1= {a}. Let H2 (A,X) = 

Lx + (1- A) J- 1px - AQNx and suppose H2 (\x) = 0 for some x E OKn, A E [0,1]. 

If A = 0, then Lx + J- 1 Px = 0 which is a contradiction since ker (L + J- 1 P) = 0 

and x 1= 0 (x E OKn). If A = 1, then Lx = QNx and, as in the proof to Theo­

rem 5.2.6, contradicts (b). For A E (0,1), Lx = AQ N x - (1 - A) J- 1 Px which im­

plies Lx = 0 and (1 - A) J- 1 Px = AQ N x. Applying the bilinear form to this rela­

tion, we obtain (1 - A) [J- 1 Px, x] = A [Q N x, x] which contradicts our hypotheses since 

(1- A) [J-1px,x] > 0 by the definition of the bilinear form and A [QNx,x] < 0 by 

(Cl)' Thus indK([L,QN],n) = indK([L,-J-1P],n) 1= {a} by Theorem 5.2.1. The 

conclusion now follows as all conditions of Theorem 5.2.6 are satisfied. Q.E.D. 

Remark 5.2.8 Corollary 5.2.7 remains valid if the bilinear form condition is replaced 

with [QNx, x] > 0 for every x E ker L n OKn as J may be replaced with -J in the proof 

and the same conclusion obtained. 

A second corollary to Theorem 5.2.6 extends a result of Petryshyn [42] and Webb 

[54], and imposes a sublinear growth condition on N. It also provides conditions for 

establishing a priori bounds on the solution set and thus determining n. 
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Corollary 5.2.9 Suppose for N bounded, L -)..N : nK -t Y is A-proper at a relative to 

fL for).. E [0,1] and P + JQN + L11 (1 - Q) N maps K to K. Suppose also that 

(a) there exist a > 0, b > 0 such that x E nK and Q N x = 0 imply 

IIL11 (1 - Q) Nxll < a IIxll + b, 

(b) there exist J-l > 0 and r > 0 such that x E nK and Q N x = 0 imply 

IIPxl1 < J-lil (1 - P) xii + r, 

(c) a (1 + J-l) < 1, 
. (J-l + l)b + r 

(d) mdK ([L, QN], Bs (0)) i {O} for s = ( r 
1-aJ-l+1 

Then there exists x E dom L n nK such that Lx = N x. 

Proof We show that hypotheses (a) through (d) imply those of Theorem 5.2.6 from 

which the result follows. Suppose Lx = )"Nx on 8KBs (0) for some).. E [0,1]. Then this 

is equivalent to Xl = )"L1
1 (1 - Q) Nx and QNx = 0 where Px = Xo and (1 - P) x = Xl' 

Now Ilxlll = )..IIL1l (1 - Q) Nxll < a Ilxll + band 

Therefore 

Hence 

IIXII < Ilxoll + Ilxlll 

< J-l11(1 - P) xii + r + IlxI11 

- J-lIIXlll + r + IlxI11 

- (J-l + 1) Ilxlll + r 

< (J-l+1)(allxll+b)+r. 

Ilxll < aJ-lllxll + bJ-l + a Ilxll + b + r. 

Ilx II < b (J-l + 1) + r = s 
1 - aJ-l - a 
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and Lx =I- )"Nx on 8K Bs(0) for)" E [0,1]. So (a) of Theorem 5.2.6 is satisfied with 

Bs(O) n K = OK. 

Now if x E ker Land QNx = 0 then by (b) 

Ilxil = Ilxoll < f-l11(1 - P) xii + r = r < s 

so that Q N x =I- 0 on 8Bs (0) n ker Land (b) of Theorem 5.2.6 is satisfied. 

Also, it follows that Lx =I- QNx for x E 8Bs (0). Otherwise, QNx E imLnYo implies 

QNx = 0 = Lx so x E ker Ln8Bs (0) which contradicts what we have just proved above. 

Thus indK ([L, QN], Bs (0)) is well defined and does not equal 0 by hypothesis, so (c) of 

Theorem 5.2.6 is satisfied. 

Hence all conditions of Theorem 5.2.6 hold and the conclusion of the corollary follows. 

Q.E.D. 

The next theorem gives conditions for the existence of a positive solution to a semi­

linear equation and extends a result of Webb [54]. 

Theorem 5.2.10 Under the hypotheses of Corollary 5.2.9, if also 

(e) there exists 0 =I- eEL (1{ n dom L) and r < s such that Lx - N x =I- f-le for every 

x E K with IIxll = r and all f-l > 0, then there exists x E [{, r < IIxll < s, and Lx = Nx. 

Proof. We note first that conditions (a) through (d) imply indK ([L, N], Bs (0)) =I- {O} 

so that there exists x E Bs (0) with Lx = N x. From the proof to Corollary 5.2.9, we 

have Lx =I- Nx on 8Bs (0) and by (e), Lx =I- Nx on 8Br (0) so by the additivity property 

of the index, 

indK ([L, N], Bs (0) \ Br (0)) + indK ([L, N], Br (0)) :J indK ([L, N], Bs (0)). 

We prove that indK ([L, N] ,Br (0)) = {O}, which will show that equality holds in the 

above. Let H (f-l, x) = Lx - N x - f-le. By (e), H (f-l, x) =I- 0 on 8Br (0) so that 

indK ([L, N] ,Br (0)) = indK ([L, N + f-le] ,Br (0)) . 
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Now if indK ([L, N + l1 e], Br (0)) -=J {O}, then there would be an XJ1- E Br (0) such that 

LXIl = N x ll +l1e or L (~ ) = N x ll / l1+e. Now letting 11 -t 00 and noting the boundedness 

of N, we have L ( x; ) -t e. This contradicts the fact that x; -t 0 and L is a closed linear 

operator. Hence, 

indK ([L, N] ,Bs (0) \ Br (0)) -=J {O} 

and there exists x E Bs (0) \ Br (0) n K such that Lx = N x. Q.E.D. 

Our next theorem follows Webb [54] in using an idea of Canada and Ortega [7] to 

weaken the a p,ioli bound requirement (condition (a)) of Corollary 5.2.9. We introduce 

a mapping , : X -t y* that satisfies (Lx, ,x) > 0 for all x E dom L and let A + = 

{x E K: (Nx"x) > O}. 

Theorem 5.2.11 Unde, the hypotheses of COiOlla,y 5.2.9 0, Theolem 5.2.10 without 

conditions (a) and (b), fOI the equation Lx = N x to have a solution in K, it is necessa,y 

that A + = {x E 1< : (N x, ,x) > O} -=J 0 and it is sufficient that 

(a1) A+ -=J 0 and IIL11 (I - Q) Nxll < a Ilxll + b, x E 1< n A+ 

(b1) x E K n A+ and QNx = 0 imply IIPxl1 < 1111(1 - P) xii + I. 

P,OOf. Necessity is a consequence of the following: if x is a solution to Lx = N x, 

then (Lx, ,x) = (N x, ,x) . For sufficiency the proof is similar to that of Corollary 5.2.9 

in that if H(A,X) = L-(1- A) QN -AN = L-N(,\,x) = 0 for Ilxll = s then QNx = 0 

so that Lx = AN x and x E A +. The rest of the proof is the same as that of Corollary 

5.2.9, q.v. for particulars. Q.E.D. 

The last result of this type from Webb [54] requires a certain homotopy to map K 

to 1<. This theorem is related to one proved by Mawhin [34] using coincidence degree 

where N is assumed to be compact. Santanilla [49] obtained a similar result on cones 

also using coincidence degree while Petryshyn proved a version for A-proper maps in [42] 

using the A-proper degree. 
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Theorem 5.2.12 Suppose that L - )"N is A-proper for).. E [0,1] where L is a linear 

Fredholm operator of index zero and N is nonlinear. Assume the following conditions 

hold: 

(a1) there exist a > 0, b> ° such thai IINxl1 < a Ilxll + b for every x E K where ac < L 

c = IIL1l (1 - Q)II 
(b1) there exists l' > ° such that for M = a~~:~c we have [Q N x, Px] < 0 for every x E I{ 

with IIPxll = 1', 11(1 - P) xII < M 

(C1) L11 (1 - Q) Nand P + JQN map I{ to I{. 

Then there exists x E 1{ such that Lx = N x. 

Proof. Let n = {x E 1{ : IIPxll < 1', 11(1 - P) xII < M} and define H : [0,1] x n n 

domL -t Y by 

H ().., x) = L + (1 - )..) J- l P - )"N = L - N ().., x) . 

We prove H ().., x) -=I- ° on an n dom L for)" E [0,1]. If not, then H ().., x) = ° for some 

x E an n domL, ).. E [0,1], and 

(I - P)x = Xl = )"L1
1 (I - Q)Nx 

and 

Px = Xo = ).. (P + JQN) x 

so 

x = Xo + Xl = ).. (P + JQNx) + )"L1l (I - Q) Nx. 

Thus, by (cd, we have x E K. 

N ow applying the bilinear form to the relation 

we have 

(1 - )..) Xo = )..JQNx 

(1-)..) [J- 1xo,xo] =).. [QNx,xo] 
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obtaining by (b I ) a contradiction. Hence 

IIPxl1 = Ilxall < r 

and IIx111 = M since x E 80.. By (ad, 

M Ilxd < IIL11 (I - Q) Nxl! 

M < acllxll+bc<ac(r+M)+bc 

which contradicts the definition of M. Thus H (A, x) = L - N (A, x) i= 0 on 80. n dom L 

so that 

indK ([L, N (1, x)], 0.) indK ([L, N (0, x)] ,0.) 

indK ([L,-J- 1P] ,0.) i= {O} 

by Theorem 5.2.1. Since the index is non-zero, there exists x E I{ such that Lx = Nx. 

Q.E.D. 

We conclude this section with a theorem that extends a result of Petryshyn [41] to 

semi linear maps. 

Theorem 5.2.13 Let L : dom LeX -+ Y be a Fredholm operator oj index zero, 

N : X -+ Y a bounded nonlinear map such that L - AN is A-proper Jor 0 < A < 1. Let 

r1,r2 E (0,00) and L11 (I - Q) N +P+JQN: I{ -+ K. Assume the Jollowing conditions 

hold: 

{aJ there exists a compact map C : Brl (0) n I{ -+ 1{1 such that Lx i= IlCX - J- 1 Px 

Jor 11 E [0,1], x E 8Bq (0) n K and Lx =1= ANx + (1 - A) [Cx - J-1 Px] Jor A E [0,1], 

x E 8Br1 (0) n I{ 

(bJ there exists a bounded map F : Br2 (0) n K -+ 1{1, a > 0 such that IIFxll > a > 0 iJ 

x E 8Br2 (0) n I{ and Lx - N x - AFx is A-proper Jor every A > 0 and Lx i= N x + Il Fx 

Jor x E 8Br2 (0) n K, 11 > O. 

73 



Then thele exists x E I{ n dom L such that min {II, 12} < Ilxll < { } max 11. r2 and 

Lx = Nx. 

Proof. From the second condition of (a), we have indK([L,N(-\,x)),Brl (0)) is con­

stant for A E [0,1] where N (-\,x) = ANx - (1- A) [Cx - J-Ipx] so that 

Now by the first condition of (a), we have 

by Theorem 5.2.1. We observe that the homotopy H (-\, x) = L-AN +(1 - A) [C - J- 1 P] 

is A-proper for A E [0,1] and show that indK ([L, N] ,Br2 (0)) = {O}. We fix y E I{I with 

Ilyll = 1 and choose /-lo E (0,00) such that Lx =I- N x + /-loFx + my for x E 8Br2 (0) n I{, 

for every m E Z+. It is possible to choose such a /-lo since, if not, we would have 

Lx = N x + /-lFx + my on 8Br2 (0) n K, m > 0, and there would exist sequences {/-In} > 0, 

/-Ln --+ 00, {mn} > 0 and {xn} C 8Br2 (0) n I{ such that LXn = N Xn + /-lnFxn + mny· 

Dividing by /-In, we have L (::) = N xn/ /-In + FXn +mny / /-Ln and as /-Ln ----t 00, L (::) --+ 0, 

N xn/ /-In --+ 0, so that FXn + mny / /-In --+ O. Since {Fxn} is bounded, we may assume 

mn/ /-In --+ mo E [0,(0). By (b), mo > O. Hence FXn --+ -moy· Since y E I{1 implies 

-moy E -I{I we have -moy E F (8Br2 (0) n I{) n (-I{I)' As F (8Br2 (0) n I{) c Kl 

and Kl n (-Kl) = {O}, we obtain a contradiction. 

We define the A-proper homotopy H tto (A, x) = Lx - N x - /-loFx - Amy and note that 

Htto =I- 0 on 8Br2 (0) n K. By the homotopy property of the index, we have 

indK ([L, N + /-loF + Amy], Br2 (0)) = indK ([L, N + /-Lo F ] , Br2 (0)). 

Now if 

indK ([L, N + /-loF + Amy] ,Br2 (0)) =I- {O} , 
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then there exists x E Br2 (0) such that Lx = N x + f-loFx + Amy or L (~) = ,.Y x 1m + 
f-lo Fx / m + Ay· By the boundedness of Nand F, we have L (~) --+ AY =I- 0 as m --+ 00. 

This contradicts the fact that ::n --+ 0 and L is a closed linear operator. Thus 

indK ([L, N + f-lF], Br2 (0)) = {O}. 

By (b), we have indK ([L, N + f-lF], Br2 (0)) is constant for every f-l > 0 and consequently, 

indK ([L, N + f-lF] ,Br2 (0)) = indK ([L, N] ,Br2 (0)) = {O} . 

By the additivity property of the index, we obtain 

Hence there exists x E I{ n dom L with min {ril r2} < Ilxll < max {ri' rd such that 

Lx = Nx. Q.E.D. 

5.3 Existence theorems on quasinormal cones 

The results of this section are established using the notion of a quasinormal cone in-

troduced by Petryshyn [43]. In particular, this includes all normal cones. Many of the 

subsequent theorems and lemmas extend those of Lafrerriere and Petryshyn [28] which 

pertained to P'Y compact maps, q. v. Chapter 1. 

Definition 5.3.1 A cone K is called quasinormal if there exist y E K \ {O} and a 

constant (5 > 0 such that Ilx + yll > (5IIXII for all x E I{. Let 

(5 (y) := inf {llx + yll I Ilxll : x E I{ \ {O}}. 

Then we define the constant of quasinormality (5 (K) := sup {(5 (y) : y E I{ \ {O} }. 
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Remark 5.3.2 Note that if K is normal then I{ is quasinormal with (J = ~,-1 E (0.1] 

and any y E I{ \ {O}. If X is a Hilbert space, then every cone I{ C X is quasinormal 

with (J = 1 as shown in [29j. Also from this paper; if I{ is a cone in a Banach space X 

and y E 1<\ {O}, then there exists (J(y) E (0,1] such that Ilx+yll > (J(y)llxll for all 

x E I{, this implies every cone in a Banach space is quasinormal. It was proved in [11 ) 

that ~ < (J (1<) < 1. 

Some examples of quasinormal cones which aren't normal are the set of non-negative 

functions in C k (Q), k > 1; the Holder space Get (Q) for a E (0,1); and the Sobolev 

space Wk,p (Q) for p E [1,00). As noted in [43], these cones have (J = 1 with y (x) = 1, 

x E Q and Q a bounded set in jRn. 

We begin with a definition and a theorem which we shall require later. 

Let L : dom LeX -t Y be a Fredholm operator of index zero and N : X -t Y be a 

bounded nonlinear operator such that L - N is A-proper relative to fL. 

Definition 5.3.3 If S = {x E I{ : Lx = N x} is bounded, we define indK ([L, N] ,I{) = 

indK ([L, N] ,Br (0) n I{) where r > M and M is any bound for the set S. 

Remark 5.3.4 Since all solutions to Lx = N x are contained in BM (0), the 

indK ([L, N] ,Br (0) n 1<) is constant for all r > M by the additivity property and hence 

the definition is independent of r > M. It is also clear that Lx i=- N x on 8Br(0) n K so 

that the index is well defined. 

Theorem 5.3.5 Suppose that L -)..N is A-proper for).. E [0,1] where L : dom LeX -t 

Y is a Fredholm operator of index zero and N : X -t Y is bounded and nonlinear. If 

L11 (I - Q) Nand P + JQN map K to K and the set 

S = {x E I{: Lx = )"Nx - (1- )")J-1px,).. E [0, I]} 

is bounded, then indK ([L, N], 1<) = {I}. 
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Proof. Let r be a bound for S. Consider the homotopy L - AN + (1 - A) J- 1 P = 

L - N (A, x) on Br+t (0), f > O. Now Lx i- ANx - (1 - A) J- 1 Px on 8Br+t 
(0) so 

indI{ ([L, N (1, x)], Br +t (0)) indI{ ([L, N (0, x)] , Br+t (0)) 

indI{ ([ L, -J-1 pJ , Br+t (0)) = {I}. 

Since f is arbitrary, we have indI{ ([L, N] ,I{) = {I}. Q.E.D. 

The following lemma gives conditions for the index to be zero and will be employed 

in later arguments. 

Lemma 5.3.6 Let 0 Ene )C, n open and bounded such that nI{ n dom L i- f/J and let 

L - AN be A -proper forI < A < /-lo where /-l00" > 1 and 0" is the constant of quasinormaiity 

of K. Assume L11 (I - Q) N + P + J Q N maps I{ to I{ and that the following conditions 

hold: 

(aJ 0 = inf {IIL11 (I - Q) Nx + Px + JQNxl1 : x E 8I{n} > d//-loO" where 

d = sup {llxll : x E 8I{n} 

(b J Lx i- /-IN x - (1 - /-l) J- 1 Px for x E 8I{n and 1 < /-l < /-l00"· 

Then indI{ ([L, N] ,n) = {O}. 

Proof. Suppose Lx = /-IN x - (1 - /-l) J-1 Px for some x E aI{n and 1 < /-l < /-lo, then 

we obtain Xo = /-l (P + JQN) x and Xl = /-lL11 (I - Q) Nx and 

d > Ilxll = Ilxo + xIII 

/-lIlL11 (I - Q) Nx + (P + JQN) xII 

> /-l0 > /-ld/ /-l00" 

so /-l < /-l00". This and (b) imply Lx i-/-lNx-(l-/-l) J-1px for x E aI{n and 1 </-l< /-lo· 

For /-lo > 1/0", define the homotopy L - N (/-l, x) = Lx - /-IN x + (1 - /-l) J-
1 
Px which 

is A-proper for 1 < /-l < /-lo and Lx i- /-IN x - (1 - /-l) J- 1 Px for x E anI{ and f-L > 1. 
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Thus, by the homotopy property of the index, indK ([L, N (J-L, x)], f2) is well defined and 

independent of J-L > 1. 

To prove indK ([L, N] ,f2) = {O}, we choose t E (0,0") such that 0 > d . Then b\" J.LO(o--E) , 

definition of 0", there exists Y E 1{ \ {O} such that O"y > 0" - t and Ilx + yll > O"y IIxll > 

(0" - t) IIxll for every x E K \ {O}. We note that for every x E K \ {O} and p > O. 

x 
p -+y 

p 

x 
> pO" Y - = 0" Y II x II > (0" - t) II x II 

p 

so that IIx + pyil > (0" - t) IIxll· We now consider the homotopy HJ.LO (,,\, x) : [0,1] x f2K ---+ 

Y defined by HJ.LO (A, x) = Lx - J-LoN x + (1 - J-Lo) J- l Px - AmYl where Yl = Ly (y as 

determined above) and any fixed mEN. We observe that HJ.LO (,,\,x) is A-proper and 

HJ.LO (,,\, x) #- 0 for x E 8K f2, A E [0,1]. If this were not true, then we would have 

Lx = J-LoN x - (1 - J-Lo) J- l Px + AmYl for some x E 8K f2 and A E (0,1] (A = ° is excluded 

by the previous argument). 

Hence Xo = J-Lo (P + JQ N) x and Xl = J-LoLll (1 - Q) N x + AmLllY1 so that 

d > IIxll = II xo+x111 

IIJ-LO (P + JQN) x + J-LoLl1 (I - Q) Nx + AmLI1Y111 

> J-Lo (0" - t) II(p + JQN) x + Ll1 (1 - Q) Nxll 

> J-Lo (0" - t) 0 > J-Lo (0" - t) ( (d )) = d, 
J-Lo 0" - t 

a contradiction. Hence Lx #- J-LoN x - (1 - J-Lo) J- 1 Px + AmYl on 8K f2 and A E [0,1]. By 

the homotopy property of the index, 

indK ([L, N/lo (0, x)], f2) = indK ([L, NJ.LO (1, x)], f2) 
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where Np.o (A, x) = 110Nx-(1 -110) J- 1 Px+AmY1. Now ifindK ([L, Np.o (>.. x)]. 0) -I- {O}. 

then there exists Xm E 8K n such that 

or 

Allowing m -+ 00 and using the boundedness of N and compactness of J- 1 P, we have 

L (~) -+ AY1 =I- O. This contradicts the fact that xm / m -+ ° and L is a closed linear 

operator. Thus we have shown that 

indK ([L, Np.o (.\, x))' n) 

Q.E.D. 

indK ([L, N (11, x)], 0) 

indK ([L, N], n) = {O}. 

We shall need the following le1nma in the proof to Theorem 5.3.8. 

Lemma 5.3.7 Let ° Ene X, n open and bounded such that nK n dom L -I- 0 and 

let L - AN be A-proper for A E [0,1]. Assume N is bounded and Ll1 (I - Q) N + 
P + JQN maps I{ to K. If Lx -I- I1Nx - (1 -11) J- 1 Px on 8K O for 11 E [0,1], then 

indK ([L, lV] ,n) = {1}. 

Proof. We consider the homotopy L - N (11, x) = L - I1N + (1 - 11) J- 1 P on nK for 

11 E [0,1]. Since Lx =I- N (11, x) on 8K n, 11 E [0,1]' we have 

indK ([ L, N (1, x)], n) indK ([L, N (0, x)] ,n) 

indK ([L,-J- 1p] ,n) = {1} 

by Theorem 5.2.1. Q.E.D. 

The next theorem gives conditions for the existence of a positive solution to a semi-

linear equation. 
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Theorem 5.3.8 Let 0 E n1 C n2 C K where n1 and n2 are open and bounded. Let 

L - )"N be A-proper for 0 < ).. < f-Lo where f-LoO" > 1, N be bounded and L11 (I _ Q) 1\~ + 
P + J Q N map I{ to I{. Assume the following conditions hold: 

(a) 8 = inf {IIL~1 (I - Q) Nx + (P + JQN) xII : x E an2 } > d/f-LoO" where 

d = sup {llxll : x E an2 } 

(b) Lx #- f-LNx - (1 - f-L) )-1 Px for x E an2 and 1 <f-L< f-LoO" 

(c) Lx #- f-LNx - (1 - J-l) J- 1 Px for x E anI and f-L E [0,1]. 

Then there exists x E n2 \ n1 such that Lx = N x. 

Proof. We assume Lx #- N x on anI U an2 otherwise the conclusion follows. From 

(c), we have indK ([L, N] ,nr) = {I}. From Lemma 5.3.6, conditions (a) and (b) imply 

indK ([L, N] ,n2 ) = {O}. By the additivity property of the index, we obtain 

indK ([L, N] ,n2) - indK ([L, N] ,n1) 

{O}-{I}={-I}. 

Since the index is non-zero, the existence property (PI) of the index implies there exists 

x E n2 \ n1 such that Lx = N x. Q.E.D. 

Remark 5.3.9 The conclusion of Theorem 5.3.8 is valid if conditions (a) and (b) hold 

on anI and (c) holds on an2 • 

We now establish several results of cone compression or expansion type which provide 

conditions for the existence of positive solutions. We shall require the following lemma 

in the proof to the succeeding theorem. 

Lemma 5.3.10 Let 0 Ene X, n open and bounded such that nK n dom L =I- 0 

and let L - )"N be A -proper for 1 < ).. < f-Lo where f-LoO" > 1 and N bounded. Sup­

pose that IIL~1 (I - Q) Nx + (P + JQN) xII > Ilxll and Lx =I- Nx on anK' Assume 

L~1 (I - Q) N + P + JQN maps I{ to I{. Then indK ([L, N], n) = {a}. 
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Proof. We note that if Lx = f-LN x - (1 - f-L) J- 1 Px for some x E aK 0.. f-L > 0, then 

Xo = f-L (P + JQN) x, Xl = f-LL1
1 (I - Q) Nx and 

Ilxll Ilxo + xlii 

f-L IIL11 (I - Q) Nx + (P + JQN) xii 

> f-L Ilxll 

by hypothesis. Therefore Lx i= f1Nx - (1 - f-L) J-1px for x E aKn and f-L > 1. Now as 

in the proof to Lemma 5.3.6, choose t E (0,0") such that 6 > (d and y E 1\ \ {O} 
110 IT-c) 

such that 0" y > 0" - t and consider the homotopy H 110 (A, x) : [0, 1] x 0. K --+ Y defined by 

Hp,o (A, x) = Lx - f-LoN x + (1 - f-Lo) J-1 Px - AmYl where Y1 = Ly and mEN is arbitrary. 

Then following verbatim the proof to Lemma 5.3.6, we obtain indK ([L, Nilo (A, x)] ,0,) = 

{O}. Finally, since Lx i= f-LNx - (1 - f-L) J-1 Px on anK, f-L > 1, we have 

indK ([L, N (f-L, x)], 0.) = indK ([L, N], 0,) = {O} 

where N (f-L, x) = f1N x - (1 - f-L) J-1 Px and L - N corresponds to f-L = 1. Q.E.D. 

Theorem 5.3.11 Let 0 E 0,1 C 0,2 C I{, 0,1 and 0,2 open and bounded and let L - AN be 

A-proper for 0 < A < f-Lo where f-LoO" > 1 and N bounded. Suppose that L11 (I - Q) N + 
P + J Q N maps K to I{ and the following conditions hold: 

(aJ IIL11 (I - Q) Nx + (P + JQN) xii > Ilxll for x E anI; 
(bJ Lx i= f-LNx - (1 - f-L) J-1 Px for x E an2 and f-L E [0,1]. 

Then there exists x E 0,2 \ 0,1 such that Lx = N x . 

Proof. We assume Lx i= N x on anI otherwise we are done. From (b) and Lemma 5.3.7 

wehaveindK ([L, N] ,0,2) = {I}. From (a) and Lemma5.3.10 we have indK ([L, N] ,0.1) = 

{O}. By the additivity property of the index, we obtain 

indK ([L, N] ,0,2 \ 0,1) 

{I} - {O} = {I} . 
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Since the index is non-zero, there exists x E O2 \ 0 1 such that Lx = J.Vx. Q.E.D. 

Remark 5.3.12 The conclusion of Theorem 5.3.11 is valid if (a) holds on a0
2 

and (b) 

holds on ao1. 

We end this section with a theorem related to norm type expansions of a cone. 

Theorem 5.3.13 Let L - AN be A-proper for 0 < A < J-la where J-laO' > 1 and suppose 

that L11 (1 - Q) N + P + J Q N maps K to K. Assume that the following conditions hold: 

(aJ IIL11 (1 -Q)Nx+(P+JQN)xll > IIxll onaKBr(O) 

(b) there exists R > r such that IIL11 (1 - Q) ~Nx + (P + JQN) xii < IIxll on aK BR (0) . 

Then there exists x E (BR(O) \ Br (0)) n 1{ such that Lx = Nx. 

Proof. Applying Theorem 5.3.11, let 0 1 = Br (0) n K and O2 = BR (0) n K, then (a) 

of Theorem 5.3.13 implies (a) of Theorem 5.3.11 on aK Br (0) while (b) of Theorem 5.3.13 

implies (b) of Theorem 5.3.11 on 8K BR (0). Otherwise, if Lx = J-lN x - (1 - J-l) J-1 Px on 

aKBR for J-l E [0,1]' then Xa = J-l (P + JQN) x, Xl = J-lL1
1 (1 - Q) Nx and 

Ilxll Il x a+ x 111 

J-lil (P + JQN) x + L11 (1 - Q) Nxll 

< II (P + J Q N) x + L11 (1 - Q) N x II 

which contradicts condition (b) of the theorem. Q.E.D. 

5.4 Existence theorems for weakly inward A-proper 

maps 

The results of this section extend several theorems of Lan and Webb [30] to semilinear 

operators on cones. Since many of the subsequent proofs involve homotopies that are 
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both A-proper and weakly inward, we shall make some preliminary observations in the 

form of propositions regarding weakly inward sets and maps. The proofs are immediate 

consequences of the definition and properties of a weakly inward set. 

Proposition 5.4.1 If t (N + j-1 P) X + (1 - t) Yo (x) E IK1 (Hx) for every x E n K. 

t E [0,1], where Yo E K1 and Yo (x) = Yo for x E I{ then tTy + (1 - t) Yo (y) E IK1 (y). 

Proposition 5.4.2 If (N + j-1 P) x E h{1 (H x) for every x E nK and e E 1\1 t A > 0 , , - , 

then (N + j-1 P) X + tAe E IK1 (Hx) and Ty + tAe E IK1 (y). 

Proposition 5.4.3 If (N + j-1 P) X + tAoFx E IK1 (H x) for every x E n K, t. Ao > 0 

and map F, then Ty + t)..oF H-1y E IK1 (y) where H-1y = X. 

Our first theorem employs a variation of the Leray-Schauder boundary condition to 

prove the existence of a solution to the equation Lx = N x. 

Theorem 5.4.4 Let D c X be open bounded, I{ a cone in X such that nK n dom L =f. 0. 

Assume L, N : DK -+ Yare bounded such that L - AN is A-proper for A E [0,1] and 

(N + j-1 P) x E IK1 (H x) faT every x E DK, ).. E [0,1]. Suppose there exists Yo E HnK 

such that Lx =f. )"Nx + (1 -)..) [yo - j-1 Px] for x E 8Kn, A E [0,1]. Then Lx = Nx for 

some x E DK . 

Proof. Let H()..,x) = Lx - )"Nx - (1-A)[yo-j- 1 px] = L - N()..,x). Then 

H ().., x) =f. 0 on 8KD and H ().., x) is weakly inward because N (A, x) + J-1 Px = 

A (Nx + J-1 Px) + (1 -)..) Yo where Yo E I{l and IK1 (Hx) is a wedge containing K 1 . By 

the homotopy property of the index, we have 

by P2 of Theorem 4.2.6. Then PI implies the existence of x E nK such that Lx = N x. 

Q.E.D. 

The next theorem gives conditions which imply that the index is O. 
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Theorem 5.4.5 Let D c X be open bounded and such that DK n dom L #- 0. Assume 

L, N : DK ---+ Yare bounded such that L - N is A-proper and (N + j-I P) x E [K
1 

(Hx) 

for every x E DK . Suppose 

(E) there exists e E [{I \ {O} such that Lx #- N x + Ae for x E aKn, A >0. Then 

indK ([L, N], D) = {O}. 

Proof. Let L - N (,\, x) = Lx - (N x + Ae) which is A-proper and weakly inward for 

each A > 0 and Lx - N (,\, x) #- 0 for x E 8K D, A > o. By the homotopy property of the 

index, we have 

indK ([L, N] ,D) = indK ([L, N + Ae] ,D). 

Now if indK ([L, N + Ae] ,D) #- {O} then there exists x). E DK such that Lx). = N x). + Ae 

or L (~) = N x)./ A + e. Allowing A ---+ 00 we have L (~) ---+ e since N is bounded, but 

x)./ A ---+ 0 which contradicts the closed linearity of L. Hence indK ([L, N] ,n) = {O}. 

Q.E.D. 

The preceding result, in conjunction with a Leray-8chauder type boundary condition, 

is used in the following theorem to obtain a non-zero solution. 

Theorem 5.4.6 Let DI and D2 be open and bounded in X with 0 E DI c n2 and 

ni n K n dom L #- 0 for i = 1,2. Assume L, N : D2 n [{ ---+ Yare bounded such that 

L - AN is A-proper for A E [0,1] and A (N + j-I P) x E [K1 (Hx) for every x E n2 n K, 

A E [0,1]. Suppose that: 

(LS) Lx i- ANx + (A - 1) j-I Px for x E aDI n [{, A E [0,1] 

(E) there exists e E KI \ {O} such that Lx #- N x + Ae for x E aD2 n K, A > o. 

Then Lx = N x for some x E (D2 \ D I ) n I{. 

Proof. Condition (L8) implies indK ([L, N] ,DI ) = {I} by Theorem 5.4.4 with Yo = o. 

From (E) we have indK ([L, N] ,D2) = {O} by Theorem 5.4.5. The additivity property of 
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the index gives 

indK ([L, N], D2 \ D1) = indK ([L, N], D2) - indK ([L, N], OI) = {-I}. 

As the index is non-zero, property PI implies the existence of x E (02 \ 0
1

) n K such 

that Lx = N x. Q.E.D. 

Remark 5.4.7 The conclusion to Theorem 5·4.6 is valid if (LS) holds on a02 n J\" and 

(E) holds on aDI n I{. 

Our next result, which extends Theorem 5.4.5 and a result of Lan and Webb [30], 

gives conditions that imply the index is zero and involves a weakly inward map F in 

addition to the maps Land N. 

Theorem 5.4.8 Let DK be open bounded and such that DK n dom L is nonempty. Let 

L, N : DK -+ Y be bounded maps such that L-N is A-proper and assume (N + J-1 P) x E 

IKl (iI x) for every x E DK. Suppose that there exists a bounded F : OK -+ Y that satisfies 

Fx E IKl (H x) for every x E DK and that the following conditions hold: 

(AJ) F (aKD) n (-I{) = 0 

(A2) inf {IIFxll : x E aDK } = a > 0 

(A3) Lx #- Nx + AFx for x E aDK , A > 0 and L - N - AF is A-proper for A >0. 

Then indK ([L, N], D) = {a}. 

Proof. We prove first that for any y E Kl \ {a} with Ilyll = I there exists Ao > 0 

such that Lx #- N x + AoFx + (3y for all x E aKD and f3 > O. If not, there would exist 

sequences {An} > 0, An -+ 00, {{3n} > 0, and {xn} C aKD such that 

Dividing by An, we obtain 

L C:) = NXn/)..n + FXn + (3nY/)..n 
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and as An ---1- 00, L (~:) ---1- 0, NXn/An ---1- 0 so that FXn + f3nY/A n ---1- O. Since {Fl'n} is 

bounded, we may assume /3n/ An ---1- /30 E [0,00). By (A2), f30 > O. Thus FXn ~ -3oy. 

Since y E K1 \ {O}, -/3oy E -I{l so that -/3oy E F(8Kn) n (-I<1) which contradicts 

(AI). By Theorem 5.4.5, indK ([L, N + AoF] ,0,) = {O}. We define the A-proper and 

weakly inward homotopy 

H).. (t, x) = L - N - tAo F = L - N (t, x) 

and note that H).. (t, x) #- 0 on 8K n for t E [0,1] by (A3). The homotopy property of the 

index then gives 

indK ([L, N] ,0,) = indK ([L, N + AoF] ,n) = {O} . 

Q.E.D. 

We now use Theorems 5.4.4 and 5.4.8 to obtain a result which ensures a non-zero 

solution to the equation Lx = N x. 

Theorem 5.4.9 Let 0 E 0,1 C 0,2 be open bounded sets in X such that ninI<ndom L #- 0 

for i = 1,2. Suppose L, N, F : 0,2 n K ---1- Yare bounded such that L - AN is A-proper 

for 0 < A < 1 and (N + J-1 P) x E IKl (Hx) and Fx E IKl (Hx) for every x E O2 n K. 

Assume L - N - AF is A -proper for A > 0 and 

(LS) Lx #- ANx + (A -1)J- 1 px for x E 8Kn1 , 0 < A < 1 and (Ai), (A 2), (A3) of 

Theorem 5.4.8 hold on 8K02. 

Then Lx = Nx for some x E (0,2 \ 0,1) n K. 

Proof. By condition (LS), 

indK ([L, N] ,0,1) = indK ([L, _J-1 pJ ,0,1) = {I} 

by P2 with Y = O. Then conditions (AI), (A2), (A3) imply indK ([L, N], O2 ) = {O} by 

Theorem 5.4.8. From the additivity property of the index we obtain 

indK ([L, N] ,n2 \ 0,1) = indK ([L, N] ,n2) - indK ([L, N] ,nr) -I- {O} . 
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Thus, by P1, there exists x E (n2 \ nl) n K such that Lx = iVX. Q.E.D. 

Remark 5.4.10 The same conclusion to Theorem 5.4.9 is valid if (LS) holds on ih;n2 

and (A1), (A2), (AS) hold on BKn l . 

A theorem similar to Theorem 5.4.8 for compact maps C is the content of our next 

result, a generalisation of a result by Lan and Webb [30]. 

Theorem 5.4.11 Let K c X be a cone and H( dam L n K) = KI be the corresponding 

cone in Y and suppose that BBI (0) n KI is not compact. Let n c X be open and bounded 

such that nK n dom L =I- 0. Suppose L, N : nK --+ Yare bounded such that L - N 

is A-proper and C : nK --+ Y is weakly inward and compact. Suppose that (.'12) and 

(AS) of Theorem 5.4.8 hold and (N + J-IP)X E IKl (Hx) for every x E n K . Then 

indK ([L, N], n) = {O}. 

Proof. We first show that there exists y E KI with Ilyll = 1 such that {ty : t > a} n 

-C( BKn) = 0. If not, then for every y E KI with Ilyll = 1 there exists ty such that tyy E 

-C (BKn). Thus the set Q = {tyy : Ilyll = 1} is relatively compact and hence co (Q u {a}) 
is compact. By (A2), ty > a so that co(Q u {a}):J KI n{llyll = a}, a contradiction. As 

in the proof to Theorem 5.4.8, we find Ao > 1 such that Lx =I- N x+AoCx+j3y for x E 8K n 
and f3 > o. By Theorem 5.4.5, we have indK ([L, N + AoC] ,n) = {a}. We define the A­

proper and weakly inward homotopy (by Proposition 5.4.3) L - N (t, x) = L - N - tAoC 

and observe that Lx - N(t,x) =I- 0 on 8K n, t E [a, 1] by (A3). The homotopy property 

of the index then gives 

indK ([L, N] ,n) = indK ([L, N + AoC] ,n) = {a} . 

Q.E.D. 

The preceding theorem, in conjunction with Theorem 5.4.9, is employed in the fol­

lowing result to obtain a non-zero solution to the equation Lx = N x. 
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Theorem 5.4.12 Let K c X be a cone and H(domL n K) = Kl be a cone in Y such 

that oBI (0) n I{l is not compact. Let Dl and D2 be open bounded sets in X such that 

o E D1 C D2, Di n K n dom L =I- 0 for i = 1,2. Assume L, N : D2 n K -t Yare bounded 

such that L - AN is A-proper for 0 < A < 1 and (N + J- l P) x E IKl (Hx) for every 

x E D2nK. Suppose C : D2 nI{ -t Y is compact and Cx E IKl (Hx) for every x E D2nK 

and (LS) holds on ODI n I{ and (A 2), (A3) both hold on aD2 n I{. Then Lx = Nx for 

some x E D2 \ D1 . 

Proof. As in the proof to Theorem 5.4.9, either Lx = N x on aD2 or (L8) implies 

by Theorem 5.2.1. Then (A2) and (A3) imply indK ([L, N] ,D2) = {O} by Theorem 5.4.11 

so that 

indK ([L, N] ,D2 \ D1) = indK ([L, N] ,D2) - indK ([L, N] ,D1) =I- {O} . 

Therefore, by PI of the index, there exists x E (D2 \ D1) n K such that Lx = N x. Q.E.D. 

We conclude this section with a theorem that ensures the existence of at least two 

non-zero solutions to the equation Lx = N x. 

Theorem 5.4.13 Let 0 E Dl C D2 be open bounded sets in X with Di n I{ n dom L =I- 0, 

i = 1,2, where I{ C X is a cone. Let L, N : D2 n I{ -t Y be bounded such that L - AN is 

A-proper for 0 < A < 1 and A (N + J-1 P) x E IKl (Hx) for every x E D2 n K, A E [0,1]. 

Suppose (N + J- l P) (K) is bounded and: 

(LS) holds on oKDl , i.e., Lx =I- ANx + (1 - A) J- 1 Px, x E aKDl , A E [0,1] 

(E) holds on oKD2 , i.e., there exists e E Kl \ {O} such that Lx =I- Nx + Ae, x E aKD2 ) 

A > O. 

Then Lx = N x has at least two solutions in K \ {O}. 
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Proof. Since (N + J- 1 P) (K) is bounded, property P5 of the index implies there 

exists an open bounded set D3 with D2 c D3 such that indK ([L, N] ,D3) = {I}. By (E). 

Theorem 5.4.5, and P3 we have 

Hence there exists Xl E (D3 \ D2) n K such that LX1 = NX1. If Lx = Nx on 8KD1 then 

the conclusion holds. If not, then Lx -=I- N x on 8KD1 and by the proof to Theorem 5.4.4 

and P3 we have 

and therefore there exists X2 E (D2 \ D1) n [{ such that LX2 = N X2. Q.E.D. 
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Chapter 6 

APPLICATIONS TO 

DIFFERENTIAL AND INTEGRAL 

EQUATIONS 

6.1 Introduction 

In this final chapter, we apply some of the theorems of Chapter 5 to prove the existence 

of non-negative solutions to several differential and integral equations. The equation we 

consider first, in Section 6.2, is the following boundary value problem. 

-x" (t) = f (t, x (t), x' (t), x" (t)) where x (0) = x (1) = o. (6.1) 

This problem was studied by Lafferriere and Petryshyn [28] in which equation (6.1) 

was transformed to the fixed point operator equation Ty = y in the space Y = C [0, 1]. 

We shall formulate (6.1) in terms of a semilinear equation L - N and obtain similar 

results. 

Section 6.3 concerns the periodic boundary value problem: 
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-x" (t) = f (t, x (t), X' (t)) where x (0) = x (1) and x' (0) = x' (1) . (6.2) 

We first transform (6.2) into a semilinear equation and then use a method similar to 

that of Mawhin [34] and Petryshyn and Yu [44] to obtain a priori bounds for the solution 

set. 

Our last application involves the perturbed Volterra equation: 

y' ( t) = k ( t, t, x (t)) + l' k,( t, s, x (s)) ds 

obtained by differentiating the Volterra integral equation of the first kind, 

l' k ( t, s, x (s)) ds = y (t) . (6.3) 

This problem was studied by Deimling [13] in which he obtained a non-negative 

solution using a Leray-Schauder boundary condition argument. His results are proved 

for cones with nonempty interior and he remarks that it is unknown whether Theorem 

20.4 of [13] remains true if the interior int K = 0. We shall use a weakly inward result in 

the framework of A-proper maps from the preceding chapter which applies to cones of 

both empty and nonempty interior and thus generalises the results in Deimling [13]. 

6.2 A positive solution to the Picard problem 

We shall formulate the Picard boundary value problem, (6.1), as a semi linear equation 

in Banach spaces and place certain conditions on the nonlinearity f(t,x,x',x") so that 

we might apply Theorem 5.3.8 to obtain a positive solution to equation (6.1). 

Let X = C 2 [0, 1], Y = C [0, 1] and K = {x EX: -x" (t) > 0, x (0) = x (1) = O} 

with norms Ilxllx = max {IIXlly ,llx/lly, IIX"lly} and Ilxlly = maxtE[O,l] {Ix (t)I}· Define 

L: domL c X -t Y by Lx = -x"(t) where domL = {x EX: x(O) = x(l) = O} and 

N x = f (t, x (t) , x' (t) , x" (t)) . 
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Theorem 6.2.1 Under the above assumptions, suppose also that: 

(a) there exists R> 0, k E (0, l(L)/jio), such that f: [0,1] X [0, R] X [-R, R] X lR- --+ lR+ 

is continuous and If(t,p,q,sd - f(t,P,q,S2)1 < kls1-s21 for t E [0,1]' p E [O,R], 

q E [-R, R] , Sl, S2 E lR -, 

(b) f(t,p,q,s) > R for every t E [0,1], p E [O,R], q E [-R,R] , s E lR-, 

(c) there exists r E (0, R), to E [0,1] such that f (to,p, q, s) < r for p E [0, r], q E [-r, r], 

s = -r. 

Then there exists a positive solution x E K to equation (6.1) with r < Ilxllx < R. 

Before verifying the hypotheses of Theorem 5.3.8) we show that problem (6.1), thus 

formulated, is a semilinear Fredholm operator equation. We state and prove this in the 

following subsidiary proposition. 

Proposition 6.2.2 Assume the conditions of the preceding theorem hold. Then 

(a) L : dom LeX --+ Y is Fredholm of index zero, 

(b) N is k-ball contractive, 

(c) L - AN is A-proper for ° < A < jio relative to fL. 

Proof of the proposition. To prove L is a Fredholm operator of index zero, we must 

show dim (ker L) = dim(Y \ imL) < 00. To determine the ker L; suppose Lx = 0, 

then -x" (t) = ° and -x' (t) = C1 by integration. Integrating a second time gives 

-x (t) = C1t+C2 or x (t) = -C1t-C2' By the boundary conditions we obtain x (0) = -C2 = 

x (1) = -C1 - C2 = ° so that -C2 = -C1 - C2 which implies C1 = ° and C2 = ° by the last 

equality. Hence ker L = {x E domL : x (t) = O} from which we deduce dim (ker L) = 0. 

N ow we prove im L = Y. We shall show that for y E Y, there exists x E dom L such 

that Lx = y, i.e., -x" (t) = Y (t) and x (0) = x (1) = 0. Let y E Y and 

x(t)= [t(l-T)Y(T)dT- [(t-T)Y(T)dTo 

92 



Then 
(I t 

X' (t) = i 0 ( 1 - r) y (r) dr - 1 y ( r) dr 

and 

x"(t)=-y(t) or -x"(t)=y(t). 

Also 

r1 
0 

x(O)= io O(l-r)y(r)dr-l (O-r)y(r)dr=O 

and 

x(l)= l\(1-r)y(r)dr- [(l-r)y(r)dr=o. 

Therefore, im L = Y so that dim (Y \ im L) = dim (ker L) = ° which proves L is Fredholm 

of index zero. 

Now we show that condition (a) of the theoreln implies (b) of the proposition. The 

proof is from Petryshyn [45]. We define a bivariate map V : X x X --+ Y by V (x, u) = 

f(t,x,x',u") so that N(x) = V(x,x). Let Q C X be a bounded set and denote {3x 

and {Jy as the ball-measure of non-compactness in the spaces X and Y respectively. 

Let r = (Jx (Q) and E > 0; we then cover Q with a finite number of balls in X with 

radii r + Elk and centres Ui so that Q C Uj=lBr+E/k(Uj). Now Q is precompact in 

C 1 [0, 1] since X is compactly embedded in C 1 [0, 1], Q is bounded in X and the map 

x --+ V (x, u) is continuous from C 1 [0,1] to Y for each fixed U in X. This implies the 

set V (Q, u) is precompact in Y for each U E X and so Uj=l V (Q, Uj) is also precompact 

in Y. Now as Uj=l V(Q,Uj) is precompact, we may choose X1, .•• ,Xq in X such that 

Uj=l V (Q, Uj) C U~=l BE (xn) for the given L Then for any x E Q, we choose j such 

that \Ix - Uj II < r + EI k and observe that 

IIV(x,x) - V(x,uj)11 liJ(t,x,x',x") - f (t,x,x',uj)11 

< kllx"-ujll 

< kllx-ujll<k(r+E/k). 
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Now we choose n E {l, ... , q} such that IIV (x, Uj) - xnll < t. Thus 

IIN(x) - xnll IIV(x, x) - xnll 

< IIV(x,x) - V(x,Uj)11 + IIV(x,uj) - xnll 

< k (r + E/ k) + E = kr + 2E. 

Hence N(Q) C U~=lBkr+2[(Xn) so that fJ(N(Q)) < kr+2E. As E > ° was arbitrarily 

chosen, this implies fJ (N( Q)) < kfJ( Q) so that N is k-ball-contractive. It follows from 

(ii) of Theorem 1.4.7 and Remark 1.4.8 that L - AN is A-proper for ° < A <110. Q.E.D. 

We mention that an example of an admissible scheme for maps from X into Y is the 

following. Let Yn C Y = C [0, 1] be the subspace of all y E Y that are linear in every 

subinterval [tni' tni+l ] where ° = tno < tnl < ... < tnn = 1 and max (tni+l - tnJ --1- ° as 

n --1- 00. Define Qny(t) = Yn(t) where 

for t = tn ; i = 0, ... , n, 

for t E (tni' tni+1 ) , i = 0, ... , n. 

We verify that this construction is an admissible scheme in the following proposition. 

Proposition 6.2.3 Let Yn = QnY and Xn = H- 1 (Yn)J then fL = {Xn, Yn,Qn} is an 

admissible scheme for maps from X into Y. 

Proof of the proposition. Since {Yn (t)} C Yn are continuous for all n E Nand t E [0,1], 

it is clear that Yn C Y for all n E N. 

We prove that Qn is a continuous linear projection of Y onto Yn with IIQnl1 = 1. Let 

y,z E Y and a,fJ E IR, then 

ay (t) + fJz (t) for t = tni,i E {O, ... ,n} 

Qn (ay(t)) + Qn ((3z(t)) 

aQny(t) + fJQnz(t). 
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Qn(ay(t)+flz(t)) - ay(tnJ+[ay(tni+l)-ay(tnJJ t-tni + 
tni+1 - tni 

flz(tnJ+ [flz(tni+J -flz(tnJJ t-tni 
tni+1 - tni 

- aQnY (t) + flQnz (t). 

Which proves the linearity of Qn. 

To prove Qn is a projection, we observe that for t = tni' i E {O, ... , n}, Q~ (y (t)) = 

Qn (Qny(t)) = Qn (y (t)) = Y (t). For t E (tni' tni+1 ) , i E {O, ... , n}, we have 

SO Q~ (y (t)) = QnY (t). 

We calculate the norm of Qn as follows. 

_ sup {IIQnyll : Ilylly = I} where Ilylly = max Iy (t)1 tE[O,l] 

- sup {max (IQnY (t)I) : Ilylly = I} 
tE[O,l] 

< sup {max (Iy (t)1) : Ilylly = I} 
tE[O,l] 

= 1. 

Now if we take the function y(t) = 1 for all t E [0,1], then lIylly = maXtE[O,l]ly(t)1 = 1 

and IIQnyily = 1 so that 

IIQnyl1 = 1 < sup {IIQnyll : Ilyll = I} = IIQnl1 for all n E N. 
Ilyll -

Hence IIQnl1 = 1 for each n E N. 
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The continuity of Qn then follows from IIQnl1 = 1. 

Thus, for each n E N, Qn is a continuous linear projection of Y onto Yn with IIQn II = 1. 

We now determine the dimension of Yn and show that Xn and Yn are of the same 

finite dimension. Let {el' ... , en+l} be the usual orthonormal basis in IRn+l. We have 

for each Yn E Yn, (y(tl) , ... ,y(tn+d) E IRn+l uniquely represents Yn in IRn+l. Letting 

(Yn (h), ... , Yn (tn+d) = (aI, ... , a n+1) then Yn has the unique representation ~]~~ ajej 

in IRn+1 from which it is clear dim Yn = n + 1. Defining Xn = H-1 (Yn), where in this 

case H- 1 = L- 1 (L being invertible), we have dimXn = n + 1 since the homeomorphism 

H- l preserves dimension. 

Finally, we show that dist (y, Yn ) -t 0 as n -t 00 by proving the norm convergence of 

QnY -t Y as n -t 00 for each Y E Y. From the definition of the norm we have 

I\QnY - YII = max {IQnY (t) - Y (t)l} 
tE[O,l] 

.. m~~ { Y (ti) + (y (ti+1) - Y (ti)) tt - ~it. - Y (t) } 
tE(t.,t.+d, t-O, ... ,n-l t+1 t 

m~x {Iy (ti) - y (t)l} 
tE(ti,ti+d, t=O, ... ,n-1 < 

{ 
t - ti } 

+ tE(ti,ti+J,~~o, ... ,n-1 Iy (ti+d - Y (ti)1 ti+1 - ti . 

Now as n -t 00, Iy (ti) - y (t)1 -t 0 and Iy (ti+d - y (tdl -t 0 and since I ti~:ti I < 1, 

both terms on the right hand side of the inequality converge to zero. 

Theorem 1.4.5 then implies that fL, thus constructed, is an admissible scheme for 

maps from X into Y. Q.E.D. 

Proof of Theorem 6.2.1. Let fL be as above. We verify the hypotheses of Theorem 

5.3.8. Let x E [{ n dom L with IIxllx = R. Then II Lx l\y = lI-x"lly = R and there exists 

tl E [0,1] such that -x" (tl) = R or x" (tl) = -R. So we have for t E [0,1], x (t) E [0, R], 

x' (h) E [-R, R] and x" (td = -R. 
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By (b) we have 

Hence 

IINXll y > INx (tdl 

Nx(td = f(t1,x(td,x'(td,x"(td) 

> R> R/f-lo (since f-lo > 1). 

which satisfies (a) of Theorem 5.3.8. 

Let r be as in (c) and x E domLnK such that IIxlix = r. Then there exists to E (0,1] 

such that I_X" (to)1 = IILxll y = r = -x" (to) or x"(to) = -, and we have x(t) E [0,,], 

x' (t) E [-"~ r] for every t E (0,1] and x" (to) = -,. From (c) we obtain 

f (to, x (to), x' (to), x" (to)) < ,. 

Then if Lx = f-lN x for some f-l < 1 and x E K with Ilxllx = , we would have 

Lx = -x"(t) = f-lf(t,x(t),x'(t),x"(t)) 

for every t E [0,1] including to. This would give 

-x" (to) = r = f-lf (to, x (to), x' (to), x" (to)) < f-lr, 

a contradiction. This satisfies condition (c) of Theorem 5.3.8 while condition (b) is 

immediate. Thus there exists x E K with, < IIxllx < R such that Lx = N x. Q.E.D. 

6.3 Non-negative solutions to the periodic boundary 

value problem 

As with the previous problem, we first convert equation (6.2) into a semilinear operator 

equation in Banach spaces. We then place certain restrictions on f (t, x (t), x' (t)) in 

Theorem 6.3.1 so that the conditions of Corollary 5.2.7 are satisfied. 
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Let X = {x E C2 [0, 1] : x (0) = x (1), x' (0) = x' (I)} with Ilxllx = max{llxlly, Ilx'll y} 

and Y = C [0, 1] with Ilylly = maXtE[O,l]ly (t)1 and K = {x EX: x (t) > 0, t E [0, I]}. 

Define L : X --+ Y by Lx = -x" (t) and N : X --+ Y by Nx (t) = f (t, x (t), x' (t)). 

We assume f to be continuous on [0, 1] x JR. x JR.. Before stating our existence theorem, 

we prove that L, as so defined, is indeed Fredholm of index zero and that L - AN is 

A-proper. 

To determine the ker L; suppose Lx = 0, then -x" (t) = 0 and so x' (t) = Cl by 

integration. Integrating a second time gives x (t) = Cl t + C2. By the boundary conditions 

we obtain x (0) = C2 = x (1) = Cl +C2 which implies Cl = O. Also, x' (0) = Cl = x' (1) = Cl 

so that ker L is the set of constants {c E JR.}. Hence dim (ker L) = 1. 

Now imL = {y E Y : -x" (t) = Y (t) and x (0) = x (1), x' (0) = x' (I)} and the gen­

eral solution to -x" (t) = Y (t) is 

x(t) = C1 +c2t -l' (t-r)y(r)dr. 

The periodic boundary conditions require 

x(0)=C1=x(1)=C1+ C2-1
1
(1-r)y(r)dr 

so that 

C2 = 11 (1 - r) y ( r ) dr. 

As 

X'(t)=C2-l'y(r)dr, 

the boundary conditions require 

so that 

x' (0) = C2 = x' (1) = C2 - 11 Y ( r ) dr 

f y(r)dr = 0. 
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Hence the specific solution is 

x (t) = C, + l' t (1 - T) Y ( T ) dT - l' (t - T) Y ( T ) dT 

and im L = {y E Y : J01 y ( T ) dT = 0 } . 

Let Yo = {constants}. Then Y = Yo E8 Y1 and we may take the projection Q : Y --+ Yo 

to be Qy = J0
1 

Y (t) d-t. Therefore, dim(ker L) = 1 = dim(Yo) and L is Fredholm of index 

zero. 

Since N x = f (-t, x, x') is continuous and X is compactly embedded in Y by Sobolev's 

embedding theorem [57], N is therefore compact. Hence L - AN is A-proper by (i) of 

Theorem 1.4.7. 

We mention that the projection scheme constructed in Section 6.2 is valid also for 

this periodic problem with the modification that H = L + J-1 P where P : X --+ ker L 

and J : Yo -)- ker L. For this particular problem, we shall define Px = Jo1 
X (t) dt which is 

a constant and therefore in the ker Land Jy = (3J where (3 E IR+ will be specified later. 

We are now prepared to state our existence theorem for equation (6.2). 

Theorem 6.3.1 Suppose 

(a) f : [0, 1] X IR X IR ---+ IR is continuous and there exist a, b, c E IR + such that If (t, x, p) I < 

a + b Ixl + c Ipl for every p, x > 0 and t E [0,1] where b + wc < 2w2 

(b) there exists M1 > 0 such that Jo1 f (t, x, x') dt #- 0 for x E X with x (t) > M1 , t E [0,1] 

(c) there exists M2 > Ml such that for x E ker L = IR with x > M2 implies xf (t, x, 0) > 0 

for every t E [0,1] (or xf (t, x, 0) < 0) 

(d) there exists a E (0,8] such that f (t, x,p) > -ax for every x > 0, t E [0,1] . 

Then there exists x E dom L, x (t) > 0 such that Lx = N x. 

Proof. To verify the conditions of Corollary 5.2.7 we first obtain a set 

n={xEJ{:lIxIl 2 <r} 
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such that Lx i= )"'N x on an for)'" E [0,1]. We then show that if x E 1{ is a solution of 

-x" = )...f (t, x, x') for some)... E [0,1] then x (t) < M for some M > 0 independent of 

x (t) and ).... 

Let x be a solution of -x" = )...f (t, x, x') for some)... E [0, 1], then 

-l x" (t)dt - .xl f(t,x,x')dt 

- [x' (1) - x' (0)] 0 = .xl f (t, x, x') dt. 

From (b) there exists to E [0,1] such that x (to) < MI. We write x (t) = ao + u (t) with 

ao = l' x (t) dt 
a . 

then 

and 

l' u (t) dt - 0 

x' (t) - u' (t) 

x (t) - x (to) + {t x' (s ) ds 
Jto 

x (t) < Ml + Ilx'112 = Ml + Ilu'112 where 11112 is the L2 norm. 

N ext we prove 

Let 

{

X (t + to - 1) - x ( to) for 1 - to < t < 1, 
w (t)-- x(t+to)-x(to) forO<t<l- to· 

Since w (0) = w (1) = 0 and w E C 1 [0,1], Theorem 257 of [21] implies 

IIwl1 2 < ~ Ilw'112 
7r 

and 

Ilw (t) + x (to)ll; {I-to Ix (t + to)12 dt + /,1 Ix (t + to - 1)12 dt 
Jo 1-~ 

llx (tll' dt. 
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Similarly we obtain 

These inequalities then give 

Integrating the left side of -x" 0 x = )..f (t, x, x') 0 x by parts, we obtain 

-l' x" (t) . x (t) dt - - x' ( t) . x (t) I~ + l' x' ( t) . x' (t) dt 

- - [x' (1) . x (1) - x' (0) . x (O)J + l' [x' (tlJ 2 dt. 

So we have 

l' [x' (t)J2 dt = A l' f (t, x, x') . x (t) dt. 

By (a) and Holder's inequality we have 

IIx'll~ - Ilu'lI: < l' If (t, x, x')llu (t)1 dt -

< l' (a +b Ix (t)1 + c lx' (tll) lu (t)1 dt 

< lIa + b Ixl + C Ix'lIlzllullz -

< (a + b Ilxll z + C lIu'lIz) lIuliz 0 

Extending u (t) periodically to all of IR with period one and using Wirtinger's inequality 

[21], IIuliz < (1/27r) IIu'lIz, we obtain 

z z 1 , 1 II 'liz IIx'lIz = lIu'liz < (a + bMt) -Ilu liz + (b + 7rc) -2 z u z 0 27r 7r 

Since by (a), b + 7rC < 27rz and IIx'lIz = lIu'liz < Al where 

Al = 7r (a + bMI ) 0 

27rZ - (b + 7rc) 

So X (t) < MI + Al for t E [0,1] and IIxliz < MI + AI/7ro 
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Thus, if we choose r > M1 + Ad7r we shall have -x" #- AI (t, x, x') on an where 

n = {x E I{: IIxl12 < r} and (ad of Corollary 5.2.7 is satisfied. 

For Q : Y -1- 12, Qy = fa
1 

y (t) dt and x E ker L n an, then x (t) - c, a constant, and 

x (t) = c = r > M1• Condition (b) gives 

Q N x = [ f (t, x, 0) dt '" 0 

and (b1 ) of Corollary 5.2.7 is verified. 

To prove (C1) of Corollary 5.2.7, we define the bilinear form [".] : Y x Y ---+ IR as 

[y, xl = 1'y ( t) x (t) dt. 

It is clear that [".] is continuous and satisfies [y, x] = 0 for every x E ker L, y E im L. 

Now we show that condition (c) implies (cd of Corollary 5.2.7. Let x E ker L n an, then 

x(t) = c = r > M1 so choose M2 = rand 

[ Q N x, xl = l' l' f ( t, c, 0) dt . cds < 0 

since 1 (t, x, 0) . x < 0 for x > M 1· 

To verify (d), let x E I{ with Px = J; x (t) dt, Qy = Ja1 
y (t) dt and 

where 

Then 

L,'(I-Q)N= 1'G(s,t) [f(S,X(S),x'(s))- l' f(t,x(t),x'(t))dt]ds 

1 {( s /2) (1 - 2t + s) for 0 < s < t 
G (s, t) = (1/2) (1 _ s) (2t - s) for t < s < l' 

Px+JQNx + L11 (I-Q)Nx 

=' 1'x(s)dS+,8 1'f(s,x(s),x'(s))dS 

+ l' G(s,t) [f(S,X(S),x'(s)) - l' f(t,x(t),x'(t))dt] ds 

[ x ( s ) ds + [ H (s, t) f ( s, x (s) , x' (s)) ds 

lThe derivation of G(s, t) is given in the appendix to this section. 
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where 

H(s,t) = (3+ G(s,t) - 1'G(S,t)ds 

or 

H (s, t) = { j3 + (s / 2) (1 - 2t + s) - f01 ~ ( s, t) ds, 0 < s < t 
j3 + (1/2) (1 - s) (2t - s) - fa G ( s, t) ds, t < s < 1 . 

We show in the appendix to this section that 0 < H (s, t) < 1/8 if j3 is chosen to be 1/24. 

Then 

11 X (s) ds + 11 H (s, t) f (s, x (s) , x' ( s)) ds > 11 X (s) ds - ex [ H (s, t) x (s) ds 

> r1 

x (s) ds _ a r1 

x (s) ds 
Jo 8 Jo 
(1 - ~) [ x ( s ) ds > o. 

Thus all conditions of Corollary 5.2.7 are satisfied and there exists x E dom L n K such 

that Lx = N x. Q.E.D. 

6.4 A non-negative solution to a perturbed Volterra 

equation 

We consider the system of Volterra integral equations of the first kind 

y(t)= [k(t,s,x(s))dS, tEJ=[O,l] (6.4) 

where k and yare IRn-valued and all functions are known except x(s). Differentiation 

with respect to t yields 

y' ( t) = k (t, t, x (t)) + [kt (t, s, x (s)) ds (6.5) 

where kt (t, s, x (s)) 8k/8t. We convert this to an operator equation of the form 

T1 X = X (t) - k (t, t, x (t)) 
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and 

T,x = y' (i) - 10' kt (i, B, x (B)) dB. 

Or, more concisely, x = Nx (in the form Lx = Nx with L = I and N = TI + T2)' 

Let X = L2 [0, 1] and I{ C X where I{ = {x EX: x (t) > 0 a.e.}. We shall prove 

that (6.4) has a solution x E K if the following conditions are satisfied. 

(i) k : {(t, s) E J x J: s < t} x IRn+ ---+ IRn and kt (t, s, x (s)) satisfy Caratheodory 

conditions on J and there exists M > 0 such that Ik (t, s, x)1 , Ikt (t, s, x)1 < M (1 + Ixl). 

(ii) (k (t, t, x) - k (t, t, y), x - y) > a Ix - Yl2 on J x IRn+ x IRn+ for some a E (0,1). 

( iii) kt (t, s, x (s )) < O. 

(iv) ki (t, t, Xl, ... , Xi-I, 0, Xi+l, ... , Xn) < 0 for i = 1, ... , n. 

(v) Y (t) E WI,oo , Y (0) = 0 and y' (t) > 0 for a.e. t E J. 

Theorem 6.4.1 Assume that conditions (i) through (v) hold. Then there exists x E 

L2 [0,1]' x (t) > 0 a.e.) that is (6.4) has a non-negative solution. 

Proof. To apply Theorem 5.4.4, we must show N is A-proper, weakly inward and the 

solutions of x = AN x are bounded for A E [0,1]. We note that L = I is clearly Fredholm 

of index zero and that the projection scheme mentioned in the introduction to Chapter 

2 suffices for X = L2 [0, 1]. 

Now (ii) implies Tl is c-dissipative since 

(x - k (t, t, x) - Y + k (t, t, y), x - y) 

(x - y + k(t,t,y) - k(t,t,x),x - y) 

(x-y-(k(t,t,x)-k(t,t,y)),x-y) 

(x - y,x - y) - (k(t,t,x) - k(t,t,y),x - y) 

Ix - Yl2 - (k (t, t, x) - k (t, t, y) ,x - y) 

< Ix - Yl2 _ a Ix - y\2 = (1 - a) Ix _ Yl2 . 

104 



So (T1X - T1y, X - y) < c Ix - Yl2 where c E (0,1). And since T2 is compact. X = T1 + 12 

is A-proper by (iv) of Theorem 1.4.7. 

To prove N is weakly inward we observe first that conditions (iii) and (v) imply 

T2 maps [{ to K so we need only show T1 is weakly inward. Let x E a Kl ;uch that 
..... 

x* (x) = 0 for some x* E [{*, then we identify x* with an L2 function, x* (t) > 0 a.e. and 

fo1 x* (t) x (t) dt = o. Thus x* (t) = 0 a.e. on the set {t : x (t) -# O}. Applying x* to T1x 

we obtain 

n r1 n r1 t;. 10 xi (t) Xi (t) dt - t;. 10 xi (t) k;(t, t, x.(t) , ... , Xn (t)) dt 

0- t r x; (t) ki (t, t, Xl (t), ... , Xi-1 (t), 0, Xi+1 (t), ... , Xn (t)) dt 
i=l J{t:Xi(t)=O} 

> 0 

by (iv). Hence N is weakly inward on K. 

Before showing the solutions of x = AN x, A E [0,1]' are bounded, we state and prove 

a Gronwall type inequality for non-negative a.e. functions of L1. 

Lemma 6.4.2 Let x E L1 [0, a] such that x (t) > 0 a.e. and suppose that 

x(t)<C+M lx(s)dsa.e. 

where C and M are non-negative constants. Then x (t) < CeMa a.e .. 

Proof From (6.6) we have 

Then integrating both sides from 0 to t gives 

rt 
M x (t) dt < t Mdt = M t. 

} 0 C + M J~ x (s ) ds - J 0 

(6.6) 

To integrate the left side we use the change of variable formula of Lebesgue integration, 

a special case of which we state summarily; cf. [22] for a proof. 
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Theorem 6.4.3 If cp : [a, b] ---+ [0,,6] c lR is a monotone, absolutely continuous function 

and fELl [a, jJ] then (f 0 cp) Icp'l E L1 [a, b] and 

j f3=<P(b) f (u) du = jb (f 0 cp) Icp'l dt. 
a=<p(a) a 

We let f (u) = ~ on [C, D] ; C, D > 0, and cp (t) = C + M f; x (s) ds on [0, t] and note 

that fELl [C, D] and cp is absolutely continuous since it is defined as an integral and 

monotonic since x (s) > 0 a.e .. Thus 

i t Mx (t) d 
t t 

o C + M fo x (s ) ds l
C+M f~ x(s)ds 1 

-du 
C u 

In ( G + M l' x (s) dS) - In G 

(
c + M f~ x (s ) dS) 

In C . 

So the inequality above yields 

C + M f~ x (s ) ds M t <e C -

that is 

G + M l' x (s) ds < GeM'. 

Then by (6.6) 

x (t) < G + M l' x (s) ds < GeM' < GeMa for a.e., t < a E JR+. Q.E.D. 

N ow from x = )"N x we have 

x = oX (x (t) - k (t, t, x (t)) + y' (t) - l' k, (t, s, x ( s ) ) dS) 

and by (ii) with y = 0, 

Ik (t, t, x) - k (t, t, O)llxl > )..lxl
2 

or 

Ik(t,t,x)-k(t,t,O)1 > )..Ixl· 
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Substituting k (t, t, x) = y' (t) - J~ kt (t, s, x (s)) ds we obtain 

A l:r I < y' (i) - 1\, (i, s, :r (s)) ds - k (i, i, 0) 

< Iy' (i)1 + Ik (i, i, 0)1 + l' Ik,(i, s,:r (s))I ds 

< Iy' (i)1 + Ik (i, i, 0)1 + l' M (1 + Ixl) ds 

- Iy' (i)1 + Ik (i, i, 0)1 + Mt+ M l' Ix (s)l ds. 

Lemma 6.4.2 then gives Ixl < CeMa . Theorem 5.4.4 can now be applied taking OK = 

Br (0) n I{ with r > CeMa to obtain the required result. Q.E.D. 
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Appendix A 

A.I The derivation of G (3, t) 

As demonstrated in Section 6.3, the solution to -x" (t) = Y (t) with periodic boundary 

conditions x(O) = x(l) and x'(O) = x'(l), is 

x (t) - x (0) + [ t (1 - s) y (s ) ds - l' (t - s) y ( s ) ds 

where 

x (0) + (1' t (1 - s) y ( s ) ds + [ t (1 - s) y ( s) dS) - l' (t - s) y ( s ) ds 

x (0) + l' [t (1 - s) - (t - s) 1 Y ( s ) ds + [ t (1 - s) y (s ) ds 

x (0) + l' s (1 - t) y (s ) ds + [ t (1 - s) y (s ) ds 

x(O) + [g(s,t)Y(S)dS 

{ 

s (1 - t) for 0 < s < t 
g(s,t) = . 

t (1 - s) for t < s < 1 

The projection Px = J; x (t) dt applied to the solution x (t) above gives 

Px - P (x (0) + [g(s,t)y(s)ds) 

_ [x(O)dt+ [ [g(s,t)Y(S)dsdt 
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= x(O) + [[ g(s,t)y(s)dsdt. 

Now Ll1y = Xl (t) = X (t) - Px (t) SO that 

r1 r1 r1 

- io g(S,t)y(s)ds - io io g(S,t)y(s)dsdt 

[g(S,t)Y(S)ds - [([ g(s,t)dt) y(s)ds 

- [[g(S,t) - l' g(s,t)dt] y(s)ds. 

Evaluation of the integral fol 9 (s, t) dt gives 

l' 9 (s, t) dt - 1'g (s, t) dt+ [g (s, t) dt 

- 1"t (1 - s) dt + [s (1 - t) dt 

- ~[t2(1-S)]~+~[-S(1-t)2]~ 
- (s2/2)(1-s)+(s/2)(1-s)2 

- (s/2)(1-s). 

Equation (A.1) can then be expressed as fol G (s, t) Y (s) ds where 

{ 
(s/2)(1-2t+s) for 0 < s < t 

G(s,t)=g(s,t)-(s/2)(1-s)= -. 
(1/2) (1 - s) (2t - s) for t < s < 1 

A.2 Bounds for H(s,t) 

We show that if {3 is chosen to be 1/24 then 0 < H (s, t) < 1/8 where 

{ 

(J + (s /2) (1 - 2t + s) - fol G ( s, t) ds for 0 < s < t 
H(s,t) = 1 . 

(J + (1/2) (2t - 2st - s + S2) - fa G (s, t) ds for t < s < 1 

Evaluation of the integral fol G (s, t) ds gives 

11 G ( s, t) ds = ~ 1t S - 2st + S2 ds + ~ 11 2t - 2st - s + S2 ds 
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So 

~ [S 
2 /2 - t 8

2 + S3 / 3] ~ + ~ [2t8 - ts2 - s2/2 + 33 /3] : 

-1/12 (after some simplification). 

H ( s, t) = { fJ + (s /2) (1 - 2t + s) + 1/12 for 0 < s < t 

fJ + (1/2) (2t - 2st - s + S2) + 1/12 for t < s < 1 . 

To determine the bounds for H (s, t) on the region R = [0,1] x [0,1] in ]R2 we use 

the theory of maximization and minimization of a function of two variables. Now for 

o < s < t, 8H/8s = 1/2 - t + sand 8H/8t = -s so that the solution to the system 

8H/8s = 0, 8H/8t = 0 is s = 0, t = 1/2 which is on the boundary of R. For t < s < 1, 

8H / 8s = -t -1/2 + sand 8H / 8t = 1- s so that the solution to the system 8H / 8s = 0, 

8H/8t = 0 is s = 1, t = 1/2 which is also on 8R. Thus we need only look for the extreme 

points of H (s, t) on 8R. We divide the boundary of R into four intervals: Sl whose 

points have coordinates (0, t), S2 whose points have coordinates (s, 1), 53 whose points 

have coordinates (s,O) and S4 whose points have coordinates (1, t). 

For the interval Sl, H (0, t) = f3 + 1/12 and hence constant. 

For the interval S2, H (s, 1) = fJ - s/2 + s2/2 + 1/12 and 8H/8s = -1/2 + s. Then 

H (s, 1) has a minimum for s = 1/2, t = 1 (by second derivative test or by parabolic, 

concave up nature of H (s, 1)) and H (1/2, 1) = f3-1/24. The maximum values of H (s, 1) 

occur at the end points of S2 and we have H (0, 1) = H (1, 1) = (3 + 1/12. 

For the interval S3, H(s,O) = {3 - s/2 + s2/2 + 1/12 and 8H/8s = -1/2 + s. Then 

H (s, 0) has a minimum for s = 1/2, t = 0 and H (1/2, 0) = (3 - 1/24. As before, the 

maximum values occur at the end points of S3 and we have H (0,0) = H (1, 0) = {3+ 1/12. 

Finally, on S4, H (1, t) = {3 + 1/12 and hence constant. Thus the minimum value of 

H (s, t) on R is fJ - 1/24 and the maximum value is {3 + 1/12. Therefore, if {3 is chosen 

to be 1/24 we have 0 < H (s, t) < 1/8. 
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