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ABSTRACT

The purpose of this thesis is to develop fixed point indices for A-proper semilinear
operators defined on cones in Banach spaces and use the results to obtain existence
theorems to semilinear equations. We consider semilinear equations of the form Lz = Nz
where L is a linear Fredholm operator of index zero, N a nonlinear operator such that
L — N is A-proper at zero relative to a projection scheme I'y,.

Chapter 1 is an introduction to basic concepts used throughout the thesis, including:
Banach spaces, linear operators, A-proper maps, Fredholm operators of index zero, and
the definition and properties of the generalised degree for A-proper maps.

In Chapter 2, we define a fixed point index for A-proper maps on cones in terms of
the generalised degree and derive the basic properties of this index. We then extend the
definition to include unbounded sets.

A more general fixed point index than that of Chapter 2 is developed in Chapter 3
for A-proper maps based on limits of a finite dimensionally defined index. Properties of
the index are given and a definition for unbounded sets is provided.

Chapter 4 extends the Lan-Webb fixed point index for weakly inward A-proper at 0
maps to semilinear operators. This index is also extended to include unbounded sets.

Existence theorems of positive and non-negative solutions to semilinear equations on
cones are established in Chapter 5 using the fixed point indices of Chapters 2, 3, and 4.

Finally, in Chapter 6, we apply some of the existence theorems of Chapter 5 to several
differential and integral equations. We prove the existence of: a positive solution to a
Picard boundary value problem; a non-negative solution to a periodic boundary value

problem; and, a non-negative solution to a Volterra integral equation.
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Introduction

This thesis is concerned with the development and application of a fixed point index for
semilinear equations in cones.
Semilinear equations, also referred to as alternative problems, are operator equations

of the form

Lz = Nz (0.1)

acting on certain topological vector spaces X and Y where L is a linear mapping and N
nonlinear. They are abstract formulations of differential, integral or integro-differential
equations which arise naturally in various areas of science and engineering. Initial in-
vestigations of these equations are attributed to Lyapunov [33] in the study of integral
equations related to a problem in fluid dynamics and Schmidt [50] for theoretical research
in nonlinear integral equations. The method they employed, now called the Lyapunov-
Schmidt method, involved applying certain projections P : X — X where im P = ker L
(in contemporary notation) and @ : Y — Y where ker) = im L. Then the spaces X
and Y can be represented as X = ker L@ ker P, Y =im L @ im( and every z € X can
be expressed as z = o + z, with zg = Pz € ker L and z; = (I — P)z € ker P. Thus

Lz = Nz becomes equivalent to
Lz =(I-Q)Nz, QNz =0

or

t—Pr=L7'(I-Q)Nz, QNz =0 (0.2)
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where LT (I — Q) : Y — dom L N ker P. Whence we obtain the system
I ———Ll_l (I—Q)N(SEO+$1)

and
QN (.’170 + CBI) =0.

For a fixed zg the first equation becomes a fixed point problem

Ty = Sy, (0.3)

for the operator Sz = Li" (I — Q) N(zo+2;) and, under certain conditions on S, may be
solved using suitable fixed point theorems such as those of Banach, Schauder, Sadovskii
etc., cf. [58] for a detailed account. If (0.3) has a unique solution z; = T'(zy), the solution
of (0.1) reduces to solving the second equation of the system, QN (zo + T'(z0)) = 0 for
zo € ker L. This last equation is finite dimensional if L is a Fredholm operator, ¢.v.
Section 1.4, a condition we shall impose throughout this thesis.

The class of Fredholm operators are of considerable importance in functional analysis;
as aptly stated by Zeidler [58]: “The entire development of linear analysis in this century
is intimately related to the concept of the linear Fredholm operator”. These operators
generalise certain properties of linear functions in R™ to operators on Banach spaces.
The modern theory is based upon the results of I. Fredholm [17] who established the
celebrated “Fredholm alternatives” for the solvability of a class of integral equations of
the second type with regular kernel. In so doing, he showed that the operators were,
in modern terminology, Fredholm of index zero. That is, the integral operators of his
investigations were bounded linear operators whose kernels and coimages were of the
same finite dimension.

Fredholm operators of nonzero index were later discovered but because the correspon-
dence in dimension of the afore mentioned subspaces is lost, the transformation of L — N

to I — T cannot be made and, consequently, degree theoretic arguments are not directly
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applicable. We therefore confine our attention to Fredholm operators of index zero and
refer to Deimling [13] for a discussion of operators of nonzero index.

The existence of solutions to many problems in nonlinear analysis cannot be deter-
mined by purely analytic means and other techniques must be employed. A frequently
useful and now fairly general topological method of proving the existence of solutions to
equations is by use of a topological degree and related fixed point index. The basic pro-
cedure in such an argument is to first formulate the problem in terms of a map for which
a topological degree is defined: e.g. compact, contractive, condensing etc.; then show
the degree of the map over a specified set is nonzero (usually employing the homotopy
property of the degree). The existence property of the degree then implies the equation
has a solution.

The concept of a topological mapping degree was introduced by Brouwer (3] around
1910 for a continuous map defined on a euclidean simplicial complex. He used this degree
to prove that a continuous mapping of a sphere in R" into itself has a fixed point. Like
much else in mathematics, the idea was not completely new and for C can be traced back
to the “winding number” or index of a plane closed curve surrounding some point. It is
defined in terms of a Cauchy integral and gives an “algebraic count” (i.e., counting +1
for each positively oriented revolution and —1 for each negatively oriented revolution) of
the number of windings a curve makes about that point. Let G be a simply connected
region in C, f : G — C be analytic and let v be a closed C* curve in G. Kronecker [27],
in what is now called the Kronecker existence principle, observed that if f(z) # 0 on 7,
and the winding number of f(v) is not zero then f has a zero in Gy, the region enclosed
by v. The winding number was also seen to possess another useful property; that of
homotopy invariance. Together, these two properties form the basis of most applications
of degree theory in nonlinear analysis. More details may be found in Zeidler [58].

The extension of the Brouwer degree to compact maps in infinite dimensional Banach
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spaces was made by Leray and Schauder in 1934 [31]. Since a large number of differential.
integral and integro-differential equations can be formulated in terms of compact opera-
tors on infinite dimensional Banach spaces, the Leray-Schauder degree has had wide and
extensive use. More recent developments in degree theory include Nussbaum's degree
for condensing maps, g.v., Section 1.2 for a definition, and the “coincidence degree” of
Mawhin which extends the Leray-Schauder degree to certain semilinear maps.

Another relatively recent degree theory and the one which is of particular importance
to our results is that for A-proper maps, g¢.v., Section 1.3, developed by Browder and
Petryshyn [4] in 1968. The class of A-proper maps was introduced by Petryshyn [39] in
1968 and shown, under certain conditions and projection schemes, to include: compact
perturbations of the identity, 8-Lipschitz, monotone, and accretive type operators. Thus,
results obtained for this class have some generality. An additional advantage of the A-
proper degree is that not only existence of a solution may be inferred if the degree is
nonzero but also, by nature of the theory, constructive solvability of the equation is
obtained.

In determining the existence of non-negative solutions to equations the notion of a
cone proves useful. That is, a closed convex subset K of a Banach space X satisfying
AK C K for all A > 0 and K N (—K) = {0}. Elementary examples are K = R* and
the subset of non-negative functions in C [0,1]. These cones have nonempty interior in
their respective spaces; however, many other cones of interest have empty interior such
as the subset of non-negative functions in L? [0,1]. A somewhat problematic consequence
of this is that topological degree theory, in its strict sense, cannot be applied directly to
mappings defined on relatively open subsets of a cone with empty interior (an assumption
in defining a degree is that T'z # z on 0L, but 00 = 2 if ) has empty interior). A concept
closely related to the mapping degree but of broader definition is the fixed point index

of a map. Essentially, like the degree, it is an algebraic count of the number of solutions
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to the equation Tz = z in a given set, i.e., the number of points left fixed by T. In
1928, Hopf [23] defined a fixed point index for a continuous map on a combinatorial
manifold (a generalisation of polyhedra) and used it to considerably simplify the proof
of the Lefschetz Fixed Point Theorem. He used a homeomorphism to map disjoint
neighbourhoods of the fixed points of a continuous function onto balls in R”, where the
Brouwer degree is defined. For each fixed point, he then defined the fixed point index of
the continuous function to be the value of the Brouwer degree on the corresponding ball
in R™. Since this connection was made, it has become common practice to define fixed
point indices in terms of a topological degree that is not directly applicable for a given
situation but where properties of a degree are desired.

In [36], Nussbaum extended the definition of the fixed point index to condensing
maps over closed convex subsets of a Banach space using a retraction argument. Since
these sets include cones, he was able to use this index to prove some cone compression
and expansion type existence theorems in [37] and obtain results for various nonlinear
functional differential equations. He also pointed out that, in a particular form, this
index is equal to the Leray-Schauder degree and hence an extension of it.

Furthering these ideas, Amann, in his survey article [2], mentioned a fixed point index
for compact operators mapping a retract into itself. He used a retraction argument to
modify the Leray-Schauder degree so that the degree, and equivalently the index, could
be determined over closed convex sets.

As this extension of the Leray-Schauder degree is illustrative of the techniques we
shall employ later using A-proper and Brouwer degrees, we provide a derivation of this
fixed point index according to Amann [2]. We mention that all topological notions such
as open, closed, boundary, etc. refer to the relative topology of K as a subspace of X.

Let K be a retract of a Banach space X with retraction r, f : @ — K a compact

map with  C K relatively open and assume f (z) # z on 9f2. Then we may define the
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fixed point index of f over Q) with respect to K by

1 (f,Q, K) :z'(fr,r_l (Q),X) = deg (]—f?",r_1 (Q),O)

the Leray-Schauder degree for identity minus compact maps.

Some of the important properties of this index are given in the next theorem. cf.

Amann [2] for a proof.

Theorem 0.0.1 Let K be a retract of a Banach space X, Q@ C K an open set and
f:Q = K a compact map such that f(z) # z on 0Q. Then there exists an integer
i (f, 2, K) satisfying the following conditions:

(i) (Normalisation) for every constant map f mapping Q into Q, i (f,Q, K) =1

(i) (Additivity) for every pair of disjoint open subsets 0y, Q, of Q such that f has no
fized points on 0\ (9, U Qy),

LK) =10(f, 0, K) +i(f,Q, K) where i (f,Qn, K) =4 (f |q,,Qn, K) forn=1,2
(iii) (Homotopy invariance) for every compact interval [a,b] C R and every compact map
h:la,b) x Q = K such that h (), z) # z for (A, z) € [a,b] x OQ, i (h(\,-).Q, K) is well
defined and independent of A € [a, b].

The modern approach to index theory is rather axiomatic in that once an index is
defined, it is then shown to satisfy various properties of the classical index. The ones
we verify in this thesis are those most common and useful to the analyst, viz., existence,
normalisation, additivity and homotopy. There are other properties that we don’t discuss
since we don’t use them in our existence theorems, such as: commutativity, excision, and
permanence; but may be proved following similar arguments used in proving the other
properties (often appealing to the equivalent properties of the underlying degree).

For more detailed-including historical-accounts of these topics, see: Gaines and Mawhin
[18], Zeidler [58] for semilinear equations; Alexandrov and Hopf [1], Brown [6], Deimling
[13])Dieudonné [14], and Zeidler [58] for topological degree and fixed point index theory.
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This thesis is organised into six chapters: the first is preparatory and concerns basic
concepts; the second, third and fourth develop fixed point indices for A-proper maps and
are ordered roughly according to increasing generality of application; the fifth establishes
existence theorems; and the sixth is on applications.

In Chapter 1, we introduce the basic ideas necessary in the development of our theory.
We begin with a review of Banach spaces and linear operators then proceed to a discussion
of A-proper maps, Fredholm operators of index zero and conclude with the definition and
properties of the generalised degree for A-proper maps.

Our first result, the content of Chapter 2, establishes a new fixed point index for
A-proper (at 0) maps defined on cones. Our definition of this index places some re-
quirements on the retraction p mapping the Banach space X to the cone K, wiz.,
llpz — z|| < 2dist(z,K) and p(X,) C X,. The first condition seems to be satisfied
by most retractions used in practice; however, the second is more restrictive and dis-
qualifies some common retractions and projection schemes. Examples of retractions and
projection schemes that satisfy and fail these conditions are provided in the introduction
to this chapter. Another requirement of this index is that the A-proper map T must be
defined on all of the cone K. This condition is used to prove the index is independent of
the retraction chosen in the definition. Despite these limitations, an attractive feature of
this index is that it is defined in terms of the generalised degree for A-proper maps and
does not require any reduction to finite dimensional degree arguments. Assuming the
above conditions on the retraction p : X — K, we define in Section 2.2 the fixed point
index as follows.

Let Q C K be open bounded and K a cone in a Banach space X. Assume [ — T is
A-proper at 0 relative to a projection scheme I', T': K — K and T'z # z on 0. Then

we define the fixed point index of T' over {) relative to K as

indg (T, ) = Deg (I — Tp,p~" (2),0)
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where the degree is that for A-proper maps defined by Browder and Petryshyn [4]. We
show that the index is well defined, independent of the retraction chosen provided it
satisfies the stated conditions and has most of the properties of the classical fixed point
index.

In Section 2.3, we show that the semilinear equation Lz — Nz = w where L is
Fredholm of index zero, N nonlinear and L — N A-proper at 0 can be converted to the
form (I — T)y = w and thereby extend the above index to semilinear operators. We
conclude the chapter with the definition of the index on unbounded sets U/. This is done
in the usual way of taking an open bounded set V' C U such that (I — T)™" (0) C V and
defining

indg (T,U) = indg (T, V)

which is a consequence of the additivity over domains and excision properties of the
index. We show that this definition extends to semilinear operators L — V.

In Chapter 3, we develop an index for A-proper at 0 maps without the restrictions
on the retraction p and the domain of 7" mentioned above; thus obtaining an index
of greater application than that of Chapter 2. The method used is similar to that of
Fitzpatrick and Petryshyn [16] where we first define a finite dimensional index and then
obtain the infinite dimensional version through a limiting process. We add that the finite
dimensional index also plays a part in defining the fixed point index for weakly inward
A-proper at 0 maps in Chapter 4. As in Chapter 2, we first define the index for A-
proper at 0 maps T : Qx — K C X (x = QN K), then establish the index for maps
L—N:domLNQg — Y and end with the definition for unbounded sets.

Chapter 4 extends the Lan-Webb [30] fixed point index for weakly inward A-proper
at 0 maps to semilinear operators. With weakly inward maps, the previous requirement
of Chapters 2 and 3, that the operators map cones to cones is relaxed. Weakly inward

operators map closed convex sets K to so called weakly inward sets that contain K
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(precise definitions will be found in Chapter 4). We show that the concept of a weakly
inward map may be extended to semilinear maps and define a fixed point index for them.
We also extend the Lan-Webb index to unbounded sets.

Existence theorems for semilinear equations in cones are established in Chapter 5
using the fixed point indices of the preceding chapters. In Section 5.2, we extend a
general continuation theorem of Mawhin [34] and an existence result of Petryshyn [42] to
cones. We then establish two corollaries of practical interest related to results of Cesari
[9], Mawhin [34], Petryshyn [42], and Webb [54]. We also obtain an existence theorem for
positive solutions and one for weakening a priori bound requirements. These theorems
extend results of Webb [54]. Theorem 5.2.13 extends to semilinear maps a result of
Petryshyn [41} which in turn extends results of Gatica and Smith [19], Nussbaum [37],
and several others, cf. [41] for a list.

Section 5.3 involves existence theorems on quasinormal cones where we extend to
semilinear equations many of the results established by Lafferriere and Petryshyn [28]
for P, -compact cone maps. The idea of quasinormality was introduced by Petryshyn in
[43] where it proved to be useful in studying the existence of positive eigenvectors and
fixed points of noncompact maps. Included in this section are several norm type cone
compression and expansion theorems.

We obtain existence theorems for weakly inward A-proper maps in Section 5.4 which
extend results of Lan and Webb [30]. We use a variation of the Leray-Schauder boundary
condition in Theorem 5.4.4 to prove the existence of a solution to Lz = Nz. We also
provide conditions which imply the index is 0 and, in conjunction with Theorem 5.4.4,
obtain a result that gives a positive solution to a semilinear equation. Our last theorem
in this chapter gives conditions that ensure the existence of at least two positive solutions
but under the rather restrictive hypothesis; that (N + J~' P) (K) be bounded for a cone
K.
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The final chapter, Chapter 6, is on applications of the existence theorems from Chap-
ter 5 to differential and integral equations. In our first application, we prove the existence

of a positive solution to the second order boundary value problem
—z" (t) = f(t,z(t),2' (t), 2" (t)) where z (0) =z (1) =0. (0.4)

We convert the equation to an operator equation of the form L — N and use Theorem

5.3.8 to obtain a positive solution to (0.4) in the cone
K={zeC?0,1): —2"(t) >0, z(0) =z (1) = 0}.

Our second result determines a non-negative solution to the second order periodic bound-

ary value problem
—z" (t) = f(t,z(t),2' (t)) where z(0) =z (1) and 2’ (0) = z'(1). (0.5)

After converting (0.5) to an operator equation, we apply Corollary 5.2.7 to obtain a non-
negative solution in the Banach space X = {z € C?{0,1]: 2z (0) =z (1), z'(0) = 2’ (1)}
Lastly, using our weakly inward results, we prove the existence of a non-negative

solution to the Volterra equation

y(t):/otk(t,s,x(s))ds, teJ=1[0,1]

where k and y are R™-valued. The problem, as we formulate it, is similar to one mentioned
by Deimling [13] where he obtains a solution in the cone of non-negative functions in
C [0, a] using a theorem valid only for cones with nonempty interior. Our index theory
applies to cones with empty and nonempty interior thus enabling us to obtain a solution

in the cone of non-negative a.e. functions of L?[0,1].
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Chapter 1

PRELIMINARY TOPICS

1.1 Introduction

We present the basic and relevant concepts used throughout this thesis concerning Banach
spaces, A-proper maps, Fredholm maps of index zero, and topological degree theory.
Standard references for this material are Taylor and Lay [52], Yosida [56] for Banach
spaces; Petryshyn [47] for A-proper maps; Deimling [13], Dunford and Schwartz [15],
Taylor and Lay [52] for Fredholm operators of index zero; and Cronin [10], Deimling [13],
Lloyd [32] for topological degree theory.

1.2 Banach spaces, linear operators, cones

In the sequel, X and Y will denote Banach spaces with norms ||| and ||||, respectively.
When there is no ambiguity, we shall simply write ||| to denote both of these norms. A
Banach space is said to be separable if it has a countable dense subset. We note that
every Banach space with a Schauder basis (see remark 1.3.3 below) is separable, the
converse being false as proved by P. Enflo. The dual space X* of a Banach space X is

the vector space of all bounded linear functionals * : X — R with z* (z) = (z,z*) being



the value of z* at z. A Banach space is said to be reflezive if the canonical embedding
F: X — X** defined by (z*, Fz) = 2* (z) on X* is surjective.

We define several Banach spaces of particular interest in applications to differential
and integral equations.

Let @ C R™ be an open bounded set,  its closure. C (ﬁ) denotes the space of
continuous functions f : @ — R with norm || f|| = max g |f (z)|. C*(Q), k > 1, denotes
the space of k times continuously differentiable functions on Q and C*(Q) denotes those
f € C*(Q) all of whose partial derivatives of order < k have continuous extensions to ).
This space is endowed with the norm || f|| = Zf:o max, g | D' f (z)]; here D°f = f and
D'f stands for all partial derivatives of f of order i. When Q = [a,b] C R, C* (1) is
written C* [a, b].

For 1 < p < oo, L? () is the space of (equivalence classes of) functions whose p-th

power is Lebesgue integrable. When endowed with the norm

i, =( If(w)l”dw)%

L? (Q) forms a Banach space. L* (Q2) is the space of essentially bounded functions with

norm
[flloo = ess sup |f(z)]-
=9

For 1 < p < oo, k € N, WkP () is the space of all f € L?(Q) such that the
distributional derivatives, D°f of order |s| = > =, |si| < k, belong to L? (). The norm

is defined as

s =

1l = / DS (2)F do
IsT<k

We define a cone K in a Banach space X as a closed convex subset of X such that
MK C Kforall A\ >0and KN{—K}=0. Theset K = {z(t) € C[0,1] : z(¢) > 0} is
a common example in applications. z < y iff y — z € K defines a partial ordering on

X. For 0 < z < y, the norm on X is called monotone if ||z|| < ||y|| and semimonotone
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if [|z]] < 4|ly|| for v > 0. A cone is said to be normal if |||| on X is semimonotone with
respect to K C X. This is equivalent to ||z +y|| > v |ly|| for all z,y € K and some
v € (0,1], ¢f. Lafferriere and Petryshyn [28].

The terms map, transformation, and operator will be used synonymously. Maps will
be denoted by the symbols T', L, N and I, the last representing the identity operator
Iz = z. A linear operator L satisfies L (az + By) = aLz + BLy for z,y € dom L and
a,f € R. A linear operator L : X — Y is bounded if there exists M € R such that

|Lz|ly < Ml|z|x for every x € dom L. The norm of a bounded linear operator is

defined as

L
2] = sup 122l
28 Tl

A set ) C X is said to be compact if every open covering of {2 has a finite subcovering.
Equivalently, § C X is compact iff (if and only if) every sequence {z,} C Q has a
convergent subsequence with a limit in Q. A set Q is said to be relatively compact if Q is
compact.

A linear operator L : X — Y is said to be compact if LQ is compact for every bounded
Q1 C X. Equivalently, a linear operator L : X — Y is compact iff {Lz,} has a convergent
subsequence for every bounded sequence {z,}.

Let K C X and U C K, then U is called relatively open in K if there exists an open
set V C X such that U = K N V. Relatively closed sets are defined analogously. The
boundary of U relative to K, denoted Ok U, is the relative closure of U minus the relative
interior of U.

H is called a homeomorphism iff H is bijective and both H and H~! are continuous.

A projection is a linear operator P from X onto a subspace X, which satisfies Pz =
Pz, for z € X and Pz = z for z € X,. A set Q C X is said to be a retract of X if
there exists a continuous map R : X — € such that Rz = z for every € . The map R

is called a retraction. An important consequence of the following theorem by Dugundji



is that every closed convex set in a normed linear space is a retract. This fact plays a

crucial role in defining a fixed point index on cones.

Theorem 1.2.1 (Dugundji [13]) Let X and Y be normed linear spaces, Q C X closed

and f : Q = Y continuous. Then f has a continuous extension F : X — Y such that

F(X) C conv (f (2)).

For a bounded set {2 C X, we define the set measure of noncompactness o (Q) and
the ball measure of noncompactness 3 (§2) as

a () =inf {6 > 0 : Q admits a finite covering by sets of diameter < §} ;

B () =inf {0 > 0: Q can be covered by finitely many balls of diameter < §}.

We note that o (Q) = 8(Q) = 0 iff Q is compact.

A continuous bounded map T : X — Y is called a k-set contraction if there is a
constant k£ > 0 such that for all bounded sets @ C dom T, ay (T'()) < kax () (the
subscript indicates the space in which the measure is determined). If ay (T (Q)) < ax (Q)
whenever ax (£2) # 0 then T is said to be a-condensing. Similar definitions exist for the
ball measure of non-compactness 3. That is, a continuous bounded map 7' : X — Y is
called a k-ball contraction if there exists a number & > 0 such that By (T () < kGx (Q)
for all bounded sets Q C domT. T is called ball-condensing if By (T ()) < Bx (£) unless

Q) is compact.

1.3 A-proper maps

The solution to infinite dimensional operator equations of the form F'(z) = y by limits of
finite dimensional approximations F), (z,) = y, motivates the study of Approzimation-
proper (abbreviated A-proper) maps introduced by Petryshyn in [39]. It has been shown

that many commonly encountered operators in applications are A-proper relative to an



appropriate projection scheme. We precisely define such a scheme and the notion of

A-proper maps.

Definition 1.3.1 Let X and Y be separable Banach spaces, D a dense linear subspace
of X, {Xn} C D and {Y,} CY sequences of oriented finite dimensional subspaces such
that dim X,, = dimY,, for each n, dist(z,X,) = 0 for everyz € D and let Q,: Y — Y,
be a sequences of continuous linear projections such that Q,y —y in'Y for everyy € Y.
The projection scheme I' = {X,,,Y,,Qn} is then said to be admissible for maps from
D C X toY. (Also when the condition ),y — y holds the scheme is sometimes said to

be projectionally complete.)

Remark 1.3.2 Here D s allowed to be the whole space X. We need to include D when

we consider densely defined operators, as we shall do below.

Remark 1.3.3 If X and Y possess Schauder bases then there exist natural projection
schemes. Recall that, a sequence {p;} is called a Schauder basis for X if, for each
z € X, there ezists a unique sequence of numbers {z;} such that Y., z;p; converges
to T as m — oo. Suppose that {¢;} and {1;} are Schauder bases for X,Y respectively.
Then we may take X, = [¢1, ..., 0n], Yn = [1, ..., ¥n), where [ - -] denotes linear span, and
Q. (y) = i y.¢;, By the Uniform Boundedness Theorem [52], there exists 0 < ¢ < oo,
such that 2H:C?)nH <c for alln € N.

Definition 1.3.4 Let S be a subset of D and T : S C X = Y. T is called A-proper at
y relative to the projection scheme ' if

(1) Q. T : SN X, =Y, is continuous

(ii) for any bounded sequence z, C SN X, such that @, Tz, — y fory €Y, there exists

a subsequence z,, — = € S and which satisfies Tz = y. T 1s called A-proper if it s

A-proper at all pointsy € Y.



Remark 1.3.5 The set of A-proper maps with a given projection scheme does not form
a linear space, this is evident from the simple example that I and —I are A-proper but
their sum, the 0 operator, is not. However, as we shall prove in our next theorem, if T is

A-proper and C 1s compact, then T +C is A-proper. Also, it is clear that if T is A-proper
and A # 0 then AT is A -proper.

Theorem 1.3.6 (Petryshyn [39]) If T : S C X — Y is A-proper with respect to [' =

{Xn, Yn,Qn} and C': S C X Y is compact then T + C is A-proper with respect to T.

Proof. Let {z,} € X, be a bounded sequence such that Q, (T +C)z, = y € Y.
Since C' is compact, there exists a subsequence {xn]} such that ()n,Cz,, = yo. Since T
is A-proper, we may choose a subsequence, again denoted by {:cn]} converging to x such
that T'z = y — yo. By the continuity of C, Cz,, = Cz = yo and therefore (T + C) z = y.
Q.E.D.

Definition 1.3.7 T is proper if T~ (K) is compact whenever K is compact .

In [40], Petryshyn proved that continuous A-proper maps are indeed proper. We

provide a proof of this assertion for completeness.

Theorem 1.3.8 Let X and Y be Banach spaces, @ C X open and T : @ — Y continuous
and A-proper with respect to a projection scheme I' = {X,,,Y,,Q,}. Then the restriction

of T to every closed bounded subset of S is proper.

Proof. Let M be a closed bounded subset of 2. Suppose that {z,} is a sequence
in M NT~}(K) where K C Y is compact. Then {T(z,)} is a sequence in K which we
may and do assume converges to y € K. For each k € N, choose ¢; > 0 with ¢z = 0
as k — oo. By the continuity of T, there exists §; > 0, & — 0 as k — oo such that

if ||z — zx|| < 0k for z € Q, then ||Tz — T'zx|| < ex. By the properties of the admissible



scheme, there exists z,, € X, NQ, ny > k, with ||Tz,, — Tzi|| < ex and ||z, — k|| < .
Thus

1@ T2n, =yl < N@nT 20y = Qu.T2ill + 1Qn T2t — Quiyll + 1Qu,y — v
< cf[Tzn, = Taill + el Tar — yll + | Qny — vl

since the projections (), are uniformly bounded by a constant ¢. Then Qn, Tz, =y
as k — oo and by the A-properness of T, there exists z € Q such that (choosing a
subsequence if necessary) z,, — = and Tz = y. Hence, zx — z and since M is closed,

z € MNT™!(K) which is therefore compact. Q.E.D.

The class of projectionally-compact (abbreviated P-compact) maps introduced by
Petryshyn in [38] were prototypical in the development of A-proper maps and will appear
later in Chapter 5. They are defined as follows.

Definition 1.3.9 T': S C X =Y is Py,-compact if the map A\ =T : S — Y is A-proper
with respect to I' for each A >~ ify >0 o0r A >0ify=0. (Fory=0, T is simply said

to be P-compact).

Other examples of A-proper maps include strongly monotone and strongly accretive
operators and their perturbations by compact or ball condensing maps, ¢f. Petryshyn
[47].

Many of the proofs to our theorems involve homotopies that are A-proper; we define

these maps as follows.

Definition 1.3.10 A map H : [0,1] x S C X — Y is called an A-proper homotopy at y
relative to a projection scheme I' if Q,H : [0,1] X QnS — Y, is continuous and if {z,} is
a bounded sequence in S and {t,} C [0,1] are such that Q. H (t,,z,) = y for somey €Y,
then there ezist subsequences z,, = ¢ € S and t,; >t € [0,1] such that H (t,z) =y. H

is said to be an A-proper homotopy if it is A-proper at all points y.

Remark 1.3.11 We shall be particularly interested in the case of A-proper at 0.



1.4 Fredholm operators of index zero

The study of certain integral equations, initiated by I. Fredholm [17], when formulated as
abstract operator equations, led to the general theory of Fredholm operators in Banach
spaces. In this thesis we shall consider the subclass of Fredholm operators with index
zero as the construction of our fixed point index depends on certain properties particular
to them. We define these operators and mention some useful properties and their relation

to A-proper maps.

Definition 1.4.1 A closed, densely defined, linear operator T : dom(T) C X — Y is
said to be a Fredholm operator if dim(kerT) < oo and codim (im7T') = dim(Y/imT) <
0o. We denote the class of all Fredholm operators from dom(T) C X to Y by ®(X,Y)
or ®(X) if X =Y. The index of T € ®(X,Y) is defined as dim(ker T') — dim(Y/im T').
The subclass of Fredholm operators with indez zero is denoted ®o (X,Y).

Some examples of Fredholm operators of index zero are:

i) T: X — Y where T is a bounded linear bijection [52]

(

(ii) T = I — C where C is compact [52]

(iii) T = L — C where L € @, (X,Y’), C is compact and linear [25]

(iv) if L : X — X is a bounded linear operator and |A| > ress (L) where 55 (L) =
sup {|A\| : A € 0ess (L) the essential spectrum of L}, then Al — L € @ (X) [35]

(v)if L € ® (X,Y) and T € ® (Y, Z) then TL € & (X, Z) [52]

(vi) T : X — Y where T is a bounded linear A-proper map with ker T' = 0 [47].

We provide a proof to example (vi) as it is of particular importance in our results and

to illustrate the methods in general.

Theorem 1.4.2 (Petryshyn [47]) If T : X — Y is a bounded linear A-proper map
relative to I' = {X,,, Y, }with kerT' = 0 then T is Fredholm of index zero.



Proof. We show that these conditions imply 7' is a homeomorphism whence the result
readily follows. Since kerT = 0, T is injective. To prove T is also onto we demonstrate
first that there exists a constant ¢ > 0 and Ny € N such that ||Q,Tz,|| > c||z,]| for every
T, € X, with n > Ny. To obtain a contradiction, suppose the contrary. Then there is a
sequence {,} which, by linearity of @,T, we may choose with ||z,|| = 1 for every n € N
such that ||Qn.T2.|| < Lz, = 2 — 0 as n — oco. By the A-properness of T, there
exists a subsequence {z,,} and z € X such that z,, — z with ||z|]| = 1 and Tz = 0.
This contradicts the injectivity of 7' and so we have proved the existence of ¢ and Np.
Now for n > Ny, Q.1 : X, — Y, is injective and therefore onto since X, and Y, are
of equal finite dimension n and (), T is linear and continuous for such n. Thus, for each
y € Y there exists a unique z,, € X, such that Q,Tz, = Q,y for every n > Ny. Now
cllznll < |@nTznll = ||@nyll < klly|| since the sequence {Q),} is uniformly bounded, cf.
Remark 1.3.3. So {z,} is a bounded sequence and Q,Tz, = @,y — y as n — oco. By
the A-properness of T, there exists £ € X and a subsequence z,, — = with Tz = y.
Hence T is onto and therefore a homeomorphism.

Now since T' is a homeomorphism, imT = Y which is closed and dim (Y/imT) = 0

so that T is Fredholm of index zero. Q.E.D.

Remark 1.4.3 That the image of T € ® (X,Y) is closed follows from codim (imT') < co
and Y is a Banach space [13].

We now discuss some important properties of Fredholm operators of index zero which
are essential to our results and will recur frequently throughout this work.

If L € ® (X,Y), then using known results for such operators, cf. Deimling [13], X
and Y may be expressed as direct sums; X = Xo® X1, Y = Yo0Y; with continuous linear
projections P : X — kerL = X, and @ : Y — Y;. The restriction of L to dom L N Xj,
denoted L, is a bijection onto im L = Y; with continuous inverse L7': Y, - dom LN X,

which is also bijective. Since Xy and Y, have the same finite dimension, there exists a
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continuous bijection J : Yo — Xo. If welet H = L+ J™'P then H :domL C X — Y is

a linear bijection and H~' is bounded as we show in the following theorem.

Theorem 1.4.4 The operator H : domL C X — Y where H = L + J-'P is q linear
bijection and H™! is bounded.

Proof. H is clearly linear as it is the sum of two linear operators L and J-1P. We
prove first that H is injective, i.e., one to one. Suppose Hz = (L + J7'P)z = 0, then
Lz 4+ J 'Pz = 0 and we have Lt = —J 'Pz. Now, as Lz € imL and J~!Pz € Y,
we must have Lz = 0 and J~!Pz = 0 because they are direct sums. So z € ker L and
J™Yz = 0 which gives £ = 0 and hence H is injective.

To prove H is surjective, the preceding discussion showed that H is injective and
therefore ker H = {0}. Since H is Fredholm of index zero by (iii) above, dimker H =
dimY \imH = 0. Thus im H =Y and H is surjective.

Finally, we prove the boundedness of H~!. We observe that H is closed since the

1

graph of H is closed in X x Y and consequently, H™! is closed as the graph of H~! is

closed in Y x X. Now as dom H~! =Y, the Closed Graph Theorem [13] implies H~! is

continuous, i.e., bounded. Q.E.D.

An admissible projection scheme I';, can now be constructed for L € @ (X,Y) such
that L is A-proper with respect to I'y, as first shown by Petryshyn in [42]. Let Y,, C Y bea
sequence of finite dimensional subspaces and @, : Y — Y,, a sequence of projections such
that Q,y — yasn — ocoforeachy € Y. If welet X, = H™! (V) then 'y, = {X,, Ya, @n}
is an admissible scheme for maps L : dom L C X — Y and L is A-proper relative to ['r.

We prove these assertions in the following two theorems.

Theorem 1.4.5 (Petryshyn [{2]) For L € 4 (X,Y), I't = {X,,Ys,@n} is an admissi-

ble scheme.
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Proof. We need only show that X,, and Y,, have the same finite dimension and that
dist (z, X,,) — 0 for every z € X. Since H is a linear homeomorphism, H ™! preserves
subspace dimension so that dim X, = dim H™!(Y,) = dim Y, for each n € N. Now for

each r € X, there exists y € Y such that H~'y = z and

dist (z,X,) = dist(H 'y, H'(Y,))
- H—lyirzlinEXn HH_ly o H—ly"H

: -1
< inf Ay - v

= ||H7"| dist (y, ¥z) — 0
as n — o0o. Q.E.D.

Theorem 1.4.6 (Petryshyn [{2])If L € @0 (X,Y), then L is A-proper with respect to
I'r.

Proof. Let {z,} C X, be a bounded sequence such that @,Lz, = vy € Y. Then z,, =
H~ 'y, for some y, € Y,. L will be A-proper if we can find a subsequence z, ; — x such
that Lz = y. Let H = L+C where C = J™'P, then Q, Hz, = Q. (L + C)z, = Q. Lz, +
@n.Cz,. As C is compact, there exists a subsequence {:cnj} such that Q,Cz,, - 2€Y
and QnLzn, + QnCxn; > y+2=h €Y. SoQnHz,, — h, that is Qn,yn;, = yn, — k,
therefore, z,, = H™'y,, = H™'h = z for some z € X. By the continuity of C, Cz = z

so that Hx = Lz + C'z = y + z and therefore Lz = y. Q.E.D.

As many of the results of this thesis involve maps of the form L — AN, the next

theorem by Petryshyn [42] gives conditions on N so that L — AN is A-proper.

Theorem 1.4.7 Let L € &, (X,Y), Q be an open bounded set in X with QNdom L # 0,
'L as constructed above an admissible projection scheme for L and let N : Q@ — Y be a

bounded continuous map. Then each of the following conditions implies Ty = L — AN :
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QNdomL — Y is A-proper relative to T for each X € (0,1].
(i) Either N or L™' :im L C Y — X is compact.

(i) N is k-ball contractive with k € [0,1(L)) where

[(L)=sup {r e RT:73(Q) < B(L(N)) for each bounded Q. C dom L}

and ||@.]| = 1.

(iii)) N(L+C)™ : H(@Ndom L) — Y is ball condensing and ||Q.| = 1.

()Y =X, Q=domL =X, X, =Y, Qn C Quy1, |@Qull =1, T =T, L = I and
N c-dissipative for c € (0,1) (i.e. (Nz — Ny,j(z —y)) < cllz —y||* for some ¢ € (0,1)

and any normalised duality mapping j : X — 2%°),

Proof. We provide a proof to (i) and (ii) as we shall refer to them later whilst proofs
to the last two may be found in Petryshyn [42].

(1) If N is compact and as L is A-proper, Theorem 1.3.6 implies L — AN is A-proper
with respect to 'y, = {Y,,Q,}. Now suppose L]’ is compact and A € (0,1] is fixed.
Let {z,} be a bounded sequence in X, = H™!(Y,) such that @, (L — AN)z, = y, —
y € Y. Since Q. Hz = (L + J™'P)z for every z € X,, we have y, = Hz, — A\Q.Nz, —
QnJ Pz, - y € Y. The compactness of J-!P and completeness of the projection
scheme I'y, imply Lz, — AQ.Nz, = ¥, — y. Then applying (I — @) to the equation
gives

Lz, = A(I-Q)@uNz, =(I- Q)0 > (I - Q)y € V1.

Hence
Zp = Ll_1 I-Q)fn=(I—-P)z, —)\Ll_l (I -Q)QnNz, — Ll'1 (I-Q)y=-=

and z € X; Ndom L. Since AL7* (I — Q) and P are compact and the sequences {z,} and
{Q.Nz,} are bounded we may assume Pz, — xo € ker L and AL{' (I — Q) QnNzn —
z1 € X;. Thus

Zn = Tp — Pz, — AT (I = Q) QuNen
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or

Tn =2+ Pz, + \LT' (I ~Q)QuNz, 5 z4+20+71=2€Q C X.

By the continuity of N, Nz, — Nz and by property of Q,, Q,Nz — Nz so QnNz, —
Nz and

Lzp, = gn + AQnNz, =y + ANz,

in Y. Now since L is closed, z € dom L so z € QNdom L and Lz = y + ANz. Hence
Lz — ANz =y and L — AN is A-proper.

(ii) Assume N is k-ball contractive with £ < [(L) and let {z,} be a bounded sequence
in X, = H™'(Y,) such that Q,Lz, — \Q,Nz, =y, -y €Y. Asin (i), since Q, Hz =
Hz for every ¢ € X, and J™'P is compact, we may assume that Lz, — A\Q,Nz, =
U, — y € Y. From the ball measure of noncompactness, 3, we obtain the inequalities
B({@nNz,}) < B({Nz,}) < kB ({zn}). Writing the preceding identity as Q,Lz, =
Yn + M@, Nz, and noting the sequential compactness of y,, these inequalities imply
B{QnLzn}) < MkB ({z,}) < kB ({z,}). Since k < I(L), we have 8 ({zn}) = 0 which
implies {z,} is relatively compact so we may assume z, — ¢ € @ C X. Thus Lz, =
Jn+AQnNzn — y+ ANz in Y and since L is closed, € dom L so z € N dom L. Hence
Lz — ANz =y and L — AN is A-proper with respect to I'z,. Q.E.D.

Remark 1.4.8 Similarly, if we have uok < [(L) for some po > 1 then L—AN 1is A-proper

for 0 < A < po.

1.5 Topological degrees

As the principal results of this thesis concern fixed point indices for A-proper maps which
we define in terms of the topological degree, we shall mention those relevant concepts of
the theory required in the sequel. We assume some knowledge of the classical Brouwer

degree for continuous maps in finite dimensional spaces and the Leray-Schauder degree for
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identity minus compact maps in infinite dimensional spaces. We shall use a modification
of the degree theory in Banach spaces so that the degree is determined over closed convex
sets and cones in particular.

Comprehensive accounts of degree theory may be found in Cronin [10], Deimling [13]
and Lloyd [32].

A generalised topological degree theory for A-proper maps was developed by Browder
and Petryshyn [4]. This degree forms the basis of our definition of a fixed point index in
Chapter 2 so we present the definition and pertinent properties here for future reference.
The particular version of the degree we state is from Petryshyn [47] for densely defined

A-proper maps.

Definition 1.5.1 ( Petryshyn [47]) Let X,Y be Banach spaces, 8 C X open bounded
such that QNdomT = G # 0 and T : G C X — Y A-proper at y with respect to
[ = {X.,Y, Qn}. Write G = QNdomT, 8G = 90N domT and assume y ¢ T (9G)
and G, = GN X, # 0, then the A-proper degree Deg(T, G, y) is defined to be the set

{k € Z U {—o0,00} : deg (@, T l0n, s Gy @nmy) — k for some np, — 0o }

where deg(-,-,-) is the finite dimensional Brouwer degree. That is, Deg (T, G,y) is the
set of all limit points of {deg (T, Gn,Qry)} (including £oo).

Remark 1.5.2 The A-properness of T and the assumptiony ¢ T (0G) imply there exists
no such that for all n > no, Qny & Q.T (0G,) so that deg (QnT |6,, Gn, Qny) is defined
for all n > ng. Since Q,T may not converge uniformly to T on G, the Deg (T, G, y) is in
general multivalued; for ezample Deg (—1, B1(0),0) = {—1, 1}. Consequently, the usual
properties of classical degree theory must be modified in the multivalued context, but the

utility of the theory remains.
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Remark 1.5.3 It is well-known that the definition of degree can be extended to deal with
unbounded sets 0 provided the set T~'(0) is bounded, for ezample [13]. For details of

how this extension is carried out we refer to §2.4.
The following properties of the A-proper degree are from Petryshyn [47].

Theorem 1.5.4 Assuming the notation and conditions of the preceding definition, then:
P1. If Deg (T,G,y) # {0}, then there exists x € G such that Tz = y.

P2. If G C G1UG;, G = G1UG, with Gy and G open bounded sets such that GyNGy = (
and y ¢ T (0G1) U T (0G;) then Deg(T,G,y) C Deg(T,G1,y) + Deg (T, Ga,y) with
equality if either of the terms on the right is a singleton (defining co+(—o0) = ZU{+o0}).
P3. If H:[0,1] x G = Y is an A-proper homotopy such that H (t,z) # y for t € [0, 1]
and z € 0G, then Deg (H (0,z),G,y) = Deg (H (1,2),G, y).

P4. If G is symmetric about 0,0 € G and T : G — Y is A-proper and odd and 0 ¢ T (0G)
then Deg (T, G,0) is odd, i.e., 2m ¢ Deg (T, G,0) for every m € Z.

For a proof of these properties see Petryshyn [47]. We point out that, in general, P2
is not an equality. To clarify this further, we provide a complete (new) proof of a rather
more precise statement. We will show that equality holds if one of the degrees is a finite
singleton or if one of the degrees is 400 (resp. —oo) and the other does not contain —oo
(resp. +00).

Proof of equality in P2. Suppose Deg (T, Gy,y) is a finite singleton, {m} say. Then
d: := deg (T,,GL,y,) — m so that there exists ny such that d, = m for every n > n;.

Then

Deg (T, G,y) = limit points of {d; +d7}
= m+ limit points of {di}

= m+ Deg (T, Gs,y)

15



so equality holds in this case. Note that this includes the possibility that co or —oc are
in Deg (T, G, y).

Now suppose Deg (T,G1,y) = {oo}. We claim equality holds provided {—oo} ¢
Deg (T, G2,y). Observe that the only limit point of {dl} is oo, that is, d} — oo as
n — 0o. Now suppose that {—oco} ¢ Deg (T, G2,y). Then {d2} is bounded below, that
is, there exists M such that d2 > —M for every n. We claim that d} + d?> — oo so that
Deg (T, G,y) = {oo}. Indeed, given M; > 0 there exists n; such that d* > M; + M for

every n > ny and therefore d, + d2 > M, for every n > ny. This proves that
oo = Deg (T, G, y) = Deg (T, Gy, y) + Deg (T, Go, y)

(since 0o + v = oo for ¥ # —o00). A similar argument, also resulting in equality, applies
if Deg (Ta G17 y) = {_OO} and {OO} ¢ Deg (T7 G2, y)'

If {—oc0} € Deg (T, G2, y) we cannot expect equality in general. Q.E.D.

We conclude this section with a theorem by Petryshyn [42].

Theorem 1.5.5 Let L € ®o(X,Y) and let Q) C X be an open bounded set with G =
QNdom L #0, let F: X =Y be a bounded linear map such that L — F : domL — Y
is A-proper with respect to I'y and ker (L — F) = {0}, then Deg (L — F,G,0) = {0} if
0¢ G and Deg (L — F,G,0) C {£1} if0 € G.

Proof. Since ker (L — F') = {0}, L — F is injective (one to one) so that Lz — Fz # 0
for all z # 0 and Deg (L — F, G, 0) is well defined for any open bounded set G C X with
0 ¢ 8G. Now if 0 ¢ G, then P1 from above and the assumption Deg (L — F,G,0) # {0}
imply the existence of x € G such that Lz — Fz = 0 and z # 0 which contradicts
ker (L — F') = {0}.

Suppose now 0 € G, then 0 € G for all n and by the injectivity of Q. (L — F') :
X, — Y,, it follows that deg(Q, (L — F),X,NG,0) = 1 or —1 for all n. Hence
Deg (L — F,G,0) C {£1}. Q.E.D.
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Chapter 2

A FIXED POINT INDEX
DEFINED IN TERMS OF THE
A-PROPER DEGREE

2.1 Introduction

In this chapter we define a fixed point index based upon the generalised topological degree
of Browder and Petryshyn [4]. In our definition we use a retraction p : X — K with
the properties that ||z — pz|| < 2dist (z, K) and p(X,) C X,. The following corollary
of Theorem 18.1, ¢f. Krasnosel’skii and Zabreiko [26], shows that a retraction satisfying

the inequality always exists.

Corollary 2.1.1 If K is a closed convex subset of a Banach space X then there is a

continuous retraction p : X — K with the property that ||z — pz|| < 2dist (z, K).

However, the condition p (X,,) C X,, is more restrictive and precludes the use of some
retractions and projection schemes commonly employed in applications. An example of

a retraction and projection scheme where this condition fails follows.
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Let X = C[0,1] and X,, C X be the finite dimensional subspace of all z € X which
are linear in the n equidistant subintervals partitioning [0,1]. If p : X — K is a retraction
onto K = {z € X : z(t) > 0} defined by pz = |z (t)| then p(X,) € X,. This is clear
when one considers the action of p on a line segment that crosses the z-axis. The negative
part is reflected above the z-axis creating another subinterval beginning at the reflection
point. Thus, for such z, p maps to a higher dimensional subspace X,, where m > n.

We shall use this retraction and projection scheme in an application to differential
equations in Chapter 6 but using results proved by the less restrictive index developed
in Chapter 3. To prove that a retraction and projection scheme does exist that satisfy
our requirements and has applications, we provide the following example similar to one
from De Figueiredo [12].

Let S be an open cube in R™, X = L?(S) and S® = {S), ..., Sy}, k € N, be a family
of disjoint n-cubes covering S obtained by successively dividing each length of S by one
half. E.g.,for S={z € R":a; < z; < b;; 1 <1< n} then S is the family of half open
subcubes of the form {z € R : a; < z; < (a; + b;) /2 or (a; + b)) /2 <z <b;, 1 <0 <m}.
Let X, C X be the finite dimensional subspace generated by the characteristic functions

X1, --,Xonk on the sets of S(*) and define the projection Py, : X — Xj by

2nk

kazzp—(l%[fgiw(T)dT}X

1=1

We prove that the projection Py has norm 1 as follows:
| Pezllz, = /Z A / (r)dr

ank p
Z w(S)H? / z(r)dr
1=1 t

P
X:dT

By Holder’s inequality we obtain

2nk
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2nk

= §3/|uﬂwm.

1=1 S
It follows that

|Peallt, < / @ () dr = |Jz|l%
and hence | P|| = 1.

To prove Pyz — z in LP as k — 0o, we shall first use following definition and theorem

from Rudin [48], to prove pointwise almost everywhere convergence.

Definition 2.1.2 Suppose t € R", then a sequence {S;} of Borel sets in R™ is said to
shrink to t nicely if there is a number a > 0 with the following property: Each S; lies in

an open ball B,, (t) with centre at t and radius at r; > 0 such that
p(Si) = ap(Br, (1), 1=12,...
and r; = 0 as 1 — oo where p is Lebesgue measure on R™.

Theorem 2.1.3 Suppose z € L' (R"™). Define the Lebesgue set L, of = to be the set of
all to € R™ such that

lim —— [ |z (8) =z (to)| dt = 0

1—+00 o’ (Sz) S;
for every sequence {S;} that shrinks to to nicely. Then almost all to € R™ belong to L.

We now show that Pyz(t) — z(t) pointwise a.e. for each z € LP. We have

|Prx () —z(t)| = Z ;(_155 /:g z(T)drx; — z (1) (2.1)

and for a fixed to € S, (2.1) reduces to

‘ 1
p(S5)
where to € S;. By Theorem 2.1.3,

Lpua—xu@w4g;é5 O -z)a

1
1 (S;:)

/S. |z (t) — 2 (to)| dt < eif p(S;) < ¢
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noting that {S;} is a sequence that shrinks nicely to #,.
Since 4 (S;) — 0 as j — oo, we have for every k > kq (¢), | Pz (to) — z (to)| < €, and
this holds for almost all ¢, € S, that is, we have pointwise almost everywhere convergence.

For a function z and r > 0 we define the truncation of z at level r by

(

—r ifz(t) < —r,

z0(t) = z(t) f —r<z(t)<r

?

r if z(t) > r.

\
Then z(")(t) — «(t) pointwise and because |2(")(¢)| < |z(t)|, by the dominated conver-
gence theorem ||z — z||p> — 0 as r — oo.

By the above, for every fixed r > 0, Poz()(¢) — £()(¢) for almost every ¢ and since
z(") is bounded, by the dominated convergence theorem, || Pez() —z™)||1» — 0 as k — o.
For € > 0 first choose 7 = 7(€) so that ||z(") — z||1» < € and then choose ko (depending on

¢ and r(¢) hence only on €) so that ||Pez(™ — 2|1, < ¢ for all k > ko. Then for k > ko
| Pex — z|jzr < ||Pez — Pex™||o + || Pec” — 29|10 + |27 — z|1» < 3¢

since || Px|| = 1. This proves that Prz — « in L?(S) as k — oo.

This projection scheme can be extended to L? (), where @ C R” is any bounded
measurable set by choosing an n-cube S containing {2 and defining Z (t) = z (t) for t € Q
and # (t) = 0 elsewhere.

Let K ={z€ X :z(t) >0 ae.}and definep : X — K by pz =zt (t) = max{z (t),0}.
We show that p satisfies the conditions ||z — pz|| < dist (z, K) and p(Xi) C Xi. Now

from the inequality |z (¢) — pz (¢)| < |z () — y (¢)| for every y € K, we obtain

o= pelis = ([ 100 |pdt) <([r@-y0 |Pdt)

for every y € K. Hence

e — pll smf{( / ()~ y ()P dt)'?

20
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Finally we show p (X)) C Xj. Let

2nk

()= ) s | [ =00 w0,

i=1
then it is clear that pz; € X as those terms of the summation which had negative
average value then have average value 0, so that dimension is preserved by p.

In our development of the fixed point index, we shall treat the simplest case first,
viz. maps T': Y — Y with [ — T A-proper. We then demonstrate that certain A-proper
maps of the form L — N can be converted to the form I — T and construct a fixed point
index for such maps.

When L is an unbounded linear operator, H = L + J~' P is no longer a homeomor-
phism and HQ} may be unbounded in Y for open bounded sets § C X. To remedy
this inconvenience we conclude the chapter by modifying the index so that the A-proper
degree is determined over open bounded sets V in H() such that (I —T)™" (0) C V.

A fixed point index for P-compact maps was first defined by Wong [55], using his
version of the generalised degree developed in that paper. As the difference, \[ —T
where T is P-compact is A-proper for each A > 0, we shall obtain and extend this result
by letting ! = Y, though without equality in the additivity over domains property of
the index.

An early investigation involving generalised degree theory on possibly unbounded sets
was Browder and Nussbaum’s paper [5]. They considered continuous maps T' such that
I — T is locally compact and obtained results for strictly contractive maps. Fitzpatrick
and Petryshyn [16] defined an index for A-proper maps of the form I — T where T' maps
a closed convex set into itself. This index was later extended to include unbounded sets
by Lafferriere in [28]. The derivation of this index is analogous to that of the generalised
degree for A-proper maps but uses limits of the finite dimensional Brouwer index instead
of the Brouwer degree. In this chapter, we make use of the already established generalised

degree for A-proper maps in defining a fixed point index but shall return to the idea of
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constructing an index in terms of limits of finite dimensional Brouwer degrees in Chapter

3.

2.2 Definition and properties of the index

Let @ C K be open bounded and K a cone in a Banach space X. Unless otherwise
stated, all topological notions for subsets of K refer to the relative topology of K, so for
example, 00 means 0k {) the boundary of ) relative to K.

Assume [ — T' is A-proper at 0 relative to a projection scheme I', T : K — K and
Tz # z for z € 9Q. Let p: X — K be a retraction such that ||z — pz|| < 2dist (z, K)
and p(X,) C X,.

Remark 2.2.1 There is nothing special about the number 2, we could use any constant

larger than 1 but 2 is a simple choice that seems to be always satisfied in the applications.

Here and henceforward it will always be assumed, either explicitly or tacitly, that

@n (K) C K where @, is the projection used in the projection scheme I or I';.

Definition 2.2.2 We define indg (T,9Q) = Deg (I — Tp,p~* (), 0) where the right hand
stde is the degree for A-proper at 0 maps from Definition 1.5.1 and Remark 1.5.3.

We shall show that the A-properness of I — T' at 0 and the conditions ||z — pz|| <
2dist (z,K), p(X,) C X, and T : K — K imply I — Tp is A-proper at 0. We then
proceed to show that the index does not depend on the retraction chosen in the definition.
Finally, we show that the index has the following properties of the classical Brouwer fixed

point index which we prove in Theorem 2.2.7.

Proposition 2.2.3 1. (Ezistence) If indg (T,Q) # {0}, then T has a fized point in Q.
2. (Normalisation) If zo € Q, then indg (o, Q) = {1} where &o(z) = zo for all z € Q.
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3. (Additivity) If Q = Q; U Qy, Q1 and Qy open bounded with Oy NNy = @ and T'r £z
for z € 002 U 0§y, then indg (T,Q) C indg (T, Q) + indg (T, Q).

4.(Homotopy) If H(t,z) : [0,1]xQ — K is such that I — H(t,z) is an A-proper homotopy
at 0 and H(t,z) # z for z € 0Q,t € [0,1], then indg (H (0,2),Q) = indg (H (1,2), Q).

.

We prove first that if I — T is A-proper at a point y € K relative to a projection
scheme I' and the previous assumptions hold, then I — T'p is also A-proper at y relative

to I'.

Theorem 2.2.4 Let K be a cone in X, let p : X — K be a retraction such that
|z — pz|| < 2dist (2, K) and p(X,) C Xn. Suppose T : K — K is such that I — T

is A-proper at a pointy € K. Then I —Tp s A-proper at y.

Proof. Let {z, € X,} be a bounded sequence in X such that (I — Q,Tp)z, =y, —
y € K. Then

[2n — o] = [+ QuTpn — pal] < 2dlist (3, K).
Since z,, — Q.Tpz, = y € K and @Q,Tpz, € K, we have
dist (2n, K) < |20 = (@nTpzn + y)|l = llgn — yll = €n.
Hence ||z, — pzn|| < 2¢, — 0. Then
pTn — QT pzs = Yn + (pTn — Tn) = ¥

By the A-properness of I — T applied to pz,, there exists pzn, — zo € K such that
(I = T)zo = y and since ||z, — pz,|| — 0, there exists ., — zo. Therefore [ — Tp is

A-proper at y. Q.E.D.

The next theorem shows that the index is independent of the retraction chosen in the

definition provided it satisfies ||z — pz|| < 2dist (z, K) and p(Xs) C Xn. We point out
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that the proof requires convexity for the domain of T', consequently, in this chapter we
define T on all of K. This limitation will be removed in defining the fixed point indices

of Chapters 3 and 4.

Theorem 2.2.5 Suppose  C K is open and bounded and p and T are retractions of X
onto K satisfying the conditions above. If T : K — K is a map such that I — T is A-
proper at 0, then Deg (I — Tp,p~' (Q),0) = Deg (I — T'r,771(2),0), i.e., the generalised

degree and hence the indez is independent of the retraction chosen.

Proof. Let @ C K be open, bounded and let p and 7 be retractions of X onto
K. Note that the fixed points of Tpz on p~! (R2) and T'rz on 7' (Q) are contained in
G =p ' (Q)Nn771(Q). By the additivity of the degree, it suffices to prove

Deg (I — Tp,G,0) = Deg (I — TT,G,0).

Define H(t,z) =  — T (tpz + (1 — t)7z) for z € G and ¢ € [0,1]. Then H({,z) is A-
proper relative to I', which we will prove in the following lemma. Assuming this for the
moment, we continue the proof.

Now let z € G and assume H(t,z) = 0 for some t € [0,1], then T (tpz + (1 —t)7z) =
z. Since pz and 7z are in K and T': K — K, we have z € K. This implies that pz =z
and 7z = z so that T (tpz + (1 —t) 7z) reduces to T (tx + (1 —t)z) = Tz = x. Since
Tz # z for = € 00 we have z € Q and noting that p~lz = z and 77!z = z we see that

z € G. By the invariance under homotopy property of the degree, we have
Deg (I — Tp,G,0) = Deg (I - T'7,G,0). Q.E.D.
It remains to prove the A-properness of H (t,z).

Lemma 2.2.6 Assume the conditions of the theorem hold, then H(t,z) : [0,1]x K = K

where H(t,z) =z — T (tpz + (1 —t)7z) is A-proper at y € K.
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Proof. Let {z,} be a bounded sequence in X, t, C [0, 1], such that
Tn — QnT (tnpz, + (1 —t,) TZ,) =y, -y € K.

Write w, = t,pz, + (1 —t,) 72,. Since p and 7 map X to K and K is convex, we see

that w, € K. AsT: K = K, and Q,.(K) C K, Q,Tw, +y € K. Now

|zn — (@nTw, + y)|l = Hyn —yll =€ — 0,

so dist (z,, K) < ¢, and we have

len = wall = Nz = [tapzn + (1 = ta) 72|

IA

tol|2n — peall + (1 = tn) 2 — T24|

< 2dist(z,, K) < 2¢,.

Then

Wn — @QnTwn, = yn + (W, —2,) >y € K.

By the A-properness of I — T applied to w,, there exists w,, — w € K such that
(I =T)w =y, and since ||z, — wy|| — 0, there exists z,, — w which proves H(¢,z) is

A-proper at y. Q.E.D.

We now formally present the properties of the fixed point index in the following

theorem along with their proofs.

Theorem 2.2.7 Let Q C K be open bounded and T : K — K be a map such that [ — T
is A-proper at 0 and assume Tz # x on 0. Then the fized point index of Definition
2.2.2 has the following properties.

P1. (Ezistence) If indg (T,92) # {0}, then T has a fized point in ).

P2. (Normalisation) If zo € Q, then indg (Z0, Q) = {1} where Zo(z) = zo for z € Q1.
P3. (Additivity) If @ = Q1 UQy, Q and Q; are open bounded, @y NNy =0 and Tz # z
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for € 09 U 09, then indk (T, 9) C indg (T,Q) +indg (T, Q) with equality if either
of the indices on the right is a singleton.

P4. (Homotopy) If H(t,z) : [0,1] x @ — K is such that | — H(t,z) is an A-proper
homotopy at 0 and H(t,z) # = for € 8Q, t € [0,1], then indg (H(0,2),Q0) =
indg (H (1, 2),9Q).

Proof. P1. By definition, indg (T,Q) # {0} implies Deg (I — T)p, p~! (€2),0) # {0}.
Then if the degree is non-zero, there exists z € p=! (Q) such that Tpz = z with pz € Q.
Since p: X - K and T : K — K we have pz = z. By hypothesis, Tz # z on 99,
consequently, Tx = z for z € Q.

P2. Since Qnzo € QNX,, for every n > nyg, the Brouwer degree deg (I, 2 N X,,, QnZo) =
1. The equation Iz, = Qnzo however is equivalent to Iz, —Q,z0 = 0 or (I — Q&) (z) =

0 where 2o is the constant mapping &, (z) = zo. Hence
deg (I,Q2N X, Qnzo) = deg (I — Qndo, 2N X,,0) =1

for every n > no which implies Deg (I — 2,9,0) = {1}. Now as 2o € § C K and p is

the identity on K, we have
Deg (I — 20,9,0) = Deg (I — &op, p~" (©),0) = {1}.
P3. It suffices to show
Deg (I —Tp,p~' (2),0) C Deg (I—Tp,p~" (£1),0) 4+ Deg (I — Tp,p~" (23),0) .

This follows immediately from the additivity over domains property of the A-proper

degree. Also, equality is obtained if either of the degrees, and consequently the indices,

on the right is a singleton.

P4. By definition of the index, it suffices to prove that

Deg (I — H(0,pz),p" (Q),0) = Deg (I — H(1,pz),p~" (2),0).
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We show that if H(t,pz) = z for some z € p=1(Q), t € [0,1], then H(t,z) = z and

z ¢ 0p~1(Q). So assume H(t,pz) = z for some z € p- (2),t€[0,1]. Since p: X — K
we have pz €  and since H: K —» K, z € K. Now p 1s the identity on K so pz = z
and H(t,pz) = H(t,z) = z. But by assumption, H(t,z) # & for z € 99, thus z € Q.
so pz =z € (L and z € p7! (). Tt follows from the homotopy property of the A-proper
degree that the two degrees are equal. To prove that I — H(t, pz) is A-proper at a point
y € K; let {z,} be a bounded sequence in X and {t,} a sequence in [0,1] such that
Tpn — QnH(tn, pzn) =yn = y € K. Then

|zn = (QnH (tn, p22) + Yl = llyn — yll = & — 0.

We know that ||z, — pz,|| < 2dist (z,, K) < 2e, and

PTn — QnH (tn, pzn) = yo + (pzn, — 2,) > y € K.

By the A-properness of I — H(t,x), there exist subsequences pz,;, = = € K and t¢,, —
t €[0,1] with z — H(¢,z) = y. Since ||z, — pz,|| < 2¢, there exists a subsequence z,, of
T, with z,; — x. Therefore, I — H(t, pz) is A-proper at y. Q.E.D.

2.3 The index extended to maps of the form L-IN

We now consider A-proper maps of the form L — N where L : domL C X — Y is
Fredholm of index zero and N is continuous and nonlinear. We are interested in solutions
to the equation Lz— Nz = w that liein a cone K in X. Using the operators and subspaces
of X and Y constructed previously for Fredholm operators of index zero, we rewrite the

equation Lz — Nz = w as follows.

Lz + J 1Pz — (N—{- J—lP) T = w

He— (N+J'P)z = w
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y—=(N+J'PYH 'y = w

(I-T)y

w

We will utilize the operator T : Y — Y, Ty = (N + J'P)H 'y and the corre-
sponding cone K; = H(K NdomL)in Y. Let p, : Y — K, be a retraction such that
ly — pryll < 2dist (y, K1) and py (Y,,) C Y.

We verify first that K, is indeed a cone in Y. To this end, let y; and y, be elements
of K; and o, 8 € R*. We show that ay; + By, € K; and that K, is closed in Y. Since
y1 € K, there exists z; € K with Hz; = y; and similarly there exists z, € K with
Hzy = y;. Then ay1 + Py = alHzy + BHz, = H (azy 4+ Bz2). Now since K is a cone,
azy + Pz € K and hence oy, + By, € K. Finally, we prove K is closed in the following

proposition.
Proposition 2.3.1 K; = H(K Ndom L) is closed in Y.

Proof. Suppose y, = y € Y where {y,} C H(KNdomL) = K;. Now y, = Hz,
for £, € K Ndom L so that Hz,, — y and since H maps onto Y, y = Hz for some
z € dom L. Then H ! (Hz,) - H 'y and hence z, — = € dom L. Since z, € K and
K is closed, z € K. Thus z € K Ndom L and we have Hz =y € H(K Ndom L) = K;
which proves K is closed. Q.E.D.

Next we show that the A-properness of L — N at a point w € Y relative to 'y, implies
I — T is A-proper at w relative to I'. It will then follow that I — T'p; is A-proper at w

provided certain operators map cones to cones.

Lemma 2.3.2 Let L and N be as mentioned and assume L — N is A-proper at w € Y

relative to I'y,. Then I — T is A-proper at w relative to I'.
Proof. Let {y,} € Y, be a bounded sequence in Y such that

yn_QnTyn:wn%wEY
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where y, = Hz,,, z, € H™Y(Y,) = X,,. Then
Hz,—Q, (N+J"1P) Ty = W, — W
and Q,Hz, = Hz, so
Qn(Lz, + J"lPa:n) — QnNz, — Q,J Pz, — w,

that 1s

Qnlz, — Q.Nz, = w.

By the A-properness of L — N, there exists a subsequence z,, — z with Lz — Nz = w.
Now z,, — = implies Nz,; — Nz and Q,Nz,; — Nz because ||Q,|| < M and Q.y — y.
Then

Hz,, —w+ Nz + J 1Pz

and hence y,, —+ y with y — Ty = w which proves I — 1" is A-proper at w. Q.E.D.

Before proving I — T'p; is A-proper at w relative to ', we introduce a lemma and a

proposition which we shall require.

Lemma 2.3.3 Nz +J 'Pz = Hi where i = (P + JQN)z+ L' (I — Q) Nz = Zo+ %

and T is uniquely determined.

Proof. Suppose
(P+JQN+ LT (I-Q)N)(2) = &,

for z,% € X, & = o + Z, where ¥ € ker L and Z; € X;. Then
Pz +JQNzxz = %o = Pz

and



Now

L3~7 — L(ffl —i— 550) - Ll.’fﬁl

= LiL{'(I-Q)Nz = (I - Q) Na

and
J_IP:i:J"I(Px-I-JQN:c):J_lPx—}—QN:c
SO
Li+J Pz = (I-Q)Nz+J 'Pr+QNz
= Nz+4+J Pz
or

Hi=(N+J'P)a.

Now Z is uniquely determined since H is injective. Q.E.D.

Proposition 2.3.4 The following three assertions are equivalent.
(i)) P+JQN + L7 (I — Q)N maps KNdomL to K NdomL.
() N+ J~'P maps K Ndom L into K;.

(iit) T maps K; to K.

Proof. We have T = (N + J~'P) H™! maps K; to K, iff N+ J~'P maps K Ndom L
into K, (so (ii) < (iii)). By the preceding lemma, N + J='P maps K N dom L to K,
iff Hi € K, for every & € K Ndom L where = (P + JQN + L' (I — Q) N) z so that
Hi € Ky iff P4+ JQN + L7' (I — Q) N maps K Ndom L to K N dom L (hence (ii)
(i)). Q.E.D.

Lemma 2.3.5 [ —Tp; is A-proper at w € K; relative toT if P+JQN + L7 (I — Q) N
maps K to K and p; (Y,) C Ya.
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Proof. This is an immediate consequence of Lemma 2.3.2 and Theorem 2.2.4. Q.E.D

We can now extend the definition of the index to A-proper maps of the form I —
acting on cones. We begin by assuming L to be bounded. The consequence of this is
that H becomes a homeomorphism and a very simple correspondence between  in X
and U = HQ) in Y results, most importantly, H maps open bounded sets in X to open
bounded sets in Y. The case where L is unbounded requires some modification as the
A-proper degree is not defined on unbounded sets. We will consider this case later in

Section 2.4.

Definition 2.3.6 Let K be a cone in a Banach space X and @ C K an open (relative to
K ) bounded set such that Q@ # 0. Let L : dom L = X — Y be a bounded Fredholm operator
of index zero and N : @ — Y be continuous and nonlinear such that L — N is A-proper at
0 relative to T'. Assume Lz # Nz forz € 0xQ, P+ JQN + Li" (I — Q) N maps K to
K and write U = HQ. We define indg ([L, N],Q) = Deg (I — Tp1,p;* (U),0) where the
degree is that for A-proper mappings defined by Browder and Petryshyn [4], pr: Y — K,

is a retraction satisfying ||y — pry|| < 2dist (y, K1) and py (Y,) C Ya.

Before giving the properties of this index we show that the condition Lz #+ Nz on
9x Q) implies (I — Tp1)y # 0 on 9p7* (U) so that the index is well defined. With this
objective, assume Lz # Nz for z € Okl and let y € Op7" (U). Then if y = Tpry we
have y € K; since p; : Y — K, and T": K; — K so that pyy =y and Ty = y on 9U.

By construction, this is equivalent to Lz = Nz on Ok ), a contradiction.

Theorem 2.3.7 Assume the conditions and notation of the preceding definition. Then
the indez thus defined has the following properties.

Pl. Ifindg ([L, N],Q) # {0}, then Lz = Nz has a solution in .

P2. If 7o € Q, then indk ([L,—J7'P + 7o), Q) = {1} where yo = Hzo and yo (z) = Yo
for every = € Q.
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P3. IfQ = Q,UQ,, O and Qy are open and bounded in K with QNQy =0and Lr #£ \Na
on 901 U 89y then indg ([L, N],9) C indk ([L, N], ) +indg ([L, N] , ) with equality
if either of the indices on the right is a singleton.

P4 If L — N (A z) is A-proper for X € [0,1], (NAz)+J'PYH™' . Ky - K, and
0¢ (L—N(Az))(dom L NN then indg ([L, N (A, )] , 1) is independent of ) € [0,1].

Proof. P1. By definition, indk ([L, N1, Q) # {0} implies Deg (I — Tpy, p7° (U),0) #
{0}. Then there exists y € p;' (U) such that Tpyy = y. Since p1 Y = K; and
T: Ky — K, we have y € Ky and so pyy = y so Ty = y for some y € U and there exists
t=H 'y e H'U = Q satisfying Lz = Nz.

P2. We have

indc (L, —J™ P+ §0] ,) = Deg (I — gopu, 5’ (U),0) = 1]

as in the proof to P2 of Theorem 2.2.7.

P3. It suffices to show
Deg (I — Tpy,p7" (U),0) C Deg (I — Tp1,p7" (Ur),0) + Deg (I — Tp1, p7t (Uy),0)

where Uy = HQy and U, = HQ,. Since HQ = HQy U HQy and HQ; N HQ, = 0, the
additivity over domains property of the A-proper degree implies the desired result. The
proof of equality is analogous to the proof of P3, Theorem 2.2.7.

P4. We first note that the A-properness of L — N (A, z) implies I — T is A-proper
where T\, = (N (\,z) 4+ J~1P)H™!. This follows from Lemmas 2.3.2 and 2.3.5. We
show that if Thpyy = y for some y € p;" (U), A € [0,1] then Thy = y and y ¢ 9IU.
Consequently, by the invariance under homotopy property of the A-proper degree we’ll
have

Deg (I — Top1,p1 " (U),0) = Deg (I — Tip1, 7t (U),0) .
So assume Thp1y = y for some y € p;' (U) and A € [0,1]. Since p; : Y — Ky, p1y €

UcCK,sopy=yandasT\: K, - K, y € K;. Whence Thp1y = Thy = y or
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Hz = N(Az)+ J~'Pz which implies Lz = N(X,z). By hypothesis, Lz + V(A z)
on 0} so that Thy # y on OU. Hence indk ([L, N (A, z)],Q) is invariant for A € [0,1].
Q.ED.

2.4 The index defined on unbounded sets

We now consider the case where L is unbounded and N is bounded. Since H is no longer
a homeomorphism, H() = U may be unbounded for open bounded sets 2. To remedy this
inconvenience, we modify the index so that the A-proper degree is determined over open
bounded sets V in U such that (I —T)™" (0) C V. That such V exist is a consequence

of the boundedness of N as we demonstrate in the following proposition.

Proposition 2.4.1 If Lz = Nz forz € Q, Q C K open and bounded such that Q1 N
domL # 0 and N bounded, then (I — T)™" (0) is bounded in Y.

Proof. We observe that y = Ty, y € U gives ||Hz| = |[(N + J7'P)z|| < ||[Nz|| +
|J~1Pz|| < M where z = H 'y € Q. Q.E.D.

Definition 2.4.2 Let K be a cone in a Banach space X and Q C K be an open (relative
to K ) bounded set such that QNdom L # 0. Let L : dom L C X — Y be an unbounded
Fredholm operator of index zero and N : Qndom L — Y a bounded continuous nonlinear
operator such that L — N is A-proper at 0 and Lz # Nz on 0gQNdom L. Assume P +
JQN + L7 (I — Q)N maps K to K. Then we define indk ([L, N], Q) = indg, (T,V) =
Deg (I —Tp1,p7* (V),0) where V C H(dom L N ) s any bounded set open relative to
K; = H(dom L N K) with (I — T)™'(0) CV and py : Y — Ki is a retraction satisfying
ly — pryl| < 2dist (y, K1) and py (Ya) C Vi

In the following theorem we show that the index is well defined and that it is inde-

pendent of the choice of V.
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Theorem 2.4.3 The index in the preceding definition is well defined and is independent
of the choice of V', where V is any open bounded set such that (I — T)_1 (0) C V.

Proof. Let y € 9p7" (V) where (I —T)™(0) C V and assume Tp,y = y. Then
y € Kysincep; 1Y = Kyand T: Ky — K. Nowfory € Ky, pry=ysoTpiy=Ty=y
and since p; is the identity on Ki, p7'y = y so y € V. But this gives Ty = y on 9V’
which is a contradiction. Hence the degree and consequently the index is well defined.

Now we prove the index is independent of the choice of V. Suppose (I — T)™' (0) C V;
and (I — T)—1 (0) C V2 where V; and V; are open bounded sets in U = HQ. Then
(I-T)""(0) C ViNnV; = W and W is an open bounded set in U. By the additivity and

excision properties of the A-proper degree,
indg, (T, Vi) = Deg (I —Tpi,p7" (V1),0)
= Deg (I —Tp1,p;" (W),0) + Deg (I — Tp1,p;* (Vi \ W),0)
= Deg (I - Tpy,p;* (W),0).
Note that equality holds as Deg (I — Tp1,p7" (Vi \ W) ,0) = {0} is a singleton.

Similarly,

indg, (T, V2) = Deg (I - Tphpl_l (V2) 30)

Deg (I — Tp1,py* (W),0) + Deg (I — Tp,p7' (V2 \ W), 0)
= Deg (I —Tp1,pi" (W),0).

Thus indg, (T, Vi) = indg, (T, V3) which proves the index is independent of the choice of
V. Q.E.D.

The usual properties of the classical fixed point index remain valid for this index

defined on unbounded sets and are provided in the next theorem.

Theorem 2.4.4 Assume the conditions and notation of Definition 2.4.2. Then the in-

dez thus defined has the following properties.
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P1. If indg ([L, N],Q) = indg, (T, V) # {0}, then there ezists z € QO > F-1 (V) such
that Lt = Nz.

P2. If xo € Q, then indg ([L,—J7'P + §0o] , Q) = indk, (0, V) = {1} where yo = Hz,
and Yo () = yo for every z € Q.

P3. If O C Qand Qy CQ with QyNQy =0 and Lz # Nz for ¢ ¢ Q\ (U,
then indk ([L, N],Q) Cindk ([L, N], Q1) +indg ([L, N], Q,) with equality if either of the
indices on the right is a singleton.

P{. If L—N (A, z) is an A-proper homotopy on § for A € [0,1] and (N (Az)+JTPYH !
Ky = K1, V C HQ open bounded with (I — Ty)™ (0) C V, then indg ([L, N (), z)],0) =
indg, (T, V) is independent of X € [0,1].

Proof. P1. From the definition, indk, (T, V) # {0} implies Deg (I — Ty, p7* (V) ,0) #
{0}. Then if the degree is non-zero there exists y € p;* (V) such that Tpyy = y. Since
pr:Y — Ky and T : K1 — K; we have pyy = y so Ty = y for some y € V. By the
construction of I — T', this is equivalent to Lz = Nz forx = H 'y € H™'V C Q.

P2. We have
indK1 (3}0? V) = Deg ([ - onplﬂol_l (V) 70) = {1}

as in the proof to P2 of Theorem 2.2.7.

P3. We observe that Lz # Nz for z € Q\(Q; U Q,) implies Ty # y for y € U\(U,UU,)
where U; = HS; and U, = HQ,. By definition, indg ([L, N],Q) = indg, (T, V) where
(I-T)"'(0) C V CY. We consider the subsets V; = V N U; and V5 = V N Us, then V;

and V5 are open bounded and disjoint. So

indg, (T,V) = Deg (I —Tp1,p;7* (V),0)
C Deg (I = Tp1,p7t (Vi) ,0) + Deg (I — Tp1, p7* (V2),0)

+Deg (I = Tpy,p7" (V\ (V1 UV2)),0)
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where the last degree is 0 since V' \ (ViUV3) C U\ (U;UU,) and (I — )7 (0) ¢
U\ (U, UU,). Hence

indg, (7,V) Cindg, (T, V1) + indk, (T, V2).

The proof of equality is analogous to the proof of P3, Theorem 2.2.7.
P4. We note first that if L — N (X, z) is A-proper then the A-properness of I —
T\p: follows from Lemmas 2.3.2 and 2.3.5 with N (), z) replacing N (z) and T\ =

(N (A, z)+ J'P) H™'. We show that if Th\pyy = y for some y € p7* (V), A € [0,1],
then Thy = y for y € V and y ¢ 9p;' (V). Then by the invariance under homotopy
property of the A-proper degree we’ll have

Deg (I — Topy,pi* (V),0) = Deg (I — Tip1,p7" (V),0).

So assume Thp1y = y for some y € p7' (V), A € [0,1]. By the continuity of p;, p1y €
VK, NowT,: K, — K, soTpy € Ky and pyy =y and y € V. Since Thy # y on
OV we havey € V and y ¢ dp7" (V). Q.E.D.
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Chapter 3

A FIXED POINT INDEX
DEFINED IN TERMS OF LIMITS
OF THE FINITE DIMENSIONAL
BROUWER INDEX

3.1 Introduction

In the previous chapter, the definition of the index required the retraction py : Y - K,
to map Y, to Y, and that T be defined on all of K;. In this chapter we define an
index without these restrictions obtaining a result of greater generality in applications
but with some cost in simplicity of definition. However, the definition in this chapter
fits into the A-proper methodology of obtaining results by means of finite dimensional
approximations. We first define a finite dimensional index for continuous maps similar
to that of Amann [2], and then, using A-proper theory, extend the definition to A-proper

maps in infinite dimensional spaces. Once we establish the index for operators T' acting
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on the same space X, we consider operators of the form L — N from the space X to Y .

As we mentioned in the introduction to Chapter 2, Fitzpatrick and Petryshyn in [16]
defined a fixed point index for A-proper maps based on limits of the corresponding finite
dimensional Brouwer index. We shall use a similar method but with some differences in
the Brouwer degree and index we use. We conclude this chapter by modifying the index

to include unbounded sets in Y. This was done by Lafferriere [28] to Fitzpatrick and

Petryshyn’s index where 7' : X — X.

3.2 Definition and properties of the finite dimen-
sional index

Let K C X be a closed convex set (for example, a cone) in a finite dimensional Banach
space X and 2 C X be open and bounded with QN K = Qx # 0. Let T: Qx — K be
continuous such that T'z # z on Jk{}, the boundary of {2 relative to K. Let p: X — K

be an arbitrary retraction.
Definition 3.2.1 We define

ik (T,Q) = deg (I = Tp,p™" (Q),0)
where the degree is the Brouwer degree for continuous maps.

Remark 3.2.2 This is essentially a special case of results in Amann [2] but we sketch

the simpler case here for completeness.

The following lemma and proposition show that the index 1s well defined.

Lemma 3.2.3 9(p™'Qk) C p~' (0x9) .
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Proof. p~'Qk is open in X because p is continuous. Then

0(p™' k) = p7 () \p~ (%) in X
C p (k) \ p7t (k) by continuity of p
(Qx

= p ' (Qx\Q K) by property of inverse image
= p_l (BKQ) . Q.E.D.

Proposition 3.2.4 If Tz # z for all z € 9N then Tpz + z for all z € 9 (p™1Qk).

Proof. (By contrapositive argument) We have Tpz = z for z € 0(p~10k) C
p~' (0k Q) implies pz € OxQ and Tpzr € K so that z € K and pr = z. Therefore
t € 0xQland Tz = z. Q.E.D.

We prove that the index defined above is independent of the retraction p.

Theorem 3.2.5 The index of Definition 3.2.1 does not depend on the retraction chosen
from X to K.

Proof. Let p and 7 be retractions of X to K and assume T : Qx — K. We note
that the fixed points of Tp and 77 are contained in D = p™'Qx N 771Qx. We define
the homotopy H (\,z) : Qx — K by H(\,z) = (1 —X)Tpz + M7z and show that
H (M) # x on 0xD. If not, then (1 — X\) Tpz + ATtz = z for some z € D and since
pz € Ok and 7z € Qg and T : QO — K, by convexity of K, (1 — X\) Tpz 4+ AT71z € K so
z € K and hence p(z) = z and 7(z) = z. Thus H (A\,z) = z on Ox D reduces to Tz =z
on Ok {1 which is excluded by hypothesis. Then by the homotopy invariance property of

the Brouwer degree we have
deg (I — Tp,D,0) = deg(I —T1,D,0).
Hence the index is independent of the retraction chosen. Q.E.D.

We accordingly frame the properties of this index in the next theorem.
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Theorem 3.2.6 Let T : Qx — K be continuous and such that Tz # z on Ok, then
the inder defined above has the following properties.
PL. Ifix (T, Q) # 0, then T has a fized point in Q.
P2. If o € Qg, then ik (20, Q) = 1 where &o(z) = zo for every z € Q.
P3. If 1, Qy are relatively open disjoint subsets of Qg such that Tz + ¢ for z €
O \ (L UQy), then

i (T, Q) = ix (T, ) +ix (T, Q) .

Pi. If H(Nz):[0,1] x Qg — K is a continuous homotopy such that H(\z)# z on
Ok for A € [0,1], then ix (H (A, z),9) is independent of A € [0,1].

Proof. P1. Tf 1k (T,8) # 0, then by definition the Brouwer degree
deg (I — Tp,p~" (Qxk),0) # 0 which implies the existence of z € p~! (Qk) such that
Tpx = z with pz € Q. Since p: X — K and T : Qg — K we have pz = z. By
hypothesis, Tz # x on 0k, consequently, Tz = z for z € (k.

P2. For zo € Qx we have deg (I, x, zo) = 1 by property of the Brouwer degree. The

equation zg = z is equivalent to 2o — z = 0 or (I — Zo) z = 0. Thus
deg (1,0, z0) = deg (I — Zo, K, 0).
Now as z¢ € Qk and p is the identity on K, we obtain
deg (I — Z9,82k,0) = deg (I — Zop, p” ' (k) ,0) = 1.

P3. If Tz # z for £ € Ok \ (4 UQy) then Tz # = on 9, U 0D, and by Proposition
3.2.4, Tpz # z on 9p~ 1 (Qy) U dp~' (Q). We note that since ; N Ry = 0, p~ () N

p~1(Q3) = 0 so that the additivity property of the Brouwer degree gives

deg (I — Tp,p™" (k) ,0) = deg (I — Tp,p™" () ,0) + deg (I = Tp,p™" () ,0)-
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The result then follows from the definition of the index.
P4. Suppose H (A, pz) = z for some z € p=1 (k) and ) € [0, 1]. Since p: X —» K
we have pz € Qx and since H : Qx — K,z € K. Now p is the identity on K so pT =T

and H (A, pz) = H (A, z) = z. By assumption, H (\,z) # z on 9xQ so z € Q. Hence,
by the homotopy property of the Brouwer degree

deg (I —H (O,pIE) ,P_l (QK) 70) - deg ([ - H(l,px) vp_l (QK) ’0)

from which the result follows. Q.E.D.

3.3 The index defined for infinite dimensional spaces

Let K be a cone in an infinite dimensional Banach space X with projection scheme I
such that @, (K) C K for every n € N. Let p : X — K be an arbitrary retraction and
Q C X an open bounded set such that Qg = QN K # 0. Let T : Qx — K be such
that I — T is A-proper at 0. Write K, = K N X,, = @,K and Qk, = Qg N X,. Then

Qnp : X, — K, is a finite dimensional retraction.
Definition 3.3.1 If Tz # z on 0k} then we define
indg (T,Q) = {k € Z U{too}: ik, (Qn,T,Qn,) = k for some nj — oo}
where the finite dimensional index is that defined in the previous section.
The following lemma indicates that the index is well defined.

Lemma 3.8.2 Let T : Qg — K be such that I — T is A-proper at 0 and that Tz *

on OxQ. Then there exists ng € N such that for every n 2 nq, Q.Tz # x for z € 0k,

and Q,T(Qnp)z #  on 3(Qnp)” (Q,)-
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Proof. If the assertion is false, then there exists a sequence {zn} C 0k, Q, such that
Zn — Qnl'z, = 0. Since I — T is A-proper at 0, there is a subsequence Tn, — T with
Tz = z. Now for each n, Ok, C Ok which is closed so we have = € Ok and we
obtain a contradiction to our hypothesis. Then, by Proposition 3.2.4, Q,Tz # T on
Ok, for every n > no implies Q,T(Qnp)z # z on 9(Qnp)~" (Qk, ). Q.E.D.

Remark 3.3.3 That the index thus defined is independent of the retraction chosen fol-

lows from the finite dimensional result.
The usual properties of this index are stated in the next theorem.

Theorem 3.3.4 Let T : Qg — K be such that I — T is A-proper at 0 and that Tz #
for x € OxQ. Then the index defined above has the following properties.

P1. Ifindg (T,9) # {0}, then T has a fized point in k.

P2. If zo € Qk, then indg (Zo, ) = {1} where Zo (z) = o for every z € Qk.

P3. If Qi and Qy are disjoint relatively open subsets of Qi such that Tz # z for z €
Qx \ (01 U Qy), then

indg (T, Q) C indg (T, Ql) + indg (T, Qg)

with equality if either of the two indices on the right is a singleton.
P4. If H(\ z):[0,1] x Qx — K is such that I — H (X, ) 1s an A-proper at { homotopy
and H (M, z) # z on 0xQ, X € [0,1], then indk (H (A, z),Q) is independent of A € [0,1].

Proof. P1. If indg (T,Q) # {0} then there exists a subsequence {n;} C N with
n; — oo such that the sequence of finite dimensional indices {ik, (Q.T, )} has non-zero
terms. Consequently, there exist z,; € (an p)—l (QK%) such that Qn,TQn;pTn; = Zn;.
Since Qn;p: X — K and Qn,; T : Qx — K we have Qn, pTn; = Tp; SO that Qn,T'Tn, = Ty,

and z,; € Qn, K. By the A-properness of [—T, there exists a subsequence z,, — T € Qx

such that Tz = z.
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P2. Since Q,z¢ € Q, for every n € N, i, (QnZo,Q,) = 1 for every n € N and hence
indr (2o, Q) = {1}.

P3. If Tz # z for z € m\ (1 UQy) then Tz # z on Ok U Ok§y. The A-
properness of I — T implies that there exists ng such that for every n 2> no, Q,T'z, # z,
on 0k, {1, U0k, $Y2,. By Proposition 3.2.4, we have QnT QnpZn # 2, 0n 0 (Qnp) ™" (Q,)U
3 (Qup) ™ (92,) where ;. = 0, N X,, i = 1,2. We note also that for every n € N,
M, NQs, =0 sothat p™' (Qy,) N p~1 (Qy.) = 0 and the additivity property of the finite

dimensional index gives

2'Kn (QnTa Qn) = Z'Kn (QnTa an) + iKn (QnTv Q2n) .

Then passing to limits we obtain
indg (T,9) Cindg (T, Q1) + indg (T, Q).

The argument for equality is essentially the same as that in the proof of P3, Theorem
2.2.7, interchanging degree for index.

P4. We have H (A, z) # = on 0xQ and the A-properness I — H (), z) imply there
exists no € N such that for every n > no, QnH (A, z,) # 7, on 9k, 0, A € [0,1]). Then
by Proposition 3.2.4, Q,H (A, Qnpz,) # 2, on 0(Qnp)~" (Qk,) for A € [0,1] so that
ik, (@nH (X, Qnpzs), Q) is well defined and independent of A € [0, 1] for every n > n.
Hence indg (H (A, z),) is independent of A € [0,1]. Q.E.D.

3.4 The index extended to maps of the form L-N

We now extend the index to the L — N case and assume L to be bounded making
H = L+J7'P a homeomorphism. We make the following assumptions in this section. Let
K be a cone in the Banach space X, let 2 C X be open, bounded and such that Qg # 0,
let L: X — Y be a bounded Fredholm operator of index zero, N : 0 — Y a bounded
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continuous nonlinear operator such that L — N is A-proper at 0 and N+ J-'P : I* — i
Using the construction in Section 2.2, we write Lz — Nz = w as y—Ty =win Y where
T=(N+J'P)H™'. By Lemma 2.3.2, I — T is A-proper at 0 relative to T'if L — .V is

A-proper at 0 relative to I'y,. By Proposition 2.3.4, T maps K; to K; where K| = H (K).

Definition 3.4.1 Under the above assumptions, let p; be a retraction from Y to K, and

assume Qo Ky C K; and Lz # Nz on 0xQ. We define the fized point index of L — N

over Qg as

indK ([L, N] ,Q) = indK1 (T, U)

where U = HQ g and the indezx on the right is that defined in the previous section.

The index is well defined since Lz # Nz on 0g) implies Ty # y on Ok, U and the
A-properness of I — T means there exists ng such that for every n > ng, Q,.7Ty, # y, on
Ox, Un.

We list the properties of this index in the following theorem.

Theorem 3.4.2 Assume the conditions and notation of the preceding definition. Then
the index thus defined has the following properties.

P1. Ifindg ([L,N],Q) = indk, (T,U) # {0}, then there exists x € Qk such that Lx =
Nz.

P2. If zo € Qx, then indk ([L,—J*P + 9o}, Q) = indk, (4o, U) = {1} where yo = Hzo
and Yo (y) = yo for everyy € U.

P3. If Lv # Nz for z € Qx \ (4 U Qy) where Q; and Qy are disjoint relatively open

subsets of Qi then
indg ([L, N],9Q) C indk ([L, N], Q1) + indk ([L, N],Q,)

with equality if either of the indices on the right is a singleton.
P4. If L—N (), z) is an A-proper homotopy on Qg for A € [0, 1] and (N (\,z)+ J7'P)H™!
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t Ky = Ky and0 ¢ (L — N (A z)) (dom L N Ok Q) for X € [0,1], then indx ([L.N(Az2)].0)
= indk, (T, U) is independent of X € |0, 1] where T\ = (N (A, z)+ J1PyH1,

Proof. P1. If indg, (T,U) # {0} then T has a fixed point in U by P1 of Theorem
3.3.4,1e,Ty=yfory € Uandy = Hx. By construction, this is equivalent to Lz = Vz.
where z = H™ 'y € Q.

P2. Let Hzo =yo € HQx = U, then indg, (o, U) = {1} by P2 of Theorem 3.3.4.

P3. We note first that Lz # Nz for z € Qg \ (O, U Q) implies Ty # y for y €
U\ (U1 UU;) where U = HQg, and U; = HQ; 1 =1,2. Now noting that Uy NU, = 0,
P3 of Theorem 3.3.4 gives

indg, (T,U) Cindk, (T,U;) + indg, (T, Us) .

The result then follows by definition of the index for L — N. The argument for equality
is analogous to the proof of P3, Theorem 2.2.7.

P4. We observe that if L — N (X, z) is A-proper then the A-properness of I — T}
follows from Lemma 2.3.2 with N (), z) replacing N (z). By hypothesis, Lz # N (), )
on Jk{l so that Hz # (Nx+ J~'P)z on 0xQ which implies y # T\y on 9x,U. Then
by P4 of Theorem 3.3.4, indk, (T),U) is independent of A € [0,1] and consequently
indg ([L, N(X, z)],Q) is also. Q.E.D.

3.5 The index defined on unbounded sets

We conclude this chapter by extending the definition of the index to maps L — N where L
is unbounded and the set U = HQ g is unbounded in Y. Let  C X be open and bounded
such that Qg Ndom L # 0, L : dom L C X — Y an unbounded Fredholm operator of
index zero, N : Qg Ndom L — Y a bounded continuous operator such that L — N is A-
proper relative to I';, at 0. Using the construction in Section 2.2, we write L— N as [ =T

in Y and assume P + JQN + L7' (I — Q) N maps K to K. Let Ky = H (K Ndom L)
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where H = L+ J~!'P and p; be a retraction from Y onto Ki. Assume Q,(K;)
Lz # Nz on 0g{).

C A and

Definition 3.5.1 We define
indK ([L, N] aQ) = indKl (T7 V)
where V. C Y is an open bounded set relative to K, containing (I — T)‘l (0).

Theorem 3.5.2 The index of Definition 3.5.1 is well defined and independent of the
choice of the open bounded set V' containing (I —T)™" (0).

Proof. The conditions (I —T)™" (0) C V and V open imply Ty # y on 8V so that
Ty # y on 0,V C 0V. Thus, by Definition 3.3.1, ix, (@.T,V;) is defined for every
n > no and so indg, (T, V) = indk ([L, N], ) is well defined.

We need also show that the index is independent of the choice of V. Suppose
(I-T)™(0) € V; and (I —T)™"(0) C V; where V4,V; are open bounded sets in Y.
Then (I —T)™'(0) C ViNV, = W and W is an open bounded set in Y. Now Ty # y
on OW so Ty # y on Ok, W. Since [ — T' is A-proper, there exists ny such that for every
n > ng, (I — QnT)yn # 0 on Ok, W,. By Proposition 3.2.4, (I — Q.TQnp1)yn # 0 on
0 (Qnpr) " (W, ) for every n > no. By the additivity and excision properties of the finite

dimensional index of Definition 3.2.1, we have

Z.K1 (QnTa Vin) = iKl (QTLT7 Wn) T iKl (Q”T’ Viﬂ \ Wn)

= ik, (Q.T,W,).
Similarly,

iKl (QnTa V2n) = iKl (QnTa Wn) + Z‘K1 (QnTa V2n \ Wn)

= 1k (Q.T,W,).
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Since this is true for all n > ng, we have
indk ([L, N],Q) = indg, (T, V;) = indg, (T,V;). Q.E.D.
We present the usual properties of this index in the following theorem.

Theorem 3.5.3 Assume the conditions and notation of the preceding definition. Then
the index thus defined has the following properties.

P1. If indk ([L, N],Q) = indg, (T, V) # {0}, then there exists z ¢ Qk such that
Lz = Nz.

P2. If zo € Qk, then indk ([L,~J P + 4], Q) = indg, (g0, V) = {1} where yo = Hz,
and §o () = yo for every z € Q.

P3. If Qy, Qy are disjoint relatively open subsets of Qx such that Lz # Nz for z €
Ok \ (Q U Qy) then

indg ([L, N],9Q) C indg (L, N], ) + indg ([L, N], )

with equality if either of the indices on the right is a singleton.

P4. If L—N (X, z) is an A-proper homotopy on Qg for A € [0,1] and (N (X, z) + J~1P) H™}
: K1 — Ky and (I —T\)™"(0) C V for every A € [0,1], V C Y open and bounded and
0 ¢ (L—N(X\z))(dom L NdxQ), then indk ([L, N (), z)],9) = indg, (T», V) is inde-
pendent of A € [0,1].

Proof. P1. By properties of the earlier index defined for T in Theorem 3.3.4 we
have indg, (T,V) # {0} implies T has a fixed point y € Vk,. Now (I —T)™"(0) C
H (Qx Ndom L) so that 2 = H™'y € Qk. Hence Lr = Nz has a solution in Q.

P2. This follows from P2 of Theorem 3.3.4, noting that Hzo = yo € H (Qx Ndom L).

P3. We note that Lz # Nz for z € Qg \(Q U Q,) implies Ty # y fory € U\ (U1 U )
where U = HQg and U; = HQ,;, 1 = 1,2. Now by definition, indg ([L, N],Q) =
indg (T, V) where (I —T)™'(0) C V C Y and V is open and bounded. We consider
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the subsets Vi = V N U; and V; = V N U, of V, then V; and V; are open, bounded and
disjoint. So, by the additivity and excision properties of the index in Theorem 3.3.4. we

have

indk, (T, V) C indk, (T, V) + indg, (T, V4) + ind, (T, V \ (V, U V3))

where the last index is 0 since (I —T)7'(0) € V' \ (V4 U V4). The result then follows
from the definition of the index for L — N. The argument for equality is analogous to
the proof of P3, Theorem 2.2.7.

P4. We observe that if L—N (A, z) is A-proper, then the A-properness of I—T) follows
from Lemma 2.3.2 with N (A, z) replacing N (z) and T\ = (N (A\,z) + J"1P) H7!. The
condition 0 ¢ (L — N (X, z)) (dom L N 8xQ) implies (I — Tx)™ (0) £ U\ V, U = HQ, so
that by the invariance under homotopy property of Theorem 3.3.4 we have indg, (T, V)
independent of A € [0,1]. Hence it follows that indg ([L, N(A, z)],) is also independent
of A € [0,1]. Q.E.D.
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Chapter 4

A FIXED POINT INDEX FOR
WEAKLY INWARD A-PROPER
MAPS OF THE FORM L-N

4.1 Introduction

The results of this chapter extend the fixed point index for weakly inward A-proper maps
defined by Lan and Webb in [30] to maps of the form L — N. Weakly inward maps were
apparently introduced by Halpern and Bergman [20] and have been extensively studied
by Caristi [8], Deimling [13], Hu and Sun [24], Lan and Webb [30], Sun and Sun [51],
and Webb [53]. Fixed point indices for weakly inward maps have been studied by Hu
and Sun [24] for compact maps, Sun and Sun [51] for maps defined on compact convex

sets, and by Lan and Webb [30] for A-proper maps.

Definition 4.1.1 Let K C X be a closed convez set. For each ¢ € K, the set Ik (z) =
{t4+c(z—2):2€ K, ¢ >0} is called the inward set of = with respect to K. A map

T: K — X is called inward (respectively, weakly inward) if for all z € K, Tz € Ik (z)
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(Tz € Ik (z)).

Remark 4.1.2 Geometrically, the inward set of = is the union of all rays originating at

z and passing through some other point z of K. If x is an interior point of K then I (z)

forms the whole space X.

Definition 4.1.3 A map T : Qx — X s said to be inward (respectively, weakly inward)
on Qf relative to K if Tz € Ix (z) (respectively, Tz € Ix (z)) for z € Qg where Q C X
is open and bounded with Qg = QN K # (.

The following two theorems give conditions for a map 7' : K C X — X to be weakly
inward. The first involves a hypothesis of flow invariance from the theory of differential

equations in Banach spaces.

Theorem 4.1.4 (Caristi [8]) Let K C X be a closed convex set in a Banach space X
and T : K — X. Then T is weakly inward iff

lim %dist(w—l—h(T:z:—w),K) =0

h—0t

for all z € K.

Proof. (The argument follows that of Deimling [13]) Suppose

lim %dist(xﬁ—h(T&c—x),K):O

h—0t

for all € K. Given € > 0, for each & € (0,1) there exists y € K such that
|z +8(Tz—2z)—y|| < dist (z + § (Tz — z), K) + de.

Then
HT:z: ~[1-6Yz+ §y) H <5 'dist(z+6(Te—z),K)+e

and as € was chosen arbitrarily, this and the assumed limit condition imply Tz € Ik (z).

Now suppose T is weakly inward, let z € K, ¢ > 0, and choose y € Ik (z) such that
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ly —Tz|| < e. Since y € Ix(z) and K is convex, there exists §, > 0 such that z +
§(y—1z) € K for 0 < < Jg. Then

67 dist (¢ +6(Tz —z),K) < 67 |[(1-6)a+dTe—[e+6(y—a)|

< 6 0Ta — oyl = T -yl <
for § € (0,d0]. Hence, we have proved the converse. Q.E.D.

The second theorem is formulated in terms of tangent functionals and is often useful

in applications and may be found in Deimling [13].

Theorem 4.1.5 Let K C X be a closed convex set in a Banach space X. Then T :
K — X is weakly inward iff x € 0K, z* € X* and z* (z) = sup,cx =* (y) together imply
*(Tz —z) < 0.

Proof. Suppose T is weakly inward and Tz = w = limy_,o wn, where
Wy =T + ¢ (20 — T),
zn € K, ¢, > 0and z € 0K. Then for each n € N,

e (z+cn(zn—2)) = z°(z)+cn?” (20 — )
= 2" (z)+ ca[2" (20) — 2" ()]

z" (),

I

since z* (z) > z* (2y,) for all n. Thus z*(Tz) < 2" (z) and z” (Tz —z) < 0.

We shall prove the converse by contradiction. Suppose T is not weakly inward and
the conditions of the theorem hold, then there exists an = € K such that T'z ¢ Ix (z).
Now by the separation theorem for convex sets, there exists * € X* such that

sup 2" (z) <z’ (Tz),
z€Ik(z)
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noting that I () is convex and that there exists p < dist (Ti,TK(x)) with B, (Tx) N
Ix (z) = 0. Then

2*(Te—z) = 2*(Tz) - 2" (z)
> ¥ (z+c(y—z))— 2" (z)

= ¢’ (y—z)

forallc > 0, and all y € K. Hence, taking ¢ = 0, * (T'z — z) > 0 and taking c arbitrarily

large, % (y — ) < 0 for all y € K which contradicts our hypotheses. Q.E.D.

Before considering an index for the L — N case, we discuss the derivation, definition
and properties of the index established by Lan and Webb [30] for reference.

In this chapter, we adopt conventions corresponding to the notation of Lan and Webb
for convenience. Denote @), 1" as T,,, @ N K as Qg and Qx N X, as Q...

We begin by recalling the Lan-Webb definition of an index for weakly inward maps
in finite dimensional spaces and then, in a manner analogous to the index derived by
Fitzpatrick and Petryshyn [16], extend the definition to the infinite dimensional case.

The definition of the index requires a special retraction which we now mention.

Definition 4.1.6 An e-retraction of X onto K is a continuous map r : X — K which

satisfies

|z —rz|| < (1 +¢€)dist (z, K) for every z € X.

Remark 4.1.7 e-retractions exist for every € > 0 by Dugundji’s extension theorem, cf.,
[26]. For locally uniformly convez spaces, one may take € = 0 and a O-retraction (equiv-

alently, a metric projection) is possible.

The following lemma can be used to help show that an index can be defined which is

independent of the e-retraction chosen provided e is sufficiently small.
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Lemma 4.1.8 Let K be a closed conver set in a finite dimensional space X and let D be
a closed bounded subset of K. Let h: [0,1] x D — X be continuous and such that h(t.-)
is weakly inward on D relative to K for each t € [0,1]. Then, if h(t,z) # = forallz € D
and t € [0, 1], there exists ¢o > 0 such that r. (h(t,z)) # z for all z € D, t€[0,1], and

€ < €.

Proof. If this were false, there would be sequences ¢, — 0, z,, € D, t, € [0,1] such
that re (h (tn,2s)) = 5. Thus

l2n = (tnszn)l = |Iren (B (tn, 2n) = h (tn, z4)]|

< (14 ) dist (A (tn, 2a), K) .

Passing then to subsequences, we may suppose that z, — = € D, ¢t, — t. Then
h(tn,z,) = h(t,z) and we obtain ||z — h (¢, )| < dist (h (¢,2), K).

Now Lemma 2.2 of [30] states: if f(z) € Ix(z) and f(z) ¢ K for = € K, then
dist (f (z), K) < ||f (z) — «||. The proof, for completeness, is as follows.

Let f (z) = limw, where w, = (1 — a,) £+ a,y, for some y, € K and a, > 1. Choose

N sufficiently large so that ||f (z) — wn|| < ||f (z) — z||. Then

dist (f (), K) < ||f<x>—yN||=Hf<x>—[iwm(l—i) |

an an

< L) -+ (1 - iN) 1f (=) — <l
< (=) -2l

Hence we obtain a contradiction unless 4 (t,z) € K. But this implies h(¢,z) = z

which contradicts our hypothesis and, therefore, proves the result. Q.E.D.

We now define the index for finite dimensional spaces which will later be extended to

the infinite dimensional case.
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Definition 4.1.9 Let @ C X be an open bounded set of the finite dimensional space

X such that Qr # 0. Suppose that f : Qx — X is continuous and weakly inward
on Qx and suppose that f(z) # z for all z € OkQ. Define the fized point inder by

ik (f,Q) = ik (ref,Q) for € sufficiently small where ik (ref, Q) is the fixed point inder
defined in Section 3.2 above.

Remark 4.1.10 Lemma {.1.8 implies the index is well defined and, by considering a
homotopy argument, e.g., h(t,z) = tre f(z) + (1 — ) ro, f (z), it follows that the index
is independent of the e-retraction chosen for € sufficiently small. If a continuous metric

projection ro exists, then the index equals ig (rof, k) for Q open and bounded and QN
K #0.

In [30], this finite dimensional index is shown to have the standard fixed point index
properties, viz., existence, normalisation, additivity, and homotopy, as well as a fifth
property which states criteria for the index to equal one.

Let K be a closed convex set in a Banach space X with projection scheme I' =
{Xn,Q@.} and Q an open bounded set in X such that Qx # 0. Let T : Qg — X be a
weakly inward map where I — T is A-proper at 0 and such that T'z # = on 0.

The fixed point index for weakly inward A-proper maps is then defined in terms of
limits of these finite dimensional indices. An important step in the construction is the
proof that if T : Qx — X is weakly inward relative to K, then Q,T : Qx N X,, = X,
is weakly inward relative to K, = K N X,. This is evident if Q,Ix (z) C Ik, () for
every ¢ € K, which Lan and Webb prove to be true iff @,K C K. As this assumption
has been made throughout this thesis, it is not restrictive for our purposes and is usually

easy to verify in applications.

Definition 4.1.11 Write T, for the map Q,T restricted to Qk,. We define the fized

point index of T over Qi with respect to K as follows:
ik (T,Qk) = {m € ZU{too} 1 1g, (T, Q) — m for some nj — oo}
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where i, (Tn, ) is the fized point indez of Definition .1.9.

Remark 4.1.12 The A-properness of [ =T at 0 and the condition Tz # z on 0 imply
Tozn # Tn for all n > no so that the indices ik, (T,,0,) are well defined for such n.
This index generalises that of Fitzpatrick and Petryshyn [16] and is equivalent if T maps
Qx to K and I — T is A-proper on X. Note that this indez is, in general, multivalued

as the derivation is similar to that of the degree for A-proper maps.

The properties of this index are the content of the next theorem. We shall extend

them to maps of the form L — N in the next section.

Theorem 4.1.13 (Lan and Webb [30]) Let T : Qi — X be a weakly inward map where
[ —T is A-proper at 0 and such that Tz # z for x € Ox{). Then the index defined above
has the following properties.

P1. (Emistence) If ix (T,Q) # {0}, then T has a fized point in Q.

P2. (Normalisation) If o € Qx, then ik (Z0,Q) = 1, where &o (z) = zo for every z € Qxk.
P3. (Additivity) If Q4,Q, are disjoint relatively open subsets of Qk such that T'x # T
for z € Qg \ (4 UQ,), then ix (T,Q) C ix (T, ) + ik (T, Q) with equality holding if
either ix (T, Q) or ik (T,Q2) is a singleton.

Pj. (Homotopy property) Let H : [0,1] X Ox — X be such that H(t,.) : Qg — X is
weakly inward for each t € [0,1] and Iz — H (t,z) is an A-proper homotopy at 0. If
H(t,z) # z forz € OxQ and t € [0,1], then ix (H (0,.),9) = i (H(1,.),8).

P5. Suppose T (K) is bounded, then there exists ro > 0 such that ik (T, B, (0) N K) = {1}

for all r > ro, and hence T has a fized point in K.

Proof. We prove properties P1 and P4 to illustrate the methods and refer to [30] for

further details.
P1. If ix (T,Q) # {0} then there exists a subsequence {n;} C N with n; = oo such

that the sequence {z Kn, (Tn]. , an)} has non-zero terms. Consequently, there exists zn; €

59



QKnJ- such that ThTn, = Tp,. Since I — T is A-proper at 0, there exists a subsequence
Tn, = T € Ok with Tz = z. As Tz # ¢ on Ok we have ¢ € Qx which proves the
result.

P4. From the definition of an A-proper homotopy, the condition H (t,z) # z on O Q.
t € [0,1] implies PoH (t,2) # « for all z € 0k, Q, for sufficiently large n. Therefore, for
such n, P, H (,z) is defined on X,, and independent of ¢ € [0,1]. Hence ix (H(t,z).Q)
is independent of ¢ € [0,1]. Q.E.D.

4.2 The index defined for maps of the form L-N

In this section we assume L to be bounded and develop an index and the corresponding
properties accordingly. The case where L is unbounded will be the subject of a subsequent
section. We begin by defining the concept of weakly inward for maps of the form I — N
on a closed convex set; in particular a cone K.

Let X,Y be Banach spaces with projection scheme I't, = {X,,,Y,,Q.}. Let K ¢ X
be a cone and 2 C X be open bounded such that Qx Ndom L # (. Let L : domL — Y
be a bounded Fredholm operator of index zero and N : Qg Ndom L — Y a bounded

continuous nonlinear operator such that L — N is A-proper at 0 relative to I'y,.

Definition 4.2.1 We say the pair {L,N} is weakly inward on Qk relative to K if
(N+J'P)z € Ix, (Hz) for every z € Q.

Remark 4.2.2 When L is bounded, this is equivalent to
Pz +JQNz + L7 (I — Q) Nz € Ix (z) for z € Q.

Proof of remark 4.2.2. Since H and H™' are continuous, H (Ix (z)) = H (Ik (z)) so
that if we write (P +JQN)z 4+ Li* (I — Q) Nz = & € Ik (z) then Hi € H (Ix (z)) =
Ix, (Hz). By Lemma 2.3.3, Hz = (N + J~'P) z.
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Now assuming (N 4+ J~'P)z € Ik, (Hz) for every z € Q. we have H ¢ I, (Hz)
by Lemma 2.3.3 since H = (N + J™'P)z. Also, I, (Hz) = H (I (z)) so 7 € I (z).
Then by Lemma 2.3.3, 3 = (P+JQN)z 4+ L7'(I - Q) Nz € Iy (z), which proves
equivalence. Q.E.D.

The justification for this definition is that we shall require the map T in Y to be
weakly inward on U = HQ relative to K; = H(dom LNK ) in order to define our index.
The following lemma shows that if the conditions of the preceding definition are satisfied,

then T is indeed weakly inward on U.

Lemma 4.2.3 If (N + J'P)z € Ik, (Hz) for every ¢ € Qg, then Ty € I, (y) for
everyy € U C K.

Proof. Using the construction and notation of Section 2.2 and letting y = Hz, we
have (N + J~'P)z € Ik, (Hz) for every z € Q is equivalent to (N +J™*P)H~! (y) €
Ik, (y) for every y € U and hence Ty € Ik, (y) for every y € U, i.e., T is weakly inward
on U relative to K;. Q.E.D.

We now define the index for weakly inward A-proper maps of the form L — N as

follows.

Definition 4.2.4 Assume {L, N} is weakly inward on Q relative to K, Lz # Nz on
0k, Q. (K;) C K, forn € N and write U = HQg. Under the above hypotheses,
we define indg ([L, N],Q) = ik, (T,U) the fized point index for weakly inward A-proper
maps from Definition 4.1.11.

Remark 4.2.5 By Lemma 2.3.2, [ — T is A-proper with respect to I'g and Lemma 4.2.3
shows that T is weakly inward on the set U relative to K;. As was shown in Section 2.2,

the condition Lz # Nz on Ox§Q implies Ty # y on U so that the indez is well defined.
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In virtue of these definitions and remarks, we list the following properties of the index

which extend those of Theorem 4.1.13.

Theorem 4.2.6 Assume the conditions and notation of the preceding definition. Then
the indez thus defined has the following properties.

P1. If indg ([L, N], Q) # {0}, then there exists = € Qx such that Lz = Nz.

P2. If zo € Qk, then indg ([L, —J7'P 4 9], Q) = {1} where Hzo = yo and §o (z) = yo
for every z € Q.

P3. If Q1,05 are disjoint relatively open subsets of Qx such that Lz # Nz for z €
Qx\(Q1 UQe), thenindg ([L, N],Q) C indk ([L, N], Q1) +indg ([L, N], Q) with equality
if one of the indices on the right is a singleton.

P4. If L — N (), z) is A-proper for X € [0,1] and N (\,z)+ J Pz € Ik, (Hz) for every
€K, 20,1 and 0 ¢ (L — N (X 2))(0xkQ), X €[0,1], then indg ([L, N (X, z)],Q) s
independent of A € [0,1].

Proof. P1. If indk ([L, N],Q) =ik, (T,U) # {0}, then there exists y € U such that
Ty = y which is equivalent to Lz = Nz for z = H™ 'y € Q.
P2. By definition,

indg ([L,—J'P + 0] ,Q) = ix, (%0,U) = {1}

since yo = Hxo € U.
P3. From Lz # Nz for z € Qg \ (1 U Q) we have Ty # y for y € U\ (U; U Uy),
where U = HQg and U; = HQ;, + = 1,2, noting that HQ, N HQy = ( since H is a

homeomorphism and that HQy and H(; are open bounded subsets of HQx. Then

indg ([L,N],Q) = ix, (T,U)
g iKl (T7 Ul) + Z.K'1 (T7 U2)

= Indg ([L, N] ,Ql) + indg ([L, N] Qg) .
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The argument for equality is analogous to the proof of P3, Theorem 2.2.7.
P4. The first condition implies I — T where Ty = (N (Az)+ J1P)H 1 ig A-proper
at 0 by Lemma 2.3.2 with N (), z) replacing N while the second condition implies T} is

weakly inward by Lemma 4.2.3. From 0 ¢ (L — N (), z)) (0Qx) we have Ty # y on AU’
for A € [0,1]. Then by the invariance under homotopy property,

ik, (To,U) = 1k, (T4, U)
or equivalently,
indg ([L, N (0,2)],9) = indk ([L, N (1,2)],9).
Q.E.D.
We include a fifth property in the event that (N + J~'P) (K) is bounded where K is

a closed convex set. We shall use this property in the proof to Theorem 5.4.13 to obtain

multiple non-zero solutions to the equation Lz = Nz.

Theorem 4.2.7 P5. If (N + J'P)(K) is bounded and L — AN is A-proper for A €
[0,1], then there exists ro > 0 such that indg ([L, N], B, (0)) = {1} for every r > ro.

Proof. Since (N + J7'P)(K) is bounded we have T (HK) = T (K;) bounded in Y
S0

indK ([L, N] y Br (0)) = iKl (T, HBr (O)) = {1}

by P5 of Theorem 4.1.13. Q.E.D.

4.3 The index extended to unbounded sets

Let K C X be a closed convex set in a Banach space X with projection scheme I' =
{X,,Q.}. Let Q@ C X be an open bounded set such that Qg # 0 and T : Qx — X be
a weakly inward map on Qg relative to K such that [ — T is A-proper at 0. Assume

(I —T)7'(0) is bounded and Tz # z on IxQ.
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Definition 4.3.1 Define the fized point index of T over Qg relative to K as ip (T.Q)

ik (T, W) where W = QgNVk and V C X is open, bounded such that (I — T)_1 0)c V.

Remark 4.3.2 T is weakly inward on W relative to K since W C Qx and Tz # T on
OW since (I — T)_1 (0) C Qx NV =W and W is the intersection of two relatively open
sets. Thus the index is well defined.

We show that the index is independent of the choice of the open bounded set V and
consequently, W. Suppose (I —T)"'(0) € Vi and (I —T)""(0) C V; and let W, =
VN Qx and Wo = VoaN Qg, then (I —T)7'(0) € Wy N Wy, = Wy, Now T is weakly
inward on W;, i = 0,1,2, relative to K and Tz # z on 0W,, since W; are open and
(I - T)_1 (0) C W;. By the additivity and excision properties of the Lan-Webb index we

have

ik (T,Q) = ix(T,Wh) = ix (T, Wy \ Wo) + ix (T, Wo)

- ’iK (T, WQ) .
Similarly,

iK(T,Q) = g (T,Wz)zi}{ (T,W2\—I/V—O)+Z.K(T,Wo)

- iK (T, W()) .

Hence the index is independent of the choice of V and W.

The properties of this index are given in the next theorem.

Theorem 4.3.3 Assume the conditions and notation of the preceding definition. Then
the index thus defined has the following properties.

Pl. Ifig (T,Q) = ix (T,W) # {0} then T has a fized point in Qg .

P2. If 7o € Qi then ig (%0, Q) = ik (£0, W) = {1}, where Zo (z) = o for every ¢ € Ok
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P3. If Q1,Qq are disjoint relatively open subsets of Oy such that Tz # z forr €
—Q}-\ (Ql U Q2) then

1k (1,9) C i (T, ) + ik (T, Q)

with equality if either of the indices on the right is a singleton.

Pj. Let H :[0,1) x Qg — X be such that H (A : Qg — X is weakly inward relative to
K for every A € [0,1] and Iz — H (A, z) is an A-proper homotopy at 0. If H(\z) # 2
for z € Ok and A € [0,1] then ik (H (0,-),Q) = i (H (1,-),Q).

Proof. PL. Tt ix (T,Q) = igx (T, W) # {0} then P1 of Theorem 4.1.13 implies 7" has
a fixed point in W. Since W C Qi we have Tz = z for some z € Q.

P2. Since V is chosen such that (I — 7)™ (0) = (I — &) (0) C V we have 20 € V'
so that zo € V N Qg = W. Then P2 of Theorem 4.1.13 implies ix (&0, W) = {1}.

P3. By definition ix (7,9Q) = ix (T, W) where W = VN Qg and V C X is open
bounded and (I — T)™" (0) C V. We consider the subsets Wy = Q,NW and W, = Q,NW,
then Wi and W, are relatively open, bounded and the fixed points of T' (if there are
any) in €y are in W) and the fixed points of T' (if there are any) in {1, are in W;. So
that ix (T,Q) = ik (T, W1) and ig (T, Q) = ig (T, W;). We observe that Tz # z for
z € Qg \ (L UQ,) implies Tz # « for z € W\ (W) U W) since W \ (W, UW,) C
Qx \ (©4 U Q). By the additivity and excision properties of the Lan-Webb index

ik (T,Q) = ix (T, W) C ix (T, Wy) + ix (T, Ws).

The argument for equality is analogous to the proof of P3, Theorem 2.2.7.

P4. We show that ix (H (A, z),Q) = ix (H ()\,z),W) is independent of A € [0,1]. If
H(\z)#cfora € 0D, A € [0,1) then H (A, z) # z for z € dx W since (I — Hy)™ (0) C
Qx NV = W where V C X is open bounded such that (I — Hy)™" (0) C V. Now H (A, z)
is weakly inward on W since W C Q. Then by P4 of Theorem 4.1.13

ix (H(0,2),W) =ix (H(1,z),W).
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Which proves the result. Q.E.D.

We now consider the L — N case, assuming L to be unbounded and develop an index
in a manner similar to that of Sections 2.4 and 3.5.

Let K C X be a cone and @ C X be open bounded such that Ok Ndom L # §.
Let L : domL C X — Y be an unbounded Fredholm operator of index zero and N :
Qx Ndom L — Y a bounded continuous nonlinear operator such that L — N is A-proper

at 0 relative to I'y. Define Ky = H (dom L N K).

Definition 4.3.4 Assume Lz # Nz on dom LNOkQ and (N + J™'P)z € Tg, (Hz) for
every ¢ € Qg. We define indg ([L, N],Q) = ix, (T,U) where U = HQx and the inder
is that of Definition {.3.1.

Remark 4.3.5 Lemma 2.5.2 implies that I — T is A-proper at 0 while Lemma 4.2.3
implies T is weakly inward on U = HQg relative to Ky. Also, Ty # y on 0U since
(I-=T)"'(0) C U and U is open. Hence the index is well defined.

Theorem 4.3.6 Assume the conditions and notation of the preceding definition. Then
the index thus defined has the following properties.

P1. Ifindg ([L,N],Q) =ik, (T,U) # {0}, then there exists ¢ € Qk such that Lz = Nz.
P2. If zo € Qk, then indg ([L,—J7'P + 9], Q) = ik, (J0,U) = {1} where Hzo = yo
and yo () = yo for every = € (k.

P3. If Q4,0 are disjoint relatively open subsets of Qx such that Lz # Nz for x €
Qx\ (2 U Qy), then indg ([L, N],Q) C indx ({L, N}, Q1) +indk ([L, N}, Q) with equality
if one of the indices on the right is a singleton.

P4. If L — N (\,z) is an A-proper at 0 homotopy for A € [0,1] and N (A, z) + J Pz €
I, (Hz) for every z € Qk, X € [0,1] and0 ¢ (L — N (},-)) (dom L N Ok ) for X € {0,1].
then indg ([L, N (), z)],Q) is independent of A € [0,1].
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Proof. P1. 1f ik, (T,U) # {0}, then T has a fixed point in U = HQ by P1 of
Theorem 4.3.3, 1.e., Ty = y for some y € U and y = Hz. This is equivalent to L.z = \'z
for z = H 'y and as y € HQg, = € Q.

P2. Since yo € U, the result follows from P2, Theorem 4.3.3.

P3. We note first that the condition Lz # Nz for z € Qg \ (Q; U Q3) implies Ty # y
for y € U \ (U1 U U,) where U; = HQ;, i = 1,2. Now since U; N U, = @), P3 of Theorem
4.3.3 implies

ik, (T,U) Cuk, (T,Ur) + ik, (T,U)

which proves the result. The argument for the equality case is analogous to the proof of
P3, Theorem 2.2.7.

P4. The first condition implies I — T} is an A-proper at 0 homotopy by Lemma 2.3.2
with Ty = (N (X, z) + J™'P) H™'. The second condition implies T is weakly inward on
U = HQg by Lemma 4.2.3. From 0 ¢ (L — N (},-)) (dom L N 0xQl) we have Thy # y

on OU for A € [0,1]. Then by the invariance under homotopy property, P4 of Theorem

4.3.3, we have
ik, (To,U) =1k, (T1,U)
that is
indg ([L, N (0,2)],9) = indg ([L, N (1,2)],9).
Q.E.D.
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Chapter 5

EXISTENCE THEOREMS FOR
SEMILINEAR EQUATIONS IN
CONES

5.1 Introduction

In this chapter we use our fixed point indices to extend the existence theorems established
by Webb [54] for semilinear equations in cones and, at the same time, obtain simpler
proofs. We also extend a fixed point result of Petryshyn [41] and obtain a continuation
theorem similar to that of Mawhin [34] for A-proper maps which we shall apply in Chapter
6 to the solution of an ordinary differential equation.

In Section 5.3, we extend some of the results of Lafferriere and Petryshyn [28] obtained
for P.,-compact maps to semilinear maps of the form L — N.

The contents of Section 5.4 concern weakly inward A-proper maps. We apply the
results of Chapter 4 to obtain existence theorems related to those of Lan and Webb [30]

but applicable to semilinear operator equations acting on different spaces.
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5.2 Some existence and continuation theorems

We begin with a theorem and several simple lemmas which we shall need in the sequel
Throughout this chapter the operator notation is that which was introduced in Section
1.4 and the index used in the proofs may be that of Chapters 2, 3 or 4 but in practice

the index of Chapter 2 would depend on the retraction and projection scheme employed.

Theorem 5.2.1 If L : dom L C X — Y s Fredholm of index zero, K C X is a cone
and Q@ C X is an open bounded set such that Qg Ndom L # (), then

i (1, -7 ) = {1 102 0

Proof. From the results of Chapter 2, L + J™'P = H is a linear bijection that maps
domILNK C X —- K; CY and L + J™'P is A-proper since it is the sum of a linear
Fredholm operator and a compact map. We note that ker(L + J~'P) = {0} so that
Lz + J Pz # 0 for 2 € 0. Thus indg ([L, —J 7' P],Q) is well defined.

Now for 0 € Qg, we have indg ([L,—J'P],Q) = indg, (0, HQ) = {1} by P2 (the
normalisation property) of the index with zo = 0 and go = 0, i.e., the mapping 0 (z) = 0
for every = € Q.

If 0 ¢ Qk and indg ([L,—J1P],Q) # {0}, then P1 (the existence property) of
the index implies there exists z € Qg such that (L+ J7'P)z = 0 and z # 0. This
contradicts ker(L + J~'P) = {0}, therefore indx ([L,—J~'P],Q) = {0}. Q.E.D.

Many of the proofs to our theorems require certain homotopies to map cones to cones.

The subsequent lemma and propositions provide conditions that ensure this.
Lemma 5.2.2 If P+ JQN maps K to K, then J™'P + QN maps K to Ki.

Proof. Let z € K and assume (P + JQN)z = & € K. Since P and JQN map to
kerL, # € kerL and Hi = (L+J'P)& = J'Pi = J~ 'z € K, as H maps K to Ki.
Now J' (P + JQN)z = J 'z € K;. QE.D.
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The following propositions are consequences of the preceding lemma, Proposition 2.3.4

and the definition and properties of a cone K.

Proposition 5.2.3 If (1 — X) (P + JQN) maps K to K for X €[0,1], then
(I1=X)(J'P+QN) maps K to K, for )\ € [0, 1].

Proof. By Lemma 5.2.2, if (P + JQN)z € K then (JT'P+QN)z € K, for every
z € K so (1l —)‘)(P+JQN)$ € K and (1 —A) (J_lp-i-QN)CE € Kifor )\ e [0,1] since
K and K, are cones and (1 — ) > 0. Q.E.D.

Proposition 5.2.4 If AN[L7'(I - Q)N+ P + JQN] maps K to K for ) € 0,1], then
A(N + J7'P) maps K to Ky for A € [0,1].

Proof. By Proposition 2.3.4,if [LT* (I — Q)N + P + JQN]z € K then (N + J~'P)z
€ K, for every z € K. Since K and K are cones, A [L7' (I — Q)N + P + JQN]z c K
and A(N +J7'P)z € K; for everyz € K, A > 0. Q.E.D.

Proposition 5.2.5 If P+ JQN and L7' (I = Q)N + P + JQN map K to K, then
Q=M (P+JQN)+ A[LT' (I - Q)N+ P+ JQN] maps K to K for A € [0,1] and
(I=X)(J"P+QN)+ A(N + J7'P) maps K to K; for X € [0,1].

Proof. If (P + JQN)z € K and [Ll‘l (I-Q)N+P+JQN|z € K foreveryz € K,
then (1-X)(P+JQN)z + A[L{'(I-Q)N+P+JQN]z € K for every z € K
and A € [0,1] since cones are closed under addition and non-negative scalar multipli-
cation. Then by Propositions 5.2.3 and 5.2.4 and the aforementioned properties of a

cone, (1—=A)(J'/P+QN)z+ (N +J'P)z € K;. QE.D.

The theorems and corollaries which follow extend those found in Webb [54] where
the map L — ANR is assumed to be A-proper and a generalised degree is employed. We

shall use our fixed point index instead of the degree to weaken the hypothesis L — AN R
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A-proper and require only L — AN A-proper. Thus we avoid any explicit mention of a
retraction in the formulation of our theorems.

We begin with a continuation theorem related to that of Mawhin [34] and Petryshyn
[42] for semilinear equations where we extend their results to cones. The theorem pre-
supposes the existence of an open bounded set  which is often difficult to establish in

practice. Corollary 5.2.9 below provides a means of determining such a set.

Theorem 5.2.6 Suppose that L — AN is A-proper for A € [0,1] with N : Qg — Y

bounded and 0 € Qi where 0 C X is open bounded such that Qg Ndom L # 0. Assume
that:

(a) Lz # ANz for z € 0xQ, A € [0,1]

(b) QNz # 0 for x € Ok Nker L

(¢) ind ([, @N], ) # {0}

(d) P+JQN+ L7"(I - Q)N and P+ J@QN map K to K.
Then there exists x € K N dom L such that Lr = Nz.

Proof. We show that the A-proper homotopy H; (A, z) = Lz—(1 — A) QNz—ANz # 0
on 9x§) for A € [0,1]. To obtain a contradiction, assume there exists Ao € [0,1] and
2o € OkQ such that H; (Mo, 20) = 0. By (a), Ao # 1. If Ay = 0, then H;(0,z0) =
Lty — QNzo = 0 so Lzo = QNzo and QNzo € imL NY, so that QNzo = 0, which
contradicts (b). Now if Ao € (0,1), then Lzg — doNzo = (1 —Xo) QNzo # 0 by (a),
hence QNzo # 0. Applying @ to this relation, we obtain —AoQ@Nzo = (1— o) @Nzo
which is impossible for 0 < Ao < 1, @Nzo # 0. By the homotopy property of the index,
we have indg ([L, N],Q) = indk ([L,QN],Q) # {0} by (c). Then by P1 (the existence

property) of the index, there exists z € Ok such that Lz = Nz. Q.E.D.

Condition (c) of the preceding theorem assumed indg ([L,QN],9Q) # {0}, in the

following corollary we shall replace this condition with one that implies it employing
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a certain bilinear form. We assume that there is a continuous bilinear form [y.z] on
Y x X such that y € im L iff [y, z] = 0 for each « € ker L. This condition implies that
if {1,22,...,Zn} is a basis in ker L, then the linear map J : Y, — ker LY =Y,®imL,
defined by Jy = 8> | [y,zi|z;, B € Rt is an 1somorphism and that if Y=o it

then [J 'y, z;] = y;/08 for 1 < i < n. This idea has been used by Cesari [9], Mawhin [34],
and Petryshyn [42]; our results extend those of the last two.

Corollary 5.2.7 Assume all conditions of Theorem 5.2.6 hold except (¢) and assume
(¢1) [QNz,z] <0 for every z € ker L N 0x .

Then the same conclusion holds.

Proof. We show that (c1) implies (c), i.e., indg ([L, QN],Q) # {0}. Let H, (A z) =
Lz + (1 = A) J7'Pz — MQ Nz and suppose H; (A, z) = 0 for some = € 9xQ, X € [0,1].
If X = 0, then Lz 4+ J™'Pz = 0 which is a contradiction since ker (L 4+ J!P) = 0
and ¢ # 0 (zx € 9xQ). If A = 1, then Lr = QN=z and, as in the proof to Theo-
rem 5.2.6, contradicts (b). For A € (0,1), L = AQNz — (1 — X) J~' Pz which im-
plies L = 0 and (1 —A)J 'Pz = AQNz. Applying the bilinear form to this rela-
tion, we obtain (1 — A)[J™!Pz,z] = A[Q Nz, z] which contradicts our hypotheses since
(1—-X)[J"'Pzx,z] > 0 by the definition of the bilinear form and A [QNz,z] < 0 by
(¢1). Thus indg ([L,QN],Q) = indg ([L,—J7'P],Q) # {0} by Theorem 5.2.1. The

conclusion now follows as all conditions of Theorem 5.2.6 are satisfied. Q.E.D.

Remark 5.2.8 Corollary 5.2.7 remains valid if the bilinear form condition is replaced
with [QNz,z] > 0 for every z € ker L N O as J may be replaced with —J in the proof

and the same conclusion obtained.

A second corollary to Theorem 5.2.6 extends a result of Petryshyn [42] and Webb
[54], and imposes a sublinear growth condition on N. It also provides conditions for

establishing a priori bounds on the solution set and thus determining Q.
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Corollary 5.2.9 Suppose for N bounded, L — AN : Qx — Y is A-proper at 0 relative to

Iy for A€ (0,1 and P+ JQN + L7 (I — Q) N maps K to K. Suppose also that
(a) there exist @ > 0,b > 0 such that z € Qg and QNz = 0 imply

L5 (1 - Q) Na|) < aalf + b
(b) there exist p > 0 and r > 0 such that z € Ok and QNz =0 imply
|Pz|| < p||(f = P)z|| +r,
) a(l+p) <1,
(d) indic (L, QN], B, (0)) # {0} for s = LT

S l-a(pt1)
Then there exists * € dom L N Qx such that Lz = Nz.

Proof. We show that hypotheses (a) through (d) imply those of Theorem 5.2.6 from
which the result follows. Suppose Lz = ANz on 0k B, (0) for some A € [0,1]. Then this
is equivalent to z; = ALT' (I — Q) Nz and QNz = 0 where Pz = zg and (I — P)z = =;.
Now izl = A||L7* (I = Q) Na|| < aflzl| +b and

el < lloll + llz4ll
< pll(I =Pzl + 7+ [

= pllzddl 47+ |zl

= (p+ Dzl +r
< (u+1)(alall+0)+r
Therefore
|z|| < apllz|| +bp+allzl + b0+
Hence
b(p+1)+r
R
u—a
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and Lz # ANz on Ok B, (0) for A € [0,1]. So (a) of Theorem 5.2.6 is satisfied with
B (0) N K = Q.
Now if z € ker L and @ Nz = 0 then by (b)

lell = llzoll < ull(1 = P)alf+r=r <s

so that QNz # 0 on 0B, (0) Nker L and (b) of Theorem 5.2.6 is satisfied.

Also, it follows that Lz # Q Nz for z € 0B, (0). Otherwise, QNz € im LNY, implies
QNz =0= Lz soz € ker LNIB, (0) which contradicts what we have just proved above.
Thus indg ([, @N], Bs (0)) is well defined and does not equal 0 by hypothesis, so (c) of
Theorem 5.2.6 is satisfied.

Hence all conditions of Theorem 5.2.6 hold and the conclusion of the corollary follows.

Q.E.D.

The next theorem gives conditions for the existence of a positive solution to a semi-

linear equation and extends a result of Webb [54].

Theorem 5.2.10 Under the hypotheses of Corollary 5.2.9, if also
(e) there exists 0 # e € L(K Ndom L) and r < s such that L — Nz # pe for every

z € K with ||z|| = r and all u > 0, then there ezists ¢ € K, r < ||z|| < s, and Lz = Nz.

Proof. We note first that conditions (a) through (d) imply indg ([L, N], B; (0)) # {0}
so that there exists € B, (0) with Lz = Nz. From the proof to Corollary 5.2.9, we
have Lz # Nz on 0B, (0) and by (e), Lz # Nz on 0B, (0) so by the additivity property

of the index,
indg ([L, N], B, (0) \ B, (0)) + indx ([L, N], B, (0)) 2 indx ([L, N, B (0))-

We prove that indg ([L, N], B, (0)) = {0}, which will show that equality holds in the
above. Let H (p,z) = Lz — Nz — pe. By (e), H (u,z) # 0 on 9B, (0) so that

indg ([L, N], B, (0)) = indg ([L, N + pe], B (0)).
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Now if indk ([L, N + ue], B, (0)) # {0}, then there would be an z, € B, (0) such that

Lz, = Nz,+peor L (%) = Nz,/p+e. Now letting u — oo and noting the boundedness
of N, we have L (—i) — e. This contradicts the fact that % — 0 and L is a closed linear

x
m
operator. Hence,

indg ([L, N, B, (0) \ B (0)) # {0}

and there exists ¢ € B,; (0) \ B, (0) N K such that Lz = Nz. Q.E.D.

Our next theorem follows Webb [54] in using an idea of Cafiada and Ortega [7] to
weaken the a priori bound requirement (condition (a)) of Corollary 5.2.9. We introduce
a mapping v : X — Y* that satisfies (Lz,yz) > 0 for all z € dom L and let At =
{z € K:(Nz,vz) > 0}.

Theorem 5.2.11 Under the hypotheses of Corollary 5.2.9 or Theorem 5.2.10 without
conditions (a) and (b), for the equation Lz = Nz to have a solution in K, it is necessary
that At = {z € K : (Nz,vz) > 0} # 0 and it is sufficient that

(1) A* #0 and ||LT" (I — Q) Nz|| < allz|| + b, z € KNAT

(by) z € KNAY and QNz =0 imply | Px|| < p||(I — P) x| +r.

Proof. Necessity is a consequence of the following: if z is a solution to Lz = Nz,
then (Lz,vz) = (Nz,vz). For sufficiency the proof is similar to that of Corollary 5.2.9
in that if H(\,z) = L—(1=A)QN—AN =L—N (X z)=0for ||z]| = s then QNz =0
so that Lz = ANz and z € AT. The rest of the proof is the same as that of Corollary

5.2.9, g.v. for particulars. Q.E.D.

The last result of this type from Webb [54] requires a certain homotopy to map K
to K. This theorem is related to one proved by Mawhin [34] using coincidence degree
where N is assumed to be compact. Santanilla [49] obtained a similar result on cones
also using coincidence degree while Petryshyn proved a version for A-proper maps in [42]

using the A-proper degree.
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Theorem 5.2.12 Suppose that L — AN is A-proper for X\ € [0,1] where L is ¢ linear

Fredholm operator of index zero and N is nonlinear. Assume the following conditions

hold:

(a1) there exist a > 0, b > 0 such that |Nz|| < a||z|| + b for every z € K where ac < 1.
=L (- Q)

(b) there exists 1 > 0 such that for M = %ﬁ we have [QNz, Pz] <0 for everyz € K
with [Pzl =, |l(I = P)a]] < M

(¢,) L7'(I=Q)N and P+ JQN map K to K.

Then there exists x € K such that Lr = Nz.

Proof. Let Q = {zx € K : ||Pz|| <r, |[(I — P)z|| < M} and define H : [0,1] x N
domL — Y by

HOz)=L+(1-\NJP-AN=L-N(\z).

We prove H (A\,z) # 0 on dQNdom L for A € [0,1]. If not, then H (A, z) = 0 for some
z€00NdomlL, A €[0,1], and

(I-P)z=z;=M7'(I-Q)Nz
and
Pr=zo=A(P+JQN)z

SO

z=1z0+z1=AP+JQNz)+ LT (I -Q)Nuz.

Thus, by (c1), we have z € K.

Now applying the bilinear form to the relation
(1—XNzo=AJQNz

we have

(1 — )\) [J_lxo,&?o] = A [QN:E,ZE()]
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obtaining by (b;) a contradiction. Hence
| Pz|l = |lzo|]| < r
and ||z1]] = M since 2 € 0Q. By (a;),

M = |zl < || L7 (I - Q) Ne|

M < ac|z||+bc < ac(r + M)+ be

which contradicts the definition of M. Thus H (A\,z) = L — N (), z) # 0 on 8Q Ndom L

so that

indg ([L, N (1,2)],9) = indg ([L,N(0,2)],9)

= indg ([L,~J'P],Q) # {0}

by Theorem 5.2.1. Since the index is non-zero, there exists z € K such that Lz = Nxz.

Q.E.D.

We conclude this section with a theorem that extends a result of Petryshyn [41] to

semilinear maps.

Theorem 5.2.13 Let L : domL C X — Y be a Fredholm operator of index zero,
N : X =Y a bounded nonlinear map such that L — AN is A-proper for 0 < X < 1. Let
ri,ry € (0,00) and L7' (I — Q) N+ P+JQN : K — K. Assume the following conditions
hold:

(a) there exists a compact map C : B, (0) N K — K, such that Lz # pCz — J~'Pz
forp €0,1], z € 8B, (0)NK and Lz # ANz + (1 = \)[Cz — J ' Pz] for A € [0,1},
t€ 0B, (0)NK

(b) there exists a bounded map F : B,, (0)N K — Ky, a > 0 such that |F'z|]| > a > 0 if

z € 0B,, (0)N K and Lt — Nz — AF'z is A-proper for every A>0and Lz # No +pufFz
forz € 0B., (0)N K, p>0.

73



Then there exists = € K Ndom L such that min{ry,r,} < lz]| < max{r,.r,} and
Lz = Nz.

Proof. From the second condition of (a), we have indg ([L,N(\z)],B (0))

r 1S con-

stant for A € [0,1] where N (A, z) = ANz — (1 — ) [Cz — J~1Pz] so that
indg ([Z, N], B, (0)) = indg ([L,C — J™'P], B,, (0)).
Now by the first condition of (a), we have
indg ([L,C —J7'P], B,, (0)) = indk ([L,—J*P], B,, (0)) = {1}

by Theorem 5.2.1. We observe that the homotopy H (A\,z) = L-AN+(1 - X)[C — J~'P]
is A-proper for A € [0,1] and show that indg ([L, N], B, (0)) = {0}. We fix y € K; with
ly|]| = 1 and choose po € (0,00) such that Lz # Nz + poFz + my for z € 9B,, (0) N K,
for every m € Z7%. It is possible to choose such a pg since, if not, we would have
Lz = Nz+pFz+myon 0B, (0)NK, m > 0, and there would exist sequences {p,} > 0,
pn — 00, {m,} > 0 and {z,} C 9B,, (0) N K such that Lz, = Nz, + g, Fzr, + muy.
Dividing by pn, we have L (ﬁ—) = N, /pn+ Pty i and as p, — 00, L (2) =0,
Nz,/u, — 0, so that Fz, + mny/p, — 0. Since {Fz,} is bounded, we may assume
My /by — Mo € [0,00). By (b), mg > 0. Hence Fz, — —mgy. Since y € K; implies
—moy € —K; we have —mgy € F(0B,,(0)NK)N (—K1). As F(9B,,(0)NK) C K;

and K; N (—K,;) = {0}, we obtain a contradiction.

We define the A-proper homotopy H,, (A, z) = Lz — Nz — poF'z — Amy and note that
H,, # 0 on 0B,, (0) N K. By the homotopy property of the index, we have

indg ([L, N 4+ woF + Amy], B;, (0)) = indk ([L, N + woF], By, (0)).

Now if
indg ([L7 N + poF + Amy] , Br, (0)) # {0} )
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then there exists z € B,, (0) such that Lz = Nz + poFz + Amy or L(2) = Nz/m +

poFz/m + Ay. By the boundedness of N and F, we have L (2) — Ay £0asm - oo

This contradicts the fact that & = — 0 and L is a closed linear operator. Thus
indg ([, N + uF], B,, (0)) = {0} .
By (b), we have indk ([L, N + pF], B,, (0)) is constant for every i > 0 and consequently,
indg ([L, N + uF], By, (0)) = indk ([L, N, B,, (0)) = {0}.
By the additivity property of the index, we obtain

indic (I2, N, B, (0)\ By, (0)) = ind (L, V), By, (0) — ind (IZ, N], By, (0)) # {0}

Hence there exists z € K N dom L with min{ri,r;} < ||z|| < max{ry,r;} such that
Lz = Nz. Q.E.D.

5.3 Existence theorems on quasinormal cones

The results of this section are established using the notion of a quasinormal cone in-
troduced by Petryshyn [43]. In particular, this includes all normal cones. Many of the
subsequent theorems and lemmas extend those of Lafferriere and Petryshyn [28] which

pertained to P, compact maps, ¢.v. Chapter 1.

Definition 5.3.1 A cone K is called quasinormal if there ezist y € K \ {0} and a

constant o > 0 such that ||z +y|| > o ||z|| for all z € K. Let
o (y) = inf {|lz +yll / Izl : = € K\ {0}}.

Then we define the constant of quasinormality o (K) :=sup{o(y):y € K \ {0}}.
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Remark 5.3.2 Note that if K is normal then K is quasinormal with o — v le (0.1]
and any y € K\ {0}. If X is a Hilbert space, then every cone K C X is quasinormal
with 0 = 1 as shown in [29]. Also from this paper; if K is a cone in a Banach space X
and y € K \ {0}, then there exists o (y) € (0,1] such that ||z +y|| > o (y) ||| for all

z € K, this implies every cone in a Banach space is quasinormal. It was proved in [11]

that £ < o (K) < L.

Some examples of quasinormal cones which aren’t normal are the set of non-negative
functions in C* (@, k > 1; the Holder space C* (@) for o € (0,1); and the Sobolev
space W5 (Q) for p € [1,00). As noted in [43], these cones have ¢ = 1 with y (z) =1,
z € Q and @ a bounded set in R™,

We begin with a definition and a theofem which we shall require later.

Let L :dom L C X — Y be a Fredholm operator of index zero and N : X — Y be a

bounded nonlinear operator such that L — N is A-proper relative to I'y.

Definition 5.3.3 If S = {z € K : Lr = Nz} is bounded, we define indg ([L, N],K) =
indg ([L, N], B, (0) N K) where r > M and M is any bound for the set S.

Remark 5.3.4 Since all solutions to Lr = Nz are contained in By (0), the
indg ([L, N], B, (0) N K) is constant for all 7 > M by the additivity property and hence
the definition is independent of r > M. It is also clear that Lz # Nz on 0B.(0)N K so

that the indez 1is well defined.

Theorem 5.3.5 Suppose that L — AN is A-proper for X € [0,1] where L : dom L C X —
Y is a Fredholm operator of index zero and N : X — Y s bounded and nonlinear. If

L;Y(I—Q)N and P+ JQN map K to K and the set
Sz{:EEK:L:cz)\N:c—(l—/\)J—lP:z,AG[0,1]}

is bounded, then indg ([L, N],K) = {1}.
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Proof. Let r be a bound for S. Consider the homotopy L — AN + (1=X)J1p

L =N (X 2) on B4 (0),¢>0. Now Lz # ANz — (1 — \) J=' Pz on 9B, (0) so

indg ([L, N (1,2)], B4 (0)) = indg ([L, N (0,2)], Br4 (0))

= indk ([L,—J'P], B4 (0)) = {1}.
Since € is arbitrary, we have indg ([L, N], K) = {1}. Q.E.D.

The following lemma gives conditions for the index to be zero and will be employed

in later arguments.

Lemma 5.3.6 Let 0 € Q C X, Q open and bounded such that Qg Ndom L # 0 and let
L—AN be A-proper for 1 < A < uo where oo > 1 and o is the constant of quasinormality
of K. Assume L7* (I — Q) N+ P+JQN maps K to K and that the following conditions
hold:

(a) § =inf {||L7' (I — Q) Nz + Pz + JQNz|| : z € 0xQ} > d/poo where

d =sup {||z|| : z € 02}

(b) Lz # uNz — (1 — p) J ' Pz for z € OxQ and 1 < p < oo

Then indg ([L, N],Q) = {0}.

Proof. Suppose Lz = uNz — (1 — p) J~' Pz for some z € 9x§t and 1 < p < po, then
we obtain zo = u (P + JQN)z and z, = pL7' (I — Q) Nz and

= p||L7"I-Q)Nz+ (P + JQN)z|

d > || = llwo +

> pé > pd/poo

so 4 < pioo. This and (b) imply Lz # pNz—(1 — p) J 1Pz forz € 0gQand 1 < p < pio.
For g > 1/0, define the homotopy L — N{(g,z) = Lz —uNz + (1 - 1) J~' Pz which
is A-proper for 1 < p < po and Lz # uNz — (1 —u) J7' Pz for o € 00k and p > 1.
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Thus, by the homotopy property of the index, indg ([L, N (u, z)] , 1) is well defined and
independent of p > 1.

To prove indk ([L, N],9) = {0}, we choose ¢ € (0,0) such that § > —<— Thep by

po(o—e)”

definition of o, there exists y € K \ {0} such that o, > ¢ — € and lz+y|| > o, ||| >

(0 —¢€) ||z|| for every x € K \ {0}. We note that for every z € K \ {0} and p > 0.

|z +pyl| = Hp (% + y) H

x
= P|-TY
p

T
> poy ||=|| = oy llz]| > (o =€) |z

so that ||z 4+ py|| > (¢ — €) ||z||. We now consider the homotopy H,, (A, z) : [0,1] x Qx —
Y defined by H,, (A, z) = Lz — poNz + (1 — po) J~* Pz — Amy; where y; = Ly (y as
determined above) and any fixed m € N. We observe that H,, (A, z) is A-proper and
H,,(\z) # 0 for z € 0kQ, A € [0,1]. If this were not true, then we would have
Lz = poNz— (1 — po) J~' Pz + dmy, for some z € 0§ and X € (0,1] (A = 0 is excluded
by the previous argument).

Hence zo = po (P + JQN)z and z; = poL7' (I — Q) Nz + AmLi'y; so that

d > ||lz|| = ||zo + z4]]
|0 (P + JQN)z + poLy* (I = Q) Nz + Am LTy ||
po(o—e)(P+JQN)z+ L7 (I -Q)Nz||

> po(o—€)d>po(o—e (—i——)> = d,

po (o —¢

H

vV

a contradiction. Hence Lz # poNz — (1 — po) J™ Pz + dmy; on 0x{ and A € [0,1]. By

the homotopy property of the index,

indg ([L, Ny (0,2)],9) = ind (L, N (1,2)],8)
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where Ny, (A, z) = poNz—(1 — po) J7*Pz+Amy;. Now ifindg ([L, N, (A.2)].Q) # {0}.
then there exists z,, € Ox{) such that

Lz = poNzm — (1 — o) J ' Pz, + Amy,

or

Lm Ho (1 —po)
( m ) m m m '
L x ——J Pz, + Ay

Allowing m — oo and using the boundedness of N and compactness of J=1P, we have

L (”7;”—) — Ay1 # 0. This contradicts the fact that z,,/m — 0 and L is a closed linear

operator. Thus we have shown that
indg ([L’ Nyq (/\,I)],Q) = indg ([L’N(vi)]’ﬂ)
= indg ([L, N],Q) = {0}.

Q.E.D.

We shall need the following lemma in the proof to Theorem 5.3.8.

Lemma 5.3.7 Let 0 € Q C X, Q open and bounded such that gk Ndom L # 0 and
let L — AN be A-proper for A € [0,1]. Assume N is bounded and L7' (I — Q)N +
P+ JQN maps K to K. If Lv # uNz — (1 — ) J~'Pz on 0x§Q for p € [0,1], then
indg ([L, N], ) = {1}.

Proof. We consider the homotopy L — N (u,z) = L — pN + (1 — ) J7'P on Q for

€ [0,1]. Since Lz # N (i, z) on 0xQ, p € [0,1], we have
indg ([L, N (1,2)],9) = indg ([L, N (0,2)],Q)
= indg ([L,—J7'P],Q) = {1}

by Theorem 5.2.1. Q.E.D.

The next theorem gives conditions for the existence of a positive solution to a semi-

linear equation.
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Theorem 5.3.8 Let 0 € O, C Q, C K where Q, and 2 are open and bounded. et
L — AN be A-proper for 0 < X < po where oo > 1, N be bounded and LiY(I-Q) N +
P+ JQN map K to K. Assume the following conditions hold:

(a) 6 =inf {|[L7* (I = Q) Ne+ (P + JQN) 2| : z ¢ 0V} > d/ oo where

d=sup ]| = € 0%}

(b) Lz # pNz — (1 — p) J7' Pz for 2 € 0, and 1 < v < poo

(¢) Lv # uNz — (1 — p) J™' Pz for 2 € 0 and y € [0, 1].

Then there exists z € Q, \ Q; such that Lz = Nuz.

Proof. We assume Lz # Nz on 99, U 89, otherwise the conclusion follows. From
(c), we have indg ([L, N], Q) = {1}. From Lemma 5.3.6, conditions (a) and (b) imply
indg ([L, N],€Q2) = {0}. By the additivity property of the index, we obtain

indg ([L,N], 02\ Q) = indk ([L, N], Q) — indg ([L, N], )
= {0} - {1} = {-1}.

Since the index is non-zero, the existence property (P1) of the index implies there exists

z € 03\ Q such that Lz = Nz. Q.E.D.

Remark 5.3.9 The conclusion of Theorem 5.3.8 is valid if conditions (a) and (b) hold
on 0Qy and (c) holds on 09Q,.

We now establish several results of cone compression or expansion type which provide

conditions for the existence of positive solutions. We shall require the following lemma

in the proof to the succeeding theorem.

Lemma 5.3.10 Let 0 € Q C X, Q open and bounded such that Qg N dom L # 0
and let L — AN be A-proper for 1 < X < po where poo > 1 and N bounded. Sup-
pose that ||L7* (I — Q) Nz + (P+JQN)z| > |lz|| and Lz # Nz on 0Qk. Assume
L7Y*(I— Q)N+ P+ JQN maps K to K. Then indk ([L, N], ) = {0}.
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Proof. We note that if Lz = pNz — (1 — ) J7' Pz for some z € 950, g > 0, then
zo=p(P+JQN)z, 1y = pL7' (I — Q) Nz and

lzll = [lzo + ]
= p| L7 (I = Q) Nz + (P + JQN)a||

> pflx||

by hypothesis. Therefore Lz # pNz — (1 — p) J™' Pz for z € O and 1 > 1. Now as
in the proof to Lemma 5.3.6, choose € € (0,0) such that § > ﬁ and y € K"\ {0}
such that o, > o — € and consider the homotopy H,, (A, z) : [0,1] x Qx — Y defined by
H,, (\z)=Lez—poNz+(1 — po) J-' Pz — Amy; where y; = Ly and m € N is arbitrary.
Then following verbatim the proof to Lemma 5.3.6, we obtain indg ([L, N,, (A, z)],Q) =

{0}. Finally, since Lz # pNz — (1 — p) J™' Pz on 90k, p > 1, we have
ind (L, N (4,2)], ) = ind ([L, N],0) = {0}

where N (g, z) = pNz — (1 — p) J7' Pz and L — N corresponds to p = 1. Q.E.D.

Theorem 5.3.11 Let0 € O, C Oy C K, Q4 and Qy open and bounded and let L—AN be
A-proper for 0 < X < po where poo > 1 and N bounded. Suppose that L7Y(I-Q)N +
P+ JQN maps K to K and the following conditions hold:
(a) ||L1_1 (I-Q)Nz+ (P+JQN) a:H > ||z|| for xz € 08h;
(b) Lz # puNz — (1 — p) J™* Pz for z € 0 and p € [0,1].

Then there ezists © € Qy \ Oy such that Lz = Nz.

Proof. We assume Lz # Nz on 01, otherwise we are done. From (b) and Lemma 5.3.7
we have indg ([L, N],Q:) = {1}. From (a) and Lemma 5.3.10 we have indg ([L, N], 1) =
{0}. By the additivity property of the index, we obtain

indg ([L, N], 2\ &) = indk ([L, N] Q) — indg ([L, NT, )
{13 - 0} = {1
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Since the index is non-zero, there exists z € Q3 \ O} such that Lt = Ne. QE.D

Remark 5.3.12 The conclusion of Theorem 5.3.11 is valid if (a) holds on 00, and (b)
holds on 0€);.

We end this section with a theorem related to norm type expansions of a cone.

Theorem 5.3.13 Let L — AN be A-proper for 0 < X < po where too > 1 and suppose
that L7 (I — Q) N+ P+ JQN maps K to K. Assume that the following conditions hold:
(a) |L7' (I — Q) Nz + (P + JQN) z|| > |lz|| on Ok B, (0)

(b) there exists B > r such that | L7 (I — Q) Nz + (P + JQN)z|| < ||z|| on 8xBg(0).
Then there exists x € (Br(0) \ B, (0)) N K such that Lz = Nx.

Proof. Applying Theorem 5.3.11, let 2, = B, (0)N K and Q, = Br(0)N K, then (a)
of Theorem 5.3.13 implies (a) of Theorem 5.3.11 on 9 B, (0) while (b) of Theorem 5.3.13
implies (b) of Theorem 5.3.11 on dx Bg (0). Otherwise, if Lt = uNz — (1—w)J'Pzon
Ok By for p € [0,1], then zo = (P + JQN) z, 2y = pL (I — Q) Nz and

Izl = flzo + 24l
= p||(P+JQN)z+ L7 (I - Q) Nz||

< |(P+JQN)z+ L7 (I — Q) Nz

which contradicts condition (b) of the theorem. Q.E.D.

5.4 Existence theorems for weakly inward A-proper
maps

The results of this section extend several theorems of Lan and Webb [30] to semilinear

operators on cones. Since many of the subsequent proofs involve homotopies that are
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both A-proper and weakly inward, we shall make some preliminary observations in the

form of propositions regarding weakly inward sets and maps. The proofs are immediate

consequences of the definition and properties of a weakly inward set.

Proposition 5.4.1 If t(N +J7P)a + (1~ ) (z) € Ty (H) for every = € T
t € [0,1], where yo € Ky and §o (z) = yo for z € K then tTy + (1—-t)g0(y) € K(y)

Proposition 5.4.2 If (N + J7'P)z € I, (Hz) for every z € Qg and e € K, t,A>0,
then (N + J'P)z + the € Ik, (Hz) and Ty + the € Ix, (y).

Proposition 5.4.3 If (N + J™'P)z + tA\oFz € I, (Hz) for every x € Qg, t. ) > 0
and map F, then Ty + tAFH 'y € Ik, (y) where H 'y =z,

Our first theorem employs a variation of the Leray-Schauder boundary condition to

prove the existence of a solution to the equation Lz = Nz.

Theorem 5.4.4 Let Q) C X be open bounded, K a cone in X such that Qg Ndom L # (.
Assume L, N : Qg — Y are bounded such that L — AN is A-proper for A € [0,1] and
(N + J-'P)z € Ig, (Hz) for every z € Qk, A € [0,1]. Suppose there exists yo € H
such that Lz # ANz + (1 — ) [yo — J "' Pz] for z € 8k, XA € [0,1]. Then Lz = Nz for

some z € Q.

Proof. Let H(M\z) = Lz — ANz — (1= X)[yo—J'Pz] = L — N (A, z). Then
H () z)# 0 on 9xQ and H (A, z) is weakly inward because N (X, z) + J 1Pz =
A(Nz + J~'Pz) + (1 — ) yo where yo € K; and Ix, (Hz) is a wedge containing K;. By
the homotopy property of the index, we have

indg ([L, N],Q) = indg ([L, =T P + ] , Q) = {1},

by P2 of Theorem 4.2.6. Then P1 implies the existence of £ € Qk such that Lz = Nz.
Q.E.D.

The next theorem gives conditions which imply that the index 1s 0.
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Theorem 5.4.5 Let 2 C X be open bounded and such that Qx N dom [ £ 0. Assume
L,N :Qx =Y are bounded such that L — N is A-proper and (N + J'P)z € K(HI)
for every x € Q. Suppose

(E) there exists e € K; \ {0} such that Lv # Nz + Xe for ¢ € Ok, X > 0. Then
indg ([L, N], Q) = {0}.

Proof. Let L — N(A,z) = Lz — (Nz + Ae) which is A-proper and weakly inward for
each A > 0 and Lz — N (A, 2) # 0 for z € 9xQ, A > 0. By the homotopy property of the

index, we have

indg ([L, N],Q) = indg ([L, N + Xe] , Q).

Now if indg ([L, N + Xe], Q) # {0} then there exists z) € Qg such that Lz, = Nz, + Je
or L (%) = Nz)/A + e. Allowing A — co we have L (%2) — e since N is bounded, but
zx/A — 0 which contradicts the closed linearity of L. Hence indg ([L, N],Q) = {0}.
Q.E.D.

The preceding result, in conjunction with a Leray-Schauder type boundary condition,

is used in the following theorem to obtain a non-zero solution.

Theorem 5.4.6 Let Q; and , be open and bounded in X with 0 € Q; C Q, and
G NKNndomL # 0 fori =1,2. Assume L,N : Q; N K — Y are bounded such that
L — AN is A-proper for A € [0,1] and A\(N + J'P)z € Ix, (Hz) for every z € Q2 N K,
A €[0,1]. Suppose that:

(LS) Lr # ANz + (A = 1) J~'Pz forz € 0, N K, XA €[0,1]

(E) there exists e € K \ {0} such that Lz # Nz + e forz € 00, N K, A 2 0.

Then Lx = Nz for some x € (Qz \ﬁl—) NnNK.

Proof. Condition (LS) implies indx ([L, N], ) = {1} by Theorem 5.4.4 with yo = 0.
From (E) we have indg ([L, N],Q;) = {0} by Theorem 5.4.5. The additivity property of
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the index gives
indg ([Z, N], 22\ Q1) = indx ([L, N], Q) — indk ([L, N], Q) = {~1}.

As the index 1s non-zero, property P1 implies the existence of z € (2, \Q_l) O K such
that Lz = Nz. Q.E.D.

Remark 5.4.7 The conclusion to Theorem 5.4.6 is valid if (LS) holds on 89, N I and
(E) holds on 00 N K.

Our next result, which extends Theorem 5.4.5 and a result of Lan and Webb [30].

gives conditions that imply the index is zero and involves a weakly inward map F in

addition to the maps L and N.

Theorem 5.4.8 Let Qi be open bounded and such that Qg N dom L is nonempty. Let
L,N : Qg — Y be bounded maps such that L— N is A-proper and assume (N + J™1P)z €
Tk, (Hz) for every x € Q. Suppose that there exists a bounded F : Qg — Y that satisfies
Fz € Ix, (Hz) for every z € Qk and that the following conditions hold:

(41) FOR) 1 (—K) =

(A2) inf {||Fz|:2 €00k} =0a>0

(A8) Lz #+ Nz + M\Fz for x € 8Qx, A > 0 and L — N — AF is A-proper for X > 0.

Then indg ([L, N],§) = {0}.

Proof. We prove first that for any y € K; \ {0} with [y|]| = 1 there exists Ao > 0
such that Lz # Nz + MoFz + By for all z € 0xQ and 8 > 0. If not, there would exist

sequences {A\,} > 0, A, = 00, {Ba} >0, and {z,} C 9k such that
Lz, = Nz, + M Fzn + Bay.
Dividing by A, we obtain
L Gﬁ) = N2,/ n + Fn + Boy/n

n
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and as A, — oo, L (A—) =0, Nao/An = 050 that Foo+ f,y/M - 0. Since {Fsr, ) is
bounded, we may assume £,/A, — fo € [0,00). By (A2), By > 0. Thus Fz, - ~Boy.
Since y € Ky \ {0}, —Boy € — K1 so that —foy € F (9xQ) N (—K,) which contradicts
(A1). By Theorem 5.4.5, indg ([L, N + XoF], Q) = {0}. We define the A-proper and

weakly inward homotopy
Hy(t,z) =L~ N —t\F =L~ N(tz)

and note that H) (¢,z) # 0 on 0xQ for t € [0,1] by (A3). The homotopy property of the

index then gives
indg ([L, N] ,Q) = indg ([L, N + /\OF] ,Q) = {0} .
Q.E.D.

We now use Theorems 5.4.4 and 5.4.8 to obtain a result which ensures a non-zero

solution to the equation Lz = Nz.

Theorem 5.4.9 Let0 € 0, C Q, be open bounded sets in X such that Q;NKNdom L £ 0
fori=1,2. Suppose L, N,F : Q; N K — Y are bounded such that L — AN is A-proper
for0<A<1and (N+J'P)z € Ik, (Hz) and Fz € I, (Hz) for every z € Qy N K.
Assume L — N — AF is A-proper for A > 0 and

(LS) Lv # ANz + (A —1)J'Pz forz € Ok, 0 < X < 1 and (A1), (A2), (A3) of
Theorem 5.4.8 hold on Okfls.

Then Lz = Nz for some z € (Q\ 1) N K.

Proof. By condition (LS),
indK ([L, N] ,Ql) = indK ([L, -—J—IP] ,Q1) = {1}

by P2 with § = 0. Then conditions (A1), (A2), (A3) imply indk ([L, N],{2) = {0} by

Theorem 5.4.8. From the additivity property of the index we obtain
indK ([La N] ’Q2 \ﬁ) = iIldK ([La N] 7Q2) - iIldK ([L) N] 7Q1) # {0} :
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Thus, by P1, there exists z € (2, \ @1) N K such that Lz = Nz. Q.E.D.

Remark 5.4.10 The same conclusion to Theorem 5.4.9 is valid if (LS) holds on 9x
and (A1), (A2), (A3) hold on 0k;.

A theorem similar to Theorem 5.4.8 for compact maps C is the content of our next

result, a generalisation of a result by Lan and Webb [30].

Theorem 5.4.11 Let K C X be a cone and H(dom L N K) = K be the corresponding
cone in 'Y and suppose that 0B, (0)N K, is not compact. Let @ C X be open and bounded
such that Qg Ndom L # 0. Suppose L, N : Qg — Y are bounded such that L — N
is A-proper and C : Qg — Y is weakly inward and compact. Suppose that (42) and
(A3) of Theorem 5.4.8 hold and (N +J7'P)z € Ik, (Hz) for every z € Q. Then
indg ([L, N], Q) = {0}.

Proof. We first show that there exists y € K; with |ly|| = 1 such that {ty:¢ >0} N
—U(_a—xﬂ_) — (). If not, then for every y € K; with |ly|| = 1 there exists ¢, such that ¢,y €
—C (0xQ). Thus the set @ = {t,y : ||ly|| = 1} is relatively compact and hence ¢o (Q U {0})
is compact. By (A2), t, > a so that ¢ (Q U {0}) 2 K1N {lly|l = e}, a contradiction. As
in the proof to Theorem 5.4.8, we find Ag > 1 such that Lz # Nz+XoCz+ 0y for z € Ik
and 8 > 0. By Theorem 5.4.5, we have indg ([L, N + XoC],9Q) = {0} . We define the A-
proper and weakly inward homotopy (by Proposition 54.3) L — N (t,z) = L= N —tAC
and observe that Lz — N (t,z) # 0 on 9xQ, t € [0, 1] by (A3). The homotopy property

of the index then gives
indg ([L, N],9) = indg ([L, N + XoC], Q) = {0}.

Q.E.D.

The preceding theorem, in conjunction with Theorem 5.4.9, is employed in the fol-

lowing result to obtain a non-zero solution to the equation Lz = Nz.
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Theorem 5.4.12 Let K C X be a cone and H(dom L N K) = K, be a cone in Y such
that 0B, (0) N Ky is not compact. Let Qy and Qy be open bounded sets in X such that
00 CQy UNKNdomL #0 fori=1,2. Assume LN : QN K — Y are bounded
such that L — AN is A-proper for 0 < A <1 and (N +J7'P)z € Ig, (Hz) for every
z € QN K. Suppose C : QoNK =Y is compact and Cz € I, (Hz) for everyz € QaNK

and (LS) holds on 0Q N K and (A2), (A3) both hold on 0, N K. Then Lz = Nz for
some & € Q3 \ Q.

Proof. As in the proof to Theorem 5.4.9, either Lz = Nz on 0%, or (LS) implies
indg ([L, N],9y) = indk ([L,—J ' P], ) = {1}

by Theorem 5.2.1. Then (A2) and (A3) imply indx ([L, N],Q;) = {0} by Theorem 5.4.11
so that

indg ([L, N],Q2\ @) = indk ([L, N],9,) — indk ([L, N}, ) # {0}
Therefore, by P1 of the index, there exists z € ({22 \ Q)N K such that Lz = Nz. Q.E.D.

We conclude this section with a theorem that ensures the existence of at least two

non-zero solutions to the equation Lz = Nz.

Theorem 5.4.13 Let 0 € Q, C 3, be open bounded sets in X with ;N K Ndom L # 0,
i = 1.2, where K C X is a cone. Let L, N : 0K — Y be bounded such that L— AN is
A-proper for 0 <A <1 and A(N + J1P)z € Ik, (Hz) for every z € Q. NK, Xel0,1].
Suppose (N + J~1P) (K) is bounded and:

(LS) holds on 0, i-e., Lz # ANz + (1 =X J Pz, z € Ok, X € [0, 1]

(E) holds on 0k, i.c., there exists € € K \ {0} such that Lz # Nz + Xe, ¢ € Ok{l,
A>0.

Then Lz = Nz has at least two solutions in K \ {0}.
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Proof. Since (N + J7'P)(K) is bounded, property P5 of the index implies there
exists an open bounded set Q3 with Q5 C Q3 such that indg ([L, N1,Q3) = {1}. By (E).
Theorem 5.4.5, and P3 we have

indg ([L, N], 05\ ) = indx ([L, N, Q) — indg ((Z, N], 22) # {0}

Hence there exists z, € (Q3 \ ﬁ;) N K such that Lzy = Nz;. If L = Nz on 0k, then

the conclusion holds. If not, then Lz # Nz on 0k§); and by the proof to Theorem 5.4.4

and P3 we have
indg ([L, N],92 \ @) = indg ([L, N}, Q) — indk ([L, N], ) = {-1}

and therefore there exists z, € (Qg \Q_l) N K such that Lz, = Nz,. Q.E.D.
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Chapter 6

APPLICATIONS TO
DIFFERENTIAL AND INTEGRAL
EQUATIONS

6.1 Introduction

In this final chapter, we apply some of the theorems of Chapter 5 to prove the existence
of non-negative solutions to several differential and integral equations. The equation we

consider first, in Section 6.2, is the following boundary value problem.

—z"(t) = f(t,z(t),2' (t),2" (t)) where z(0) ==z (1) =0. (6.1)

This problem was studied by Lafferriere and Petryshyn [28] in which equation (6.1)
was transformed to the fixed point operator equation Ty = y in the space ¥ = C [0,1].

We shall formulate (6.1) in terms of a semilinear equation L — N and obtain similar

results.

Section 6.3 concerns the periodic boundary value problem:
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—z"(t) = f(t,z (t),2'(t)) where 2 (0) = z (1) and z'(0) =z’ (1). (6.2)
We first transform (6.2) into a semilinear equation and then use a method similar to
that of Mawhin [34] and Petryshyn and Yu [44] to obtain @ priori bounds for the solution

set.

Our last application involves the perturbed Volterra equation:

y' (t) =k (t,t,z(t)) + /Ot ke (t,8,2(s))ds

obtained by differentiating the Volterra integral equation of the first kind,

/Otk(t,s,:v(s)) ds =y (t). (6.3)

This problem was studied by Deimling [13] in which he obtained a non-negative
solution using a Leray-Schauder boundary condition argument. His results are proved
for cones with nonempty interior and he remarks that it is unknown whether Theorem
20.4 of [13] remains true if the interior int K = (). We shall use a weakly inward result in
the framework of A-proper maps from the preceding chapter which applies to cones of

both empty and nonempty interior and thus generalises the results in Deimling [13].

6.2 A positive solution to the Picard problem

We shall formulate the Picard boundary value problem, (6.1), as a semilinear equation
in Banach spaces and place certain conditions on the nonlinearity f (¢,z,z’,z") so that
we might apply Theorem 5.3.8 to obtain a positive solution to equation (6.1).

Let X = C%[0,1], Y = C[0,1] and K = {z € X : —z"(t) > 0,2(0) =z (1) = 0}
with norms [zl = max {lzlly , [#/ly » "Il } and llelly = maxico {lz ()]} Define
L:domL C X =Y by Lt = —z” (t) where domL = {z € X : 2(0) = z (1) = 0} and
Nz = f(t,z(t),z'(t),z"(t)).
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Theorem 6.2.1 Under the above assumptions, suppose also that:

(a) there exists R > 0, k € (0,{(L)/po), such that f:[0,1] %[0, R] x [-R, R] x R~ — R*
is continuous and |f (t,p,q,s1) — f (t,p,q, s2)| < kl|sy —sy| fort € [0,1], p € [0, R].
q€[—-R,R], s1,s, € R™,

(b) f(t,p,q,8) > R for everyt € [0,1], p € 0,R],q€[-R,R],sec R,

(c) there exists v € (0, R), to € [0,1] such that f (to,p,q,s) < r forp € [0,7], g € [-r,7],
s = —r.

Then there exists a positive solution = € K to equation (6.1) with r < llz||x < R.

Before verifying the hypotheses of Theorem 5.3.8, we show that problem (6.1), thus
formulated, is a semilinear Fredholm operator equation. We state and prove this in the

following subsidiary proposition.

Proposition 6.2.2 Assume the conditions of the preceding theorem hold. Then
(a) L:dom L C X =Y is Fredholm of index zero,
(b) N is k-ball contractive,

(¢) L — AN is A-proper for 0 < XA < po relative to I'g,.

Proof of the proposition. To prove L is a Fredholm operator of index zero, we must
show dim (ker L) = dim(Y \im L) < oo. To determine the ker L; suppose Lz = 0,
then —z”(t) = 0 and —z'(t) = ¢; by integration. Integrating a second time gives
—z (t) = cit+cpor z (t) = —cit—cy. By the boundary conditions we obtain z (0) = —c; =
z(1) = —¢; — ¢ = 0 so that —c; = —¢; — ¢; which implies ¢; = 0 and ¢; = 0 by the last
equality. Hence ker L = {z € dom L : z (t) = 0} from which we deduce dim (ker L) = 0.

Now we prove im L = Y. We shall show that for y € Y, there exists € dom L such
that Lz = y, i.e., —z"(t) = y(t) and 2 (0) =z (1) = 0. Let y € Y and

x(t>:/Olm—r)y(ﬂdr—/ot(t—ﬂy(v)dr
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Then

and
() = =y (t) or —a"(t) =y (¢)
Also
fv(O)=/010(1—r)y(f)df—/oo(o_r)y(f)df:o
and

1
z (1) = /0 1(1 —T)y(’r)d'r——/ol(l —T7)y(r)dr = 0.
Therefore, im L = Y so that dim (Y \ im L) = dim (ker L) = 0 which proves L is Fredholm
of index zero.

Now we show that condition (a) of the theorem implies (b) of the proposition. The
proof is from Petryshyn [45]. We define a bivariate map V : X x X — Y by V (z,u) =
f(t,z,2',u") so that N(z) = V(z,z). Let @ C X be a bounded set and denote 3x
and By as the ball-measure of non-compactness in the spaces X and Y respectively.
Let r = Bx (@) and € > 0; we then cover @ with a finite number of balls in X with
radii r + ¢/k and centres u; so that @ C (Ji_; Bryek (uj). Now @ is precompact in
C'[0,1] since X is compactly embedded in C'[0,1], @ is bounded in X and the map
z — V (z,u) is continuous from C'[0,1] to Y for each fixed v in X. This implies the
set V (Q,u) is precompact in Y for each u € X and so | J/_, V (@, u;) is also precompact
in Y. Now as UJ;=1 V(Q,u;) is precompact, we may choose zi,...,z, in X such that
Ui, V(Q, ) C U?_, Be(zn) for the given e. Then for any z € @, we choose j such

that ||z — u;|| < r + ¢/k and observe that

IV (z,2) =V (z,u)| = ||f(t,z,2,2") = f (t,z, 2 )|

k|2 — i

IA

IN

Ellz = usl| < k(r + e/k).
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Now we choose n € {1, ..., ¢} such that ||V (z,u;) — T,|| < €. Thus

IN(z) = za] = [V(z,2) - 2]

(VAN

IV(z,2) = Viz, uj)ll + |V(2,u;) — 2.

< k(r+e/k)+e=kr+2e

Hence N(Q) C U=, Biri2c(2s) so that 8 (N (Q)) < kr + 2. As e > 0 was arbitrarily
chosen, this implies 8 (N(Q)) < kB(Q) so that N is k-ball-contractive. It follows from
(ii) of Theorem 1.4.7 and Remark 1.4.8 that L — AN is A-proper for 0 < A < po. Q.E.D.

We mention that an example of an admissible scheme for maps from X into Y is the
following. Let ¥, C' Y = C[0,1] be the subspace of all y € Y that are linear in every
subinterval [tni,tnm] where 0 = ¢,, < t,, <..<t, =1 and max (tm+1 — tn,») — 0 as

n — 00. Define Qry(t) = y,(t) where

y(t) fort=1%, 1=0,..n,

yn(t) = t—t,,

y(tni) + [y(tni+1) - y(tnz)] fOI‘ ¢ S (tnntni+1) ’ 7/ = Oa ey T

tni+1 — tn;

We verify that this construction is an admissible scheme in the following proposition.

Proposition 6.2.3 Let Y, = Q,Y and X, = H ' (Y,), then Ty = {X,,Y,Q.} is an

admissible scheme for maps from X into Y.

Proof of the proposition. Since {y, (t)} C Y, are continuous foralln € Nand ¢ € [0, 1},
it is clear that Y, C Y for all n € N.

We prove that @, is a continuous linear projection of Y onto Y, with ||@,|l = 1. Let

y,z €Y and a,0 € R, then
Qnlay+Bz) = ay(t)+Bz(t) fort =t,,1 €{0,...,n}
= Qn(ay(t)) + Qn (Bz(1))
= aQny(t) + BQnz(t).
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For t € (tn;,tn,,,) we have

Qn (ay(t) + B2(t) = ay(tn;) + [ey(tn,,) — ay ()] et

tni+1 - tn;

t—1t,.
Bz (tn;) + [B2 (tniyy) — B2 (tn,)] t__ilt__
Nig1 ~ Uny

= a@ny (t) + BQnz (t) :

Which proves the linearity of @),,.
To prove @, is a projection, we observe that for t = t,,, ¢ € {0,...,n}, Q2 (y(t)) =
Q’ﬂ (Qny(t)) = Qn (y (t)) = y(t) FOI‘ t € (tni7tni+1) ) Z € {Oa "'7n}a we ha‘ve

Qr(y(t) = Qu(Qny(?)
= @n (y (tni) + [y (tni+1) - y(tni)] 4 Lo

— tn, )
ni41 tni

= y(tn) + [y (tni+1> —y (tn,-)] t t—tn,

Nig1 tni

So Q2 (y (1)) = Qny (t).

We calculate the norm of @), as follows.

Qx|

sup {[Qul : lylly = 1} where [lylly = max |y (0]

= sup { e (0. 0 Iyl = 1}

< sup {ma (w0 < Iy =1}
= 1.

Now if we take the function y (t) = 1 for all ¢ € [0,1], then lylly = maxiep |y ()] =1

and ||@.y|ly =1 so that

I9o8 _ 1 < sup {1Qul s 1 = 1} = Q.| forall n €N

Hence ||@.|| = 1 for each n € N.
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The continuity of @, then follows from ||@,|| = 1.

Thus, for each n € N, (), 1s a continuous linear projection of Y onto Y;, with ||Q,|| = 1.

We now determine the dimension of Y, and show that X,, and Y,, are of the same
finite dimension. Let {ei,...,e 11} be the usual orthonormal basis in R**!. We have
for each y, € Yo, (y(t1),..-,y (tny1)) € R™! uniquely represents y, in R™!. Letting
(Yn (1) .-y Yn (tnt1)) = (@1,...,0n41) then y, has the unique representation Z;L;Ll aje;j
in R™*! from which it is clear dimY, = n + 1. Defining X, = H~! (Y,), where in this
case H™! = L' (L being invertible), we have dim X,, = n + 1 since the homeomorphism
H~! preserves dimension.

Finally, we show that dist (y,Y,) — 0 as n — co by proving the norm convergence of

Qn.y = y as n — oo for each y € Y. From the definition of the norm we have

1Qny —yll = max{|Qny(¢) —y ()]}

te[0,1]

t—1t,;
= oma ) ) -y @) )]
te(titis1), 1=0,...,n—1 tiv1 — L
< fly (8) —y (¢
- te(ti,t,-T-lr?%):(o,...,n—l “y ( ) Y ( )l}

max {ly (tiv1) — y (L))

tE(t,',t,;+1), 1=0,...,n—1

t—t;
tigr — |

Now as n — 00, |y (ti) —y(t)] = 0 and |y (ti1) —y (t:)| — 0 and since

t—1;
tip1—t;

< 1,

both terms on the right hand side of the inequality converge to zero.

Theorem 1.4.5 then implies that ['r, thus constructed, is an admissible scheme for

maps from X into Y. Q.E.D.

Proof of Theorem 6.2.1. Let I'y be as above. We verify the hypotheses of Theorem
538, Let z € K Ndom L with ||z||y = R. Then || Lz|ly = |-2"ly = B and there exists
t, € [0,1] such that —z” (t) = Ror 2" (t) = — K. So we have for t € [0,1], z (¢) € [0, R,
z' () € [-R, R] and 2" (t1) = —R.
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By (b) we have
IL7'Nz]ly = [INzlly > [Nz (1)
= Na(t) = f(ti,z (t), 2 (t:),2" (1))
> B> R/uo (since po > 1).

Hence
§=inf {||L7'Na||: 2 € 3Br(0) N K} > R/uo
which satisfies (a) of Theorem 5.3.8.
Let r be as in (c) and z € dom LN K such that =[x = r. Then there exists t, € [0,1]
such that |—z" (to)| = ||Lz|ly, =7 = —2" (to) or 2" (t,) = —r and we have z (t) € [0,7],
z' (t) € [—r,r] for every t € [0,1] and 2" (to) = —r. From (c) we obtain

f(to,z (to),2' (to),2" (o)) < 7.
Then if Lz = pNz for some y < 1 and z € K with |[z||, = r we would have
Lo = —o" (8) = uf (b e (8), 2 (1), 2" (1)
for every t € [0,1] including to. This would give
—z" (to) =1 = pf (to,z (o) , 2" (to) , 2" (t0)) < pr,

a contradiction. This satisfies condition (c) of Theorem 5.3.8 while condition (b) is

immediate. Thus there exists ¢ € K with r <||z||y < R such that Lz = Nz. Q.E.D.

6.3 Non-negative solutions to the periodic boundary

value problem

As with the previous problem, we first convert equation (6.2) into a semilinear operator
equation in Banach spaces. We then place certain restrictions on f(¢,z (¢),z'(¢)) in

Theorem 6.3.1 so that the conditions of Corollary 5.2.7 are satisfied.
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Let X = {z € C?[0,1]:2.(0) = 2 (1), #/(0) = &' (1)} with lally = max (2]l , |’}
and Y = C[0,1] with [ly|ly = maxiepq|y(t)] and K = {z € X :z(¢) >0, t €[0,1]}.
Define L : X = Y by Lz = —z"(t)and N : X — Y by Nz (t) = f(t,z(t),2' (t)).
We assume f to be continuous on [0,1] X R x R. Before stating our existence theorem,
we prove that L, as so defined, is indeed Fredholm of index zero and that L — AN is
A-proper.

To determine the ker L; suppose Lz = 0, then —z”(¢) = 0 and so z’'(t) = ¢; by
integration. Integrating a second time gives z (t) = ¢t + c2. By the boundary conditions
we obtain z (0) = ¢z = z (1) = ¢; + ¢ which implies¢; = 0. Also, 2’ (0) = ¢; = 2' (1) = ¢1
so that ker L is the set of constants {¢ € R}. Hence dim (ker L) = 1.

NowimIL ={yeY:—2"(t)=y(¢t) and z(0) =z (1), «'(0) =2’ (1)} and the gen-

eral solution to —z" (t) = y (¢) is

x(t)=01+c2t—/ (t—7)y(r)dr.
0

The periodic boundary conditions require
1
z(0)=cr=2z(l) =c¢ —{—cz—/ (1—7)y(r)dr
0

so that

As

the boundary conditions require
1
2 (0)=c=2(1)=c —/ y(7)dr
0

so that

1
/ y(r)dr = 0.
0
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Hence the specific solution is

ﬂf(t)=cl+/0 t(l—T)y(f)df—/t(t—T)y(T)dT

and im L = {y €Y. foly(T)dT = 0}.

Let Yo = {constants}. Then Y = Y,®Y; and we may take the projection Q:Y =Y,
to be Qy = Jy y (t) dt. Therefore, dim(ker L) = 1 = dim(Y) and I is Fredholm of index
zero.

Since Nz = f (t,z, ) is continuous and X is compactly embedded in Y by Sobolev’s
embedding theorem [57], N is therefore compact. Hence L — AN is A-proper by (i) of
Theorem 1.4.7.

We mention that the projection scheme constructed in Section 6.2 is valid also for
this periodic problem with the modification that H = L 4+ J™'P where P : X — ker L
and J : Yo — ker L. For this particular problem, we shall define Pz = fol z (t) dt which is
a constant and therefore in the ker L and Jy = 81 where 3 € RT will be specified later.

We are now prepared to state our existence theorem for equation (6.2).

Theorem 6.3.1 Suppose

(a) f:[0,1]xRXR — R is continuous and there ezist a, b, c € R* such that |f (t,z,p)| <
a+blz|+ c|p| for every p, z > 0 and t € [0,1] where b+ mc < 2n”

(b) there exists My > 0 such that fol f(t,z,z")dt #0 forz € X with z(t) > My, t €[0,1]
(c) there exists My > M, such that for & € ker L = R with z > M, implies « f (t,z,0) >0
for every t € [0,1] (or zf (¢,2,0) <0)

(d) there exists o € (0,8] such that f (t,z,p) > —ax for every z 2 0, ¢ € [0,1].

Then there exists « € dom L,z (t) > 0 such that Lz = Nz.
Proof. To verify the conditions of Corollary 5.2.7 we first obtain a set
Q={zecK:|z|,<r}
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such that Lz # ANz on 9% for A € [0,1]. We then show that if z € K is a solution of

—z" = M\ (t,z,2') for some X € [0,1} then z (t) < M for some M > 0 independent of
z (t) and A.

Let z be a solution of —z" = Af (t,z,2’) for some A € [0,1], then
1

1
- [ewa = 3 [ fnea

—'(1)-2(0)] = 0=X[ f(t,z,z)dt

0
From (b) there exists tq € [0,1] such that z (t0) < M;. We write z (¢) = ag + u (t) with

aozfol;;(t)dt

then
/ ) dt = 0
0 ' (1) = u'(t)
2(t) = :v(tg)—l—/t:a:’(s)ds
and

z(t) < My + z'll, = My + ||lu'|l, where |||, is the L2 norm.

Next we prove
1 1
lell, < My 4~ e’y = My +
Let

w () = a:(t-{—to—-l)—x(to)forl—t0§t§1,
T z(t+to) —z(to) for 0 <t <1 —to.

Since w (0) = w (1) = 0 and w € C*[0, 1], Theorem 257 of [21] implies
1
ol < 2 'l

and

||w(t)+a:(t0)||§ = /Ol_to |:c(t_|_t0)|2dt+/1_t0|:z:(t+t0—1)|2dt

= /01 |z (¢)]* dt.
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Similarly we obtain
lw'lly = fi'll, = flelf,
These inequalities then give

lolla < My + ol < My + o] = 3 + 2 .

Integrating the left side of —2” -z = \f (¢, z, z') - z by parts, we obtain

—/0 2" (t)-w(t)dt = —a'(t) z(t) |(1)+/lxl(t)°$/(t)dt
= —[2'(1)-2(1) = 2'(0) -z (0)] + /01 [« (t)]" dt.

So we have
[ E@ra=sf reo cna

By (a) and Holder’s inequality we have

2 = ) < / 1 (b, )] u (1) de

INA

/0 (a+ e (8)] + ez’ (D)) Ju (1)) de
< flatblzl+ cle’|l, Jull,

< (a+dlzll, +cllwliy) ully

Extending u (¢) periodically to all of R with period one and using Wirtinger’s inequality
121}, Jlu]l, < (1/27)]|v]|,, we obtain

2
lw']l; -

1 1
12713 = 1w} < (@ +bMa) o= 'l + (b 70) 5

Since by (a), b+ mc < 27% and ||z'||, = ||u||, < Ay where

7 (a + bM,)

A= 2m2 — (b+ mc)

So z(t) < My + A, for t € [0,1] and ||z||, < My + Ay /~.
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Thus, if we choose 7 > M; + Ay/m we shall have —z" £ \f (t,z,2') on 90 where
Q={z€ K :|z|, <r} and (a1) of Corollary 5.2.7 is satisfied.
For Q:Y =Y, Qy= fO t)dt and z € ker L N 9Q, then z (t) = ¢, a constant, and

z (t) = ¢ =r > M,;. Condition (b) gives
1
QNz = / ft,z,0)dt #0
0
and (by) of Corollary 5.2.7 is verified.

To prove (¢;) of Corollary 5.2.7, we define the bilinear form [,-]: Y x Y — R as

1
wal= [ y@s)d.
0
It is clear that [-,-] is continuous and satisfies [y,z] = 0 for every = € ker L, y € im L.
Now we show that condition (c) implies (¢;) of Corollary 5.2.7. Let @ € ker L N 912, then
z(t) = ¢ =1 > M, so choose My = r and
11
[QNz,z] = / / f(t,e,0)dt ecds <0
o Jo

since f (¢,z,0) -z <0 for 2 > M.

To verify (d), let z € K with Pz = fo t)dt, Qy = fo t)dt and

T (I-Q)N = /Gst[f(sx /f(tx (1) d :\ds
where
L (s/2)(1=2t4s) for 0 <s <t
Glst) —{(1/2)(1—3)(%—3) fort<s<1
Then

Pr+JQNz + Li'(I-Q)Nz
: /x@@+ﬂ/fsx @' (5)) ds

+.LG®ﬂp@w®wﬁﬂ—ffWMmf®M4®
_ /Olzv(s)ds+/01H(s,t)f(s,x(s),x'(s))ds

1The derivation of G(s,t) is given in the appendix to this section.
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where
H(s,t) =B+ G(s,1) -/ G (s,t)ds

or

H(s,t):{ B+(s/2)(1 -2t +s) - fo (s,t)ds, 0< s <t
B+ (1/2) (1 —s) (2t —s) fo (s,t)ds, t<s<1
We show in the appendix to this section that 0 < H (s,t) < 1/8 if B is chosen to be 1/24.

Then
[ [(Hsn 16002 @) e > [rs=a [ n60t0

> /Ola:(s)ds—%/()lx(s)ds
_ (1_.;5)/0}(3)61320.

Thus all conditions of Corollary 5.2.7 are satisfied and there exists 2 € dom I N K such
that Lz = Nz. Q.E.D.

6.4 A non-negative solution to a perturbed Volterra
equation

We consider the system of Volterra integral equations of the first kind
t
y(t) = / k(t,s,z(s))ds, t € J=][0,1] (6.4)
0

where k& and y are R™valued and all functions are known except z (s). Differentiation

with respect to t yields
4
y (1) = k(4,42 (1) + / ki (4, 5,2 (s)) ds (6.5)
J0 ’

where k; (t,s,z(s)) = 0k/0t. We convert this to an operator equation of the form

z = Tyz 4+ Tyxz where
Tz =z (t)—k(t,t,z(t))
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and
t
Tz =y'(t) - / ki(t, s,z (s))ds.
0
Or, more concisely, z = Nz (in the form Lz = Nz with L = [ and N = Ty + Ty).

Let X = L?[0,1] and K C X where K = {t€X:z(t)>0ae}. We shall prove
that (6.4) has a solution z € K if the following conditions are satisfied.

(1) k: {(t,s) € I x J:s <t} x R™ — R™ and k; (t,5,2 (s)) satisfy Carathéodory
conditions on J and there exists M > 0 such that |k (t,s, )], |k (t,s,2)| < M (1+ |z)).

(i) (k (t,t,2) =k (t,t,y),z —y) > alz —y[* on J x R* x R™" for some a ¢ (0,1).
(iii) k¢ (t, s,z (s)) < 0.

( ) ( L1y ooy Tin1y 0, Tigy, . "n) <0Ofore=1,...,n
(V) y(t) e Wb [ y(0) =0 and ¢’ (t) > 0 for a.e. t € J.

Theorem 6.4.1 Assume that conditions (i) through (v) hold. Then there exists z €
L#[0,1], = (t) > 0 a.c., that is (6.4) has a non-negative solution.

Proof. To apply Theorem 5.4.4, we must show N is A-proper, weakly inward and the
solutions of £ = ANz are bounded for A € [0, 1]. We note that L = I is clearly Fredholm
of index zero and that the projection scheme mentioned in the introduction to Chapter
2 suffices for X = L?[0, 1].

Now (ii) implies T} is c-dissipative since

(Tiz — T,z —y) = (¢—k(t,t,z)—y+k(tt,y),z—y)
= (z—y+k(tty)—k(tt,z),z—y)
= (e—y—(k@t,t2) -k ty)),z—y)
= (z-y,x—y)— (k(tt,z) —k(t1,y), 2 —y)
= |z —yl" = (k(tt,x) = k(t,t,y),2 —y)

< lz—y—alp—y’=0-a)|z -yl
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So (Thz — Tyy,z —y) < clz — y|2 where ¢ € (0,1). And since T is compact. N =T+ T,
is A-proper by (iv) of Theorem 1.4.7.

To prove N is weakly inward we observe first that conditions (iii) and (v) imply
T> maps K to K so we need only show T is weakly inward. Let z € 9K : ;uch that
z* (z) = 0 for some =* € K*, then we identify z* with an L2 function, z* (¢t) > 0 a.e. and
fol z* (t)z (¢t)dt = 0. Thus 2*(t) = 0 a.e. on the set {t: z (t) # 0}. Applying z* to Ty
we obtain

n 1

fﬂb)zg;ﬂ

= 0-) :/ z; () ki (G821 (8) 5oy 2ic1 (1), 0, Tiga () 5 oy 0 (1)) di
i=1 {t:.’L‘,’(t):O}
0

z; (¢) z; (t) dt — Z /01 i (U) ki (8,8, 21(t), ..., 2 (8)) dt

IV

by (iv). Hence N is weakly inward on K.
Before showing the solutions of £ = ANz, A € [0, 1], are bounded, we state and prove

a Gronwall type inequality for non-negative a.e. functions of L'.
Lemma 6.4.2 Let x € L' [0, a] such that z(t) > 0 a.e. and suppose that
z(t) <C+ M/t:v (s)ds a.e. (6.6)
0
where C and M are non-negative constants. Then z (t) < CeM? a.e..

Proof. From (6.6) we have

Mz (1) <M
C’+Mf0tac(s)ds -

Then integrating both sides from 0 to ¢ gives
t Mz (t)
o C+M f(f z(s)d

To integrate the left side we use the change of variable formula of Lebesgue integration,

t
ﬁg/M&:Mt
S 0

a special case of which we state summarily; cf. [22] for a proof.
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Theorem 6.4.3 If ¢ : [a,b] = [o, 8] C R is a monotone, absolutely continuous function
and f € L' [a, B] then (f o p)|¢'| € L [a,b] and
B=¢(b) b
| rwdi= [(fop g

=¢(a)
We let f(u) =< on [C,D];C,D >0, and ¢ (t) = C+Mf0t:r(s)ds on [0 t] and note

that f € L' [C, D] and ¢ is absolutely continuous since it is defined as an integral and

monotonic since z (s) > 0 a.e.. Thus

t Max(t C+M fot z(s)ds
z () 5 - / L

0 C+Mf0ta:(s)ds c u

= In <C+M/Ota:(s)ds> —InC

_ C—i—Mfotx(s)ds
= In C :

So the inequality above yields

that is

Then by (6.6)
t
z(t) <C+ M/ z(s)ds < CeMt < CeMe for ae., t < a € RYT. QE.D.
0
Now from z = ANz we have

z = (:c(t)—k(t,t,:c(t))—i—y’(t)— /tkt(t,s,x(s))ds)

and by (ii) with y =0,
Ik (t,t,2) — k (£,1,0)| [z] > Az

or

k(t,t,2) — k(4,0 > Al
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Substituting k (t,¢,2) = y' () — [, k: (t,s,2 (s)) ds we obtain
Mel < 0= [ hasa)ds—k(,00)
< WO+ GO+ [ h(ts,2 ()]s
< WO+ O+ [ M0+ el
= |y’(t)\+|k(t,t,0)|+Mt+M/Ot|x(s)|ds.

Lemma 6.4.2 then gives |z| < CeM®. Theorem 5.4.4 can now be applied taking Qx =

B, (0) N K with r > CeM* to obtain the required result. Q.E.D.
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Appendix A

A.1 The derivation of G (s,t)

As demonstrated in Section 6.3, the solution to —z” (t) = y (¢) with periodic boundary
conditions z (0) = (1) and ' (0) = 2’ (1), is

s(t) = 2(0)+ / <1—s> <>ds——/<t—s>y<s>ds

where
s(1—t) for0<s <t
g,g,t):. .
t(l1—s) fort<s<1

The projection Pz = fo t) dt applied to the solution z (t) above gives
1
Pz = P (:c(()) +/ g(s,t)y(s)ds)
0

/Olzc(())dt-F/Ol /Olg(s,t)y(s)dsdt
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// (5,t)y (s) dsdt.
Now 7'y = 21 (1) =  (t) — Pz (t) so that
o (1) :/ (5,)y(s) ds—//g(st ) dsdt
:/0 (s, t)y()ds—/o (/0 g(st)dt)y(s)ds
- [ [g<s,t>—/olg<s,t>dt]y(s)ds

Evaluation of the integral fol g (s,t)dt gives

1 s .
/Og(S,t)dt = /g(s,t)dt—l—/ g(s,t)dt
0 s
Lt

1 1 -
= 5[ -s)]; +5 [=s (=),
(s /)(1—3)+(s/2)(1—s)2
(s

Equation (A.1) can then be expressed as fol G (s,t)y(s)ds where

G(Svt)Zg(S,t)—(S/Q)(l—s):{ ((3/2)(1-2t+5) for 0 <s <t

A.2 Bounds for H (s,t)
We show that if § is chosen to be 1/24 then 0 < H (s,t) < 1/8 where

H(s,t):{ ﬁ+(5/2)(1—2t+3 fo 5tdsfor0<s<t

B+ (1/2) (2t — 2st — s + s%) fo stdsfort<s<1
Evaluation of the integral fol G (s,t)ds gives
1 1 t 1 1
G (s, t)ds = —/3—23t—{-32d5+—/ ot — 2st — s + s°ds
0 2 Jo 2 Jy
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_ 1o 2 3 /9]t 1
= 5[3 /2 —1s* + s /3]0+§[2t3—t32—32/2+33/3]:

= —1/12 (after some simplification).

So
H(s.1) = B4 (s/2)(1=2t+s)+1/12for 0< s < ¢
B4+ (1/2) (2t —2st —s+s?)+1/12for t < s< 1

To determine the bounds for H (s,t) on the region B = [0,1] x [0,1] in R? we use
the theory of maximization and minimization of a function of two variables. Now for
0<s<t dH/0s =1/2—t+ s and H/dt = —s so that the solution to the system
0H/0s =0, 0H/0t =01is s =0, t = 1/2 which is on the boundary of R. For t < s < 1,
0H[0s = —t—1/2+5s and 0H/0t = 1 — s so that the solution to the system 0H/ds = 0,
0H/0t =01is s =1,t = 1/2 which is also on dR. Thus we need only look for the extreme
points of H (s,t) on OR. We divide the boundary of R into four intervals: S; whose
points have coordinates (0,t), Sz whose points have coordinates (s,1), S3 whose points
have coordinates (s,0) and S4 whose points have coordinates (1,1).

For the interval Sy, H (0,t) = 3+ 1/12 and hence constant.

For the interval Sy, H (s,1) = 3 — s/2 + s*/2+1/12 and H/0s = —1/2 + s. Then
H (s,1) has a minimum for s = 1/2, t = 1 (by second derivative test or by parabolic,
concave up nature of H (s,1)) and H (1/2,1) = 3—1/24. The maximum values of H (s,1)
occur at the end points of S; and we have H (0,1) = H (1,1) = 8+ 1/12.

For the interval Ss, H (s,0) = 8 —s/2 +s*/2+1/12 and H/ds = —1/2 + s. Then
H (s,0) has a minimum for s = 1/2, ¢t = 0 and H(1/2,0) = B —1/24. As before, the
maximum values occur at the end points of S3 and we have H (0,0) = H (1,0) = g+1/12.

Finally, on Sy, H (1,t) = 8+ 1/12 and hence constant. Thus the minimum value of

H(s,t) on Ris 8 —1/24 and the maximum value is 8 + 1/12. Therefore, if 3 is chosen

to be 1/24 we have 0 < H (s,t) <1/8.
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