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SurfaceTension,SurfaceSti�ness,and SurfaceW idth ofthe

3-dim ensionalIsing M odelon a CubicLattice �
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aCERN,Theory Division,CH-1211 G en�eve23,Switzerland

bInstitutf�urTheoretischePhysik I,Universit�atM �unster,
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W ecom pute propertiesoftheinterface ofthe 3-dim ensionalIsing m odelfora wide range oftem peraturesand

for interface extensions up to 64 by 64. The interface tension � is obtained by integrating the surface energy

density overtheinversetem perature �.The surface sti� nesscoe� cient� isdeterm ined.W ealso study universal

quantities like �2� and �2�. The behavior of the interfacial width on lattices up to 512 � 512 � 27 is also

investigated.

Herewepresenta num ericalstudy of3-d Ising

interfacialproperties with focus on the precise

determ ination ofinterface tension and interface

sti�ness over a wide range oftem peratures. A

detailed exposition ofour work can be found in

[1].

1. T H E M O D EL

W e considera sim ple cubic lattice with exten-

sion L in x-and y-direction and with extension

T = 2D + 1 in z-direction. The lattice sites

i= (ix;iy;iz) have integer coordinates,and the

z-coordinate runs from � D to + D . The Ising

m odelisde�ned by the partition function

Z =
X

f�i= � 1g

exp(� �H ); (1)

where

H = �
X

< i;j>

kij�i�j: (2)

Thelatticebecom esa torusby im posing geom et-

ricalperiodicboundary conditionsin allthreedi-

rections. For the Ising spins �i we willuse two

di�erent boundary conditions: Periodic bound-

ary conditions are de�ned by letting kij = 1 for

alllinks< i;j> .To de�neantiperiodicboundary

�talk presented by K .Pinn

conditionsin z-direction,wealso setkij = 1 with

the exception ofthe linksconnecting the upper-

m ost plane (z = + D )with the lowerm ostplane

(z = � D ). These links carry an antiferrom ag-

netic factorkij = � 1.

2. IN T ER FA C IA L P R O P ERT IES

W e adopt the following de�nition of the in-

terfacialwidth: A m agnetization pro�le for lat-

ticeplanesperpendicularto thez-direction isde-

�ned by M (iz)= L� 2
P

ix ;iy
�i.Theantiperiodic

boundary condition allowsustoshiftthecon�gu-

ration in z-directionsuch thattheinterfacecom es

closetoiz = 0.W eintroducean auxiliary coordi-

natez thatassum eshalf-integervalues(labelling

positionsbetween adjacentlattice layersperpen-

dicular to the z-direction). Following [2],a nor-

m alized m agnetization gradientisde�ned as

�(z)=
M (z+ 1

2
)� M (z� 1

2
)

M (D )� M (� D )
: (3)

Fora given spin con�guration,theposition ofthe

interfaceisde�ned as
P

�(z)z.Thesquareofthe

interfacewidth isthen de�ned [3,2]as

W
2 =


X

z

�(z)z2 �
�X

z

�(z)z
�2 �

: (4)

Especially on sm alllattices, uctuations in the

two bulk phasescan deterioratethe results.Due
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to bubbles,�(z) can be accidentially large even

farawayfrom theinterfaceposition.W etherefore

alsoconsidertheinterfacewidth m easured on the

con�gurationsaftera rem ovalofallbubbles.

W e now turn to the de�nition ofthe interface

tension. Letusassum e thatthere isexactly one

interface in the system with antiperiodic bound-

ary conditions,and that there are no interfaces

in the periodic system . Then the interfacialfree

energy isFs = Fa:p:� Fp:+ lnT,whereFa:p:(Fp:)

is the free energy (= � lnZ)ofthe system with

antiperiodic (periodic) boundary in z-direction.

For a discussion ofthe case ofseveralinterfaces

see [1]. The interface tension is de�ned as the

lim it� = lim L ! 1 Fs=L
2.

In generalonehasnodirectaccesstotheparti-

tion function in M onte Carlo sim ulations,except

fornottoo large system s,cf.[4]. Note,however,

that

@Fs

@�
= hH ia:p:� hH ip:� E s : (5)

By integration oneobtains

Fs(�)= Fs(�0)+

Z �

�0

d�
0
E s(�

0); (6)

where�0 isarbitrary.O urapproachistocom pute

by M onteCarlo sim ulation thesurfaceenergy for

�-values ranging from the criticalregion around

�c (= 0.221652(3)[5])up to �0 � 0:6. Forlarge

� wecan em ploy a low tem peratureexpansion by

W eeksetal.(published in an articleby Shaw and

Fisher[6])to obtain Fs(�0). Note thatitisalso

possible to start the integration at sm all� [1].

(To the best of our knowledge, the integration

m ethod to obtain surface free energies was �rst

used by B�urknerand Stau�er[7]).

In the theory of rough interfaces the surface

sti� ness coe� cient� playsan im portantrole. If

by suitably chosen boundary conditions the low

tem perature interface isforced to m ake an angle

� with e.g.the x-axis,onede�nes(seee.g.[8]),

� = �(0)+
d2�

d�2
j�= 0: (7)

Capillary wavetheory saysthatthelongdistance

propertiesoftheinterfaceshould by encoded in a

2-dim ensionalG aussian m odelwith Ham iltonian

H 0 =
1

2�e�

X

< i;j>

(hi� hj)
2
; (8)

and �e� = 1=�. Long distance properties are

m ost system atically studied via the block spin

renorm alization group. For the G aussian m odel

de�ned through eq.(8) one de�nes block spins

�I as averages over cubic blocks I ofsize L2
B ,

i.e.,�I = L
� 2

B

P

i2I
hi.W e de�nethe quantities

A
(0)

i;l
= h

1

l2

X

(I;J)

(�I � �J)
2
i; (9)

whereI and J arenearestneighborsin theblock

latticefori= 1,and next-to-nearestneighborsfor

i= 2. listhe extension ofthe block lattice,i.e.

l= L=LB . Forthe G aussian m odel,the A’scan

be com puted exactly.Forthe Ising m odel,block

spin \heightvariables" �hI are de�ned asfollows:

The blocksI aresetsthatarequadraticin x � y

direction with extension LB � LB and that ex-

tend through thewholelatticein z-direction.For

every block,a m agnetization pro�leand an inter-

faceposition can bedeterm ined exactly asin the

case ofthe fulllattice. W e de�ne �hI = interface

position in block I.Notethattheblocked height

variables can also be de�ned \with and without

bubbles".Blocked observablesfortheIsing inter-

faceareintroduced analogouslytoeq.(9),and are

denoted by A
(Ising)

i;l
. Fora rough Ising interface,

we de�nean e�ectivecoupling �e� asfollows:

�e� = lim
L B ! 1

A
(Ising)

i;l

A
(0)

i;l

: (10)

O fcourse,weexpectthattheso de�ned �e� does

notdepend on iorl.

3. M O N T E C A R LO R ESU LT S

W e did sim ulations with antiperiodic bound-

ary conditionsin z-direction on latticeswith L =

8;16;32;64 for �-values ranging from the bulk

criticalregion up to � = 0:6. Form any �-values

we m ade runswith di�erentD to controlthe ef-

fectsofa �nite thicknessofthe lattice. In total,

wem adem orethan 250di�erentsim ulationswith
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antiperiodic boundary conditions. Typically,we

m ade 10000 m easurem ents ofseveralquantities,

separated always by 8 cluster updates with the

Hasenbusch-M eyerclusteralgorithm forIsing in-

terfaces [9]. The sim ulations supplied us with a

su�ciently densegrid of�-valuesfortheenergies

E a:p:.

Form ostofthe�-values,wefortunatelydid not

have to do extra sim ulations to access the ener-

gieswith periodicboundary E p:.Instead weused

thediagonalPad�eapproxim ation ofthelow tem -

peratureseriesby Bhanotetal.[10].Forsm aller

�-valuesweused theclusterM onteCarlom ethod

to determ ine E p:.

Inordertodotheintegrationover� weinterpo-

lated thedatawith cubicsplines.Theintegration

was then started at � = 0:6,where the integra-

tion constant can be safely taken from the low

tem peratureseries.

Already form oderate surface extension L,the

surfacefreeenergywasfound tobehavewith very

good precision likeFs = Cs+ �0L2.Itwasthere-

forenaturalto identify thecoe�cient� 0with the

surfacetension �.

The results for the free energies for L = 8,

16,32 and 64 were then used to m ake �ts with

Fs = Cs + � L2 in orderto obtain estim ates for

the surface tension �. In table 1 we display a

few ofourresults.O urresultsshow a signi�cant

deviation from a prediction by Shaw and Fisher

[6]based on an analysis ofthe low tem perature

series. A detailed com parison willbe published

elsewhere[13].

W e �tted our results for � to the criticallaw

� = �0t
�, using both of the two de�nitions

t = 1 � �c=� and t = �=�c � 1. W e also var-

ied theintervaloverwhich the�-dependenceof�

was�tted. The �tswere alwaysdone using four

di�erent�-values. The resultsbased on the two

di�erentde�nitionsoftwere statistically incom -

patible,showing thatoneisstillnotcloseenough

to criticality. However,taking system atic e�ects

into account,we consider our results consistent

with � � 1:26. The results for the criticalam -

plitude�0 show even strongerdependency on the

type ofthe �t, and we can not say very m uch

m ore than that ln�0 is probably som ething be-

tween 0:2 and 0:4.

In orderto study the behaviorofthe product

�2� wetried todeterm inethecorrelation length �

from the sim ulationsofthe system with periodic

boundary conditions. W e de�ned � via the de-

cay ofthe connected 2-pointcorrelation function

oftheabsolutevalueofthetim e-slicem agnetiza-

tion. O ur results are nicely consistent with low

tem perature series[11].

W e m easured the block spin correlation func-

tionsA
(Ising)

i;l
and studied thequantities�

i;l

e�
(�)=

A
(Ising)

i;l
(LB = �)=A

(0)

i;l
(LB = 1 ) (m easured on

the con�gurations with the bubbles rem oved).

The values for the di�erent i;l and �’s turned

out to be fairly consistent within the statistical

accuracy.O urestim atesfor�e� werethen deter-

m ined byaveragingover�
i;l

e�
with i= 1and i= 2.

Som e ofourresultsareshown in table1.

In �gure 1,we show our results for two com -

bined quantities, nam ely �2� and �2�. In the

product�2�,the exponents� and � 2� ofthere-

duced tem peraturetshould cancel,and weexpect

that this product should be fairly constant in a

neighborhood ofthe criticalpoint. The fullline

in the �gure wasobtained by com bining our�0s

from theintegration m ethod with thecorrelation

lengthsasobtained from the Pad�e.

Sincewedo notknow theerrorofthePad�eap-

proxim ationofthelow tem peratureserieswebase

ourerrorestim ate forthis quantity on ourerror

bars forthe m easured correlation length and on

thestatisticalerrorson thesurfacetension �.W e

estim ate the relative precision ofour results for

�2� to be around 5 percentforthe sm aller�’s,

certainly betterin the large� region.Thistakes

into accountstatisticalerrorsonly. There m ight

also be system atic errors (due to too sm allL’s)

in the surface tension close to the criticalpoint.

They m ightbe responsible foranother5 percent

relativeuncertainty.Thepointswith errorbarsin

the �gureshow the product�2�.The plotshows

thatin the criticallim itthe surface sti�nessbe-

com es the sam e as the interface tension. This

is a consequence ofthe restoration ofrotational

sym m etry at the bulk criticalpoint. Using our

resultsforboth �2� and �2�,weestim atethatin

thelim it� ! �c both quantitieshavethelim iting

value R � = 0:90(5).
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Table 1

A few resultsfor� and for�e�

� 0.2275 0.2327 0.2391 0.3000 0.40236

� 0.0146(1) 0.0319(1) 0.0555(1) 0.30284(8) 0.67988(6)

� 0.240 0.275 0.330 0.35 0.37

�e� 16.7(5) 4.65(4) 1.93(2) 1.52(2) 1.20(2)

Figure1.Resultsfor�2� and �2�

In the theory ofcriticalwetting,the quantity

!(�) = 1=(4���2) plays an im portant role. In

a paper ofFisher and W en [12]this quantity is

estim ated overa wide range oftem peratures. A

com parison ofourdatawith theirtheoreticalpre-

diction willbe published elsewhere[13].

W hen � approaches the roughening coupling

�R ,K osterlitz-Thoulesstheory statesthat�e� !

2=�. Using the estim ates �R = 0:4074(3) [14],

and �(�e�) = 0:3163 (from the Pad�e that here

certainly isreliable),we�nd a \K T value" of�2�

which is0.1572.

In order to dem onstrate the e�ciency ofthe

Hasenbusch-M eyer algorithm we redid the sur-

face width com putation ofM on etal.[2]at� =

�c=0:8 = 0:2771 on lattices ofsize L � L � 27,

with L = 32;64;:::;512. W e perform ed �ts of

the data using the ansatz

W
2 = const+

�e�

2�
lnL (11)

thatism otivated byK osterlitz-Thoulesstheoryof

arough interface.W hen theL = 32datawereex-

cluded,the�tswherequiteconvincing.From our

analysis we arrive at an estim ate �e� = 4:3(2).

This result is nicely consistent with the �e� as

obtained from the renorm alization group quanti-

tiesA.

M .H. would like to thank the Deutsche

Forschungsgem einschaftfor�nancialsupport.
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