
Durham E-Theses

Optimal use of computing equipment in an automated

industrial inspection context

Jubb, Matthew James

How to cite:

Jubb, Matthew James (1995) Optimal use of computing equipment in an automated industrial inspection

context, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4882/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4882/
 http://etheses.dur.ac.uk/4882/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be pubUshed without

his prior written consent and information derived

from it should be acknowledged.

OPTIMAL USE OF COMPUTING EQUIPMENT IN AN
AUTOMATED INDUSTRIAL INSPECTION CONTEXT

Matthew James Jubb,

B.Sc. Hons (Dunelm)

A THESIS S U B M I T T E D IN PARTIAL

F U L F I L L M E N T O F T H E R E Q U I R E

MENTS O F T H E C O U N C I L O F T H E

U N I V E R S I T Y OF D U R H A M F O R T H E

D E G R E E O F D O C T O R O F P H I L O S O

P H Y (P H . D .) .

M A Y 1995

Contents

Abstract vii

Declaration xiii

Acknowledgements xiv

Publications xv

1 Introduction 1

1.1 The Promise of Image Processing 1

1.2 Motivation for this Work 2

1.3 Synthesis, Enhancement and Recognition 3

1.4 Image-Processing Hardware 4

1.4.1 Acquisition 4

1.4.2 Storage : 6

1.4.3 Processing 6

1.5 Summary 8

2 Industrial Quality Control using Automated Inspection 9

2.1 Introduction 9

2.2 Vision Systems and Quality Control 9

2.2.1 Charge-coupled Detector Systems 12

2.3 Typical Apphcations 13

2.3.1 Inspection of Toothpicks 13

i i

2.3.2 Inspection of Magnetic Disk Heads 14

2.3.3 Human Skin Inspection 15

2.3.4 Focus on Preprocessing Operators 17

2.3.5 Timber Inspection 18

2.4 Automated Inspection of Web Products 20

2.4.1 Typical Defects in Photosensitised Aluminium Plate 20

2.4.2 General Web Inspection Problems 21

2.4.3 Web Inspection Case Studies . . 22

2.5 Summary and Conclusions 25

2.5.1 Data Acquisition 26

2.5.2 Feature Segmentation 26

2.5.3 Feature Parameterisation 27

2.5.4 Classification of Parameter Vectors 28

2.6 Summary 29

3 Data Communications 30

3.1 Introduction to Networking 30

3.1.1 Computers and Telecommunications 30

3.1.2 The Internet 37

3.1.3 Network Protocols: TCP/IP 40

3.1.4 Sockets 42

3.1.5 Remote Procedure Calls 45

3.2 Comparison with Previous Work 48

3.3 Trends in Computing Hardware Solutions 49

3.4 Application Speed-up Through Parallelisation 49

3.5 The Internet Protocols 52

3.5.1 User Datagram Protocol (UDP) 52

3.5.2 Transmission Control Protocol (TCP) 53

3.5.3 Remote Procedure Calls (RPC) 53

3.5.4 Network File System (NFS) 54

ii i

3.6 Experimental 55

3.6.1 UDP Experimental Details 57

3.6.2 TCP Experimental Details 58

3.6.3 RPC Experimental Details 58

3.6.4 NFS Experimental Details 58

3.7 Analysis ' 59

3.8 Conclusion 60

4 Operating Systems 62

4.1 Introduction 62

4.2 Microsoft DOS 63

4.2.1 Experimental: Network Handling using TSRs 71

4.2.2 Discussion 73

4.2.3 Interim Conclusion 74

4.3 Unix , 75

4.3.1 Experimental: Xdefect X-Windows Application 77

4.4 Linux 87

4.4.1 Experimental: Itex System Interface 88

4.5 Conclusions 91

5 Neural Network Overview 93

5.1 Why Neural Networks? 93

5.1.1 TEXIS, an Illustrative Vision Problem Example 93

5.2 Introduction and Background 98

5.2.1 Machine Learning 98

5.2.2 Black Box Techniques 98

5.2.3 The McCuUoch-Pitts Neuron 99

5.2.4 The Hopfield Network 100

5.2.5 The Perceptron Compared with Statistical Classification . 102

5.2.6 The Multi-Layer Perceptron and Backpropagation 104

5.3 Previous Neural Inspection Systems - MLP Applications 104

iv

5.3.1 Toothpick Inspection 105

5.3.2 Human Face Recognition 105

5.4 Discussion and Summary 106

6 Image Preprocessing Considerations 108

6.1 Introduction 108

6.2 Iterated Function Series 108

6.2.1 Experimental 112

6.2.2 Discussion 114

6.3 Fourier Transform 115

6.4 Conclusions 119

7 Neural Network Experimental 123

7.1 Experimental 123

7.1.1 Backpropagation Simulator 123

7.1.2 Single "Void" Detection using Simple RMS Processing . . 126

7.1.3 Verifying the "Position-Sensitive" Hypothesis 135

7.1.4 Overcoming Position-Sensitivity using a Histogram Operatorl38

7.1.5 Overcoming Position-Sensitivity using a Synthetic Training

Set 141

7.2 Conclusions 150

8 Algorithmic Development 153

8.1 Introduction 153

8.1.1 Parallel Processing Speedup . 153

8.1.2 Previous Parallelisation Work 154

8.1.3 Motivation for This Work 158

8.2 Distributed Processing - Backpropagation Training 159

8.2.1 Basis for Parallelisation 159

8.2.2 Specification . . .' 161

8.2.3 Implementation Details 162

V

8.2.4 Initial Implementation - Results and Discussion 170

8.2.5 Initial Scheme Extended to 44 Workers 173

8.2.6 Processor Utilisation 175

8.2.7 Scheduling and Load-balancing 175

9 Conclusions 180

9.1 Chapter 1 - Introduction 180

9.2 Chapter 2 - Industrial Quality Control using Automated Inspection 181

9.3 Chapter 3 - Introduction to Networking 183

9.4 Chapter 4 - Operating Systems 184

9.5 Chapter 5 - Neural Network Overview 186

9.6 Chapter 6 - Image Preprocessing Considerations 187

9.7 Chapter 7 - Neural Network Experimental 188

9.8 Chapter 8 - Algorithmic Development 189

9.9 Final Conclusion 191

VI

Abstract

This thesis deals with automatic defect detection. The objective was to develop

the techniques required by a small manufacturing business to make cost-efficient

use of inspection technology.

In our work on inspection techniques we discuss image acquisition and the

choice between custom and general-purpose processing hardware. We examine

the classes of general-purpose computer available and study popular operating

systems in detail.

We highlight the advantages of a hybrid system interconnected via a local area

network and develop a sophisticated suite of image-processing software based on

i t .

We quantitatively study the performance of elements of the TCP/IP network

ing protocol suite and comment on appropriate protocol selection for parallel dis

tributed applications. We implement our own distributed application based on

these findings.

In our work on inspection algorithms we investigate the potential uses of iter

ated function series and Fourier transform operators when preprocessing images

of defects in aluminium plate acquired using a Unescan camera.

We employ a multi-layer perceptron neural network trained by backpropaga

tion as a classifier. We examine the effect on the training process of the number

of nodes in the hidden layer and the ability of the network to identify faults in

images of aluminium plate. We investigate techniques for introducing positional

independence into the network's behaviour. We analyse the pattern of weights

vu

induced in the network after training in order to gain insight into the logic of its

internal representation.

We conclude that the backpropagation training process is sufficiently com

putationally intensive so as to present a real barrier to further development in

practical neural network techniques and seek ways to achieve a speed-up. We

consider the training process as a search problem and arrive at a process involv

ing multiple, parallel search "vectors" and aspects of genetic algorithms. We

implement the system as the mentioned distributed application and comment on

its performance.

vni

List of Figures

1 Image cross-section showing typical "void" defect 21

2 Schematic diagram of star-shaped data network 33

3 Socket behaviour during connection requests 43

4 Procedure for typical RPC call 47

5 Analysis of protocol performance with log/log scale 55

6 Analysis of protocol performance with linear scale 56

7 Ethernet transmission delay for 80kB TCP message 57

8 Xdefect application top-level control panel 80

9 File utilities menu 80

10 Showing significance of differing server memory formats 81

11 Status indicators showing progress of parallel-decoding operation . 82

12 Interface to frequency-domain functions and neural network sub

system 83

13 Frequency-domain filtering operation showing progressive loss of

high spatial frequencies 84

14 Interface to machine vision system via networked PC, including

acquired image 85

15 Greyscale testcard with corresponding cross-sectional view 86

16 A set of IFS attractors, one parameter being varied 113

17 Average over one-dimensional FFT for all rows in "bigvoids" im

age, showing amplitude 116

ix

18 Average over one-dimensional FFT for all rows in "bigvoids" im

age, showing phase 117

19 Detection performance based on line-by-Iine deviation from FFT

average in figure 17 118

20 Average raw pixel values over all horizontal cross-sections in "bigvoids"

image 120

21 Detection performance based on line-by-line LMS deviation from

average in figure 20 121

22 Non-linearity transfer function tanh{x) 123

23 Training performance for MLP trained by backpropagation using

training set of 10 random input/output relations, training param

eter ?7=0.001. Network has 5 input, 3 hidden and 5 output nodes. 124

24 Training performance for MLP trained by backpropagation using

training set of 10 random input/output relations, training param

eter 77=0.001. Network has 5 input, 7 hidden and 5 output nodes. 125

25 Topography of the Three-Layer MLP employed in RMS-processing

experiments 128

26 Raw data cross-section showing typical "void" defect on sheet alu

minium surface 129

27 Raw data from figure 26 after RMS processing, reducing 2048 pix

els to 204 floating-point power representations 129

28 As figure 27, "void" cross-section replaced with data from "good"

material 130

29 First half of the training set used, consisting of 5 randomly-obtained

RMS-processed cross-sections taken across the same "void" defect. 130

30 Second half of the training set used, consisting of 5 randomly-

obtained RMS-processed cross-sections taken from "good" material. 131

X

31 Training performance for MLP trained by backpropagation us

ing training set consisting of two subsets each of five training

examples, the first consisting of RMS-processed data taken from

randomly-chosen cross-sections across the same "void" (see figure

27), the second from randomly-chosen "good" material (figure 28).

Training parameter 77=0.001. Network has 204 input, 7 hidden

and 1 output node(s). The two training subsets corresponding to

defect/non-defect data were associated with values of -|-1 and -1

respectively at the output node 132

32 Neural network analysis of fresh data after training on samples

from void in bottom left 133

33 Indeterminate results when attempting to confirm the "position-

sensitive" hypothesis 135

34 Close-up of voids cluster, those used in training set labelled A and

B 135

35 "Position-sensitive" experiment repeated, "non-defect" data ob

tained from cross-sections inbetween voids A and B 137

36 "Position-sensitive" experiment repeated, "defect" data obtained

from both voids A and B 138

37 Data from figure 29, preprocessed by a histogram operator - defect

present 139

38 Data from figure 30, preprocessed by a histogram operator - defect

absent 139

39 Network results using histogram data from figures 37 and 38 as

training set 140

40 Synthetic void experiment: first half of training set, corresponding

to presence of defect 142

41 Synthetic void experiment: second half of training set, correspond

ing to absence of defect 143

XI

42 Standard deviation of horizontal cross-sections taken from "morevoids"

with respect to vertical position in image 144

43 Maximum number of consecutive pixels with no turning point in

a ful l 2048-pixel horizontal cross-section taken from "morevoids",

with respect to vertical position in image 145

44 Maximum number of consecutive pixels with no turning point, in

a horizontal cross-section of on-process material only taken from

"morevoids", with respect to vertical position in image 146

45 Peak-to-peak intensity range over horizontal cross-sections from

"morevoids" with respect to vertical position in image, showing

corresponding neural network output 147

46 Network weights after successful training on "synthetic void" sets

(figures 40 and 41) 148

47 Subsampled surface representation of complete 2048 by 512 pixel

linescanned image 150

48 Second trial: network weights after successful training on "syn

thetic void" sets (figures 40 and 41) 151

49 Comparison of training performance between single-node imple

mentation and that with 19 hosts or slave workers 170

50 Comparison of training performance between single-node imple

mentation and that with 44 hosts or slave workers 173

51 Number of consecutive reloads for 44-worker scheme, averaged over

all hosts and plotted against iterations 175

52 Processor utilisation for 6 of the 44 slave hosts during background

application activity. CPU load and Ethernet traffic are shown for

capella, the controlling node 176

53 As figure 52, these results taken whilst distributed application is

running 177

Xl l

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it

has not been the subject of any previous appplication for a degree, and that all

sources of information have been duly acknowledged.

M. J. Jubb, May 1995

© Copyright 1995, M. J . Jubb

The copyright of this thesis rests with the author. No quotation from it should be

published without the written consent of the copyright owner, and information

derived from it should be acknowledged.

xm

Acknowledgements

I would Uke to acknowledge and give thanks to the following people, without

whose support and help this work and the production of this thesis would not

have been possible.

To my parents, Roderic and Jennifer, who supported me steadfastly through

out.

To my supervisor, Alan Purvis, for his guidance and wisdom.

To my colleague and friend Nick Bailey, who schooled me in the One True

Way of computing.

To Ruth and Vanessa, faces reproduced here as image-processing source ma

terial.

To all my friends in Durham but especially to Chris Drury and the Poplar

People for looking after me in my continuation year.

XIV

Publications

Analysis of Network Protocol Performance in the Context of Multi-Workstation

Parallel Distributed Applications,

Matthew J. Juhh and Alan Purvis,

Microprocessing and Microprogramming, 1994 Vol. 40, No. 10-12, pp

807-810.

Parallel Distributed Backpropagation Training on a Large Workstation Clus

ter,

Matthew J. Jubb and Alan Purvis,

Submitted to Euromicro, September '95, to be held in Como, Italy.

XV

Chapter 1

Introduction

1.1 The Promise of Image Processing

Image processing is the field of study which involves the manipulation of images.

Photography can be thought of as a particular kind of image processing, as can

the analogue electronic processing which takes place inside a domestic television

set. However, the term is more commonly used today to describe manipulation

of pictures using a computer; image processing implies digital image processing.

Aspects of a broad range of other scientific disciplines are involved, these include,

for example, electronics, optics, computer science and mathematics. For this

reason, perhaps, the topic as a whole is at present evolving very quickly, as

developments in all of these fields are made.

Image processing is a field which has shown great promise and yet has hitherto

largely failed to live up to the layman's expectations. This may be because

images have an inherent subjective appeal which causes the subject to receive

a disproportionate amount of attention and expectation. Since the beginning of

the automation revolution, it has been widely anticipated that automatic systems

would appear with human-like faculties, and although the field of robotics is

now well-developed and finds regular industrial appHcation, the only successful

automatic vision systems to date work exclusively with tightly-constrained scenes.

Thus the realisation of the general-purpose labour-saving robot, Hke the general

automatic vision system, remains far off.

1

1.2. MOTIVATION FOR THIS WORK 2

1.2 Motivation for this Work

Development towards real-world image processing applications appears now to

be accelerating, driven largely by advances in hardware which have made high-

powered, large memory computers available cheaply, and specialised boards for

video capture, video processing and graphics are also widely available at modest

cost. This is beginning to transform the immediate prospects for the development

of realistic, "integrated" vision systems by academic groups.

Machine vision technology may now be sufficiently mature to tu rn many cur

rent research techniques into practical systems, for the benefit of manufacturing,

inspection, surveillance, visually-guided control and other commercially impor

tant applications. However, the take-up of technology in many of these areas

has been slow, in part because unt i l there are clear demonstrations of integrated

performance, few industries are prepared to invest the funds necessary to break

new ground. Two additional factors contribute to the impasse:-

• A lack of incentive for academic researchers to take their work beyond

theoretical developments and to demonstrate and quantify the performance

of algorithms in the context of specific appHcations.

• Successful appUcations of machine vision in niche markets are often not

taken up more widely because their industrial exploiters, unwiUing to re

lease technical information and marketing objectives, fai l to define tractable

needs requiring further research.

We have therefore taken the opportunity wi th in an academic research project

to contribute to the body of practical as well as theoretical image-processing

knowledge.

1.3. SYNTHESIS, ENHANCEMENT AND RECOGNITION 3

1.3 Synthesis, Enhancement and Recognition

A thorough introduction to image processing theory Ues'outside the scope of this

thesis, however, [1] and [2] do give a detailed consideration. We shall instead

briefly comment on what we perceive to be the three main subdivisions of image

processing, in order to illustrate where our own work fits in .

Image synthesis relates to the artificial construction of images. The computer-

generated graphics display produces a familiar, brightly-coloured, slightly blocky

image, however, w i t h the expenditure of sufficient resources computer image syn

thesis becomes a powerful tool in graphic design and film-making, for example.

For moving pictures, the rate at which even simple frames are produced is con

strained by processing power to be many times slower than realtime, however,

when the images are stored and played back at a realistic speed, the results can

be quite breathtaking.

Possibly the most significant technique of interest here is ray-tracing, which

involves the modelling of a scene wi th objects, surfaces and light sources, and

the simulation of the interaction of fight w i th the items wi th in the scene in order

to construct a simulated view or image. Whilst the earliest essays in ray-tracing

involved objects designed to make the simulation task straightforward, such as

totally-reflecting spheres and total ly absorptive surfaces, for example, more recent

work has shown that a sophisticated model, including textured and partially-

transmissive surfaces, for example, can yield extremely lifelike results.

Image enhancement has perhaps the largest body of associated estabfished

theoretical knowledge. Unt i l the recent emergence of image recognition as a

popular area of study, the greater part of all research into image processing dealt

w i t h image enhancement. As evidence of this, Castleman's introductory text [1]

published in 1979 deals mostly w i t h enhancement techniques. Here the paradigm

is almost a parallel of photography - a real-world image is input, processed in

some way and then output or displayed.

1.4. IMAGE-PROCESSING HARDWARE 4

Enhancement techniques include filtering and convolution operators, trans
forms and morphology, for example. The usual aim is to enhance an image
acquired under non-ideal circumstances in order that i t is more palatable for
human consumption. Image compression can be regarded as a subset of image
enhancement - here the aim is to find operators which wi l l reduce an image's
storage requirement, reducing its storage or transmission costs, and yet allow i t
to be re-expanded and presented in an acceptable way afterward.

Image recognition is st i l l largely an unknown and emerging field. Although

the proper paradigm seems to be well-estabhshed, and w i l l be discussed in more

detail, there are few established guides to selection of appropriate techniques. For

example, as Castleman says in his chapter devoted to image recognition, entitled

"Measurement and Classification" :-

There are few analytical means to guide the selection of features. Fre

quently intuition guides the listing of potentially-useful features.

There is, however, enormous interest in the use of image recognition systems

for a wide variety of tasks which are achieved w i t h varying rates of success, for

example, automatic traffic monitoring [3, 4], barcode reading, postcode reading

and automatic inspection and defect detection. These last two areas are the focus

for our work, and a more specific introduction to these is given in chapter 2.

1.4 Image-Processing Hardware

1.4.1 Acquisition

Almost all image-processing applications make use of the same hardware subsys

tems, and we would next like to discuss these.

W i t h the exception of systems which are output-only, for example the ray-

tracing simulators described, some means is always required of acquiring data

f r o m the natural world and thereby converting a physical image into some kind

1.4. IMAGE-PROCESSING HARDWARE 5

of logical representation. There is s t i l l some choice as to exactly what kind of
transducer may best be employed for this purpose, for example, laser and infra
red systems are discussed in chapter 2, although the outputs f rom these can only
be regarded as images i n the loosest sense.

More typically, image-processing systems require a camera as input trans

ducer. Previously cameras themselves possessed a number of subsystems wi th

some scope for flexibility in the choice of hardware for each. The basic principle

is that light reflected by some portion of a natural scene is detected by some kind

of photosensitive device which converts the i l lumination level into an electrical

representation. A movable aperture plate or mirror can be used to change the

port ion of image being "viewed" and thereby "scan" the image. Typical photosen

sitive devices included photomultiplier tubes, photovoltaic cells and photodiodes,

for example.

More modern cameras made use of electronic image tubes such as the plumbi-

con and silicon diode vidicon. Here the image is focussed optically on a target

covered by a photoconductive material which converts light intensities to corre

sponding densities of charge. The target is scanned by an electron beam steered

by deflection plates as in an oscilloscope; variations in beam current correspond

to variations in i l lumination at the corresponding target position.

Most recently of all, advances in sificon integration technology have made the

charge-coupled detector camera the most favoured of aU camera systems. This

takes the fo rm of an array of solid-state photosensitive devices, one per pixel^,

which again converts light intensities into build-ups of charge which can be read

electronically. Advantages over the tube cameras include cost of manufacture and

robustness.

W i t h either a tube or CCD camera, some additional electronic circuitry is

required in order to t u rn the camera's output into a digital representation. In

the case of a tube, a purely analogue signal is output, and an analogue to digital

^Short for picture element, the smallest subdivision of a digital image

1.4. IMAGE-PROCESSING HARDWARE 6

converter needs to be used which w i l l define both the spatial and intensity reso
lutions of the digital image. I n the case of the CCD, the intensity is st i l l read in
an analogue form, and therefore needs to be digitised, but the spatial resolution
is fixed by the layout of the CCD array.

1.4.2 Storage

Some specialised digital storage is usually required by an image processing system,

which needs to be able to store an entire digital image, and to receive this at the

digitisation rate of the analogue to digital converter. Such a store is often called

a frame buffer, and often has the capability of being scanned at the frame rate

in order to regenerate a display of the digitised image.

1.4.3 Processing

The most problematic aspect of the processing stage is the volume of data in

volved. Images are of course two-dimensional, and this means that the processing

problem is an order of magnitude more computationally-intensive than for audio

signal processing, for example. Consider as an illustration an audio compact disc

player and a digital video mixer. Both are systems which involve digital signal

processing of an originally analogue signal, yet the audio system costs less than

i^lOO, whereas the video system costs many tens or even hundreds of thousands

of pounds.

Consequently, i f video processing is to be carried out in real time, that is, at a

video frame rate, then processing hardware must typically be specially designed

w i t h a particular algorithm or family of algorithms in mind. Such hardware wi l l

typically need a high-bandwidth connection to the frame buffer. The Imaging

Technology system which we have used in our work on interfacing in chapter 4 is

a good example - the dedicated processing card here is known as an arithmetic

logic unit, and can perform simple operations such as thresholding, convolution

and image addition/subtraction, for example. This type of approach is, however.

1.4. IMAGE-PROCESSING HARDWARE 7

rather l imited in its application to novel algorithms, although there is some in
terest in combining the advantages of general-applicability and high-performance
using speciaUsed hardware containing field-programmable gate arrays [5 .

General -purpose Dig i ta l Processors

Where complex image processing algorithms are in use, such as the artificial in

telligence techniques we wiU describe, i t is more usual for a conventional general-

purpose digital computer to be employed. Here image data needs to be passed

over the computer's internal bus, typically this is not sufficiently high in band

w i d t h for processing at frame rate to be achieved in any but the most sophisticated

of systems. Off-line processing is therefore the norm. I t is, however, worthwhile

to consider complex algorithms which could in future be employed in real-time

as computer capabilities evolve, and this has been our approach in our work on

algorithms in chapters 7 and 8.

The fall ing costs of silicon integration and the consequent rapid uptake of

information technology in a wide variety of applications mean that there is cur

rently a plethora of different kinds of general-purpose processors available, and a

choice made between these would seem to be far f rom straightforward. I n chapter

3 we have therefore discussed the evolution of the popular classes of device in

cluding the I B M PC-clone, the Unix workstation and the mainframe, highfighting

the relevance of data networking issues, since these are particularly important for

a data-intensive field of computation such as image-processing. Chapter 4 fol

lows up our considerations of selection of a particular type of processing engine

and the low-level performance of networking protocols w i t h an examination of

the various operating systems available for use on these processing engines, since

the operating system facilities have a large bearing on the ease wi th which het

erogenous hardware can be integrated together. This is of importance since a

typical image-processing system is at present often a hybrid of various cameras,

dedicated processors and general-purpose computers.

1.5. SUMMARY 8

M o r e Special ised Microprocessors

Microprocessors which are more specialised in that they are dedicated to signal

processing whilst not being algorithm-specific are becoming increasingly popular

as both research and implementation platforms. Common examples at the time of

wr i t ing include the Texas Instruments TMS320C40, the Intel 1860 and the Inmos

T800 and T9000 Transputers, these last having particular application in parallel

processing. Whereas digital processing systems in mass-produced products were

at one time implemented using semi-custom or full-custom designs, developments

in silicon technology have meant that the required performance for many designs

can now be obtained using a more general-purpose processor. These devices are

typically more demanding in terms of software development effort, requiring use

of less flexible languages such as O C C A M or of native assembler code, but as

processing power increases w i t h time i t would be expected that the use of higher-

level languages such as C becomes prevalent, w i t h useful consequences for the

ease of use of such systems.

1.5 Summary

Now that we have introduced the general topic of image-processing, together

w i t h the issues surrounding the choice of items of hardware which go together to

make up any practical image-processing system, we w i l l in chapter 2 introduce

and discuss the particular subset of the topic which is relevant to the problem in

view. This is automatic defect detection, a specialised image recognition problem.

Chapter 2

Industrial Quality Control using
Automated Inspection

2.1 Introduction

I n this chapter we introduce and discuss the motivation for and characteristics

of industrial quality control through automatic inspection. W i t h the support of

literature review items we discuss the relative merits of the main sensor techniques

available before moving on to examine a range of contemporary systems which

usefully illustrate the context of our own work. Finally we look more specifically

at some web process inspection appUcations and introduce our own particular

vision problem, which falls into this category.

2.2 Vision Systems and Quality Control

Quality control is today widely held to be an important part, or sometimes the

most important part of any industrial manufacturing process, or indeed any type

of business process at all. To borrow f rom signal-processing phraseology, quality

control can be regarded as a kind of "feedback" activity, comparing the result

produced at the end of the process wi th the desired result, and modifying the

process parameters or starting conditions unt i l they are the same. Quality con

t r o l has such significance attached to i t because i t is the means of checking that

what is happening in practice is what was originally planned and accounted for.

9

2.2. VISION SYSTEMS AND QUALITY CONTROL 10

I n a manufacturing context, quality control is the means by which the path can

be found between two undesirable extremes, one of alienating customers by pro

ducing goods of inadequate quality, the other of escalating production costs and

hence reducing competitiveness through over-specification manufacture. Success

f u l quality control automation can enhance profi tabil i ty by increasing speed and

hence production throughput, also by giving a more objective and repeatable

metric of quality than is possible using manual inspection.

Quali ty control i n manufacturing was equally important before the advent of

the present generation of automatic inspection systems, although in early times i t

was possibly not isolated as being worthy of study in its own right. Huang et al.[6

give a useful overview and comparison of early inspection techniques. Arguably

the rnost straightforward f rom an implementation point of view are manual tech

niques, these require only the training of a human operator to check the part

or material in question according to specified criteria. As might be expected

the characteristics of manual labouring found in other industrial applications are

equally evident here:- the sophistication of human faculties is such that a very

varied and flexible set of inspection methods can be undertaken, however, Huang

observes that the key disadvantages of manual inspection are its low speed, lead

ing to production bottle-necks, and also the fact that the monotonous nature of

the work leads to boredom and fatigue in the operators, thereby reducing per

formance, although performance at peak can be very high. Contact techniques

may be usefully employed for very low-grade inspection, for example, to ensure

that a part is approximately the right shape, in the right orientation and has no

gross defects present. These techniques are typically not very sophisticated or

accurate, and suffer f rom the additional disadvantage that the sensors wi l l tend

to wear out in use.

Huang defines machine vision as:-

... the application of devices for optical, non-contact sensing to auto

matically receiving and interpreting an image of a real scene in order

2.2. VISION SYSTEMS AND QUALITY CONTROL 11

to obtain information and/or control machines or processes.

I t should be noted, however, that such an optical sensing system does not

necessarily involve the use of a camera. In their work on automated inspection

of coated papers, Ivonen et al. [7] compare and contrast the main alternatives in

the context of web^ inspection, these being:-

1. Laser-based systems. Typically laser light is directed at a quickly-rotating

polygonal mirror, thereby creating a laser "spot" which moves rapidly over

the web. Optical fibres collect fight transmitted through the web and pass

this to photomultiplier tubes. Strengths of this kind of approach are the

high sensitivity which is typically obtained, allowing detection of very subtle

defects. However, weaknesses include the strong dependence of sensitivity

on process speed, the fact that performance is readily degraded by vibra

tions and di r t , the large amount of space typically required for installation,

and the frequent, compficated recaUbration required which results in high

maintenance costs.

2. Infra-red systems. Usually these involve many discrete infra-red fight source

and detector elements, typically Ught-emitting diodes and phototransistors

or photodiodes. Advantages here are relatively low cost, high sensitivity

and sensitivity/speed independence, reduced need for recalibration, high

reliability and robustness, and the fact that such a system can often be

fitted into t ight manufacturing configurations. Ivonen suggests that the

main disadvantages lie w i t h difficulties in detecting features parallel to the

direction of process movement.

3. Video camera or CCD'^ systems. I n the coated paper context in view, these

continuous sheet of product - e.g. paper, aluminium, shoe leather etc.
^Charge-coupled detector

2.2. VISION SYSTEMS AND QUALITY CONTROL 12

are based on fluorescent or incandescent light and CCD elements which de

tect light penetrating through the web, although reflected fight can alterna

tively be used i f the transmissivity of the product is low. Strengths here in

clude medium to high sensitivity. Disadvantages again include speed/sensitivity

dependence, the requirement of lots of space for installation, plus frequent

lamp replacement.

Ivonen's summary of detection methods is by no means exhaustive, for ex

ample, ultrasonic techniques might be used to detect flaws deep inside a soUd

metal component. Although strictly speaking this would be a contact technique,

requiring a transducer mounted on the component surface, the procedure of trans

mi t t i ng ultrasonic radiation into the metal, and subsequently detecting that re

flected by a potential flaw has more in common wi th a vision technique. Clearly

the exact nature of the manufacturing process wi l l ultimately determine which

inspection technique proves to be the most suitable.

2.2.1 Charge-coupled Detector Systems

Ivonen has a somewhat mixed view as to the merits of CCD camera systems,

however, i t should be added that CCD detectors, together w i th their associ

ated digitisation equipment are now falling in price due to the mass manufacture

caused by demand for their use in a mult ipl ici ty of appUcations, to such an ex

tent as to greatly enhance the cost effectiveness of CCD-based systems. I n spite

of their low cost these can give a very attractive specification in terms of sensi

t iv i ty , signal to noise ratio, reliability and ease of setting-up when compared to

other acquisition methods. Correspondingly, the cost of the hardware required

to convert analogue video signals provided by a camera into the digital domain

normally used for processing is also diminishing, as digital video techniques find

an increasingly diverse range of applications in consumer electronics. I t should

also be noted that a laser-based system is difl icult to use in scattered-light mode,

and is therefore not generally the method of choice where the material is opaque.

2.3. TYPICAL APPLICATIONS 13

Furthermore, infra-red based systems offer hmited resolution due to the mini
mum size of available discrete elements, rendering them unsuitable for use where
defects are very small, unless complex optics are also provided.

Huang is enthusiastic about CCD camera systems, asserting that vision in

spection is becoming more popular in industrial applications mainly due to on

going improvements in microprocessors, lighting systems and camera technology.

However, he suggests that vision systems are not appreciated to their fu l l poten

t i a l in industry, mainly due to high development costs.

I n many industrial settings, therefore, a video-based inspection system may

be the method of choice. Clearly this kind of system wi f l only be of interest when

images of the product surface can give useful quality control information, but i t

should be noted that CCD detectors also lend themselves well to inspection using

infra-red and ultra-violet wavelengths. Beneath-the-surface inspection may also

be possible i f images are acquired indirectly, for example, by digitisation of an

X-ray film.

The scale at which digital video inspection is carried out can be varied through

appropriate specification of the camera's optical system. For example, fiaws in

a magnetic disk head only visible through a microscope may be detected and

analysed just as easily as gross flaws, several inches wide, in sheet steel plate.

2.3 Typical Applications

Contemporary machine vision appfications are conceptually very straightforward,

and we should like to present some examples in order to set the context for our

own work on vision system development.

2.3.1 Inspection of Toothpicks

I n [6], various alternative contemporary techniques are described for vision in

spection of toothpicks. These include area calculation, through identifying pixels

2.3. TYPICAL APPLICATIONS 14

lying on the part boundary. These can be determined by observing which pixels
have both "black" (background area) and "white" (toothpick area) neighbours,
and this technique goes some way to solving the frequently-occurring image-
processing problem of incomplete boundaries, although i t does rely on lighting
and acquisition conditions being such that that the image can effectively be spht
into two intensity levels, corresponding to "toothpick" and "non-toothpick". The
resulting calculated area can be compared wi th that of a known "good" part,
subject to expected tolerances.

Alternatively, boundary following can be directly used to obtain a measure of

the toothpick image's perimeter, this being again compared wi th that expected

for a "good" part, or a histogram analysis could be conducted on a toothpick

image acquired w i t h a greater number of grey levels, the frequency of occurrence

in the part of each again being checked.

2.3.2 Inspection of Magnetic Disk Heads

Although conceptually very simple, automatic inspection has hitherto been a

notoriously and perhaps surprisingly difficult engineering problem. As humans

we are all intimately acquainted w i t h the characteristics of our own biological

vision systems, and after a cursory inspection i t does seem reasonable that one

should be able to take steps towards replicating its performance artificially. The

profundi ty of practical difficulties which occur when we attempt to implement

machine vision i n practice can therefore be rather unexpected. I n [8], Sanz gives

his impression of the problem:-

There is a big gap between successful demonstration of a method on

carefully-controlled data and a functioning system in the manufactur

ing environment.

The system which Sanz describes is a further typical example of a contem

porary machine vision implementation, and is again based on CCD elements

2.3. TYPICAL APPLICATIONS 15

as detectors. Standard averaging operators are used to improve the signal to
noise ratio at the expense of a longer to ta l acquisition time, and pixel values
are scaled according to their position, in order to compensate for non-uniform
i l luminat ion. Two images per part are acquired using fight-field and dark-field
microscopy respectively, and identification of the part's extents is made using
maximum-likelihood parametric curve-fitting, in effect this constitutes use of the
Hough transform. Feature extraction is then performed, and extracted features
are parameterised by area, size of defect-enclosing box, perimeter and relative
location of centroid. Sanz adopts an unusual design of classifier, saying that:-

Conventional classifier design based on statistical training is not fea

sible, because of the reduced number of defect samples that are usually

available in the initial phase of almost any inspection task.

Instead, Sanz implements a rule-based classifier, based on rules originally

drawn up to aid humans in carrying out the inspection manually. For example, a

scratch (defined as being below a defined area to perimeter ratio) over a certain

length w i l l cause the part in question to be deemed a quality control failure.

This is an unusual orientation of circumstances, since in general a refiable clas

sification ruleset cannot easily be directly determined, as complex relationships

between the parameters involved may be required. The purpose of statistical

training, moreover, is to determine a suitable ruleset f rom a series of examples,

and this is therefore not required in Sanz' case.

2.3.3 Human Skin Inspection

I n [9], Whi te et al. detail a machine vision system designed to quantify and assess

lesions on human skin. The purpose is to provide the means for an objective as

sessment of the patient's skin condition to be determined. As treatment continues

this is diff icul t to do by eye, as i t requires comparison between the patient and

photographs of the condition in an earlier stage. The vision system's objective

2.3. TYPICAL APPLICATIONS 16

metric of the skin condition should aUow a doctor to determine much more easily
whether the patient is responding to a particular treatment.

The authors concentrate on the discussion of simple pre-processing operators

which are used in an attempt to isolate lesions f rom the normal skin background.

The simplest of all is a straightforward thresholding operator, since the lesions

tend to be much darker than the surrounding area. The main drawback here is

the sensitivity to variations in i l lumination, which can rarely be made uniform

for a contoured subject, and i t is therefore difficult to set a threshold which

can successfully isolate lesions over the whole extent of the image. Furthermore,

"false alarms" w i l l be generated by pores and hairs which are also darker than

the background.

The authors suggest that this i l lumination sensitivity can be offset by a back

ground correction or normalisation process. A local first derivative filter may also

be of use, an example is the Sobel filter which tends to enhance contrast bound

aries. However, the problem here is that most of the features thereby extracted

w i l l have broken boundaries, leading to a requirement for some algorithm to re

connect them, such as the Hough transform. Furthermore, intensity gradients of

non-defect features may be comparable to, or in excess of those of defects, and

the problem of setting a suitable threshold therefore remains.

A logical progression is to a second-order derivative filter, such as the Lapla-

cian of Gaussian, often wri t ten LoG. This is very computationally expensive,

however, the LoG is insensitive to global and scale changes in illumination, but

furthermore i f zero-crossings are used, no threshold is needed to discriminate the

feature boundaries. Such filters are, however, very sensitive to noise, so a great

deal of noise-suppression prefiltering would be required.

The authors also comment on morphological opevaXovs, which involve iterative

"building-up" or "paring away" of pixel regions w i t h the object of producing a

fully-connected pixel boundary corresponding to a contrast edge. White et al.

comment that these are interesting, yet do not solve the above problems con

vincingly. They go on to develop the concept of a brightness "pit" as their basis

2.3. TYPICAL APPLICATIONS 17

for feature segmentation, w i th parameters such as area, perimeter length, an
gle of conicity, volume and mean-squared distance f rom centroid being extracted
in order to enable classification. Two statistical classifiers are compared, these
being Fischler's Multivariate Discriminant Analysis (M D A) , and K ' t h Nearest
Neighbour Analysis (K N N) . The first of these is of particular interest since i t is
ready-implemented in the commercial statistics package, SPSS.

2.3.4 Focus on Preprocessing Operators

Some researchers in the field of machine vision inspection have been concerned

w i t h preprocessing operators as a study in their own right. For example, in

10], Muhamad and Deravi concentrate on parameters which can conveniently

be extracted f rom an image as a data reduction step by means of a spatial grey-

level dependence matrix. The parameters themselves include energy, entropy and

inertia.

Transforms may also be of use as preprocessing operators, although by defi

n i t ion an invertible transform cannot bring about any data reduction. I t can be

the case, however, that certain image characteristics are more clearly evident in

the transform domain. For example, the discrete Fourier transform (D F T) may

be used to reveal frequency domain characteristics - these may give a useful char

acterisation of texture, for example, which often has a recognisable frequency-

domain signature which is relatively difficult to observe in the spatial domain.

The D F T may also be used to conduct filtering operations more efficiently, for

example in the case where the same image needs to be filtered in various differ

ent ways. This could jus t i fy the computational expense of the transform when

compared w i t h conducting many spatial-domain convolution operations. We con

duct our own investigation into the usefulness of the D F T in the context of our

particular defect detection problem in chapter 6.

I n [11], Mihovilovic et al. present an information theoretic paper on a novel

development f rom Gabor known as the "chirplet" transform. The "wavelet"

2.3. TYPICAL APPLICATIONS 18

transform is an intermediary step; to arrive in the wavelet transform domain

a time vs. frequency plot is dissected into time-invariant cells with an aspect

ratio depending on frequency. The signal powers present in each of these cells

can then be considered the output coefficients of the transform. In the "chirplet"

transform, the cell shape is allowed to vary with time. A fundamental property

of frequency-domain transforms is that good frequency resolution impUes poor

temporal or spatial resolution, and vice versa, so this property of the "chirplet"

transform is useful in that it allows a representation to be made anywhere between

these two extremes. For example, in speech analysis, brief, wideband consonants

would be better presented with high temporal sharpness, whereas sustained vowel

sounds would be better represented if sharpness were relaxed in favour of higher

frequency-resolution. There are clearly also useful machine vision analogies.

Other authors have concentrated exclusively on single preprocessing operators

which have particularly interesting properties. Examples are Waite in [12], who

focusses on fractal transform operators as applied to general image-processing,

and Jacquin in [13], who explores the same family of techniques, but whose mo

tivation for data reduction is the desire to achieve efficient data compression.

2.3.5 Timber Inspection

In [14], Cho et al. report on a system for inspecting timber. This material

seems to provide a particularly rich set of defect types, for example, wormholes,

knots, cracks and so forth. Automatic inspection of timber and timber products

appears to be of particular commercial interest, and is covered extensively in the

literature, since an ability to grade the material quickly and objectively can have

a big impact on profitability. In chapter 5, related work in [15] by Brzakovic

et al. is considered in detail, since it exemplifies well the layout of components

which we assert to be typical of the generic machine vision application. However,

Cho's work is also worthy of mention here since the authors have concentrated on

studying the classification stage of the process, reaching interesting conclusions

2.3. TYPICAL APPLICATIONS 19

concerning the rule-based and statistical classifiers already mentioned, comparing

these also with the neural network classifiers which are one of the focal points of

our work. These are:-

• Rule-based classifiers: the advantages here are that no training set is re

quired; in general the ruleset is derived from a human expert with experience

of conducting the inspection manually. Where required it is possible to use

the training data to "tune" the subjectively established decision parameters,

although this is not necessarily straightforward.

• Statistical classifiers: K ' th Nearest Neighbour (KNN) is the particular

method under scrutiny here. Advantages are that this can outperform

conventional parametric classifiers when the actual distribution of data is

different from the assumed distribution (KNN makes no assumptions about

the distribution of the data). However, it is difficult to find an optimal

value of k which produces the best performance for a training set with a

finite number of samples.

• Neural network classifiers: a multi-layer perceptron (MLP) trained by back-

propagation is considered. The advantages are that the speed of classifica

tion is faster than with KNN, once the training phase has been completed.

The authors assert that the MLP approximates the optimal discriminant

function defined by Bayesian theory, which suggests that the behaviour

of the MLP becomes asymptotic to that of KNN as training progresses.

Selection of the number of hidden neurons is a particular problem, how

ever. The authors also suggest that the multi-layer perceptron has an ideal

architecture for parallelising the classification process with a view to speed

ing up the implementation. However, we should say that we have yet to

encounter networks which are of such a size that classification takes any

significant amount of time, although if a large throughput of classified data

were required then parallelisation might be useful, most likely in the form

of multiple copies of the trained network. The training process is however

2.4. AUTOMATED INSPECTION OF WEB PRODUCTS 20

very compute-intensive, and we present our work concerned with the paral
lelisation of this in chapter 8. With the parameters of the timber inspection
application in mind, the authors select neural network classifiers as being
their most favoured method.

Huang et al. in [6] also favour the use of neural network classifiers, saying

that these are of particular industrial interest due to their special characteristics,

these being learning by example, fault tolerance and pattern recognition. Huang

expects the integration of neural networks and vision systems to improve overall

vision system performance.

2.4 Automated Inspection of Web Products

We should next like to discuss web product inspection, a particular subset of the

family of vision problems from which we have presented applications, since the

original motivation for our own work arose in a web inspection context.

2.4.1 Typical Defects in Photosensitised Aluminium Plate

Our early work was aimed at the detection of surface defects in the photo-sensitive

coating of a particular aluminium sheet product. After rolling and coating the

material is cut to the customer's required size and ultimately used for lithographic

paper printing.

Two types of defect were of particular interest to the sheet manufacturer:-

• Roughly-circular voids up to one centimetre across. These are caused by

variations in the photo-sensitive coating's composition, leading to air bub

bles which are later squashed flat by a roller. An image cross-section show

ing an example of such a defect is shown as figure 1.

• Scratches which may be many tens of centimetres in length running parallel

to the manufacturing process' direction of travel caused by small particles

2.4. AUTOMATED INSPECTION OF WEB PRODUCTS 21

-Bright centre

-Dark fringes

- Edge of material

Off-process region -

1000 1500

Pixel position

Figure 1: Image cross-section showing typical "void" defect

of grit in one of the roller mechanisms. A visually-similar type of fault may

also occur running perpendicular to the process direction, this is caused by

roller vibration.

The first class of defect can in general be detected by straightforward con

volution filtering followed by a threshold operator, since these faults are typified

by an outer fringe and a centre which are, respectively, much darker and lighter

than the surrounding material.

The nature of the production process gives a slightly textured matt finish to

the aluminium's photo-sensitive coating, and this makes detection of scratches

very difficult or impossible using filtering techniques, since the defect's RMS

power is less than that of the mottled background. The human eye, however, has

no difficulty in picking out the fault because of its consistent positional correlation

throughout the length or breadth of the material.

2.4.2 General Web Inspection Problems

A wide variety of materials are produced as a continuous strip or web - including

metals such as steel and aluminium, paper, glass, textile fabrics etc. These are

routinely inspected during manufacture to detect and identify defects, and, as is

the case with more general problems, inspection using a human operative leaves

2.4. AUTOMATED INSPECTION OF WEB PRODUCTS 22

much to be desired. Automatic systems are already in industrial use for certain
simple inspection tasks where a high equipment capital cost is acceptable.

In principle, many more web materials could be inspected automatically using

machine vision, but unless the surface being inspected is smooth, monochrome

and patternless, the signal processing required may be very difficult to achieve in

real time. For the most difficult surfaces, suitable processing methods are often

only just starting to be theorised.

Commercial considerations are also important - to be viable, instrumentation

must be cost-effective. Many existing solutions which work are much too ex

pensive for widespread application. It is necessary to provide new methods, and

special-purpose hardware to implement these methods.

There is already a substantial academic literature on web inspection. The

signal generated by a defect can be regarded as a "target" (radar analogy) or a

"message" (communications analogy), and methods well-developed in these fields

for detecting signals accompanied by noise can be exploited to provide detection.

However, at some stage the analogy breaks down, and novel methods have to be

introduced accordingly.

CCD linescan cameras are usually used for sensing - they offer high resolution

and faster acquisition than framescan devices, without a need to freeze motion

of the strip. Laser scanners are used when the highest speeds and resolutions

are necessary, but they are very expensive and suffer from other problems as

described.

2.4.3 Web Inspection Case Studies

In [16], Cho et al. themselves review a number of contemporary vision applica

tions and suggest that the most successful systems tend at present to be custom-

designed, since there are often advantages to be gained in terms of efficiency and

cost when the inspection problem is tightly constrained. However, Cho's view

is that their inherent inflexible and nonversatile structures prevent them from

2.4. AUTOMATED INSPECTION OF WEB PRODUCTS 23

being easily adapted, and that general-purpose inspection systems will become
more attractive as computing power becomes cheaper.

With this in mind, Cho describes a knowledge-based machine vision system

for industrial web inspection which he asserts is applicable to a broad spectrum

of different inspection tasks.

Cho says that the problems peculiar to web process inspection are as foUows:-

• The material flow is continuous, and it is therefore difficult to stockpile the

material with a view to feeding it through the inspection system at a rate

slower than that at which it is produced. This means that a truly effective

inspection system needs to operate in realtime, at the same speed as the

manufacturing process.

• The flow rate is high, typically 2 to 20 linear feet per second. This means

that the requirement for realtime inspection above becomes highly demand

ing.

• A high spatial resolution is required to detect defects.

• Defects make up a smafl proportion of the total surface area.

• The same defect may manifest itself in many visually dissimilar ways, com

plicating the process of classification.

The system described by Cho et al. is divided into two logical modules, the

first deals with feature segmentation, the second with classification and recogni

tion.

The segmentation module attempts to extract potential defects from the back

ground area. Its purpose is to reduce the volume of processing required in the

higher-level phase - this is typically more sophisticated and time-consuming, and

so there are economies to be gained through conducting this only on regions which

first-order considerations suggest may contain a defect. Cho discusses three cat

egories of segmentation technique:-

2.4. AUTOMATED INSPECTION OF WEB PRODUCTS 24

1. Edge detection. These are likely to produce false edges in the presence of
noise, also the resulting edges are likely to be incomplete, requiring the use
of some kind of algorithm to fill in the gaps.

2. Texture operators. One example is the fractal dimension, which can be used

to derive a one-dimensional metric of self-similarity from a two-dimensional

binary pattern. In Cho's view these are very computationally complex, too

much so to be of use in current realtime industrial inspection applications.

We give further consideration to the fractal dimension in chapter 6.

3. Histogram-based thresholding (pixel intensity profiling). This is the au

thors' preferred method.

Segmented regions are then passed on to the classification or recognition mod

ule. The authors' preferred technique here is based on neural networks, involving

a three-layer feed-forward multi-layer perceptron trained by backpropagation. It

is claimed that this is slightly superior in eventual performance than the K' th

Nearest Neighbour (KNN) statistical classifier, and that the neural approach also

requires less development effort.

The network described has 10 input, 10 hidden and 5 output neurons. The

input neurons receive a feature vector comprising area, average grey level, elongat-

edness, compactness, contrast, variance, absolute central moment, edge density

and two others which give a measure of the extent to which defects are touching

the edge of the frame - certain timber defects are more likely to occur at the

edges. Activation of the output neurons corresponds to five classes, these being

clear wood and four defect types.

Olsson et al. in [17] also have some interesting conclusions about automatic

web inspection. They are concerned particularly with the inspection of sheet steel

coated with chromium dioxide and with tin.

They suggest that methods of inspecting such surfaces can be divided into

2.5. SUMMARY AND CONCLUSIONS 25

three types, these being intensity-based (thresholding), texture-based (compari
son with a statistical model of the surface) and scattering-related, this last involv
ing measuring and comparing the intensities of light scattered at various angles
to the material surface.

Olsson et al. describe a web inspection system which uses a rotating decago

nal mirror to sweep a laser beam across the process in 200ms. Detection is by

means of a CCD device which is split into numerous sectors, aUowing a degree of

scattering to be measured. One feature vector component is produced and fed to

the classification system for each of these sectors.

The described classification is by means of Kohonen's Learning Vector Quan

tisation (LVQ2) algorithm, the main advantage of this cited as being the high

speed of the training phase. However, the authors' view is that more sophisti

cated neural networks could give better results.

2.5 Summary and Conclusions

Although some variance is evident, there seems to be something of a concensus

among the authors we have reviewed here and others as to the most satisfactory

paradigm to adopt when addressing vision inspection problems, namely that the

whole process can be spHt into a number of subtasks, each of which has a number

of applicable techniques. In logical order we wifl refer to these as:-

• Data acquisition.

• Feature segmentation.

• Feature parameterisation.

• Classification of parameter vectors.

We shall now briefly discuss each of the vision subtasks in turn.

2.5. SUMMARY AND CONCLUSIONS 26

2.5.1 Data Acquisition

If it has been decided that a vision inspection system is appropriate to a partic

ular quality control task, due to advantages over manual and contact techniques,

the system component which logically comes first is the data acquisition stage,

which is concerned with converting a real world scene into some kind of machine

representation. This stage includes the acquisition transducer, which as we have

discussed may be based on a range of technologies including lasers, charge-coupled

detectors and infra-red transducers. It seems to be clear that CCDs are becoming

increasingly favoured for use here.

Previously, inspection systems have usually been tailored to a particular ap

plication, but it is likely that the reduced development costs associated with a

more general system may make these more attractive in future as they become

easier to engineer due to increases in available computer power and advances in

processing algorithms. The use of CCDs would be appropriate in this context,

since their setting-up is much less dependent on the exact manufacturing process

mechanics than that of a laser-based system, for example.

Under the heading of data acquisition we will also mention any preprocessing

which may be required in order to compensate for any physical factors compli

cating the acquisition process such as non-uniform illumination, for example, or

noise generated by the CCDs themselves. Under some circumstances this can be

quite complex, as with the skin inspection example in [9], where the subject is

contoured and difficult to fix with respect to the camera. In other circumstances

a simple positional offset may be all that is required.

2.5.2 Feature Segmentation

Having acquired a machine representation of the inspection scene, the next step

in the process is that of feature segmentation, which is the task of identifying

which image areas are likely to contain features of interest, and isolating each

potential feature. The motivation for this is that the higher-level processing

2.5. SUMMARY AND CONCLUSIONS 27

which is subsequently required is highly compute-intensive, and therefore the
volume of data fed into it needs to be reduced by some simpler technique in
order to keep the scale of the computation problem manageable. Consider, for
example, that a multilayer perceptron neural network could be designed which
directly received a value from each of the thousands of pixel positions making up
the inspection image, thereby eliminating the segmentation and parameterisation
stages. However, the logistics of constructing a suitably-representative training
set to allow such a network to make useful deductions from the image, not to
mention the computational problem of training the network on such a set would
render this a rather fruitless approach.

The techniques which we have mentioned in a feature segmentation context

have included edge detection, texture, intensity-profiling, morphology and filter

ing operators, and there is no concensus as to the most appropriate among these

since this seems to be largely appHcation-dependent. However, there is a wealth of

existing theory relating to such operators as they are equally relevant to the more

developed field of image enhancement. It appears however, that in general none

of these operators performs such that the desired inspection can be directly per

formed on the result, eliminating the need for parameterisation and classification

stages, except in very carefully controlled conditions. It can be said, therefore,

that the provision of feature segmentation and parameterisation stages makes the

overall system more robust and better-able to deal with the inconsistencies that

are characteristic of real-world data.

2.5.3 Feature Parameterisation

Having isolated certain portions of the image likely to contain a feature of inter

est, further data reduction is required since direct high-level processing of even a

reduced volume of pixel data is stiU currently an unmanageable task. Therefore

the image portions are generally parameterised to produce a feature vector which

typically contains just a few floating-point values which are characteristic of the

2.5. SUMMARY AND CONCLUSIONS 28

image section. Parameters discussed have included mean distance from centroid
and average intensity, for example. The key task here would seem to be to reduce
the data being presented to the classification stage to the bare minimum required
to differentiate the expected features from one another and from normal mate
rial, in order to make the higher-level processing as straightforward as possible.
Orthogonality of parameters within the feature vector would therefore seem to
be important, in other words, the parameters should be selected such that each
characterises a unique quality of the image section not represented in any of the
others.

2.5.4 Classification of Parameter Vectors

Having isolated a series of parameter vectors, the final stage in the process is to

classify these as corresponding to a recognised defect type, or as normal material.

The techniques mentioned here have included rule-based, statistical and neural

network systems. In effect any of these will constitute the artificial intelligence

component of the machine vision process, and theory relating to this subsystem

is perhaps the less well-established and most debated of all. It appears that in

many cases a rule-based approach is impractical, and whilst the functionalities of

statistical and neural systems are broadly comparable, since both perform what

is in effect pattern-matching, neural systems do seem to have some advantages,

although there is no clear concensus as to what these are. They may include fault

tolerance, ability to learn by example without a requirement for initial human

analysis of the classification problem and classification speed. Neural systems

are the least-understood of all the available classifiers, and show some promise

in terms of performance. We conclude therefore that they are the most worthy

of further research. The large computational effort involved in training appears

to be a particular barrier to development in this area, also there appears to be

only limited understanding of the internal representations formed by the network

after training. We use these problems as the basis for our experimental work in

2.6. SUMMARY 29

chapters 7 and 8.

2.6 Summary

Having introduced the particular defect detection application in view, and hav

ing examined a cross-section of contemporary approaches to similar problems, we

will in the next chapter review the available types of general-purpose computer

and recommend an appropriate selection. As we have already mentioned, data

communications are of particular interest here since the appUcations in view are

highly data-intensive. For this reason we have, in addition, reviewed contempo

rary data communications techniques and entitled the chapter accordingly.

Chapter 3

Data Communications

3.1 Introduction to Networking

3.1.1 Computers and Telecommunications

I f one uses the term in its most general sense, then computing engines of one kind

or another have been with mankind for what might be regarded as a surprisingly

long time. The forms of technology applicable to computation have changed

from Age to Age, and consequently the devices themselves have correspondingly

changed their appearance and architecture. The Ancient Greeks, who established

the basis for much of modern Mathematics, were extremely adept at working

metals, and they employed these skills, together with their understanding of

mechanics and geometry, to construct simple mechanical calculating devices. In

the Modern Age, however, the doctrine of electronics, unknown to the Ancients,

has come to the fore and it is his acquired skill in the relevant materials technology,

rather than any significant developments in philosophy or novel modes of thought,

which has enabled Modern Man to produce the fantastically complex computer

systems in use in the world today.

The development of the thermionic valve by Fleming et al. shortly before the

Great War pointed the way to the first electronic computing systems. A good

example of an early such computer is the Colossos device in use by the Allied

powers to facilitate cracking of the German "Enigma" code system towards the

end of the second World War. A machine of this complexity required a great

30

5.1. INTRODUCTION TO NETWORKING 31

many switching elements. This meant that the system was physically very large,
the heater coils in each valve together generated a great deal of heat, the system
as a whole consumed a great deal of electrical power and yet required a small
army of technicians to maintain, since the lifetime of each tube was measurable
in months or weeks. These factors meant that there was no question of any use
being made of the system by anybody anywhere except inside the rather sizeable
room which housed it .

Pioneering work by Shockley, Brittain and Bardeen made the first practi

cal silicon devices available in the early 1950s. The technology associated with

combining many such transistors onto a single piece of silicon was responsible

for an order of magnitude increase in the switch density, and hence power and

sophistication of computing engines of the time. Magnetic core store memory

made bulk fast-access information storage relatively cheap and practical, and

this allowed such systems to be used for the first time on a wide range of bulk

information-handling problems such as company payrolling and accounting, for

example. These mainframe computers of the 60s and early 70s still had a large

power requirement and generated great quantities of heat, and in general in

put/output made use of peripherals which could be most conveniently located in

the same large, air-conditioned room, since each would typically require its own

hard-wired connection to the processor. Examples of such peripherals included

paper tape stations, card punch/readers and magnetic tape, disk or drum drives.

At this point, one development played a particularly significant part in the

emergence of data communications as a field of technological study in its own

right, this being the introduction of the microcomputer or microprocessor. Further

enhancement in materials science had made it possible to increase component

density to a level where it became feasible to fabricate a complete processor on

a single piece of silicon, and indeed the microprocessor's most striking feature is

its high degree of sophistication and complexity, given its small size. However,

arguably the most significant features from a practical point of view come about

as a secondary result, these being namely the micro's tiny power consumption.

3.1. INTRODUCTION TO NETWORKING 32

high reliability and, above all else, relatively low cost. The micro enabled small
amounts of computing power to be cheaply incorporated into portable equipment,
and this allowed the concept of a data terminal to be realised, such a device being
in eflPect a computer in its own right, but one whose functionality was oriented
solely around communication with a central host machine which would carry out
all the required application processing.

Equipped with many such terminals, the usefulness of a mainframe computer

increased dramatically. No longer would a job need to be punched by a program

mer onto cards or tape, sent to the computer room, fed into the machine in batch

mode whose results would likewise be punched onto cards or tape and returned,

giving a turnaround typically of the order of hours or even days. The termi

nal allowed interactive use of the mainframe by means of time-sharing between

users, giving a virtually instant turnaround and enabling a whole new range of

computer applications for which this interactivity was an essential component.

In such a system the concept of a data communications channel first begins to

emerge, that is, a medium which transfers information in some standard symboHc

form between two "intelligent" entities, in this case the mainframe and terminal.

Superficially the result appears to be the same as before - the terminal is simply

another type of peripheral to be located inside the computer room and hard

wired to the processor. However, the presence of a pseudo-intelligence at each

end of the link makes i t possible for the terminal to be made physically remote,

communication taking place either via dedicated pilots, or through the telephone

system or other network.

More recent developments have brought various types of personal computer

into the marketplace. These machines are almost invariably based upon a single

microprocessor, and are characterised by their comparatively low cost and their

single-user mode of operation. Such systems are particularly useful for appli

cations which are input/output intensive, yet relatively undemanding in terms

of their processor utilisation, for example, word processing and data visualisa

tion. Personal computers can also be used in the role of data terminal to a more

3.1. INTRODUCTION TO NETWORKING 33

Computers on
alternative site

I , O
ABC O

M O D E M
(X25/X29)

ExtemaJ telephone

line
M O D E M
CX25/X29)

J
Remote building needing
large number of termnals

A M D A H L
5 8 6 0

RS232
C O N C E N T R A T O R

M O D E M
(RS232)

M O D E M
(RS232)

E T H E R N E T
C O N C E N T R A T O R

RS232
C O N C E N T R A T O R

ABC I o|
Internal telephone

lines

M O D E M
(RS232)

PCs with
Ethernet cards

I 1 "

I ABC I O

I ABC [

I ABC I O I

Local printer

Remote building needing
Local printer 5^3]] number of terminals

System printer pcs and dedicated

terminal equipment

Figure 2: Schematic diagram of star-shaped data network

powerful time-sharing computer, but have greatly enhanced capabiHties for ma

nipulating data offline when compared with the earher terminal devices. In the

type of system which has many such PCs accessing the more powerful processing

and software resources of the central mainframe, the telecommunications devices

involved become increasingly complex. Convenience dictates that facilities for re

mote access to the time-sharing machine be provided, since users may be spread

throughout many buildings over a wide area. Such facilities may be said to con

stitute a data network, a means of electronic communication between user and

resource, that is, between client and host.

The mainframe may be connected to other, similar systems elsewhere to allow

network services such as electronic mail, however, in other respects the layout is

essentially a star-shaped network. The University of Durham operated such a

system until Summer 1990, when facilities were modernised, and it is illustrative

to examine this as an example - a schematic diagram is shown as figure 2. Where

facilities for only a small number of simultaneous connections are required in a

remote location, these can be provided by making use of existing low-bandwidth

internal telephone pilots. Where facilities for a large number of simultaneous

connections within one building are required, it may be more economic to use a

concentrator in that building which shares its high-bandwidth link to the host or

3.1. INTRODUCTION TO NETWORKING 34

hosts between many users.

The last five years have seen the emergence of yet another class of computer

system, the workstation, which possesses some features normally associated with

both of the pre-existing classes, the mainframe and the PC. Examples of these

similarities are, respectively, the workstation's ability to serve multiple users at

the same time (time-sharing) and its moderate cost, which in some cases al

lows the workstation to be installed on a one-per-desk basis. As with the PC, a

workstation is typically oriented around a microprocessor, although with higher-

specification models it is not uncommon for many micros to be employed in

parallel inside a single unit. Further developments in microprocessor technology

have here allowed the computing power of what might previously have been re

garded as a supercomputer to be compressed into a convenient desk-sized package

with a reasonably low power requirement and little need for maintenance.

Networking is a particularly important concept in the context of workstation

systems which are typically organised into dusters of machines, interconnected by

links which, compared with the older star-shaped, principally text-only arrange

ment just described, are relatively high in bandwidth. Such links may be based,

for example, at the physical level on 10 Mbps^ Ethernet or token ring schemes.

Whereas in the previous example all communication involved the mainframe as

one end-point, the newer type of network is oriented around providing for con

nections between any two nodes. This is frequently termed a peer-to-peer data

link.

The increased available bandwidth and capability for arbitrary connection

topology in such modern networks means that system faciUties which are either

inherently communication-intensive, or else require routing of data to arbitrary

nodes, can be provided. Examples are electronic mail, network file systems,

remote printing, remote task execution, network-oriented window environments

and network graphics applications.

This personal, one-per-desk networked computer solution is also attractive in

•̂ lO" bits per second

3.1. INTRODUCTION TO NETWORKING 35

a number of other ways. For example, the fact that processing power is distributed
rather than centralised may reflect more closely the management structure of the
organisation in which the cluster exists. This can be an advantage, since it may
make it possible for a user, or group of users, to take responsibility for the mainte
nance and configuration of the machines that he, she or they use on a day to day
basis. By contrast, the previously described star-shaped mainframe network re
quired a central administrative body to look after it , which attempted to provide,
in terms of facilities, all things to all people. At the same time, high-bandwidth
network links allow a good balance to be struck in the latter configuration be
tween self-sufficiency and co-operation, since magnetic disk storage, printers and
software can conveniently be shared.

It might be considered that the workstation cluster type of system is in fact so

desirable as to ultimately mean the end of the line for the mainframe, with its as

sociated air-conditioning and cooling systems, three-phase power supply and team

of operators. Indeed, i t is instructive to consider, in this age of miniaturisation,

exactly what it is about the mainframe style of machine which necessitates such

environmental support. The nub of the problem is that, in order to construct

a time-sharing computer which can provide many tens of users simultaneously

with a significant processing resource, very fast circuitry is required at the gate

level. The earliest, discrete sihcon logic made use of DTL^, and it was the reduc

tion in power dissipation as heat per gate brought about by the introduction of

TTL^ which made the first small-scale integrated silicon packages possible. Fur

ther breakthroughs such as LSTTL* enabled the gate propagation delay/power

dissipation product to be further reduced, facilitating greater and greater scales

of integration. Subsequently CMOS^ fabrication technology allowed gates to be

^Diode-transitor logic, in which a diode built-in potential is used to affect the base-biiis
conditions, and hence conductivity, of the gate transistor

^Transistor-transistor logic
*Low-power Schottky transistor-transistor logic
^Composite metal-oxide semiconductor

3.1. INTRODUCTION TO NETWORKING 36

built in silicon using FETs^ rather than BJTs^, the advantage being that, when in
a quiescent^ state, such gates consume only the infinitesimal power attributable
to current leakage through the FETs' insulating gates.

However, it now seems that for the forseeable future at least, the state of

the Art in computing power will always require a great deal of "environmental

support" that cannot be catered for in a convenient desk-top package.

Time-shared computing facilities still make economic sense for many kinds

of organisation. In general it is desirable to have the computer solve any given

problem as quickly as possible. However, the rate at which any research group

or department can:-

1. Perceive applicable problems

2. Devise systematic solution techniques for these problems

3. Write implementations of these techniques using a programming language

appropriate to the machine involved

is likely to be many times slower than the rate at which the computer can run

the implementations produced in (3). Therefore it makes sense for many such

groups or departments to pool resources in order to provide a shared facility.

The consequent increased affordable cost makes available to all a more powerful

resource than could be justified by each individual contributant\ and so everybody

involved gets their problems processed much more quickly as a result of the co

operation.

Technological advances over the years have brought increasingly powerful com

puting resources within the reach of many organisations. It is clear that im

provements in processing speed alone can make for great time savings where the

computation involved is processor-intensive. However, it can be seen that the

"Field-effect transistor
^Bipolar junction transistor
*Non-switching

3.1. INTRODUCTION TO NETWORKING 37

performance upgrade may be compromised for general problems if these addi
tionally make significant demands on the system's communications capabilities,
unless those capabilities are also expanded.

Networking itself has evolved into a highly-complex field of expertise, and we

should now like to provide an introduction to the subject, since this is vital to an

understanding of our work on multi-processor parallel distributed applications in

chapter 8. We first discuss the Internet, a global data network which has been

largely responsible for the fostering of the TCP/IP protocols which we shall later

employ.

3.1.2 The Internet

The Internet is a collection of smaller networks which have largely evolved in

dependently, and which are now interconnected. These include the American

ARPAnet^ NSFnet^°, sections of the British JANET^\ a number of military

networks and various other local networks at University and research institutions

elsewhere around the world. Users can send messages from nodes on any of these

to any other, except where there are security or other policy restrictions on access.

The University of Durham has been connected to the Internet quite recently.

Standard facilities are supported by the Internet, each site has a subset of

these available depending on requirements and hardware. These include:-

• File transfer protocol (FTP). This allows a user on any machine to get files

from, or send files to, any other machine. Security is handled by requiring

the user to specify a username and password for the remote computer.

Access is then granted to all files which that user ID would normally have

access to if logged on directly. This is not quite the same as a "network

file system" as described below - FTP is a utility which is run every time

access is required to a file on a remote system. The user copies the file to

^Advanced Research Project Agency
^"National Science Foundation

Joint Academic Network

3.1. INTRODUCTION TO NETWORKING 38

his/her local system, and then works with the local copy. It is functionally
very similar to Kermit, which transferred files using the X25 protocol over
a serial connection.

• Network terminal protocol (TELNET). Using this a user on any machine

in the network may log in to any other. A remote session is started by

invoking telnet and specifying the name of the remote computer. Generally

the connection behaves very much like a dialup connection, in that the host

will usually prompt for a user ID and password.

• Electronic mail (SMTP^^). This allows the user to send and receive messages

to and from specific users at remote sites. In general a message is prepared

using a package on the local machine. When the command to send is

given, this package will spool the message onto a local queue. At some

appropriate time, a local process will connect to a remote "mail-hub" system

and transmit the queue of messages. This system will subsequently contact

a deUvery process on each machine to which messages have been addressed,

and transmit the appropriate data. Finally, each individual delivery process

will place the messages in the users' "mailboxes" which are files on the target

machines.

• Network-oriented Window Systems. Until recently, high-performance graph

ics programs had to execute on a computer which had a bit-mapped graphics

display directly attached to i t . This meant in effect that processor- inten

sive software, which required the use of a time-shared mainframe computer,

could only produce graphics in a batch-oriented mode, since input/output

from such machines had hitherto been very low-bandwidth. In other words,

the program would be left to run for some time, and eventually a page

or pages of graphics output would be created. Interactive graphics and

windowing environments were previously only possible using non-sharable

^Simple Mail Transfer Protocol

3.1. INTRODUCTION TO NETWORKING 39

low-performance devices such as PCs. Network window systems allow a
program to use a display on a different computer. Full-scale systemŝ "̂ pro
vide an interface that lets the user distribute jobs to the systems that are
best suited to handle them, but still gives a single graphically-based user
interface.

• Name Servers. In large installations, there are a number of different col

lections of names that have to be managed. This includes users and their

passwords, names and network addresses for computers and so on. It be

comes very tedious to keep a local copy of this information up to date on

every single machine on the network. Thus the databases are kept on a

small number of systems. Other systems access the data over the network.

• Network File Systems (NFS). This allows a computer to access files on

another host in a more closely integrated fashion than does FTP. A network

file system gives the illusion that disks or other devices from a remote

machine are directly connected locally. This capability is useful for several

different purposes. Large disks can be attached just to a few computers,

but others can still be given access to the space. Apart from the obvious

economic benefits, this allows people working on several computers to share

common files. Some manufacturers offer "diskless" workstations, which

have no local storage at all, relying totally on NFS access from a remote

server.

• Talk. Here a connection may be made between two users on different ma

chines. What each of them type is transferred to the screen of the other,

and so the connection behaves a little hke a telephone call.

Other commonly-used protocols tend to be facilities for getting information

of some kind from a remote system. Some examples are:-

13 The most widely-implemented window system is X.

3.1. INTRODUCTION TO NETWORKING 40

• RDATE - obtain time of day and date. This is useful for network- connected
PCs which may execute RDATE while booting. This may be desirable
because the PC may not maintain the time and date while switched off, or
else this time-keeping may be battery-backed and unreliable.

• RUSERS - display which users are logged in to remote machines. This works

in two modes. Either a particular remote system is interrogated, or else a

broadcast message is sent - all machines receiving it will respond with the

appropriate information. In general, inter-site gateways are programmed

not to propagate RUSERS broadcast messages. Thus only machines local

to that which sourced the request tend to reply.

• FINGER - display information about a specific user on a remote machine.

This widespread, international network is based on a system of protocols which

are perhaps most accurately referred to as the "Internet Protocol Suite". TCP^*

and IP^^ are two of the protocols in this suite. Because these are the best known,

it has become common to use the term TCP/IP to describe the whole family. This

leads to some problems, for example. Sun Microsystems' NFS and PC-NFS are

sometimes said to be based on TCP/IP. In fact an alternative protocol, UDP^^,

is used instead of TCP. However, the habit has become well-established.

3.1.3 Network Protocols: T C P / I P

TCP/IP is a layered set of protocols. They take care of the low-level data ma

nipulation required for facilities such as those above. Consider the situation of

sending mail as an example. Firstly, there is a protocol for mail (SMTP). This

defines a set of commands which one machine can send to another, which specify

who the sender of the message is, who it is being addressed to, and the text of

the message. However, this protocol assumes that there is a way to communicate

^^Transport Control Protocol
^^Internet Protocol
^"User Datagram Protocol

3.1. INTRODUCTION TO NETWORKING 41

reliably between the two computers. Like many other application protocols, mail
simply defines a set of commands and messages to be sent. It is designed to be
used together with TCP and IP.

TCP is responsible for making sure that the data gets through to the other

end. It breaks data up into "datagrams" which are a convenient size for trans

mission. It keeps track of what has been sent, and retransmits anything that did

not get through. I t passes data for transmission to the IP protocol below it. It

passes data which it has received from the IP protocol to the application layer

above i t . TCP is a connection-oriented protocol. That is, functions are provided

for establishing a connection and closing it down again. Data transmission is

reliable and guaranteed to be correctly sequenced with no repeats.

IP is responsible for the actual routing of datagrams. It is a connectionless

protocol. That is, the routing of each datagram is considered separately. There

is no concept of a connection existing between the two machines at the IP level.

Data transmission at the IP level is unreliable. A datagram may arrive before

another datagram which was sent previously. Multiple copies of datagrams may

be received.

Beneath IP is a physical protocol layer. The medium may be Ethernet, fibre-

optic cable or UHF satellite link, for example. The protocol could be X25 in

any of these cases. Note that there is a distinction here between "datagram"

and "packet" which often seem almost interchangeable. A packet is a quantity

of data at the physical level, and often there are efficiency advantages associated

with sending one datagram per packet, so the distinction vanishes. However,

when TCP/IP is used on top of X25, the interface breaks datagrams up into

128-byte packets, and reassembles them at the other end before handing them

back to IP.

TCP/IP is based on the "catenet model". This model assumes that there

are a large number of independent networks connected together by gateways.

The user should be able to access computers or other resources on any of these

networks. Datagrams will often pass through a dozen different networks before

3.1. INTRODUCTION TO NETWORKING 42

getting to their final destination. The routing needed to accomplish this should
be completely invisible to the user. All he/she needs to know in order to access
another system is an Internet address. This looks like 129.234.200.116. It is in
fact a 32-bit number, but it is normally written as four decimal numbers, each
representing eight bits of the address.

3.1.4 Sockets

A socket is an endpoint of communication. It is the point of interface between

an application program and the underlying transport protocols such as TCP/IP.

A socket manages the flow of data between an appHcation, or process, run

ning on one machine, and other processes running on machines somewhere else

on the network. I t is a logical descriptor which may be treated very much like a

file handle by the application, once it has been created and has made successful

contact with another socket owned by the remote process. By use of the pro

tocols described, a socket data stream provides sequenced, reliable fuU duplex

communicat ion.

A machine connected to the Internet may be uniquely specified by use of the

appropriate 32-bit address. However, many processes using socket-type commu

nication may be running concurrently, and any one process may have as many

individual connections open as required. Therefore it is necessary for a socket to

be associated with an address unique among all sockets open on that machine.

Addresses may be assigned:-

• Explicitly. The application may request that a specific address be given to

a socket which it has created. A disadvantage here is that the request will

be denied if the address specified is already in use by another process.

• By the operating system. The request is sure to succeed - the address will

be the next available one in sequence.

Sockets may be opened:-

3.1. INTRODUCTION TO NETWORKING 43

vega 129.234.4.28

S E R V E R " P R O C E S S |

Network connection

UNIX

"CLIENT" PROCESS

tloneb 129.234.4.62

Client has created a socket which has local

address 998. Server is already listening on

its socket 1U37. Client requests that its

socket be connected Ui 129.234.4.28,1037.

vega 129.234.4.28

SERVER" PROCESS

C L I E N T - PROCESS

dcneb 129.234.4.62

Request succeeds. A new socket is created at

the server end widr address 1041. All future

communications widi client will be referenced

at server end by this addicss.

vega 129.234.4.28

• S E R V E R " PROCESS

dciuh I29.2M.4.62 viljag.clain I2K.I9I.1.81

Communication continues to be referenced at

deneb end by address 998. Odier clients can

still connect on the original server address,

1037, and will be assigned their own sockets.

Figure 3: Socket behaviour during connection requests

• In "listening" mode. Here the endpoint waits passively after creation for a

connection request. This is often the behaviour required of "servers" which

are making some resource available to their "clients" upon request. When

a connection is made, a new socket is generally automatically created with

a new address, in order that the original "listening" socket may be used to

accept further connections. This procedure is invisible as far as the "cHent"

application is concerned. An illustration of this procedure is shown as figure

3.

• In "connection-seeking" mode. After creation, the socket attempts to con

nect to a remote socket determined by an Internet address plus socket ad

dress, both of which must be provided by the application. The remote

endpoint must be a "listening" socket.

I t can be seen that connections can only be estabhshed between pairs of one

"listening" socket and one "connection-seeking" socket. However, after commu

nications are estabhshed, the distinction between the two vanishes, and either

end can then take the initiative to send data which will be buffered at the remote

end awaiting a "read" instruction from the application.

Problems associated with socket-based communication are:-

• The "connection-seeking" apphcation has to have knowledge of the socket

3.1. INTRODUCTION TO NETWORKING 44

address of the remote endpoint. System programs achieve this by using well-
defined, reserved addresses associated with their function. For example, a
TELNET •pTogva.m will usually attempt to connect to the specified machine
on socket number 23. A FTP program will connect on socket 21. A Unix
machine which is available for remote login will listen on socket 23 for
connections. Many different users may log in in this way since a new socket
is created for each at the "server" end as described.

User programs may also use this procedure, and the required address may

be hard-coded into both "server" and "client" apphcations. However, there

is a risk that the "server" may fail to obtain this address when it starts up,

if it is already in use. Because non-explicit address allocation is sequential,

all non-reserved addresses will be allocated in this way from time to time.

The "server" may instead use non-expHcit address allocation, in which case

it is guaranteed a problem-free start-up. However, the problem of commu

nicating the address to the "client" remains, this must be achieved by some

other means in this case.

• Sockets can only transmit opaque data. That is, only strings of eight-bit

bytes may be communicated. There is no conception of what constitutes a

floating point number or a long integer, for example. This may not be a

problem if the two machines at either end of the link are similar in archi

tecture and have applications built by the same compiler, since the internal

representation of such numbers will be the same at each end. However, if the

architectures are different, for example in the case of a PC communicating

with a Sun SPARC workstation, or if different compilers have been em

ployed, then the byte-order of the internal representation may be different,

or it may even consist of a different number of bytes. Socket-based com

munication gives no help with this problem. Bytes are faithfully deUvered,

but fitting them into program variables is left entirely to the programmer

and his/her application.

3.1. INTRODUCTION TO NETWORKING 45

3.1.5 Remote Procedure Calls

Both of the problems outlined concerning sockets may be solved by resorting to

a higher-level protocol which uses specialised procedure calls to hide some of the

details of the underlying network. This is called the Remote Procedure Call or

RPC library.

With RPC, the client makes a procedure call that sends service request packets

to the server as necessary. When these packets arrive, the server initiates a

dispatch routine, which performs the requested service and sends back a reply.

The procedure call then returns to the client. The client application does not

need to know about the existence of the underlying network, or how that network

functions - it simply calls a procedure, just as it would call mallocQ.

Data is passed from chent apphcation to server appHcation in the form of

parameters to the remote procedure call. After completion, the call will generally

return a user-definable data structure to the client. This provides for communi

cation in the reverse direction.

The client's RPC call needs an IP address^^ which identifies the machine

running the server process. At the level beneath the RPC protocol, socket-based

communication is still taking place. However, a socket address is not needed to

identify the desired endpoint on the remote machine. Instead, a 36-bit program

number is used, together with a version number and a procedure number.

The program number specifies a group of related remote procedures, each of

which has a different procedure number. Each program also has a version number

so that a new program number does not have to be assigned when a minor change

is made.

Internet facilities for acquiring information about remote systems such as

those listed above tend to be RPC-based. To allow an application to make use of

information gleaned from the RUSERS command, for example, which finds the

names of users logged in on a specific machine, it would be necessary to obtain

^^Internet address

3.1. INTRODUCTION TO NETWORKING 46

the appropriate program, version and procedure numbers from a reference source.

I t can be seen that RPC-based communication differs from the socket-based

in two important respects:-

• A client can identify the desired server process using an address which

is unique to that process. This address is a combination of the program,

version and procedure numbers as outlined. In this way, the task of selecting

a suitable address for a server appHcation, which was a problem when using

socket-based IPC-^ ,̂ is made straightforward.

This is made possible by a network daemon^^ process which has two parts to

its functionality, these are called the rpcbinder and the portmapper. Server

applications which want to receive remote procedure calls first register with

the rpcbinder, which stores the program, version and procedure numbers

in a map. A logical port (socket) is then allocated to the appHcation.

Client applications query the portmapper running on the machine which

is host to the desired server process, quoting the program, version and

procedure numbers, and receiving in return a socket address at which the

server may directly be contacted. High-level RPC calls encapsulate this

query as part of an RPC message-creation call, making contact with the

portmapper transparent. An iUustration of this procedure is given as figure

4.

The rpcbinder knows the address of all RPC server programs that register

with it in advance. If a program does not register, it cannot receive RPC

messages. Likewise, the socket address of the rpcbinder must be known

to all applications that want to register with it . On NFS networks, this

address is port 111 on every server machine.

• RPC calls can handle the transmission of arbitrary data structures in both

^^Inter-process communication
^^A background task which carries out some kind of system administration function

3.1. INTRODUCTION TO NETWORKING 47

S E R V E R APPLICATION

©
iOx2103E550A,

I 2.
I 14

®
RPCBBflDER

PORTMAPPRR

i^UNIX

deneb 129.234.4.62

On startup the server application registers its

program, version and procedure numbers wiUl

the ipcbinder. In return it is allocated a socket

on which to listen.

deneb 129.234.4.62

S E R V E R APPLICATION |

MAP
0x2103E550A.2.14

2089

RPCBINDER
PORTMAPPF.R

/\20S9

vega 129.234.4.28

UNIX

C L I E N T APPLICATION

The client application queries the porlmapper,

quoting the program, version and procedure

numbers of tile server it needs to contact.

The portmapper consults its map.

^ deneb 129.234.4.62
"J

S E R V E R APPLICATION
1
1

XDR encoding/deccxling 1

! A2089
! UNIX

1
1
1
1

JUNIX
1
1
1
I

XDR encoding/detcxiing 1

C L I E N T APPLICATION
1
1

[
vega 129.234.4.28

The client application now contacts the

server direcily, having obtained the correct

socket address from the ponmapper. Data

transfer can take place using XDR conversion.

Figure 4: Procedure for typical RPC call

the client to server and vice-versa directions, regardless of different ma

chines' byte orders or structure layout conventions. This is possible because

the structures are always converted to a network standard called XDR *̂̂ be

fore they are sent. Once received by the target process, the XDR-encoded

data is converted again to the appropriate format for the target machine.

This activity is transparent as far as the programmer is concerned.

The additional functionality described means that RPC communication is free

from both of the problems mentioned concerning socket-based communication.

However, some performance may be sacrificed:-

• A client application must establish two network connections for every RPC

call made, firstly with the portmapper, to determine a suitable address on

which to contact the server process, and secondly with the server process

itself. The cUent side cannot "remember" the address from one call to the

next - indeed, there is no reason why the address may not change inbetween

times. Extra waiting time is therefore introduced both because of the me

chanics of establishing a second connection, and because it may take the

portmapper some time to service the map look-up request if there are many

clients competing for its attention. For systems in which there is extensive

^"External data representation

3.2. COMPARISON WITH PREVIOUS WORK 48

"dialogue" between server and client, necessitating the issue of many RPC

calls, this additional overhead may mean that RPC communication gives

unacceptably poor performance.

• Data structures passing between the client and server are always converted

to the XDR format. Where both client and server appHcations run on

machines of similar architectures, it may be the case that the internal rep

resentation of variables is exactly the same at both ends. In this case, the

time spent at each end converting the data to and from the XDR format

is wasted. This may be a large unnecessary overhead if the volume of data

being transmitted is large.

I t can therefore be concluded that in general, RPC calls, by virtue of their

hidden functionality, offer a relatively simple and problem-free interface to the

programmer. However, in certain circumstances acceptable performance may

only be obtained using socket-based communication.

We now conduct a detailed performance analysis of four distinct member pro

tocols from the Internet TCP/IP family, these being the user datagram protocol

(UDP), transmission control protocol (TCP), the remote procedure cafl system

(RPC) and data transmission aspects of the network file system (NFS). We dis

cuss the trends in computer development which have led to the widespread use of

distributed workstation environments interconnected by local area networks, the

motivation for implementing parallel distributed programs on such systems and

the impact that protocol- selection can have on the ultimate efficiency of such an

application.

3.2 Comparison with Previous Work

We have referenced various pubHcations which have dealt with multi-workstation

parallel distributed applications from the standpoint of particular computational

3.3. TRENDS IN COMPUTING HARDWARE SOLUTIONS 49

problems and/or specific task aUocation paradigms. We have addressed our

selves to the issues of task organisation such that the quantity of communication

required between nodes can be optimised. The novel aspect of our own work

therefore lies in our focus on optimisation of the communication mechanisms

themselves. This has not yet been dealt with in detail in the context outlined.

3.3 Trends in Computing Hardware Solutions

Recent years have seen a decline in popularity of the mainframe and minicom

puter systems previously favoured for processor-intensive applications. This is

due in part to the emergence of a new class of computer, the workstation, which

combines the significant processing resource typical of these systems with the

graphical interface capabilities of a desktop personal computer. Magee et al. [18

suggest that the main advantages of a distributed workstation-based resource over

a centraHsed system are improved value for money and predictability of response

time, as well as the provision of improved input/output faciHties. However, a

counter-trend is also observable; the reduction in cost and enhanced reHability

of high-bandwidth telecommunications mean that centralised faciHties still make

economic sense for many organisations. Nonetheless, workstation clusters are

now commonplace in many research, and other, institutions.

3.4 Application Speed-up Through Parallelisa-

tion

In many cases the individual workstations in such a facility spend much of their

time idle, since they are used in the main for reading electronic mail, editing files

and so forth. The machines are typically interconnected by a local area network

system such as Ethernet, and it therefore seems reasonable that one should be

3.4. APPLICATION SPEED- UP THRO UGH PARALLELISATION 50

able to recover this lost CPU resource by put t ing i t to work on a highly compute-

intensive application.

I n effect this requires the parallelisation of the apphcation in view. Program

ming even dedicated parallel architectures is notoriously diff icult , but parallel

workstations introduce the extra difficulties of heterogeneity and a constantly-

changing load, situation due to tasks run by other users [19]. Nonetheless, many

attempts have been made to speed up processor-intensive applications in this way,

examples include molecular dynamics simulation[20], solution of partial differen

t i a l equations[2l] and sparse matr ix factorisation[22]. Ready-written software

libraries'^^ are available both as freeware and as commercial products. These aim

to allow the scientific programmer to write parallel applications without having

to learn specialist network programming techniques. As an alternative, some re

searchers have achieved communication between workstation hosts through the

simple expedient of reading and wri t ing shared files in a network file system

(NFS).

Performance and efficiency of the parallelisation process are key issues in all

these cases, a frequently-quoted metric being effective processing power vs. num

ber of hosts employed. I f this is defined as the speed-up, S{n), w i th n the number

of hosts, then Amdahl's law[23] may be used to express a relationship wi th Wg,

the quanti ty of work in the application which must be performed sequentially,

and Wp, the quantity of work which is amenable to parallelisation, thus:-

Sin) = ^ (1)

This consideration dictates that optimum performance wi l l be achieved in the

f o r m of /mear speed-up where all of the application processing can be parallehsed:-

l i m S(n) = n (2)

^^Titles available include Parallel Virtual Machine (PVM), Linda and P4.

3.4. APPLICATION SPEED-UP THROUGH PARALLELISATION 51

However, in order t O i ^ c u r a t e j y model the specific case of workstations in

terconnected by local area networks, this simple analysis needs to be extended

to include the extra processing required by networking protocols, which we wi l l

call Pproto{i^)- For simplicity, transmission time is assumed to be a component of

this term; this is permissible since computation oc time for a system of constant

computational power. Furthermore, there is in some cases a reduction in total

processing which can be brought about through distribution of the application

on many nodes. For example, a highly memory-intensive task running on a ma

chine w i t h l imited physical memory wi l l necessitate extra processing in the form

of v i r tua l memory swapping. When distributed over many nodes, however, the

quanti ty of physical memory present in the system as a whole is increased, which

can lead to a superlinear speed-up characteristic. We wi l l denote this performance

bonus as PdtstTib{n)•

^ S{n) = ^ ^ " ^ (3)
VF, + Pproto{n) - PdM{n) ^

The fo rm of Pdistribi'n) and the value of Ws are highly application-specific, and

in our first-order consideration of the general distributed-application case we wi l l

assume:-

Ws = 0, Pd^strih{n) = OVn (4)

For parallelisation to be worthwhile, we require the speed-up to increase as n

increases, thus:-

S{n - f l) > 5 (n)Vn (5)

- Pnotoin) + ^ > Pr>roto{n + 1) + ^ (6)

From equation 6 i t is clear that the protocol overhead characteristic is of

crucial importance to the ultimate success of the distribution process. I n other

words, i f the extra processing necessitated by network protocols on moving f rom n

3.5. THE INTERNET PROTOCOLS 52

to n + 1 hosts exceeds the saving made through dividing the application workload,
then the transition is not worthwhile.

Furthermore, i f the speed-up characteristic is sublinear, as is the case for most

practical implementations, then a distributed application wi l l consume a greater

total quanti ty of resources than would the same task executed on a single node.

Thus there must be a trade-off between enhanced overall execution speed and the

increase in to ta l CPU time required to achieve i t .

We w i l l therefore examine the performance of four distinct communication

protocols, these measures are of interest since they are directly linked to Pproto{n)

for any distributed apphcation making use of them. The four include the NFS

protocol mentioned above, as well as the Remote Procedure Call (RPC) system

commonly used by ready-written networking tools.

3.5 The Internet Protocols

The interconnection of former military, research and commercial networks known

compositely as the Internet is the largest peer-to-peer data network in the world,

consequently the suite of protocols on which i t is based is the most significant of

those currently in use. The member protocols which we have examined can be

outlined as foUows:-

3.5.1 User Datagram Protocol (UDP)

UDP [24] is a protocol concerned wi th the routing of data packets using the

min imum overhead required to transfer data onto a physical medium, whilst

maintaining a convenient standard interface to the apphcation in the form of

16-bit socket addresses. UDP does not deliver data reUably, that is, the specifica

t ion allows for the protocol to simply discard data under certain circumstances.

I t does however incorporate a 16-bit checksum, badly-checksummed data being

dropped as described, therefore any data which is dehvered is guaranteed not to

3.5. THE INTERNET PROTOCOLS 53

be corrupted. Datagrams may be duplicated or delivered out-of-sequence. UDP
w i l l not fragment data, therefore the application has responsibility for dividing
data up into blocks suitably-sized for the physical medium, as well as ini t ia t ing
retransmission of lost data i f required. W i t h i n our own computer system, based
on SunOS 4.1.2 and Ethernet, the maximum UDP block length is 9,000 bytes.

3.5.2 Transmission Control Protocol (T C P)

T C P [25] is the reliable equivalent of UDP. I t uses the same style of 16-bit socket

addresses to differentiate logical communication end-points on the same host,

although the UDP and T C P address spaces are distinct. Communication is guar

anteed free of corruption, in-sequence and reliable, since TCP incorporates its

own error-checking and retransmission generation procedures. Very few assump

tions are made about the reliability of protocols and hardware underneath the

T C P layer. T C P w i l l automatically fragment data into convenient packets as

appropriate. There is no l imi t in principle to the amount of data that can be

buffered for transmission in a single operation, however, in practice there is an

adjustable buffer-size l imi t known as the high water mark. Data in excess of this

l imi t w i l l be refused unt i l space becomes available.

3.5.3 Remote Procedure Calls (R P C)

RPC is an additional, higher-level protocol layer which can be used in conjunction

w i t h either T C P or UDP. Its use overcomes two problems:-

1. The 16-bit address space of TCP and UDP is, in practice, rather restrictive.

Al though well-established protocols such as telnet or ftp^^ have standard,

reserved addresses, there is no mechanism for reserving addresses for user

programs. AppUcations must therefore either use dynamically-allocated

addresses, in which case some alternative means must be found to commu

nicate the address to the remote host, or else seek to use a fixed address.

22 File transfer protocol

3.5. THE INTERNET PROTOCOLS 54

accepting that i t may be already in use elsewhere on the system.

2. T C P and UDP transmit streams of untyped bytes. This can be problem

atic, for example, i f floating-point numbers are being transmitted between

different architectures, each wi th a different standard for storing them.

RPCs employ a 32-bit address space, which means that fixed addresses can

reasonably be allocated to every RPC program. A central authority exists to

guarantee the uniqueness of addresses allocated to appHcations registered wi th

i t . However, this expanded address space means that a portmapper process is re

quired on each machine using RPCs, the function of which is to convert the 32-bit

RPC address into a dynamically-allocated 16-bit TCP or UDP address. Clearly

this w i l l increase the set-up latency for any RPC-mediated communication.

The RPC protocol converts all data to a network-standard format known as

External Data Representation (XDR) before transmission, converting back to

native format at the remote end. Although this means that an application using

RPCs w i l l not have to carry out type-conversion, the procedure is not efficient

in terms of CPU resource consumption. In the worse case, where two identical

hosts are communicating, no type-conversion is necessary, although the RPC

protocol w i l l in any case carry one out at each end. I n the better case, where two

unmatched hosts communicate, a single type-conversion in each direction would

be optimal.

3.5.4 Network File System (NFS)

The NFS protocol allows filesystems to be conveniently shared between hosts

in a networked cluster. From the application programmer's point of view, a

very straightforward method of implementing communication between hosts in

a distributed-processing scheme is by use of shared files. However, this type of

communication is extremely heavy in terms of protocol overhead, since i t incor

porates all of the inefficiencies of RPC, together w i t h latency due to disk access

3.6. EXPERIMENTAL 55

Iogl0(s)

H

OH
Q

'(n c to
-1-

-2H

0 1 2

loglO(kBytes)

Message Length

T C P

Figure 5: Analysis of protocol performance wi th log/log scale

contention and l imited disk bandwidth, although these may be alleviated to some

extent by intelligent disk-cacheing.

3.6 Experimental

The performance of each of the protocols described was investigated by measuring

propagation delay as a function of message size. The results are shown as figures

5 and 6.

The experiments were conducted using a pair of Sun Microsystems IPC work

stations running SunOS 4.1.2, interconnected using 10 M B i t / s Ethernet. To avoid

difficulties of clock synchronisation, all measurements were made by t iming the

double transit of data f rom host ^ to 5 and back again, this figure being divided

by 2 to give an average time for a single transit.

The network interconnection used for the experiments was shared wi th intra-

departmental traffic, although isolated f rom the campus backbone and the wider

3.6. EXPERIMENTAL 56

s

0.3-

0.25H

kBytes

Message Length

Figure 6: Analysis of protocol performance wi th linear scale

Internet by a bridge/router. Each data point shown represents the average of

10 trials made at random times through the course of a working day. The data

therefore give a realistic impression of how the protocols can be expected to

perform in a normal working scenario. This statistical treatment is required

since the systems involved are inherently non-deterministic, as can be seen f rom

figure 7, which shows the transit delay for a fixed-length T C P message sent at

various times of day. A well-defined minimum latency can be observed here,

which is often not achieved due to collision retries, or alternatively due to delays

caused by the host B slave process being swapped-out at the point in time where

a network message is received.

Protocol-specific experimental details are as follows:-

3.6. EXPERIMENTAL 57

1.0-1

2 0.6

i i i i i i i i i i ^ ^
Hours

Time of Day

Figure 7: Ethernet transmission delay for 80kB T C P message

3.6.1 U D P Experimental Details

Timings for UDP transmissions were taken f rom the point where the application

on host A queues the data to the point where the correct quantity of data is

received by host A having been relayed by host B. A n integrity check is subse

quently made on the data before accepting the time as vahd, but the processing

required for this is not included in the measurement. The justification for this is

that the packet duplication or out-of-sequence reception allowed by UDP is gen

erally caused by network topology anomahes, for example, transitory duplicate

routes. Clearly these may not occur where all transponding nodes are located on

a linear Ethernet segment w i t h no intervening routers.

Where data throughput is such that send or receive buffer sizes are exceeded,

UDP is permitted to simply drop the overflowing packets as described. I n our

experiment this meant that contiguous messages longer than 76.8 kB could not

be sent by UDP.

3.6. EXPERIMENTAL 58

3.6.2 T C P Experimental Details

Unlike UDP, T C P is a connection-oriented protocol which means that a logical

data connection has to be established before any data can be transferred. This

small set-up overhead has not been included in measurements, this reflects the

fact that such setting-up needs to be carried out only once by a distributed

application and therefore does not have a real bearing on its performance. No

checking of data integrity was carried out after transfer, since TCP guarantees

this.

3.6.3 R P C Experimental Details

Measurements relating to the RPC protocol were carried out by registering an

RPC service on host B, using host A to make calls to i t . The data structures

transmitted in each direction, the RPC parameters and return values were iden

tical , consisting of a variably-sized array of integers. The structure definition

was compiled-in and so recompilation of the experimental software was required

in order to change the message size. The RPCs were configured to use TCP for

transport since the use of UDP would have imposed a restriction of one datagram

per call.

3.6.4 N F S Experimental Details

Two files shared by NFS were used for communication between the two hosts,

one corresponding to transmission in each direction. Considerable effort was

expended in making the NFS measurement appHcation as efficient as possible

in terms of communication performance, since considerably more flexibility is

available to the programmer in this case compared wi th those previous. In the

final assessment the option selected required the programs on host A and B to

each request f rom the system a mandatory exclusive access lock on one of the

shared files. The effect of such a lock is to cause other processes attempting access

to block un t i l such time as the lock is removed by the application holding i t . In

3.7. ANALYSIS 59

effect this allows an interrupt-driven response to new data arriving in a shared

file, and thus eUminates the inefficiencies and waste associated wi th polling such

a file.

3.7 Analysis

Figure 5 shows timings for messages varying in size between 75 bytes and 1.2

Mbytes sent using the four different protocols.

I t can be seen that both T C P and UDP have a t iming characteristic which is

independent of size for messages smaller than 9,000 bytes. The UDP application

has control of data fragmentation and in our case is designed to make packets

as large as possible in order to achieve maximum efficiency. Messages of the

described size can be sent as a single packet, and we can therefore conclude

that for UDP, Ethernet transmission time is insignificant compared wi th the

processing time required to assemble the various packet headers, where packet

size is small. By comparison w i t h UDP we can say that T C P is adopting a

similar fragmentation strategy even though this is not known a priori f rom the

application specification. However, the fixed delay for T C P is somewhat longer,

this is due to the extra integrity-checking performed.

The t iming for T C P corresponding to a message size of 4.8 kBytes is almost

one order of magnitude greater than that suggested by the trend of the sur

rounding data. This occurs since i t is at this point that our measuring processes

need to extend their data segments in order to accommodate the extra buffer

space required by the increasing message length. This is carried out automati

cally by the protocol l ibrary functions, however, attention is required f rom the

system memory management daemon, producing the delay. This feature could

be eliminated by requesting f rom the system a sufficiently large data segment

at application start-up time, however, this is not necessarily good practice since

other active processes on the machine could themselves be delayed for want of

physical memory in this case.

3.8. CONCLUSION 60

The characteristic for RPC remains almost linear over a very wide range of

message sizes. This suggests that the processing required to perform data type-

conversion to X D R and back to native format is a large overhead compared wi th

that required to assemble and transmit packets. The reduction in gradient for

small packet sizes is due to dominance of the overhead in exchanging address

details w i t h the RPC server (host B) machine's portmapper as processing oc

message size is reduced. A one-time additional delay is again observed for a mes

sage size of 4.8 kBytes, again this is caused by data segment extension, expected

since we selected T C P for our RPC transport protocol.

The results for NFS are somewhat noisier than for other protocols, since a

greater range of factors can potentially cause delay, these include contention for

disk access and waits for attention f rom the network file lock daemon which ad

ministers the file locks used for the interrupt-driven file access described. This is

particularly well shown on the linear plot, figure 6. The characteristic has a size-

independent region for small message sizes extending up to 2.4 kBytes at which

point the processing oc message size begins to dominate. This reflects the com

paratively heavyweight nature of the set-up processing. For large message sizes,

the characteristic shows a larger amount of processing per unit data transmitted

than is the case for RPC, this reflects the additional delay caused by hmited disk

bandwidth.

I n the case of maximum performance disparity between the worst, NFS, and

best, UDP, of these protocols, i t can be seen that the difference corresponds

approximately to one order of magnitude.

3.8 Conclusion

We conclude that the difference between performance of worst and best proto

cols is extremely significant, and that the impact of protocol selection on overall

3.8. CONCLUSION 61

distributed-application performance is correspondingly quite profound i f the ap

plication is in any way communication-intensive. However, when choosing a com

munication technique f rom among those examined, one must balance against this

the general rule that low-level, high-performance protocols are in general more

diff icul t for applications programmers to use, requiring more specialist knowl

edge and possibly more processing at the application level in the form of type-

conversion (UDP and T C P) and/or integrity checking (UDP) i f required.

Chapter 4

Operating Systems

4.1 Introduction

We have already discussed the history of the computing engine wi th particular

relevance to its hardware development in chapter 1, and to methods used for

intercommunication in chapter 3. The emergence of the operating system as an

essential component of the computing device would appear toward the end of

either account, and i t is the development thereof that we shall next examine,

in order to make an informed judgement about the most appropriate operating

system to use for a general machine vision problem, of which the one in view is

a specific example.

The most basic high-level function of any operating system is to enhance the

interaction of the user w i t h the hardware. Early computers such as the Colossos

system mentioned in chapter 3, although huge in terms of energy consumption

and physical size, were conceptually sufficiently simple to make i t feasible for

users to design programs at the lowest level of symbolic instruction present in

the machine, the machine code as i t is known. By modern standards such soft

ware was typically modest in its functionality, l imited as i t was by the hardware

performance of the target machine, and the task of assembling these instructions

was therefore not unreasonably laborious. Today assembly code is stil l frequently

wr i t t en by the application designer, most often to illustrate to students the low

est level of computer operation as well as the advantages of using a high-level

language, but also where performance is at a premium, especially i f the system in

62

4.2. MICROSOFT DOS 63

view is to be mass-produced - the microcontroller at the heart of a digital mobile
telephone, for example, which runs signal-processing algorithms the efficiency of
which is crucial to the performance of the telephone as a whole. However, the
key problem w i t h machine language or assembly code is that i t is for general
applications rather inefficient, i n that the programmer wi l l need to implement
the same sub-tasks over and over again. By introducing a higher level of sym-
boUc representation, in which each symbol represents a commonly-used sub-task,
the programmer's productivi ty is boosted by an order of magnitude, and this
therefore is the motivation for the development of the high-level language. As
hardware capabilities grew and correspondingly more was demanded f rom the
applications software, increasingly the basic machine instructions were wri t ten
not by a human, but by the back end of a high-level language compiler.

Just as high-level languages enable commonly-requested tasks within the ap

plication to be implemented wi th a smaller amount of human effort, so an op

erating system makes the process of using and developing the application more

efficient by providing high-level functions for the commonly-requested tasks in

volved. A t first this meant a peripheral manager, apphcation loader and possibly

rudimentary file manipulation, but the functionality of the facilities now offered

to support today's highly-sophisticated applications is considerably more exten

sive, as we shall see. The idea of this software re-use occurs again and again as

the technology evolves, although i t tends to do so at higher and higher levels of

symbology.

4.2 Microsoft DOS

The first operating system which we have examined in our quest for the optimal

machine vision environment is Microsoft's Disk Operating System, or MS-DOS

as i t is also commonly known. Through an unusual set of circumstances this

has today become the most widespread operating system in the world, since i t

is the most popular operating system in use on the most widespread class of

4.2. MICROSOFT DOS 64

hardware, the personal computer or PC clone. Microsoft's partnership wi th the
I B M corporation, forged at a time when the former was a small and rather highly-
specialised software house, the latter conducting the major i ty of their business in
the mainframe market, led to the emergence of the original I B M PC fitted wi th
an I B M - w r i t t e n BIOS^ on a R O M chip and Microsoft's DOS, providing facilities
typical of an early operating system as described in our introduction, supphed on
floppy disk.

The considerable in i t ia l popularity of this product was most evident in the

business environment, perhaps most importantly because i t made available for

the first time a general-purpose microcomputer packaged together w i th the pe

ripherals essential for its use as a tool of office automation - keyboard, display

unit and disk drive. Although more specialised desktop machines, for example,

those aimed at desktop pubhshing or payroUing had already been available for

some time, much of the appeal of the original I B M PC lay in the fact that i t was

not designed w i t h any such specific application in mind, and in its relatively low

cost. This meant that the PC market expanded quickly beyond a critical size at '

which point the PC's popularity became self-fulfilling, that is, the driving force

behind i t became the popularity itself.

The software industry perceived a huge emerging market for PC applications,

and as a result poured resources into developing what eventually became, and in

fact s t i l l is, the widest range of application software for any single microprocessor-

based machine available. This in t u rn fuelled the popularity even further - here

was a low-cost, general-purpose machine complete w i th a ready-made suite of

software to enable i t to perform a quite astonishingly wide range of tasks.

Although very cheap compared wi th its rivals at the time of its first emer

gence, the expanding PC market was the province of a single manufacturer, I B M ,

throughout the early 80s and thus competition was not effective in keeping a check

^Built-in operating system, which controls hardware at the lowest level, providing an appli
cation interface in the form of standard interrupt calls

4.2. MICROSOFT DOS 65

on equipment prices in that sector. I t was the very idea of a low-cost, general-
purpose computer that so many people had found so appeahng, and there was
therefore very htt le about the personal computer that could be patented or copy- •
righted by I B M . One example of material that does fa l l into this category is the
BIOS, a standard piece of software provided by I B M on a R O M chip. I t was
impossible for other hardware manufacturers to simply duplicate this without
being in breach of IBM's copyright, however, i t was a fairly simple matter to
duplicate the functionali ty of the original BIOS using completely different code,
in other words to reimplement the BIOS, and this was the approach adopted by
many rival manufacturers. The other lynch-pin to cloning the PC was arguably
the availability of the microprocessor, the 8086, but since this was the property
of Intel, the semiconductors giant, rather than of I B M , i t was easy for rivals to
obtain a supply. Intel's prime motivation towards profi tabil i ty lay in making the
use of their microprocessor series more widespread, and i t therefore had no inter
est in maintaining IBM's monopoly. Microsoft, the company that had provided
the operating system software had similar aims.

I n the mid-80s, therefore, a variety of PC clones emerged - compatible w i t h the

original I B M variety, capable of running all the pre-existing applications software,

but manufactured by other companies and frequently seUing for a drastically-

reduced price. This in tu rn increased further the PC-compatible's popularity -

the fall ing prices brought about through competition were an obvious incentive,

but also, those people who had resisted the encroachment of the PC through not

wanting to become reliant on a single organisation for supply and support no

longer had any basis for their fears and embraced the PC wi th open arms.

The fortunes of I B M are but a sideline in our discussion, yet i t is relevant to

add that their subsequent strategy reduced them f rom being a market dominator

to the status of a relatively minor player today. Rather than pricing their prod

uct to compete w i t h the newcomers, I B M instead based its marketing strategy

heavily on the Corporation's long-standing reputation as a quality suppher of

computer equipment, whilst maintaining the relatively high price of the original

4.2. MICROSOFT DOS 66

PC. Although this approach had served IBM well in the mainframe part of their
business, the fickle nature of the PC market, due arguably to the reduced require
ment for after-sales support, meant that the majority of PC consumers were only
too happy to switch to the new low-cost clones. In this way, the PC's hardware
specification was taken forever out of the hands of a single company and left to
evolve according to the concensus of the additional manufacturers now involved.

Microsoft's DOS, perhaps surprisingly, survived the cloning process intact,

and it continued to be shipped as the standard operating system on practically

every clone. Although many attempts to enhance it were made by other soft

ware houses, none of these guaranteed to run 100% of the enormous range of

application software already written for DOS, and since this was the PC clone's

main attraction, the enhancements, although in many cases technically worthy,

were insufficiently enticing to warrant the adoption of a non-standard operating

system by the majority of computer consumers. Examples of "enhanced DOS"

products include Locomotive Software's DOS Plus, shipped as an extra with Am-

strad's PC-clone from 1986, as well as, more notably, IBM's first release of OS/2.

This left Microsoft in the enviable position of being able to coUect royalties on

the mass-distribution of MS-DOS, a piece of software which, although modest

in terms of functionaUty and sophistication, was by now an essential part of the

PC. The huge array of PC software titles was largely built upon it, relying on it

to provide a consistent interface with the rather changeable hardware of a vari

ety of different manufacturers. In a sense, MS-DOS became the definition of the

PC standard, as the key to success for both hardware and application software

developers was now the DOS-compatibiHfy of their products.

Although this standardising effect was crucial to the PC-clone's success, it also

gave rise to the single most important difficulty behind using such a system in a

machine-vision application, namely, the problems of memory map fragmentation

and addressability.

The original IBM PC's memory map had a 64 kbyte segment reserved for the

BIOS ROM, followed by a further 64 kbytes of fitted RAM usable by programs.

4.2. MICROSOFT DOS 67

There then followed 512 kbytes of unused addresses before the display RAM.
At the time 64 kbytes was regarded as being a huge amount of memory for
a microcomputer, and the unused address space above it more than adequate
to provide for any expansion that might have been required over the machine's
design lifetime. As a result MS-DOS was designed to load programs only into the
contiguous address space present below the screen memory, in other words, no
capability was included to cope with the hardware memory map's fragmentation.
This happened not due to the technical difficulty associated with this feature,
which was arguably negligible, but because there was apparently no prospect of it
ever being required by users. The original Intel 8086 processor being used in these
machines had after all only 20 address lines, and consequently could address only
1 MByte without the use of some kind of memory paging or switching. The extra
memory made available to users, had the extra operating system functionaUty
been added, therefore, would have been the space between the top of screen
memory and the 1 MByte addressing hmit, at best 380 kbytes, with a colour
graphics adapter (CGA) display fitted. So this enhancement was apparently not
worthwhile.

Subsequent developments turned this lack of foresight into a serious problem

for PC users and application developers. From the beginning MS-DOS was a

"single-threaded" operating system, in other words, it was not designed to sup

port multi-threading or multi-tasking of programs. However, the advantages of

multi-tasking were obvious and in demand by users - a clock present on the screen

whilst the user continues word- processing or programming, for example, or per

haps a background printing process to avoid having the PC "locked up" whilst

information is downloaded to a printer with a limited bufi'er. Developers therefore

sought to provide, through programming ingenuity, what was absent in terms of

operating system support, and made applications like these possible by writing

them as TSRs, or terminate and stay resident programs.

TSRs were made possible by exploiting an MS-DOS feature which allowed a

program, upon exit, to call a particular operating system interrupt which would

4.2. MICROSOFT DOS 68

return control to MS-DOS whilst leaving the memory occupied by the program
marked as such, and thus unavailable for reallocation. In other words, such
programs would literally terminate and stay resident in memory. This facility was
originally designed for use by device drivers, small pieces of code designed to be
loaded at boot time and to remain in memory, providing an application interface
to a particular item of hardware. Execution of such code would typically be called
by a hardware interrupt from the relevant device, or from an operating system
software interrupt. The main program's execution would then be stopped, the
context saved by the TSR module, that is, contents of processor registers and a
return address stored in order that the TSR may manipulate registers without
corrupting the main program's data.

Use of this TSR mechanism makes a primitive form of multi-tasking possible.

A TSR can be regularly polled, that is, periodically re-executed, by attaching its

callback to an interrupt generated by a hardware clock. In this way, a host of ap

plications including the on-screen realtime clock mentioned can be implemented.

TSRs remain in memory at all times whilst in use, and there is nothing to pre

vent a user from chaining TSRs, that is, installing multiple TSRs in an execution

chain triggered by a single clock interrupt. The normal method for registering a

TSR interrupt callback is to "loop" its execution inbetween the interrupt itself and

the previous callback routine - in other words, to overwrite the interrupt service

vector with the TSR's start address, and to cause the TSR to finish its execution

with a jump to the previous value of the service vector. Therefore the chaining

of TSRs can be achieved transparently, since no knowledge is required during the

installation procedure of the current execution chain structure. Clearly there is

danger here in that an erroneously- coded TSR may cause the whole machine to

"hang", or stop responding to input, in a way which is very difficult to analyse

since it may only occur when coresident with certain other TSRs - at other times

there may through coincidence be a "recovery" execution path which allows the

machine to continue executing normally despite the presence of the error.

Assuming that TSRs can be properly installed, the fact that many of them can

4.2. MICROSOFT DOS 69

be simultaneously loaded means that shortage of memory can become a serious
problem. The 640 kbyte memory addressing limit would otherwise constrain only
the maximum size of main program executable that can be run, however, with
increasingly-complex and larger TSRs and device drivers loaded, the memory
left for the main application is gradually whittled away. In some circumstances,
therefore, it is necessary for the user or application developer to "juggle" memory
by unloading TSRs in order to release memory to the main application.

The Intel 8086 was the first processor to be used in the PC, and whilst this

prevailed the operating system memory Hmitation could not be said to be a par

ticularly serious limitation, since the size of the address map was in any case

also limited by the processor addressing architecture as we have described. How

ever, the introduction of the Intel 80286, with an extra 4 addressing lines, meant

that the hardware limitation was eff"ectively removed - up to 16 Mbytes could in

theory now be addressed. Simultaneously, more advanced display graphics stan

dards came into use, such as EGA (enhanced graphics adapter) and subsequently

VGA (video graphics array). Users became rapidly used to the more complex

displays made possible by the higher resolution and enhanced colour palette of

the new standard display hardware. Applications grew in complexity, fuelled by

the increased performance of the 80286, similarly more and more multi-tasking

functionality was demanded, resulting in ever more memory being given over to

the permanently-resident TSRs.

It would have been quite technically straightforward to design a new version

of MS-DOS able to take advantage of the extra physical memory which could

now be fitted and addressed by the new processor. However, the demand from

the marketplace for backwards compatibility with pre-existing software written for

the earlier 8086-based PCs meant that the scope for doing this was limited. The

80286's instruction set was a superset of that of the 8086, just as the 8086 sup

ported all of the instructions of Intel's earHer processor, the 8080, whilst adding

new ones of its own. This design philosophy has in fact been continued by Intel

throughout the introduction of newer processors in the series, the 80386, 80486

4.2. MICROSOFT DOS 70

and most recently at the time of writing, the Intel Pentium; all of these support
the instructions of the original 8080. However, the reverse is clearly not true - the
8086 is in a sense compatible with the newer processors, in that the same machine
code instructions can be executed, but only if that code is written exclusively us
ing 8086 instructions, and herein lies the problem. To rewrite MS-DOS to take
advantage of the extra memory address space would have required internal use of
80286-only instructions, which would deny the backwards-compatibility so much
in demand. The 80286 and later processors did in fact have two distinct modes
of operation: real mode, in which the processor's address space behaved like that
of the 8086, using 8086-compatible instructions to access it, and protected mode,
using new instructions to access the full hardware memory map.

A compromise was reached to partially alleviate this problem, and this was

the extended memory feature supported by MS-DOS versions 5 and later. This

enabled permanently memory-resident code such as TSRs, device drivers and

DOS itself to be loaded into the area of memory between the top of the display

buffer and the 1 Mbyte real mode hardware address boundary. Although normal

applications could still not be loaded into this space, more room was freed for

them in the lower portion, now termed "conventional" memory.

At the time that 80386-based PCs entered the market, physical memory had

been reduced in price such that it became cost-effective to fit these machines

with several megabytes thereof. A consistent interface for appHcations to address

this memory within the DOS environment was estabhshed in the form of the

LIM^ expanded memory manager standard, but special techniques had to be used

by applications accessing this, and the space could in any case only be used for

program data. The conventional memory, limited in size, retained its special

significance since it was the only place where executable code could be loaded.

^Lotus, Intel, Microsoft

4.2. MICROSOFT DOS 71

4.2.1 Experimental: Network Handling using T S R s

Unfortunately, the development of commercially-available compilers appears to

have lagged some way behind those in use by professional application developers.

At the time of our work C compilers which could address the upper, expanded

memory range with the aid of an expanded memory manager were only just

beginning to become available - the majority were still constrained to use only

conventional plus extended memory for program data, that is, memory up to the

1 Mbyte boundary. Furthermore, we were influenced to use compilers produced

by either Borland or Microsoft, since the manufacturers of our machine vision

hardware supplied the equipment with compiled libraries of standard routines

to make application interfacing to the hardware more convenient. Two copies

of these libraries were supplied, one in each of the relevant proprietary formats,

and to renounce these compilers would therefore also have meant abandoning

these libraries, necessitating the extra difiiculty of addressing the hardware at

the register rather than the functional level. On the other hand, maintaining the

libraries' availability meant working with the described memory constraint, which

was problematic since image-processing manipulations are particularly memory-

intensive.

Our initial approach was therefore to use the 80286 PC, with associated ma

chine vision hardware, as the front end to a more powerful host processor. We

sought to do this by using the Ethernet TCP/IP local area network for commu

nication between the PC and host, and we envisaged this host as being a Sun

Microsystems Unix IPC workstation, also connected to the network. In the pro

posed set-up image data would be acquired and stored in the dedicated machine

vision system, which would also perform any required rudimentary processing

such as contrast stretching or convolution. The remote Unix machine would per

form any operations lying outside the capability of the machine vision hardware,

which, whilst purpose-designed and high-speed, was limited in functionality. Data

would be received from the machine vision system, firstly via the host PC and

4.2. MICROSOFT DOS 72

subsequently by Ethernet, processed and returned for display.

In order to make use of network connectivity from within our apphcation,

compiled using Microsoft's V5.1 C compiler, we made use of another compiled

library, this being Sun Microsystems' PC-NFS programmers' toolkit. This pro

vided both a socket-level and a remote procedure call interface to the network. In

order to make use of these facilities, a TCP/IP device driver known as the RTM^

was required to be loaded in memory as a TSR at all times; this consumed ap

proximately 128 kbytes of conventional memory. The RTM's callback is attached

to the Ethernet device hardware interrupt; upon execution it does the required

TCP/IP processing upon incoming and outgoing data, thus presenting an inter

face spanning the physical, data link, network, transport and session layers of

the OSI networking model. Apphcations using the session layer interface can be

configured to receive software interrupts from the RTM when data is available for

reading via a socket or remote procedure call. An overview of sockets and remote

procedure calls, together with a discussion of various issues relating specifically

to them is given in chapter 3.

In general it is desirable for networking activities to occur asynchronously with

the operation of the rest of the computer. The arguably undesirable alternatives

here are for host processing to stop pending the arrival of data from the network,

or the host can poll the network device periodically, since this typically has the

ability to temporarily buffer data as it arrives.

The most efficient option is for the arrival of network data to interrupt the

main flow of execution. In order to investigate how this might best be achieved,

we designed a TSR messaging application, and this engendered our described

understanding of the issues affecting the use of MS-DOS as an operating system

for the support of machine vision applications.

The functionality of the messaging application can be briefly explained as

follows:- having loaded the TSR "server" module, which is self-installing, control

is returned to the command-line prompt, and the user is then free to run other

'Resident transport module

4.2. MICROSOFT DOS 73

programs as required. Another user using a remote host connected to the network
uses a "client" module to send messages which will then cause the "server" user's
main application to be interrupted by the TSR, which will display the message
on the screen before passing control back to the main application.

The "server" module callback is attached to a software interrupt generated

by the PC-NFS toolkit RTM as described, and for this reason it is necessary to

load the RTM first. Upon installation the messaging application communicates

with the RTM via library function calls and registers a listening socket, a logical

endpoint of communication such that the RTM will generate the required software

interrupt when data is addressed to it from a remote host.

The "client" module is a more straightforward DOS program which uses the

PC-NFS library to originate messages destined for the "server" module's listening

socket. With no material changes to the source it was also possible to compile

the "client" module on a network-connected Unix machine, and thereby to send

messages inbetween the two different platforms.

4.2.2 Discussion

The messaging application worked well in practice, although there were various

initial problems which detracted from its usability. For example, it was quite

possible to load two or more instantiation^ of the messaging TSR which would

both attempt to bind the same socket address. Although only one of these would

succeed, thus maintaining messaging functionality, this loading of multiple copies

consumes more of the valuable conventional memory than is strictly necessary.

To remedy this problem, the messaging TSR was modified to write a disk file

with the start address of its installation. Upon loading, this file would be opened

and the contents of the specified address examined in order to ascertain whether

a copy had already been loaded, installation being aborted if this was found to be

the case. The presence or absence of the disk file alone could not be relied upon

as an indicator of the TSR's presence, since no reliable mechanism was available

4.2. MICROSOFT DOS 74

for deleting the file upon powering down the machine.

As originally coded, no way of unloading the messaging TSR was available,

short of rebooting the system. Although it was originally envisaged that the

TSR would never need to be unloaded, the use of programs with large memory

requirements, typically compilers, required that the memory occupied by the

messaging TSR and the RTM be freed. To meet this requirement, the most

straightforward approach was to cause the messaging TSR to unload itself after

its next execution. To this end a third utility was designed which would obtain the

TSR's installation address from the described disk file, apply an offset to obtain

the address of a variable dedicated to the purpose, and change this variable to a

pre-set value. The messaging TSR itself was modified to check this variable and,

if appropriate, to extract itself from the interrupt chain before making a standard

function call to MS-DOS which would return control and delete the TSR image.

The most significant hurdle to the messaging apphcation's use was the large

amount of memory taken up by the RTM, since this dramatically reduced the

proportion of standard applications which could coexist. Furthermore, certain

applications could not coexist despite the availability of sufficient memory, this

was generally due to the main application's own use of software interrupts already

employed by the RTM. Notably the Microsoft Windows environment fell into this

category.

4.2.3 Interim Conclusion

Although we have demonstrated that it is possible to use a PC-clone running

MS-DOS in the described role, that is, as front end to a more powerful host

processor, connections being by TCP/IP local area network, there are a variety

of problems with the asynchronous network operation which the PC is required to

perform, which seriously impede development of complex applications along these

lines. The most significant we encountered is the lack of testability of such an

application, and this means that the bugs which are inevitably introduced during

4.3. UNIX 75

any programming process are extremely difficult to analyse. This testability
problem is brought about through two factors - firstly, the organisation of code
required to bring about this primitive form of multi-tasking is inherently complex
in terms of linking interrupt vector chains, saving execution contexts and so forth,
and a simple mistake in such a critical activity is Ukely to "crash" the machine
into an irretrievable state, leaving little or no clue as to the cause of the problem.
This is compounded by the second factor, this being that MS-DOS implements
no scheme of memory reservation, which is usually an important component of a
multi-tasking operating system. Such a scheme typically allows execution threads
to access or modify only specifically-allocated areas of memory, returning an error
interrupt if attempts are made to access elsewhere. In our messaging application,
however, there is nothing to prevent any instruction from modifying any portion of
memory. Consequently a straightforward bug caused by erroneous manipulation
of a pointer may have a wide variety of effects including an instant execution
halt, for example, if the program counter stack is corrupted. Unfortunately,
the effects are also likely to manifest themselves in a much more complex way,
perhaps overwriting an essential system variable such that the system crash does
not actually occur until control passes back to the operating system.

As a result we updated our view of the best choice of operating system to

use for a general low-cost machine vision problem. I t appeared that, whilst

competitively-priced imaging hardware is most readily available in a form com

patible with the PC-clone architecture, the difficulties associated with designing

the kind of complex application described, although not insurmountable, are pro

hibitively expensive in terms of the extra resources which must be expended in

order to overcome them.

4.3 Unix

We next turned our attention to machines running the Unix operating system, the

particular systems in view were Sun Microsystems IPC workstations, these being

4.3. UNIX 76

low-end machines based on a Texas Instruments SPARC* processor, and also a
multi-processor server machine, the SPARCcenter 2000, identical in functionality
but greater in terms of processor throughput and memory resources.

Originally we had envisaged our use of this environment as being simply a

processing "workhorse", free of the memory and testability hmitations of the

PC-clone, and we therefore coded trial appHcations along these fines. Again

we used the PC-NFS programmers' toolkit, this time to write straightforward

non-TSR applications which would load a fine or block of image data from the

dedicated image-processing system into PC host memory, transmit it via the

socket interface to the SPARCcenter Unix machine, which would then perform

the one-dimensional or two-dimensional (as required) fast Fourier transform using

a commercial fibrary from the Numerical Algorithms Group, returning the results

back to the PC and thence to the machine vision system frame buffer for display.

Compared with our asynchronous messaging application this was comparatively

straightforward to achieve, although it was here that we first encountered the

importance of the compute/communicate time ratio which is explored in more

detail in chapter 3. In short, the speed advantages of using a more powerful

remote processor may be offset or even completely negated, depending on the

amount of communication overhead involved.

It is possible to use the described Unix machines by means of a text-only

terminal connection, and indeed this was the access method of choice with the

earliest such systems. However, the more modern systems in view support a range

of sophisticated input/output facilities based around the X windowing system.

Upon closer examination it was also apparent that easily-testable asynchronous

networking was very straightforward to achieve within the Unix environment.

This is due to a number of factors - one of the most important is that Unix im

plements the memory reseruai '̂on system so unfortunately absent from MS-DOS.

Under this scheme general processes which do not possess appropriate override

privileges can only access the program and data segments owned by them, and

'Scalable processor architecture

4.3. UNIX 77

attempts to access elsewhere result in an error interrupt. Therefore coding er
rors involving memory access, typically through pointer manipulation, can be
exposed almost immediately. Also, the asynchronous networking support, which
we previously sought to achieve under MS-DOS through loading device drivers
and directly registering interrupt service routines, is present as part of the op
erating system kernel, greatly reducing the amount of application development
required.

We therefore reviewed our proposed use of the Unix systems - it appeared that

the console of the Unix workstation itself was ideal for use as a "front end" to our

proposed machine vision cluster, and that the PC-clone with attached dedicated

vision hardware was far more suited to the role of "hardware server" slave. At

this stage it was still envisioned that the PC-NFS programmer's toolkit would be

used to allow the Unix machine, now fulfilling the roles both of system front end

and computation engine to communicate with the PC, thereby obtaining access

to the imaging hardware.

In pursuit of this goal we investigated the Unix environment and sought to

build within it a general-purpose machine vision application suite.

4.3.1 Experimental: Xdefect X-Windows Application

At the present time, X-Windows has become the standard display subsystem for

Unix workstations from all manufacturers. As in Unix itself, its roots lie with the

academic institutions of the United States - X began as an application project at

the Massachusetts Institute of Technology. Its original purpose was to attempt to

unify the many proprietary Unix windowing environments present when graphics

workstations were first introduced, producing a standard which would make com

pliant machines intercompatible at the application graphics level, even where the

machines have different architectures, are built by different manufacturers and

are running different operating systems or networking protocols.

4.3. UNIX 78

X is a windowing system with built-in networking support. Although it is of
ten used where the client application is controlling a window on a graphics device
physically attached to the machine where it is running, leaving this networking
support largely redundant, its presence does mean that a window can be dis
played by a client on a remote workstation, and this is a transparent process as
far as the application programmer is concerned. Note that the terms "chent" and
"server" are somewhat counter-intuitively assigned in the context of X-Windows
- the display "server" is the most important subsystem involved in X, and each
machine has a single server instantiation which provides an interface between
network requests for screen access and the frame buffer which directly controls
what is displayed on the screen. The display "server" is so named because it is
"serving" out the display resources to the application "clients" which consume
and compete for them. The other, lesser X subsystem is the window manager,
which allows the user to manipulate chent windows with resizes or iconification
actions, for example. These operations are conducted without any correspon
dence with any of the clients. However, it is possible to run an X display without
the use of a window manager, in which case the user loses the ability to control
the layout of windows unless the clients themselves provide this functionality.

The protocol which defines procedures for communication between window

manager, application cUent and display server is part of the X standard devised

by M I T - this is the minimum standardisation required to ensure compatibility

between compliant implementations. However, the X standard falls short of defin

ing shapes of buttons or other widgets for example - this enabled manufacturers

with existing proprietary windowing systems to design new, X-comphant versions

without ahenating the existing customer base through altering the "look and feel"

to which they were used. Exact details of window appearance are specified, how

ever, when a particular X widget toolset is selected. Of those available, including

X Intrinsics and Motif, we selected the Sun Microsystems XView toolset, since

the package is available free of charge, thus helping us to achieve our objective of

a low-cost solution. Sun Microsystems have since withdrawn support for XView

4.3. UNIX 79

and joined other manufacturers in adopting Motif as the toolset standard. How
ever, this has no implications for the maintainabifity of already-existing XView
applications such as our own - providing these are statically linked with the toolset
they can be run on any X-Windows platform.

In common with most windowing systems, use of X requires "event-driven"

programming. The reason for this can be explained thus:- the conventional non-

windowing programming style puts the machine effectively "in control" of the flow

of interaction with the user. In other words, the system will typically prompt for

input, whether this is in the form of a menu or straightforward text/numerical

entry. The user has no means of controlling the flow of execution unless the

opportunity for him/her to do so is expficitly offered. An exception to this rule

is that in these situations the user typically has the ability to "interrupt" with

a special key combination, this may halt execution completely or may cause the

application to produce a menu of interrupt options, for example.

A windowing system, on the other hand, puts the user more directly in control

of the execution flow. The appUcation designer makes available a range of controls

which make take the form, for example, of buttons, sliders, pull-down menus and

so forth - collectively these are often termed "widgets". At every stage the user

can choose to manipulate any of the controls available. In fact, the default activity

for a windowing appHcation is to do nothing, pending an "event" from the user

- this is in effect a software interrupt. We have found that the development of

this kind of application takes much more design effort, since the program must

be able to handle any event at any time that the user chooses to generate it.

The application therefore needs to be extremely robust. On the positive side,

however, we have found that windowing applications tend to be more intuitive

and easier-to-learn than their traditional counterparts.

Figure 8 shows the top-level window, or root frame, of the Xdefect appHcation;

this is all that is visible upon the appHcation's first invocation. Each of the four

icons shown represents a sub-window, the buttons below will cause them to be

raised or lowered as required by the user. In fact the sub-windows are constructed

4.3. UNIX 80

xdefect V2.a

I.IFFT •:. ... ra«
^ hex

151
J P E n , ; p « n . OpsnJ

Figure 8: Xdefect application top-level control panel

during initialisation, and details thereof are communicated to the display server

which maintains their image in memory before being instructed to reveal, or raise

them by the client. The sub-windows therefore appear with a minimum of delay

when the appropriate button is pressed.

bitmap Galactic i Postscript |

N^lfiBCtoiv; /home/capeila/des3mjj/CsQurce/lmages/Original^ Parent)

ed f i lename: rutfisun

o m p a t l b l e f i l e s : S u b d i r e c t o r i e s : Testcard i

nessz

arrowstneak

riarrowstreaks

aigvoids

File Util i t ies

f o p) Convolve ! Load i Save)

Figure 9: File utilities menu

The sub-windows represented by the icons are as follows. Figure 9 shows the

file utilities menu, which is used to save and restore images to disk on the Unix

system. The user can traverse the directory hierarchy using the "parent" button

to move up to the level above the one current, and choosing the desired subdi

rectory from the list presented to move to one below. The "crop" and "convolve"

buttons are handles for functionality, the implementation of which was not fin

ished, and if these buttons are pressed by the user, no action will be initiated

since they have null callback functions. This is an example of a feature which we

have found to be a particularly useful aspect of windows programming - mod

ularised development is very straightforward to achieve, since code in callbacks

for specific widgets can be modified and enhanced with little need for interaction

4.3. UNIX 81

with the rest of the software.

Figure 10: Showing significance of diflfering server memory formats - compare
original in figure 14

The "data format" selector is of particular importance. Although X allows

standard graphics calls to operate correctly irrespective of the underlying hard

ware architecture, the overhead of the protocol is such that the time delay for

certain display operations can seriously detract from the appUcation usability.

For example, the time taken for the Xdefect appHcation to load a 512 by 512

pixel by 8 bit image into the display server would be many tens of seconds if the

pixels were set one by one using the XPutPixel function, although this would be

guaranteed to show the correct results on any X-compliant display. Instead, our

application can directly save and restore the server memory which contains the

image, represented in the native server format. Although these operations are

considerably faster, they introduce potential non-portability into the appHcation,

since server memory is organised differently on different machines. Figure 10

demonstrates this effect. The image shown was originally acquired and converted

to server memory format using a Sun Microsystems IPC workstation. The server

memory was then saved directly to disk and restored onto a copy of the same

application, this time running on a Hewlett-Packard 805 workstation. It can be

seen that the information has not undergone a positional transformation, but is

now displayed with a corrupted colourmap.

4.3. UNIX 82

For this reason, we included in the application facilities for saving and restor

ing images in a portable format. For this purpose we selected a Postscript^ bitmap

dump. Whilst a full Postscript interpreter would have been outside the scope of,

and inappropriate to, such an application, the application was able to load files

in this particular format, a subset of the full Postscript language. This file for

mat had the added attraction of being laser-printer compatible, allowing us to

generate the various application screen dumps presented here.

O p e r a t i o n S t a t u s !

loading Postsaipt file nkkps

100

O p e r a t i o n S t a t u s !

loading Postscript file ferns.ps

Abort}

Figure 11: Status indicators showing progress of parallel-decoding operation

Converting to and from the Postscript language is a highly CPU-intensive

process taking many tens of seconds for a typical image. This caused us to

discover another interesting feature of X-Windows programming - as we have

mentioned, the default activity for the application is to do nothing pending an

event from the user, which will then generate a callback to a handler function.

However, no further events can normally be processed until the handler function

terminates, although they will be queued for future handling. In the specific

case of our encoding/decoding of Postscript files, this means that the user would

normally lose control of the appUcation whilst these operations continue.

For this reason, we designed the callbacks for events connected with the de

scribed encoding/decoding to spawn a separate thread of execution, or process,

which would handle the CPU-intensive part of the task, leaving the main execu

tion thread to resume processing of user events, thus allowing the user to retain

control at all times. The secondary or child process was designed to communicate

periodically with the main process using a Unix pipe, giving progress information

^Postscript is a trademark of Adobe

4.3. UNIX 83

in terms of percentage of job completed. The main process' end of the pipe was

registered as a generator of window events with the XView notifier, this enabled

the status indicators shown in figure 11 to be updated as progress is made. The

process-spawning procedure was designed to allow an arbitrary number of pic

tures to be simultaneously decoded, although naturally the CPU resources of the

host would be spUt between these jobs. Thus there are two status windows shown

in the figure.

F a s t F o u r i e r T r a n s f o r m Cont ro l

O p e r a t i o n : f l l t s r Freq. domain analysis | IMS

P r o c e s s i n g m o d e : | Single Distributsd

^ Execute 3 3

r j N e u r a l Networl< I n t e r f a c e

Analyse} View)

Figure 12: Interface to frequency-domain functions and neural network subsystem

Topmost in figure 12 is the simple frame which controls frequency-domain

oriented functions. The NAG library's fast Fourier transform implementation

is again used to transform images between the spatial and frequency domains.

The available operations include a straightforward transform of an image into the

frequency domain, the modulus (power) of the result being displayed as an image

with zero frequency at the centre of the image, brightness corresponding to power

according to an exponential scale. Figure 13 shows progressive iterations of an

image low-pass filtering operation, which is achieved by transforming the image to

the frequency domain, multiplying by a kernel which sets all power at frequencies

higher than a threshold to zero, and then operating the reverse Fourier transform.

As this operation is repeated, it can be seen that high spatial powers are indeed

lost from the image, resulting, for example, in visual "echoes" of strong contrast

boundaries.

Bottom-most in figure 12 is the frame containing the two buttons used to

interface with the neural network backpropagation subsystem described in detail

in chapter 7.

4.3. UNIX 84

r u t h s u n

Dismiss) J Source select Export I Off Horizontal j Vertical mm 1

f i l t e r o u t p u t f r o m : r u t l i s u n

Djsmissji jjf Source select Export: Off Horizontal { Vertical

J < _ J i
f i l t e r ou tput f r o m : f i l te r ou tput f r o m : r u t l i s u n

JDisratss j J Source select E x p o r t | Off Horizontal : Vertical

Figure 13: Frequency-domain filtering operation showing progressive loss of high
spatial frequencies

4.3. UNIX 85

A n a l o g u e / D i g i t a l C o n v e r t e r (

Sync PLL Crystal Red L O T s o u r c e M3C VOAL VDAH I VDB

Green L U T s o u r c e I VDC VDfll i VDAH > VOB j B lue L U T s o u r c e \ VOC VDAL VOAH | VDB

V D l b u s s o u r c e [vDC VDAl j VDAH | VOB [C a m e r a Input f o ^ 1 j 2 [3 1

L U T h o s t a c c e s s Input j i f Red sr!f Green «f Blue L « T b a n k s e l e c t ^ ^

I A n a l o g u e Input s a i n 255 A n a t o s u e i n p u t o f f s e t 0

F r a m e B u f f e r Card

V ideo wr i te e n a b l e j^f Store A jff Store B1/B2 A c q u i s i t i o n mode Single Continuous

ifliEJ £!2?L!,' D u a l - p o r t m e m o r y mode Host+Video A | HostWIdeo 8 Video A+8 |

HB| |^9[s_ters) j£ansfe iMo2<j i^ F r a m e 8 p a n v a l u e l ^ ^ ^ • ™ . J

i „ ,.,at(5 ; Auto update I n t e r v a l 3 0 _ Auto u p d a t e J Enable

Dismiss)) ,J Source select Export : Off J~Horizontal Vertical

Figure 14: Interface to machine vision system via networked PC, including ac
quired image

4.3. UNIX 86

Figure 14 shows the interface to the Imaging Technology dedicated machine

vision hardware. This operates by communicating over Ethernet with the host

PC which then addresses the machine vision system as instructed over the PC

bus. The two frames shown control respectively the system's analogue / digital

converter card and frame buffer card. Output from the system can be viewed on a

directly connected analogue monitor. Alternatively, the "Transfer to X Window"

button can be used to move an acquired or processed image to the Unix system

for display and subsequent manipulation there. Bottom-most in figure 14 is an

image which has been acquired from camera and then transferred in this way.

G r e y s c a i e tes tcar i t a

Source select Export : o f f Horizontal Vertical Dismiss

C r o s s - s e c t i o n f r o m : G r e i « c a l e t e s t c a r d

Dismiss 1 Export) Export f i l e n a m e : (ogfile^dat^

Expor t p r o c e s s i n g : | Section Î MS | Image mif) j liMS sub-proa?sslng; ! Mract

Figure 15: Greyscaie testcard with corresponding cross-sectional view

Figure 15 shows the Xdefect application's facility to show a graphical cross-

section of image intensity. The controls on each image display window can be

used to select a vertical or horizontal section, and the mouse used to determine

4.4. LINUX 87

the portion of image which is to be profiled. The "export processing" options
were used to generate the image data samples used in chapter 7's experimental.

4.4 Linux

In parallel with our development of the Unix Xdefect application, we investigated

a third operating system in order to assess its relevance to our search for the

optimal low-cost general machine vision environment. Known as Linux, this is an

alternative operating system for the PC-clone architecture, running on machines

with the 80386 processor and above.

As with Unix, the origins of this operating system lie predominantly with

academic institutions - the project was started as a hobby interest by a research

student with the University of Helsinki in Finland, Linus Torvalds. An expe

rienced user of Minix, an early PC Unix, Torvalds set out to design a better

system for himself, overcoming many hmitations characteristic of Minix, begin

ning by writing a kernel from first principles. As the project developed it took

on board input from many parties who gave of their eff'orts without monetary

reward, the aim being to provide a fully-functional PC Unix for use by all, free of

charge. The most significant contributions have been from MIT's Free Software

Foundation (also known as the Gnu project), who have speciahsed in compiler

and utiUties support, and from the various individuals with specialist skills who

sought to reimplement TCP/IP. As Linux passed a critical level of functionality

which included a fully-working POSIX application interface with kernel network

ing support, it became possible for the standard Berkeley freeware networking

application code to be included, providing features common to most modern

Unix implementations such as DNS^, telnet and NFS^, without additional devel

opment effort. Furthermore, Linux also supports the freeware PC X-Windows

server implementation known as X386, in common with other PC Unixes such as

"^Domain name service
^Network file system

4.4. LINUX 88

Mach, SCO and ESDI.

4.4.1 Experimental: Itex System Interface

Because Linux is a free and fully-functional Unix, the source code for its kernel

and subsystems is readily available, and users are encouraged to develop their own

enhancements to the system and make the fruits of the work involved available

to others. Therefore the writing of a Unix device driver, which would under

usual circumstances require highly-speciahsed skills and detailed knowledge of the

proprietary hardware involved, becomes relatively straightforward under Linux,

particularly since source examples can easily be obtained.

Although at this stage we already possessed the means to produce the PC

application which would allow the Unix Xdefect suite to interface with the Imag

ing Technology hardware, using the PC-NFS programmers' toolkit as described,

i t appeared that the Linux route might provide a better overall solution within

the parameters of our search. The immediately-occurring reasons for this were

as follows:- the complete Linux package was available entirely free, whereas the

PC-NFS toolkit, providing much more hmited networking support, had cost in

the region of 500 pounds. Secondly, much more flexibility was available with

Linux in that the ful l multi-tasking support available made it straightforward to

continue using the PC for other applications, such as word-processing, or network

file-serving, at the same time as running the hardware interface. This could only

be achieved to a limited extent using MS-DOS/PC-NFS and by using the error-

prone and difiicult TSR techniques described. The use was limited in the sense

that DOS applica;tions making their own direct use of software interrupts could

not be run at the same time as the Itex hardware interface.

We therefore examined the two options available for writing the Imaging Tech

nology system device driver, these being to write it as a system mode or user more

driver.

System mode device drivers are most commonly employed for the majority

4.4. LINUX 89

of peripherals. In effect these constitute part of the operating system, requiring
recompilation thereof when any changes to the driver are made. These are the
more difficult of the two types to write and interface with an appHcation, but
provide a more sophisticated set of facilities. The application interface is generally
made by means of a special device identifier. Usually these are kept in a single
directory for convenience, /dev, although this is not a requirement. These special
files possess many attributes of a normal file, for example they have all the usual
access control features and may be opened, read and written in the same way.
However, when an application makes such accesses, control is in fact passed to
the associated device driver functions as determined by the special file's major
and minor device numbers.

Additional complications of system mode device drivers include the necessity

to copy data between reserved kernel memory and user memory when transferring

data to and from the appUcation using the driver, since system mode driver

variables must generally be located in kernel memory which is inaccessible to

user appUcations.

We found that a user mode device driver is much more straightforward to code

and can in fact be built-in to the application if required, removing the need for

application and device driver to be implemented as two separate modules, com

municating via a special device file. We coded our user mode driver using inhne

assembler instructions in a C program running within the Linux environment;

these used in and out processor instructions to manipulate the Imaging Tech

nology system's registers under C program control. A particular problem was

Linux's bitmap I /O protection mask - each process has associated with it such a

mask, consisting of one bit per hardware port address between 0 and OxSFF. A

set bit indicates that the process is permitted to access the corresponding port,

and vice-versa. The 80386 (and later) processors do in fact support this feature

in hardware - the Linux kernel keeps copies of the bitmap for each process and

loads them into the processor according to which process in running, the access

control functionality therefore being in hardware.

4.4. LINUX 90

The Imaging Technology system is based on a VME bus, a converter card
being used to interface this to the PC bus. The analogue/digital converter, frame
bufi'er and arithmetic logic unit are implemented on modular cards, each with
a bus connection and a different VME bus address - in our case these were set
to 0x300, 0x1300 and 0x2300 respectively The VME/PC bus converter repeats
access requests from PC to VME bus, with direct address translation, but in
order to isolate the VME bus from spurious traffic on the PC bus, it does so
only when it is selected by the presence of 0x300, its own address, on the least
significant 12 lines.

A problem occurs because conventional PC peripherals use port addresses only

within the range 0 to 0x3FF - this is required for compatibility with processors

earlier than the 80386, since these were not capable of addressing ports outside

this range, and the described hardware bitmap access control reflects this. In

order to allow our user mode driver to make the required accesses to the vision

subsystems at addresses 0x1300 and 0x2300, therefore, it was necessary to set

the processor in supervisor or override mode, to disable the access control and

allow access to any port. This action clearly has security implications for a

potentially multi-user system, and can therefore only be achieved through a Linux

kernel-level function which requires superuser privilege for access, and it was

therefore necessary for our apphcation to run with the SETUID root flag set. In

general this would not be necessary for a driver accessing only ports inside the

conventional range, since the process access control bitmap could be appropriately

set. Our finding is that the mechanisms for doing this are unduly complex for the

application in view, however, and that the simplicity of running the driver as root

makes this the solution of choice for a system where security and inter-apphcation

protection are not key issues.

4.5. CONCLUSIONS 91

4.5 Conclusions

We have investigated the most important and relevant computer architectures and

operating systems in order to determine the optimum configuration for a general-

purpose low-cost machine vision system. Our final solution involves dedicated

machine vision hardware directly interfaced to a PC-clone running the Linux op

erating system. The prime motivation for this is the large value for money obtain

able due to the mass-production of both PC and PC-bus-compatible peripherals,

since both are in great demand due to the commercial factors explained. The

Linux system is preferred over MS-DOS with networking toolkit - this is because

the operating system's origins in academia as freeware mean that it is lower in

cost, that internals can readily be analysed as source, speeding understanding and

application development, and that far more is available in terms of multi-tasking

and networking support, again reducing the developer's outlay of effort. Of the

two modes of device driver outlined, we find that the simplicity of use of the user

mode justifies its selection for the problem in view. The enhanced feature set of

the system mode might be justified should more complex hardware interfacing

be required, for example where many processes are contending for access to the

hardware, or where DMA and hardware interrupts need to be supported.

Our solution's front end and general processing facilities are provided by a

low-end Unix workstation with an X-Windows graphics display. We find that a

window-oriented package makes the user interface far more intuitive and easier

to learn, although it also increases the programming effort. However, the oper

ating system support and availability of highly-functional windows programming

libraries at reasonable cost makes use of the Unix machine in this way a greatly

more attractive option when compared with the described TSR-related techniques

on an MS-DOS PC.

Now that we have succeeded in finding an optimal combination of low-cost

hardware, software and communications techniques, we need to return to the

study of the basic image-processing algorithms, and it is to this that we turn our

4.5. CONCLUSIONS 92

attention in chapter 5.

Chapter 5

Neural Network Overview

5.1 Why Neural Networks?

5.1.1 TEXIS, an Illustrative Vision Problem Example

Vision System Paradigm

As has been discussed, is can be helpful to express the general automatic inspec

tion problem in terms of a number of sub-processes, as follows:-

• Data acquisition.

• Preprocessing of acquired data.

• Artificial intelligence element.

• Output processing.

I t can be seen that when this paradigm is adopted, the task to be performed

by the artificial intelligence element is essentially that of a data classifier. That

is, the A I engine must analyse input data vectors and assign them to the most

suitable class based on a ruleset which may be either explicitly specified, or, in

the case of a supervised neural network, learnt by example using a training set

consisting of data which exemplifies clearly the rule which is to be inferred.

93

5.1. WHY NEURAL NETWORKS? 94

Description

The work of Brzakovic et al.[15] deals with a typical inspection problem which

illustrates well the role of the various functional units described, involving the

construction of an automatic expert system named by the authors as TEXIS,

capable of inspecting parquet^ samples for artefacts such as cracks, streaks, knots

and holes. The salient features of this system will now be described, since this

will bring the issues relating to the selection of A I element type into focus.

Firstly, a digital image of the sample is obtained using a CCD camera. Sec

ondly, the data therein is preprocessed in order to reduce its volume to a more

manageable level - the key aim of this activity is to discard the large quantities

of unimportant information present in the image, whilst retaining data which de

scribes, as concisely as possible, the features of interest. This step is also known

as feature segmentation, and in this case is a two-stage process. Firstly the par

quet samples, which may be arbitrarily oriented in the image, must be isolated

from the background, the steps involved here being as follows:-

• Extraction of edge pixels.

• Grouping of edge pixels that constitute individual edges, and computation

of the coefficients of corresponding lines.

• Grouping the parallel and perpendicular edges that bound individual sam

ples.

Secondly the samples, once isolated, must be partitioned into defects and

generic texture. This is carried out using a variety of traditional image-processing

functions, for example the Marr-Hildreth operator, which involves filtering by

convolution, followed by a tracking of the appropriate zero-crossings in the con

volved result, considering eight-neighbour connectivity. Ideally this will produce

floor covering of pieces of hardwood fitted in a decorative pattern

5.1. WHY NEURAL NETWORKS? 95

the outline of an image feature, but in practice such an outline is likely to be in
complete, and a subsequent morphological operator may be required to "thicken"
the outline until it becomes completely interconnected.

Numerical parameters must now be extracted from the outline shape such

that a feature vector, suitable for classification processing, may be constructed.

In this case the measure of compactness, C, is employed, defined as:-

p2

Here P denotes the outline perimeter and A its area. The feature vector there

fore has only one element, and this allows a straightforward Bayesian classifier

to be employed. This assumes that all defect classes have an equal hkelihood

of occurrence, and that each class Wi is characterised by a normal conditional

probability density:-

p(^M) = (8)

For each class Wi the mean, and standard deviation ai in equation (8) are

obtained from a training process in which C is measured for various representative

defects interactively identified by human operators.

In the recognition phase, that is, after training has been completed, the clas

sifier assigns defects of measured compactness C to a class Wi if p[C/wi) >

p{C/wj),j = 1, 2 , . . . , L where L denotes the number of classes.

The probabiUty densities p defined in (8) will tend to overlap for different

classes, and for certain values of C the difference between the largest and second-

largest p will be of insufficient magnitude to make a reUable classification. In

this case further processing is carried out, specifically, a defect may be classified

as a crack rather than a mineral streak if its average width is less than a certain

characteristic width Wmax- Further, a measure of defect texture may be used to

distinguish cosmetic defects such as knots and streaks, which have a generic wood

texture, from defects generated by outside forces such as worm holes and cracks,

5.1. WHY NEURAL NETWORKS? 96

which have no texture.

In this case the texture descriptor, M^ex is defined by:-

M fcount / _ \
te. = —r- (9)

m n

ft{x, y) = E J2 [f{x, y) - f { x + i,y + j)]' (10)

i=—mj=—n

Here fcov.nt is the number of pixels in the defect area for which the intensity

typicality value, ft is greater than a certain threshold, Tthresh- Equation (10)

defines ft for a pixel at position x,y in terms of the summed differences between

the intensity / of that pixel and those of its neighbours, m and n delimit the

defect boundary.

Finally, worm holes and knots can be distinguished simply by their area, since

these are found to be, respectively, smaller and larger than a certain characteristic

area Amax •

Performance

The TEXIS system, learnt to correctly classify its training set of 100 defects, cho

sen by human inspectors as typical representatives of the four defect classes, with

100% accuracy. When using the system to inspect previously unseen features,

the correct recognition rate was found to be 81%. The authors suggest that the

resolution of the camera was the Umiting factor in the system's performance.

Discussion

The TEXIS system is typical of contemporary approaches to automated inspec

tion in that the artificial intelligence element, in this case a Bayesian classifer

supplemented by various parametric rules, as required, is almost trivial in na

ture, and by far the greater part of engineering effort has been poured into the

preprocessing phase, in this case defect outline extraction. The acquisition phase

5.1. WHY NEURAL NETWORKS? 97

also presents a multitude of problems, here the chief difficulty is that of ensuring
uniform illumination, or else compensating for the non-uniformity.

Although the system works well in its intended application, a serious hmitation

is that, as the authors say:-

... parameters and threshold values are determined experimentally,

and are generally a function of the material being inspected, and the

digitisation conditions.

Such shortcomings are highly typical for systems of this type, and it is evident

that this is having a dramatic effect on the take-up by manufacturing industry of

automated inspection systems, perhaps surprisingly so, since this is a technology

which at first sight appears to have obvious cost benefits. The problems mean

that, hitherto, the offerings of machine vision companies have been closer to

services than to products. This has limited market growth by making it dependent

on the availability of suitably-trained machine vision engineers, and by increasing

the cost to the end user of a solution to his problem.

There is, therefore, a very clear motivation for working towards a new gen

eration of automatic inspection equipment, in which the necessity for a skilled

instrumentation engineer on the factory floor has been removed. One might rea

sonably envisage for the future the availability of a range of generic off-the-shelf

inspection products. Having selected a unit from the range, specified appro

priately to the vision problem in terms of sophistication and processing power,

customers would be able to use non-specialist personnel to configure the system

to their needs using a straightforward training process, at greatly reduced de

velopment and installation costs. For this an operator would need to give the

system feedback about its classification decisions until acceptable performance is

achieved.

This, therefore, is the ultimate goal when we examine artificial neural networks

in the machine vision context.

5.2. INTRODUCTION AND BACKGROUND 98

5.2 Introduction and Background

Hertz et al. in [26] give a rigorous mathematical introduction to the topic of neu

ral computation including details of the multi-layer perceptron backpropagation

algorithm which will not be reproduced here.

Forsyth et al. in [27] give a useful perspective on neural networks in the

wider context of machine learning in general. We draw upon the expertise of

both these sets of authors in order to illustrate the theoretical background to our

neural network implementation presented in chapter 7.

5.2.1 Machine Learning

Many experts researching the field of artificial intelligence have hitherto con

structed "inteUigent" systems which do not possess the capabiUty to learn. Con

sider as an example a master-level chess-playing program. Although chess algo

rithms are today highly-refined, and capable of performing at the level of a strong

club player^, they are in general completely deterministic. In other words, the

algorithm cannot learn by itself to do better. More recently, however, there has

been a resurgence in machine learning driven by the developments in the field of

expert systems. Such a system, designed perhaps for equipment fault or medical

diagnosis, requires for its function a high-quality knowledge base, which is diffi

cult ̂ ^olartifidany^ construct. Machine learning ofi'ers a way around this problem;

in effect the system produces its own knowledge.

5.2.2 Black Box Techniques

Neural networks have been the subject of much interest largely because of their

apparent ability to learn by example. Neural networks are, however, part of a

class of algorithms which can be called "black box" techniques. The characterising

feature here is that the user is in general not concerned with what happens inside

^Rated performance of GNUChess 4.0, available from the Free Software Foundation

5.2. INTRODUCTION AND BACKGROUND 99

the algorithm whilst it is learning, but rather with the inputs and outputs.

Behavioural scientists favour the black box approach in biology, simply be

cause it is very difficult to investigate representations inside the brain of an animal

or other biological system whilst it is still alive. In the case of an artificial system,

internal representations can generally be accessed much more easUy, but it may

nonetheless still not be profitable to do so.

Typically artificial systems in the black box category have a mathematical

bias, and partly as a result of this, the knowledge gained during the training

phase tends to be opaque. Even a mathematically-sophisticated person cannot

inspect the system's internal representation and say what the system has learned.

Forsyth et al. in [27] say that such a system has a "write-only" knowledge base.

This is because mathematical theory can as yet make only faltering steps towards

the reverse transformation from the internal representation back into the "real

world" domain of knowledge.

5.2.3 The McCuUoch-Pitts Neuron

Designers of machine learning systems have drawn inspiration from the domain

of biology and natural organisms. The human brain is clearly a highly-effective

learning system, and researchers have therefore felt that there may therefore

be merit in reproducing artificially such features of its internal structure as are

presently understood.

The McCuUoch-Pitts neuron appears in almost all types of neural network

and is modelled after a crude representation of a biological neuron. Its essential

features include a series of input connections from other neurons; in the special

case of an input neuron there may be only one input value. For each input

connection the neuron stores an associated weight, and its computational function

is to multiply each input value by the associated weight, sum the results and

transform this value using a non-linear function to produce an output value. In

the case of an output neuron this is considered an output from the network,

5.2. INTRODUCTION AND BACKGROUND 100

otherwise a neuron's output value is typically fed as input to another neuron.

Within this general framework there is much scope for variations of neuron

design to suit particular networks. For example, the particular non-linear function

employed is often a matter of implementation convenience, although in general the

chosen function must saturate to a finite value for very large positive and negative

values of input. In the case of a Hopfield network, a simple step-function is often

used, with the result that the neurons have a discrete output with two values.

The usefulness of the biological analogy is much debated, but it can be seen

that the elements of the McCulloch-Pitts neuron can be interpreted as represent

ing very approximately the functions of a biological neuron which "fires" as the

dendrites of connected neurons communicate a threshold level of electrochemical

messenger compound. At best, however, this is a first-order representation - there

is evidence to suggest that there are many higher-order effects which influence

the firing of a biological neuron. For example, a neuron which has just fired has a

characteristic "relaxation time" which must elapse before it can fire again. This

is dependent on the levels of messenger compound present in the neuron, and

is therefore a complex function of the number and rate of times the neuron has

recently fired. Although there have been attempts to model this sort of behaviour

artificially, the artificial networks which at present yield the most promising re

sults have diverged somewhat from their biological analogies. For example, as we

shall go on to report, multi-layer perceptrons trained by backpropagation have

recently been the subject of much successful study, however, there is no evidence

to suggest that any process resembling backpropagation actually takes place in

biological systems.

5.2.4 The Hopfield Network

The Hopfield network is one of the most structurally straightforward and yet

potentially most versatile of all neural networks. It comprises a number of

5.2. INTRODUCTION AND BACKGROUND 101

McCuUoch-Pitts neurons which generally have binary outputs, that is, the out
puts are constrained to take on one of two possible values, as described. The
Hopfield net is typically fully-interconnected, that is, each neuron has inputs from
each other neuron. There are therefore no well-defined inputs and outputs to the
network.

The Hopfield network has some surprising and interesting properties. As the

network is "iterated", that is, the output value at each node is re-evaluated based

on the new input values, the outputs may, depending on the starting values and

the network weights, either progress through a cyclical series, exhibit more chaotic

patterns or remain invariant.

One of the most useful applications of the Hopfield network is as a distributed

memory store. I t is possible to select weights for the network so as to "program

in" certain stable output states. Furthermore, when iterated the network will tend

to converge to the nearest'̂ stable output state to the starting condition. Thus

the network may be able to reconstruct the full pattern with which it has been

programmed when presented with a partially corrupted version. This feature has

some application in pattern recognition tasks.

Theory relating to the pattern-matching capabihties of Hopfield networks is

well-developed and is based on analogies with Physics theory relating to magnetic

materials. The analog of a Hopfield network neuron is a magnetic dipole element

which will "flip" according to the coupling conditions of its neighbours.

I t is useful to mention the Hopfield network here since it illustrates well one

of the most fundamental problems with neural networks. Potentially such a

network can perform arbitrary computation tasks - it is fully-connected and yet

connection weights may be set to zero, and therefore any logical network structure

can be assumed, including that of the perceptron, for example, which we shall

shortly describe. The reader can imagine how a binary shift register might be

designed using a Hopfield network, and indeed there is some evidence to suggest

^The relevant distance metric here is not entirely straightforward, however, i t approximates
the pattern with the most similar outputs or "bits".

5.2. INTRODUCTION AND BACKGROUND 102

that motor control neurons in certain insects follow such a pattern in order to
produce the repeating sequence which causes a centipede's legs to walk in their
characteristic manner. One might further imagine control inputs to the Hopfield
sequence generator which cause the sequence to stop, start and run backwards, for
example. These could be the outputs from some kind of perceptron-like learning
engine, also fashioned within the confines of the same Hopfield network.

In summary, it would appear that powerful arbitrary functions with both

time-invariant and time-dependent characteristics could be constructed simply

by specifying a certain pattern of weights in a Hopfield network. However, the

problem is that the theory relating to such networks is not yet able to support

such a design procedure. Indeed, the theoretical understanding of the most useful

applications currently available with Hopfield comes about only through analogy

with another branch of Science.

5.2.5 The Perceptron Compared with Statistical Classi

fication

The perceptron is a type of neural network which is particularly applicable to

the task of classification, in other words, of deciding to which class a particular

input belongs. A classifier is an important subcomponent of any machine vision

system as we have discussed.

In order to put the features of the neural perceptron into context, we should

first examine exactly what is meant by a "classifier". Consider one of the most

straightforward conventional techniques for achieving the same thing - the "near

est neighbour" classifier.

Nearest neighbour classification operates using a training set as its basis, just

as with the backpropagation-trained multi-layer perceptron. Each item in the set

is typically a feature vector, which has already been assigned by some other means

to a known class. Each defines a point in a multi-dimensional space which has as

many dimensions as there are features in the vector. A new case is classified by

5.2. INTRODUCTION AND BACKGROUND 103

measuring the distance betwieen the point in space represented by that case and
each of the examples in the training set - it is assigned the class of the nearest
one.

The concept of "distance" in this context requires the selection of a suitable

metric. Often this is the straight-line, or Euclidean metric, but others may also

be used.

The main limitation of the nearest neighbour classifier is that it is highly-

susceptible to the presence of "rogue", or unrepresentative examples in the train

ing set. However, it illustrates well the idea of a decision "surface" in multi

dimensional space. For example, nearest neighbour classification with two exam

ples in the training set implements a linear decision boundary perpendicular to

a line joining the points representing the two examples.

The perceptron consists of a single "layer" of neurons, not counting the input

layer as is conventional. Each neuron receives a copy of all the network inputs and

maintains its own set of weights which it uses to scale the inputs before summing

and non-linearising. The weights are adjusted using an error-correcting learn

ing algorithm based on the distance between the actual and expected network

outputs.

The perceptron behaves as a trainable classifier. Given a set of examples

and associated classes, the perceptron will, after training, arrive at a decision

boundary which will differentiate the classes.

When Rosenblatt first proposed the perceptron [28] in 1958 it was as a simple

theoretical model of neurological systems in biology. However, it was the subject

of much interest in the field of artificial neural networks for some time, since

the perceptron can be taught a variety of useful classification tasks. In 1969

Minsky and Papert published their famous book [29] on perceptrons which largely

killed this interest as they showed the perceptron to be incapable of solving

classification problems requiring non-Zinear decision boundaries, such as the well-

known exclusive-or problem.

5.3. PREVIOUS NEURAL INSPECTION SYSTEMS - MLP APPLICATIONSlOi

5.2.6 The Multi-Layer Perceptron and Backpropagation

The principal limitation of the simple perceptron, which is that it can form only

linear decision boundaries or discriminants, may be overcome by extending the

perceptron such that it possesses more than one layer. This means that there

is one or more hidden layer*' intervening between the input and output of the)

network. Potentially such a network is a much more powerful classifier, since

it can approximate almost any decision surface where there are sufficient nodes

in the hidden layer [30]. Training such a network was a particular problem,

however, until the development of the backpropagation training algorithm in the

late 1980s which revived interest in the use of neural networks both as general

learning engines and as classifiers in particular. Backpropagation training is,

however, considerably more computationally-intensive than the earher algorithm

used for training the simple perceptron, so much so that one can regard it as a

search problem in its own right. I t would appear that the volume of computation

required to achieve the optimum combination of weights is so large as to present

a serious problem to application development with the multi-layer perceptron.

I t is with this in mind that we have sought to parallelise the training algorithm

using multiple processors in chapter 8.

5.3 Previous Neural Inspection Systems - M L P

Applications

We should now like to review a selection of existing vision systems which have

made use of neural networks at the classification stage in order to get an im

pression of the current concensus regarding their characteristics, performance

and suitability; this will serve to put our own work, detailed in chapter 7, into

context and illustrate its motivation.

5.3. PREVIO US NEURAL INSPECTION SYSTEMS - MLP APPLICATIONSm

5.3.1 Toothpick Inspection

In [6], Huang et al. used a ready-implemented neural network* as a classifier in the

toothpick quality control system already mentioned in chapter 2. In particular,

a multi-layer perceptron trained by backpropagation was used, configured with

130 input nodes, 8 hidden nodes and 2 output nodes. The output took the form

of a simple pass/fail decision. 128 of the input elements were used to provide

information representing the image of the part to the network, the remaining

2 being used to "supervise" the network during the training phase, although

Huang does not tell us the exact nature of this representation (parameterisation)

or supervision.

Huang's conclusion is that, when compared with conventional image-processing

algorithms, in particular, classifiers, the neural approach required more develop

ment time. However, his findings are that the neural networks outperformed the

conventional approach in terms of accuracy.

Huang also suggests that the multi-layer perceptron stores an item of knowl

edge in a distributed way across many memory units, or nodes. Therefore, he

says, the system may have redundancy which allows it to sustain partial destruc

tion. Thus the neural network may be a naturally fault-tolerant system. At

present this feature would seem to be of purely academic interest, since typical

useful networks possess only a few tens of nodes and are generally simulated on

vector processors which have other, reliable means of error correction. However, it

may be in the future that this becomes important when complex neural networks

are implemented in high-density hardware.

5.3.2 Human Face Recognition

In [31], Evans et al. use a multi-layer perceptron trained by backpropagation

as the classifier in an application designed to identify human facial features as a

first step towards face identity recognition. Although the authors state that the

^Neuralworks I I by Neural ware

5.4. DISCUSSION AND SUMMARY 106

perceptron is used as the first component in their vision system, they go on to say

that the network inputs are "convolved" over a subsampled image at various res

olutions as a data reduction step. According to our adopted paradigm, therefore,

this amounts to a data preprocessing step. At pubhcation this work was still at

an early stage and the system's performance was therefore rather hmited. How

ever, the authors are of the opinion that much more can potentially be achieved

through tuning and refining the preprocessing and neural classification,

5.4 Discussion and Summary

Artificial neural networks can form a useful element of machine vision systems.

Their ability to learn higher-level representations from supplied input examples

is well-known, and there are numerous reports of the power of neural networks in

matching and exceeding the performance capabilities of traditional approaches,

for example, Kendall and Hall in [32] constructed a multi-layer perceptron which

performed edge extraction on an image with results which compared favourably

to more traditional operators such as the Laplacian.

Our primary aim in investigating the capabihties of neural networks is to

obviate, as far as possible, the need for human thought in the solution of machine

vision problems. Although favourable reports of neural network performance

such as [32] do permeate the literature, it is rather dangerous to attach too much

significance to comparisons between the two since the outcome naturally depends

rather critically on the effectiveness with which each technique is implemented.

Clearly a poorly-designed neural classifier is likely to compare unfavourably with

a well-designed statistical classifier, for example.

It seems likely that, at the current level of development, neural solutions are

more generally found to rank only second-best to "bespoke" vision solutions pro

duced by means of human intelligence. However, in chapter 2 it was concluded

that more generally-appHcable vision systems would bring benefits as an increas

ing level of computer power and an enhanced theoretical understanding made

5.4. DISCUSSION AND SUMMARY 107

these possible, therefore it seems that neural networks are worth persuing in

the name of general applicability, even if there is no prospect of achieving more

accuracy than is possible with conventional techniques.

Known disadvantages of the MLP include:-

• The large computational eff"ort required for training. Using desktop PC or

workstation equipment, this is typically of the order of hours rather than

minutes, for a single network configuration. This means that inspection

systems using the described neural approach will take a long time to recon

figure themselves for a new inspection task, or a change in parameters on

an already-running task.

• The difficulty in deducing the structure of an MLP which is capable of

training in a satisfactory way. Currently there is no established analytical

means, for example, of deducing the number of nodes which should comprise

the MLP's hidden layer or layers, and therefore empirical methods must

normally be used to determine this. If there are two few hidden nodes,

it becomes impossible for the network to train, that is, to produce the

desired results from the training example input vectors. Too many, and the

network will efi"ectively learn the training data "by rote", that is, without

inferring the desired generalised rules which allow correct interpretation also

of other data. The overall effect is to multiply further the computational

burden of training, since many trials will be required to select the optimum

configuration.

Chapter 6

Image Preprocessing
Considerations

6.1 Introduction

As we have discussed, data preprocessing in order to distil the key features of the

defects is vital if a neural network is to make progress towards a defect classifica

tion solution. However, a compromise needs to be found between two extremes,

one of doing too little preprocessing, in which case the network has a very diffi

cult and unconfined problem to solve, and the other of reducing the data to such

an extent that possible fast solutions and key factors for recognition have been

pre-processed out. It was important to get a feel for the way in which the defect

signals might respond to preprocessing techniques in order to ascertain how this

compromise might best be made. We will therefore now present our investigations

into Iterated Function Series and the Fourier Transform, two promising families

of preprocessing techniques.

6.2 Iterated Function Series

A popular approach to general machine image recognition has been, in the past,

to analyse the performance of the human visual perception system with a view

to imitating its function. In [33] Giles gave consideration to this kind of idea

and particularly to the 'visual images' or 'mental pictures' humans use when

108

6.2. ITERATED FUNCTION SERIES 109

imagining objects or scenes that are not currently available for scrutiny.

The suggestion is that such visual images are spatial representations

in short-term memory that are not simply retrieved, but are in some

way constructed from more fundamental representations in long-term

memory using conceptual knowledge. [33]

In other words, it might seem that the human visual perception process grad

ually 'builds up' in the mind an isomorphic representation of the object to be

recognised, that is, "One in which the laws and relationships governing the real

world objects are inherent in the data structures and operations of the represen

tation." [34], in order to compare it with the real thing,

Giles dealt in detail with a branch of mathematics known as iterated function

series (IFS) in the context of general machine recognition. It appeared from the

outset of his work that there could be merit in using the IFS to construct a

representation of an image which would, in effect, be a machine equivalent of the

human 'mental pictures', in the sense that the representation could be "built up"

gradually into increasing levels of detail.

In order to discuss the potential underlying utility of the IFS, it will be nec

essary to present a brief review of the mathematics on which it is based. A

mathematically rigorous treatment is given in [35] and [36]. However, as an in

centive to the reader to bear with us through this section, we shall first explain

the iterated function series' most interesting features in respect of the context in

view.

The IFS is usually regarded as a subset of the relatively novel branch of

Mathematics which deals with fractal geometry, and in fact the IFS can be used to

construct various well-known fractal patterns such as the fern and the Sierpinski

triangle. The reason for its potential relevance to image recognition is that, as

with many fractal construction techniques, a small amount of data can specify a

highly-complex pattern which is usually built-up over many iterations. It would

seem that this property would also make the IFS useful in image compression

6.2. ITERATED FUNCTION SERIES 110

applications, and indeed Barnsley went on from his work in [35] to propose novel

image compression methods using fractal techniques [37 .

We therefore explored the use of the IFS as an image recognition preprocessing

operator, that is, one which can reduce the volume of data which needs to be

processed by the classification stage whilst retaining the essential components of

the image information which allow the classification to be made.

If a suitable method of automatically deriving the IFS from an image could be

found, then two possibilities for an image recognition system might be opened:-

• The IFS could be used simply to compress the volume of data needed to

specify an image in the stored Ubrary of the recognition system. I t seems

that any approach to image recognition will require quite a sizeable library

of images with which to compare the view currently being seen, and that

in general the storage requirement for this is a severe problem. Therefore

the IFS affine transformation coefficients could be stored instead of simple

image bit-maps, and the attractors regenerated by the application of the

iteration procedure only when required.

• Comparison between the real image and stored images could be carried

out in the IFS coefficient space. That is, the procedure for deriving IFS

coefficients could be applied to the image to be recognised, these coefficients

then being directly compared with coefficients in the stored library. I t can

be seen that if this type of approach were to be viable, a very fast and

powerful recognition technique might be devised, since comparisons between

a few tens of floating-point numbers can be carried out very much faster

than comparisons between large bit-map images.

In general an IFS consists of one or more affine transformations of the form:

" x' ' x a b X
+

e

y c d y _ / _

6.2. ITERATED FUNCTION SERIES 111

Where n denotes the reference number of the transformation, (x, y) and

{x^,y^) are points in the two-dimensional Euclidean space R'^.

It can be seen that any combination of rotation, scaling and translation may be

incorporated into an affine transformation by suitable selection of the constants

a to f . One requirement for the IFS to function correctly is that each of the

transformations which comprise it must be contractive, that is, for any set of

points in R^ to which it is appHed, the new set of points produced must be closer

together. Apart from this condition, however, a to f may be arbitrarily chosen

as required.

To 'build' the IFS equivalent of the human 'mental picture', an arbitrary

starting point is assigned to {x,y). Next, a transformation is selected at random

from those which comprise the IFS, but according to a predetermined table of

probabilities. For example, if the IFS contained four affine transformations, we

might have a probability array P as follows:

P

0.1

Pi 0.1

P2 0.4

P3 _ 0.4

Where p„, is the probability of the transformation Wn being selected.

The chosen transformation is then applied to the point {x,y) to yield a new

point [x^,y^) as shown.

This procedure is iterated many times, producing a set of points in R^. This

set is known as the attractor of the IFS, and when plotted gives a 2D image

which is always the same, even though the transformation selection procedure is

random. A proviso must be made, however - the first ten or so points generated by

the IFS are defined not to belong to the set in R^ which constitutes the attractor.

6.2. ITERATED FUNCTION SERIES 112

n a b c d e / Pn

1 0 0 0 0.16 0 0 0.01
2 0.2 -0.26 0.23 0.22 0 1.6 0.07
3 -0.15 0.28 0.26 0.24 0 0.44 0.07
4 0.85 0.04 -0.04 0.85 0 1.6 0.85

Table 1: IFS parameters for generating the 'fern'

6.2.1 Experimental

An application was coded using Microsoft C on an 80286-based PC to construct

patterns using the IFS based on coefficients input by the user. This was used to

generate the patterns shown in figure 16.

Our main concern regarding the IFS was that the mapping of parameter space

onto image space might prove to be itself chaotic, for example, the production

of a certain pattern by the IFS might depend very sensitively on the accuracy of

IFS coefficient values - a slight alteration to one of the coefficients would cause

the production of a completely different image. I f this were to be true, it would

detract seriously from the possibilities of classification of image features based on

the IFS coefficients which construct them.

In order to investigate this potential problem, we compared the resulting

images when a single IFS parameter is gradually varied. Table 1 shows a set of

IFS parameters which produces the 'fern'-like attractor shown as the bottom left

image in figure 16. The remaining eight images show how the attractor changes

when one parameter in one of the IFS transformations is gradually altered, in

this case the value for e in W 3 . Each successive image was generated with an

increase of 0.2 for this parameter, so the top right image has a value of 1.6 for e

in W3.

6.2. ITERATED FUNCTION SERIES 113

^^m^ -̂ ^̂ ^̂
. /V

Figure 16: A set of IFS attractors, one parameter being varied

6.2. ITERATED FUNCTION SERIES 114

6.2.2 Discussion

Figure 16 shows that in this case the reconstructed ferns vary smoothly and con

tinuously as the parameter e in W3 is changed, and further investigation demon

strated that this was generally the case, and our concerns about the potentially

chaotic nature of the IFS parameter space proved to be mainly unfounded. A

remaining difficulty, however, is the task of making the reverse transformation

from an arbitrary image shape to a set of IFS coefficients.

Giles in [33] sought a reUable technique for doing this, using as his starting

point proofs which state that an IFS exists which will reconstruct an arbitrary

shape as its attractor, and the "Collage Theorem" proposed by Barnsley in [37 .

Here the procedure is to find a set of transformations which will shrink distances

and cause the target image to be approximated by the union of the affine trans

formations of that image.

Among the methods investigated by Giles in [33] were "boundary matching"

techniques. However he concluded that:-

The problem of finding a full two-dimensional collage cannot be avoided

by this approach, and that it is necessary to develop an algorithm for

directly obtaining full collages.

However, as the fern results suggest above, the iterated function system is

robust, that is, the attractor solution space is non-chaotic, and so small perturba

tions in the code will not result in unacceptable damage to the image. Therefore

it might seem that an adaptive algorithm might be used to seek out a suitable

IFS for an arbitrary image, iteratively selecting guesses and coming closer to the

optimum solution.

In parallel with our own work, progress has been made in using the IFS as a

basis for fractal compression of general, colour images. Jacquin in [13] proposed a

practical technique for finding the set of contractive transformations under which

an arbitrary image remains invariant. Iterations of this transformation set upon

any starting image will converge to the stored image, and thus the stored image is

6.3. FOURIER TRANSFORM 115

defined by the transformation parameters. Use of the IFS appears to be attractive
as a compression technique since it can achieve arbitrary compression ratios,
and hence reproduction qualities, depending on the accuracy with which the
transformations are devised. Furthermore, the property of gradual convergence
to the stored image during many iterations can be useful for certain appUcations
where it is desirable to achieve a rough, low-resolution approximation to the stored
image early in the decompression process, with additional processing being used
to gradually refine the image and achieve maximum resolution. The origin of
the data compression comes about through the IFS' ability to define parts of an
image in terms of other parts, and consequently the compressibility of an image,
defined by the picture quality or error obtained at a certain compression ratio,
will vary as the degree of self-similarity in the image varies.

A remaining problem, however, is that of uniqueness - although we have dis

covered that the iterated function system is robust, there is no evidence to suggest

that there is a one-to-one mapping between image and transform coefficient space.

Indeed, it appears intuitively that many sets of transforms might be found under

which a given image remains invariant, and it would seem therefore that the IFS

is not necessarily unique in the sense that a particular image pattern does not

always map to the same position in IFS parameter space.

6.3 Fourier Transform

We next investigated the usefulness of the Fourier Transform as an image prepro

cessing operator. As we have already mentioned in chapter 2, reversible trans

forms are potentially useful if defects are more easily detected in the transform

domain, even though, by definition, no data reduction is brought about. We

made use of the remote processing application whose development is described

in section 4.2.1 to investigate whether the Fourier Transform can be of use in

detection of the aluminium plate defects in view.

Figure 17 shows an average one-dimensional transform result for the "bigvoids"

6.3. FOURIER TRANSFORM 116

Bigvoids - average 1D FFT
In(Amplitude) (off-process material included)

8H

6 H
Nyquist frequency

\
r

—I 1 1 1 1—
200 400 600 800 1000

Frequency

Figure 17: Average over one-dimensional FFT for all rows in "bigvoids" image,
showing amplitude

6.3. FOURIER TRANSFORM 117

image, the most significant section of which is shown in image form in figure 32

(page 133), and in ful l as a three-dimensional profile in figure 47 (page 150). The

discrete version of the Fourier Transform known as the Fast Fourier Transform

(FFT) was used to produce these results. The FFT is a complex-to-complex

transform, that is, a series of complex numbers in the spatial or time domain is

converted to a series of complex numbers in the transform or frequency domain.

Our image data in the spatial domain is, however, not complex, we therefore feed

it into the FFT setting all the imaginary coefficients to zero.

The FFT output under these circumstances is, nonetheless, complex, and is

best represented in polar rather than rectangular form. The plot shown in figure

17 shows one half of this data - the magnitude or amplitude of the series.

Bigvoids - average 1D FFT
(off-process material included)

-2.0-

Pfiase

0 . 5 -

O.OH

Nyquist frequency

200 400 600

Frequency

800 1000

Figure 18: Average over one-dimensional FFT for all rows in "bigvoids" image,
showing phase

Figure 18 shows the opposite half - the phase of the series. In both cases

data is only plotted up to the Nyquist limit on the frequency axis, which is in

fact only half of the data returned by the transform. However, for real-only

6.3. FOURIER TRANSFORM 118

(non-imaginary) time- or spatial-domain data, both amplitude and phase data

are mirrored about the Nyquist frequency and for clarity this mirroring is not

reproduced here.

The amplitude plot of figure 17 shows a ringing eff'ect which is attributable to

the presence of the two contrast boundaries between off-process and on-process

material. This can also be seen as a phase ramp towards the higher-frequency

end of the phase plot in figure 18. This trend is superimposed on j noise which

originates in the random texture of the material as well as in the digitisation

process itself.

Bigvoids -1D FFT error
•lO^Total error (transfornning rows)

40 H

35-

30-

25-

Response from largest void X

Spurious peak?

Noise

other defects

100 200 300

Position

400 500

Figure 19: Detection performance based on fine-by-line deviation from FFT av
erage in figure 17

We sought to detect defects by summing differences between elements of series

produced by frequency-transforming individual horizontal cross-sections of the

"bigvoids" image and the corresponding elements in the average series shown in

figures 17 and 18. This was done on a one-dimensional basis, that is, magnitudes

only were subtracted, and no consideration was given to the phase information.

6.4. CONCLUSIONS 119

The sum of these differences produced a single one-dimensional error value cor
responding to each horizontal slice, and these are plotted with respect to vertical
position in the image in figure 19. It can be seen that this technique is very
effective and produces a response with a signal to noise ratio much higher than
that obtainable through simple convolution filtering and thresholding.

Figure 19 also shows a smaller peak which we have labelled as "spurious"

in the context of detection of the "void" defects. This corresponds to a slightly

altered texture at this position caused by a roller "chatter mark", the second type

of relevant defect described in section 2.4.1. I t is therefore apparent that this one-

dimensional FFT technique can detect both sorts of anomaly fairly successfully.

Conducting a one-dimensional FFT on each row of the image is a computationally-

intensive process, and in order to examine whether the transform itself is a valu

able part of the detection scheme devised, we performed a comparison with a

scheme in which pixel values are used directly in the place of the transform coef

ficients.

Figure 20 shows the average raw pixel values taken over each horizontal slice in

the image, including off-process material. For comparison with a single horizontal

slice including a "void" defect, see figure 1 (page 21).

Figure 21 shows the results when the same summation of differences between

individual slices and the average slice is appfied to the raw pixel data. It can

be seen that again there is a clear response to the presence of defects and the

"chatter mark" peak also appears.

6.4 Conclusions

I t appears that the signal to noise ratio achieved by frequency transforming pixel

data before summing differences is not significantly improved by the frequency

transforming process, as a comparison between figures 19 and 21 shows. We there

fore conclude that the extra computational expense of the FFT is not justified in

this context.

6.4. CONCLUSIONS 120

Bigvoids - average pixel values
Pixel value

1 8 0 -

y Edge of material

y

1 6 0 -
On-process region

/

1 4 0 -

120 -

1 0 0 -

8 0 -

6 0 -
Ml

C)
1 1 1

500 1000 1500

Horizontal position

1
2000

Figure 20: Average raw pixel values over all horizontal cross-sections in "bigvoids"
image

6.4. CONCLUSIONS 121

LMS error

3.0*10'-]

2 .5*10' -

2.0*10'

1.5*10'-!

1.0*10'

5.0*10

0.0*10

Bigvoids - LMS error

— j 1 \ r 1 1

100 200 300 400 500 600

Position

Figure 21: Detection performance based on fine-by-line LMS deviation from av
erage in figure 20

6.4. CONCLUSIONS 122

The IFS, on the other hand, although now well-established as a useful com
pression technique, seems to suffer the drawback of non-uniqueness which pre
vents i t from being directly useful as a preprocessing operator in a recognition
application. However, a related operator known as the fractal dimension [35] is
of potential use, since this is a metric of the degree of self-similarity present in
an image or portion thereof, representing this as a one-dimensional value. It can
be seen this might be usefully used to provide a single feature vector element as
input to a classification stage; intuitively there would seem to be a high degree of
orthogonality between the fractal dimension of an image portion and the output
of more conventional operators such as RMS power, for example. However, the
fact that the fractal dimension is one-dimensional for a two-dimensional image
means that it might be used as a component, but not as the exclusive basis for,
classification. An interesting development here is the work by Arduini et al. [38]
on "multifractals" - here a two-dimensional function is derived from a texture,
although the functions produced by Arduini's work appear closely related, and
so true two-dimensionality cannot be said to have been achieved, although tex
tures which have identical fractal dimensions can be diff'erentiated using Arduini's
technique. This could be a useful direction for further work.

For the moment, however, we leave the IFS and fractal geometry, although

there are clearly avenues still to be explored, and the Fourier Transform, since its

additional computational expense does not appear to be justified, and in chapter 7

we use only very basic preprocessing in order to focus our study on the behaviour

of the neural classification engine itself.

Chapter 7

Neural Network Experimental

7.1 Experimental

7.1.1 Backpropagation Simulator

Figure 22: Non-linearity transfer function tanh[x)

A multilayer perceptron using the well-known backpropagation training algorithm

was simulated using ' C and the Gnu Project freeware compiler. At each node

123

7.1. EXPERIMENTAL 124

in the output and hidden layers, the network employed identical McCulloch-

Pitts continuously-valued neurons utilising the hyperbolic tangent nonlinearity

function whose characteristic is illustrated in figure 22. This is currently popular

for practical simulations, since this function's derivative may be expressed in

terms of itself, thus:-

tanh![x) = 1 — tanh^[x) (11)

5 0.6

/
Tria 3

0 . 2 -

200 300 400 500

Trial 1

Trial 2

Passes Through Training Set (*1000)

Figure 23: Training performance for MLP trained by backpropagation using train
ing set of 10 random input/output relations, training parameter 77=0.001. Net
work has 5 input, 3 hidden and 5,output nodes.

Our simulation ran initially on a Sun Microsystems IPC workstation with a

25 MHz Texas Instruments Sparc processor. With typically 98% CPU availability

for the task and maximum compiler optimisation, training required of the order

of fens of hours. Figures 23 and 24 show training performance for various trials

during our software testing and validation phase. In both cases the ordinate

variable represents the mean error over the whole training set, that is, the sum

over the set of the differences between expected and obtained results at the output

7.1. EXPERIMENTAL 125

> 0.8

Trial 2

Trial 1

Trial 3

100 150 200 250 300

Passes Through Training Set (*1000)

Figure 24: Training performance for ML? trained by backpropagation using train
ing set of 10 random input/output relations, training parameter 7^=0.001. Net
work has 5 input, 7 hidden and 5 output nodes.

7.1. EXPERIMENTAL 126

node for each training vector. In all trials there there are five input and five output
nodes, the two figures highhghting the effect of increasing the number of hidden
nodes from three to seven. The training input/output vectors are randomly
generated in each case.

It can be seen that the mean error evolves differently for .each trial, even

where network structure and training data are the same. This is due to the fact

that network weights are initialised to random values at the start of the training

phase, in other words, the search for a solution starts at a random position in

weight-space.

Figure 23 shows that the network is unable to learn a random training set

successfully when only three nodes are present in the hidden layer. This is as

is expected from basic information theory—since the network in question is a

feedforward network, the values at the output nodes can be expressed exclusively

in terms of those at the hidden nodes. If training had been successful, this would

have implied that for each vector in the training set, the five floating-point output

values could be inferred from three values in the hidden layer. This is tantamount

to data compression, and indeed the multilayer perceptron with backpropagation

training has been used in this application. In this case, however, the training data

is random and there are therefore no underlying trends or correlations which may

be exploited to achieve compression.

7.1.2 Single "Void" Detection using Simple R M S Pro

cessing

Description

Our next objective was to further demonstrate the validity of our backpropa

gation training implementation and we therefore chose a simple problem which

would show this clearly. In.this first experiment, each training vector consisted

of 204 floating-point values, each representing the root mean square power of a

7.1. EXPERIMENTAL 127

contiguous block of ten eight-bit pixels, these being obtained from a full horizon
tal cross-section of an image, each being 2,048 pixels in width. Compared with
presenting the raw image data, this preprocessing had the effect of constraining
the training problem to a much more manageable size.

The network comprised:-

• An output layer consisting of a single neuron, from whose output a straight

forward defect / no defect decision can be inferred. I t was anticipated that

more nodes would be added to this layer in order to make classification as

well as detection possible in future experiments.

• A hidden layer consisting of seven neurons. This was found empirically

to be the minimum number which allowed the example data to be trained

into the network. Care was taken not to overpopulate the hidden layer in

order to avoid overfitting of the training data and hence poor generalisation

performance.

• An input layer comprising 204 fixed-value nodes. Strictly these are not

neurons since there are no associated input weights or non-hnear operators,

the values being simply fixed to that of the applied input vector. Current

trends are to discount the input "layer" and to term a network such as this

a "two-layer" network.

Figure 25 shows the layout of the described network.

Training data consisted of two sets, each consisting of ten example parame

ter vectors. The ten "defect" vectors were obtained from different parts of one

particular void example. A cross-section of raw intensity data showing a typical

void with characteristic bright centre and dark fringe is shown in figure 26. The

result of RMS preprocessing on this data is shown as figure 27. The ten "non-

defect" vectors were obtained from randomly-selected portions of good material.

An example of such a cross-section after RMS processing is shown as figure 28.

7.1. EXPERIMENTAL 128

Hidden

Figure 25: Topography of the Three-Layer MLP employed in RMS-processing
experiments.

7.1. EXPERIMENTAL 129

180-

160-

140-

I 120-
•5;
><
h-

100-

Void's Bright Centre

/

Dark Fringes

6 0 - ' '

—I 1 1—
500 1000 1500

Horizontal Position

2000

Figure 26: Raw data cross-section showing typical "void" defect on sheet alu
minium surface.

40-

35 H

30 H

. 25H

I ,
Q- 20H

15H

10-

—1 1 1 —

500 1000 1500

Horizontal Position

2000

Figure 27: Raw data from figure 26 after RMS processing, reducing 2048 pixels
to 204 fioating-point power representations.

7.1. EXPERIMENTAL 130

Horizontal Position

Figure 28: As figure 27, "void" cross-section replaced with data from "good"
material.

Figure 29: First half of the training set used, consisting of 5 randomly-obtained
RMS-processed cross-sections taken across the same "void" defect.

7.1. EXPERIMENTAL 131

Figure 30: Second half of the training set used, consisting of 5 randomly-obtained
RMS-processed cross-sections taken from "good" material.

The actual "defect" and "non-defect" training sets used are shown as figures 29

and 30 respectively.

Basic batch backpropagation training was applied, with the desired result at

the output neuron set respectively to +1 and - 1 . No attempt was made at this

stage to speed up the training process by means of algorithmic refinements such

as the addition of momentum or gradient terms, or through ongoing adjustment

of the stabiUty variable rj; this was fixed at 0.001.

Results and Discussion

Figure 31 contains two traces which show the evolution of the mean error for

the two halves ,of the training set as the training process is iterated. It can be

seen that many tens of thousands of passes through the training set are required

before a mean error close to zero is achieved.

Figure 32 shows a portion of the original image alongside a representation of

7.1. EXPERIMENTAL 132

0.6n

0.5H

0)

(0
X
0)
O 0.3-

1 0.2H

o.H

0.0-
30 40 50 60

Passes Through Training Set (*1000)

Figure 31: Training performance for MLP trained by backpropagation using train
ing set consisting of two subsets each of five training examples, the first consist
ing of RMS-processed data taken from randomly-chosen cross-sections across the
same "void" (see figure 27), the second from randomly-chosen "good" material
(figure 28). Training parameter 7^=0.001. Network has 204 input, 7 hidden and
1 output node(s). The two training subsets corresponding to defect/non-defect
data were associated with values of +1 and -1 respectively at the output node.

7.1. EXPERIMENTAL 133

morevoiis

ijsmissj _J Soarg sslect Export: Ott Horizjntal j Vertical

Neural Analysis View

-J SOBKesalect Export: loft Horfesntal Vertical

Figure 32: Neural network analysis of fresh data after training on samples from
void in bottom left

the trained network's corresponding line-by-line analysis. To obtain this, each

horizontal line of the image was preprocessed using the RMS operator in exactly

the same way as the training set data. The power values thus produced were

then assigned to the input layer nodes and propagated forward using the weights

found by training such that a floating-point result is obtained at the single output

neuron. The output values, that is, the network's defect / no-defect decisions on

each horizontal strip are represented here as a continuous line of colour in the

"Neural Analysis View" window, laterally adjacent to the appropriate section of

image. Although the output node's tanh(x) non-linearity function permits in

theory a continuous range of decision values from -1 (no defect) to +1 (defect), in

this case all output values were found to he within 1% of one of these extremes.

All the results have therefore been represented with one of only two colours—

white corresponds to a "no defect" decision, grey to a "defect" decision.

The "morevoids" window shows a 512 pixel deep by 512 wide section taken

from the 512 by 2,048 pixel original, and is therefore one quarter of its size. In

order to produce the results shown, the network has therefore included unshown

7.1. EXPERIMENTAL 134

data in its processing. However, the unshown portions of the image contain no
significant features and it is therefore safe to assume that the network's decision
making is oriented around the features visible in figure 32.

The printed reproduction of the original image section shows false contour

ing, these are the sharp contrast boundaries responsible for the "mottled" effect

evident in the background. The contours are false in the sense that they are

not really present in the original data—they are artefacts of the laser printing

process used, which has only 16 print densities available with which to represent

an 8-bit greyscale image. Additionally, the image has been contrast-stretched in

order to make the voids easier to see. This makes the false contouring effect more

pronounced.

The network's analysis shows a "defect" decision over a narrow band corre

sponding to the position of the void used in the training set, with a "no defect"

decision elsewhere.

It is evident that, although the training phase has allowed the network to

successfully learn the required response for each vector in the training set, the

performance on fresh data is unsatisfactory, since the collection of rather marked

voids in the top right of the image section has been labelled "no defect". The

network has therefore largely failed to extract any information from the training

set which would allow it to solve the problem more generally. However, a limited

amount of generalisation has taken place, since the network has successfully la

belled cross-sections from the training void in the bottom left, which were not in

the training set, as being defective.

Since each element of the input vector corresponds to the power level at a

specific horizontal position in the image, it seems reasonable to conclude that the

trained network has simply learnt to identify defects using a simple rule based

on position—in effect, that significant RMS power in a specific location should

give rise to a "defect" classification, and that high power elsewhere, for example

that caused by the interface between the bright material and its carrier, should

be disregarded.

7.1. EXPERIMENTAL 135

7.1.3 Verifying the "Position-Sensitive" Hypothesis

In order to verify our hypothesis we sought to repeat the results using a different

training set, network topography remaining unchanged.

Figure 33: Indeterminate results when attempting to confirm the "position-
sensitive" hypothesis

Figure 34: Close-up of voids cluster, those used in training set labelled A and B.

Figure 33 shows two voids from figure 32 represented as a three-dimensional

surface plot, the Z variable corresponding to intensity. Figure 34 shows a close-up

of the voids cluster with those in question labelled A and B to enable identifica

tion. Note that these two diagrams are inversions of each other about a central

7.1. EXPERIMENTAL 136

horizontal mirror line, since, due to different plotting conventions in the two
graphical environments, the points nearest the origin in figures 33 and 34 are in
the bottom left and top left respectively.

The strip of data in figure 33 at the maximum limit of the "X Position"

axis represents the verdict of the neural network corresponding to the entire

2,048-pixel horizontal row of data at that Y Position, preprocessed by the RMS

operator as before. This gives a much clearer visualisation of the original data

and results than is possible using a laser-printed greyscale representation. For

viewing convenience, the "defect" and "non-defect" results are represented on the

Z-axis as values of 160 and 140 respectively.

In this experiment a training set with five examples each of "defect" and

"non-defect" data cross-sections was again used, in this case the former being

randomly-chosen slices across the defect labelled A in figure 33, the latter being

data obtained at random from elsewhere in the image.

I t can be seen that the network correctly classifies the entire extent of void

A as being defective, whilst the central portion of void B is labelled as non-

defective. This lends further credence to our hypothesis that the network is simply

learning to regard certain horizontal positions in the image as being particularly

significant, however, the result is not conclusive since the network fails to correctly

classify the material inbetween voids A and B as being non-defective.

Our interpretation of this eventuality was that the the network's poor gen

eralisation performance might be attributable to detection by the network of

other, incidental trends in the training data, causing it to respond accurately

to training data using some alternative means to distinguish "defect" data from

"non-defect" data, that is, without detecting the high RMS powers due to the

voids as expected.

We sought to test this extended hypothesis by repeating the experiment, all

conditions and conventions being maintained constant, with the exception that

the "non-defect" training set data was in this case obtained from cross-sections

inbetween the voids A and B. The new results are shown as figure 35.

7.1. EXPERIMENTAL 137

Figure 35: "Position-sensitive" experiment repeated, "non-defect" data obtained
from cross-sections inbetween voids A and B.

It can be seen that the network now correctly classifies the central portion of

void A as being defective and the inbetween region as non-defective. In keeping

with our "position-sensitive" hypothesis, void B is also labelled as non-defective,

and we attribute this to the fact that no training data indicated a defect at a

horizontally-coincident position to this feature.

As a final step towards verification, we further iterated the experiment, in

this new case the "defect" training data was obtained from random cross-sections

across both voids A and B, "non-defect" training data from the inbetween region

and other conditions remaining constant. Results are shown as figure 36.

It can be seen that the network now correctly classifies both voids as well as

the "non-defect" inbetween material. However, other voids present in the image

are still not reliably detected, and we are therefore confident in our view that in

this experiment the network is learning to recognise positional significance rather

than any intrinsic properties of the voids themselves.

7.1. EXPERIMENTAL 138

Figure 36: "Position-sensitive" experiment repeated, "defect" data obtained from
both voids A and B.

7.1.4 Overcoming Position-Sensitivity using a Histogram

Operator

The "Position-Sensitive" effect described, that is, the tendency of the network

to detect only defects in specific locations would clearly be an unwanted feature

in an automatic inspection system, and we therefore next sought to investigate

techniques which might potentially remove this. It appeared that one straight

forward method would be to apply a histogram operator to the RMS-processed

data used in previous experiments.

Figures 37 and 38 illustrate the results when a histogram operator is used to

process the RMS data shown in figures 29 and 30 respectively. The RMS power

is now represented on the abscissa, with the number of instances of that power,

the population, being represented on the vertical axis. The histogrammed data is

discretised such that the number of data values is unchanged after the operation,

allowing a network structure to be used identical to that employed in the earlier

7.1. EXPERIMENTAL 139

Figure 37: Data from figure 29, preprocessed by a histogram operator - defect
present.

Figure 38: Data from figure 30, preprocessed by a histogram operator - defect
absent.

7.1. EXPERIMENTAL 140

experiments, that is, with 204, 7 and 1 node(s) in the "input", hidden and output
layer respectively. The discretisation process is linear, that is, all histogram bins
are equal in extent. The histogram process has been hard-limited at an RMS
power of 10 units, and the few instances of RMS powers higher than this value
have been incorporated into the "highest power" histogram bin, since it was felt
that the population would otherwise be mostly confined to a small number of low-
valued bins, thus reducing resolution over what is intuitively the most significant
portion of the data.

Figure 39: Network results using histogram data from figures 37 and 38 as training
set.

Figure 39 shows the results of the network's analysis of the image when data

from figures 37 and 38 is used to train the network. Again, training is successful,

that is, the mean error over the training set is reduced to a very small amount

attributable to floating-point inaccuracies in the implementation. In order to

obtain the analysis shown, each line of image data is preprocessed in exactly the

same way as that in the training set, that is, firstly with the RMS operator as

before and secondly with the described histogram operator.

7.1. EXPERIMENTAL 141

It can be seen that the network output is now completely indeterminate and we
can therefore conclude that we have failed to eliminate the "position-sensitive"
effect using the histogram-processing technique. Furthermore, it is clear that
although the network has identified some feature or trend which enables it to
distinguish data in the "defect" half of the training set from its counterparts in
the "non-defect" half-set, as is indicated by the low mean error after training,
the network's failure to categorise accurately the defects illustrated in figure 39
in a more general way shows that the scheme identified by the network is based
on something other than that desired, namely the presence or absence of voids.

An anecdotal item is a useful analogical reference here. Rumour has it that

researchers working on a US Military project had attempted to train a neural

network to differentiate, with the aid of suitable preprocessing, images containing

heavy artillery from those of similar scenes with no such equipment present. The

system successfully learnt to differentiate the images in the training set, but, as

with the experiment in view, was far from successful when analysing images which

had not previously been "seen" by the network. Further investigation revealed

that, by coincidence, pictures with artillery had all been acquired on sunny days,

whereas those without were obtained on cloudy days. In fact the network had

learnt to differentiate the weather conditions.

I t would appear that in that case, as is the case here, careful conditioning of

the training data is vital in order to ensure that the network learns the desired

"rule" rather than some other parasitic rule which may be present in the data

quite by accident.

7.1.5 Overcoming Position-Sensitivity using a Synthetic

Training Set

Training Set Description

We next tried to overcome the described "Position-Sensitive" effect and to further

understand the neural network behaviour using an alternative technique, which

7.1. EXPERIMENTAL 142

Figure 40: Synthetic void experiment: first half of training set, corresponding to
presence of defect

involved the use of a synthetic training set. Strictly speaking only half of the set,

the "defect" half, has been synthetically generated, and this is shown in figure

40. Here only one strip of data has been directly obtained from the image, that

is, the strip nearest to the origin and in fact this is a cross-section through the

void previously labelled as ^ in figure 34. The other strips in this half set have

been obtained by subtracting the RMS powers of an image strip not containing

a defect from the origin strip, leaving RMS power due exclusively to the void,

plus some noise. This data vector is then positionally rotated by various amounts

and summed with the data previously subtracted in order to obtain the vectors

shown, which as a result have the RMS peak due to the void present in various

positions.

Figure 41 shows the second half of the training set, that is, that which corre

sponds to "no defect". As in previous experiments, these vectors were randomly

obtained from elsewhere in the original image.

7.1. EXPERIMENTAL 143

Figure 41: Synthetic void experiment: second half of training set, corresponding
to absence of defect

As previously, training with this set was successful and a near-zero mean error

ovei: the set was achieved.

Improved Network Result Visualisation

In order to conveniently visualise the response of the network to each of the

complete collection of horizontal shces through the original image, we sought an

operator for each slice which would yield a single floating-point value giving a

good indication of whether a void defect was present at some point in that slice.

Initially we attempted unsuccessfully to use various operators for this purpose

including the standard deviation (figure 42) and maximum consecutive pixels with

no turning point over both entire horizontal slices and over on-process material

slices only (figures 43 and 44 respectively. Eventually a simple peak-to-peak value

was found to be most successful, calculated over on-process material only in order

to prevent the peak-to-peak power due to voids being swamped by that due to

7.1. EXPERIMENTAL 144

29.4-1

iS 29.0H

•5 28.8

- ~ \ 1 1 —

100 200 300

Vertical Position

400 500

Figure 42: Standard deviation of horizontal cross-sections taken from
"morevoids" with respect to vertical position in image

the on/off-process contrast boundary.

We were therefore able to show graphically in figure 45 the presence of defects

over the whole image together with the corresponding neural network analysis

after training using the synthetic training set.

Analysis of Neural Network Weights

In the past, attempts have been made to understand the rule that has been

inferred by neural networks such as the one in view by examination of the weights

after training. For example, in [39], Feng, Houkes et al. examined in detail the

weights of a multi-layer perceptron which had learnt to distinguish short and fat

bars in an image from long and thin examples. However, the trained network's

reasoning process is in general notoriously resistant to analysis.

Nonetheless, we decided to examine the network's weight values after training

had been successfully completed. Figure 46 contains 7 graphs which each show

7.1. EXPERIMENTAL 145

^ 20
c
o
Q.

i 18

200 300

Vertical Position

500

Figure 43: Maximum number of consecutive pixels with no turning point in a
ful l 2048-pixel horizontal cross-section taken from "morevoids", with respect to
vertical position in image

7.1. EXPERIMENTAL 146

Vertical Position

Figure 44: Maximum number of consecutive pixels w i t h no turning point, in a
horizontal cross-section of on-process material only taken f rom "morevoids", w i th
respect to vertical position in image

7.1. EXPERIMENTAL 147

60-

3
Q .

o

I
t

50-

40 H

30 H

CO
0)

CL

(0
CD

20-

lOH

Intensity Range

Defect

No Defect

Network Output

100 200
—I—
300 400 500 600

Vertical Position

Figure 45: Peak-to-peak intensity range over horizontal cross-sections f rom
"morevoids" w i t h respect to vertical position in image, showing corresponding
neural network output

7.1. EXPERIMENTAL 148

Hidden node 0 Hidden node 1

Input Uyor Ntxte

Hidden node 2

I
I
s
1

Hidden node 3

Hidden node -̂
Irput Layer Noda

Hidden node 5

Hidden node 6 Output node
Figure 46: Network weights after successful training on "synthetic void" sets
(figures 40 and 41).

7.1. EXPERIMENTAL 149

the values of all 204 input weights which are applied to data f rom the input layer
before summing and non-Hnearising at the appropriate hidden node. The final
bar graph in the bo t tom right shows the weights applied to hidden node values
before summing and non-linearising at the output node.

I f one bears in mind that a positive value at the output node has been defined

to represent a "defect" decision, and vice-versa, i t can be seen that the network's

decision-making methodology is surprisingly straightforward. The input weights

to hidden nodes 4 and 6 have evolved such that they take on large positive values

when the input node w i t h which they are associated is positionally coincident

w i t h one of the voids in the synthetic "defect" half of the training set. The

weights associated w i t h the links between hidden nodes 4, 6 and the output node

are also large and positive, and thus the mechanism by which a large RMS power

at one of the significant positions brings about a positive value at the output

node becomes evident.

I t should also be noted that the input weights to node 3 have adopted a similar

although inverted pattern, however, the corresponding hidden to output weight

is negative and so the net contribution is the same, that is, high RMS powers in

the synthetic defect positions w i l l tend to cause a positive "defect" result at the

output node.

Hidden nodes 3, 4 and 6 have input weight patterns which also show peaks

having the effect of desensitising the network to high RMS powers, These are

peaks in the opposite sense to those positionally coincident w i th the synthetic

voids, that is, for hidden nodes 4 and 6 they are negative-going, whereas for hidden

node 3 they are positive-going. For example, such peaks of non-sensitivity occur

coincident w i t h the high power values which correspond to the off/on-process

boundary. This is logical, since such boundaries occur in both halves of the

t raining set.

The input weight patterns at hidden nodes 0, 1, 2 and 5 do not at first sight

have any discernable correlation either wi th the training vectors or w i t h each

other. However, i t can be seen that the corresponding hidden to output weights

7.2. CONCLUSIONS 150

are close to zero.

The neural network output shown in figure 45 incorrectly identifies much of

the image, which is in fact defect-free, as being defective. We attribute this to

the fact that the "defect" vectors in the training set (figure 40) have a higher

average background RMS power level than those in the "non-defect" half of the

set (figure 41). This has resulted in a DC bias in the input weights for nodes 3,

4 and 6. Again, the network's decision-making methodology has latched onto a

feature present purely by coincidence as well as the one desired.

Figure 47: Subsampled surface representation of complete 2048 by 512 pixel
linescanned image

7.2 Conclusions

Progress was made towards understanding the behaviour of the neural networks

employed and towards achieving a configuration which could accurately classify

the defects in view. The most important conclusion to draw from these exper

iments is that both the conditioning of the training set and the format of the

7.2. CONCLUSIONS 151

too 150
lr>pul U y w Noda

Hidden node 0 Hidden node 1

Input Layer ̂ 4ode

Hidden node 2
Input Layer Node

Hidden node 3

Input Uyer Noda

Hidden node 4 Hidden node 5

Hidden node 6
hSdden Layer Node

Output node
Figure 48: Second t r ia l : network weights after successful training on "synthetic
void" sets (figures 40 and 41).

7.2. CONCLUSIONS 152

data preprocessing is very important to network performance. In particular, the
network is likely to make use of any trend of data present in the training set which
w i l l allow i t to distinguish between the two halves of the set, and the set must
therefore be carefully formulated to ensure that only the desired trend is present.
Careful choice of preprocessing wi l l make this process more straightforward.

Each of the experiments presented here required a significant amount of pro

cessing t ime in the network training phase, and i t was felt that this was a serious

inhibi t ing factor to future progress. We therefore turned our attention to the

possibility of speeding up the training operation in chapter 8.

Chapter 8

Algorithmic Development

8.1 Introduction

8.1.1 Parallel Processing Speedup

I t is widely recognised that computational efficiency can be significantly improved

through the use of parallel processing. Exploitation of parallel techniques has al

lowed the development of more aff'ordable supercomputers, since cost per MFlop-*^

is significantly lower for an array or network of medium-power processors than

for a single, very high performance processor. The computational task under

consideration must, however, have elements which are amenable to parallelisa-

t ion. I n many cases these are present at the machine code level, that is, at the

point where the task has been translated into a series of instructions which can

be directly interpreted by the microprocessor. Most members of this instruction

set w i l l incorporate identical subtasks, such as instruction fetch, execution and

effective address calculation. I f each such subtask is handled by a distinct unit of

hardware w i th in the processor, then many instructions can in effect be handled

at once. This is the basis of pipelining.

The computational task may also be parallelised at a higher level in order to

achieve speed-up. I n this case, however, the programmer needs to be concerned

directly w i t h determining which sub-elements of the task may be run concur

rently. For example, i f subtask B uses as ini t ia l data the results of subtask A,

standard measure of floating-point operation performance

153

8.1. INTRODUCTION 154

then simultaneous execution w i l l not be possible. In contrast, pipehning schemes
in popular microprocessors operate transparently as far as the programmer is
concerned.

Our approach is to include high-level paralleUsation in our implementation of

backpropagation training. The pla t form comprises many workstations which are

based on pipeHned microprocessors, and so the two schemes described effectively

operate simultaneously in this case.

8.1.2 Previous Parallelisation Work

We should next like to review a cross-section of the existing literature on software

paralleUsation in order to illustrate the context and relevance of our own work.

Researchers have previously sought to parallelise a wide range of applications;

the most straightforward of these to work wi th are tasks which involve an algo

r i t h m iterated many times over different data. For example, Miiller-Plathe's work

i n [20] involved a molecular dynamics algorithm, here the same dynamic mod

elling equations are operated for each molecule in the system. The simplest way

to parallelise such a system is to divide the molecules among processors, although

inter-process communication wi l l be required to compute inter-molecule interac

tions. Alternatively, algorithms which have less inherent parallelism may stil l be

approached, although this is typically more demanding, for example, Rothberg

et al. in [22] sought to improve the performance of sparse matr ix factorisation

on a multi-processor workstation - here, though, the parallelisation is organised

transparently by the operating system, and the optimisation work was oriented

around implementing the factorisation algorithm so as to maximise the number of

"hits" of the involved Silicon Graphics machine's spHt-level memory cache. This

constitutes custom-hardware programming.

The issue of coarse-grained versus fine-grained parallelisation appears to be

very important . Tightly-coupled systems, for example, the multiple Intel 80386

processor system described by Horiguchi et al. in [46] can handle both types of

8.1. INTRODUCTION 155

parallelism, although development of such systems is rather specialised. A cor
responding choice has to be made between message passing and shared memory
modes of inter-process communication. Tightly-coupled systems, typically mul t i
ple processors sharing the same memory bus communicate most eff'ectively using
shared memory techniques; here multiple processors access information which
stays in a fixed location. Where processors have distinct memory busses, i t is
usually necessary to employ the message passing technique; here information is
read f rom one processor's memory, wri t ten over some kind of communications
channel and thence wri t ten to the other processor's memory. I t should be men
tioned, however, that even w i t h tightly-coupled processors the message passing
model is sometimes used, since this makes i t easier to synchronise the commu
nicating processes. This may be of particular importance where the volume of
information to be communicated is small, since shared memory systems wi l l in
any case require some kind of additional message passing in order to achieve this
synchronisation, unless the shared memory segment is to be polled.

The coarseness or fineness of parallelisation grains is determined by the volume

of interprocess communication required and the quantity of resources required to

conduct each task unit , as we have discussed in chapter 3.

There is considerable interest in "network compilers" which automatically

translate a sequential program into a set of distributed programs and control

their execution; Shi and Blathras in [50] make use of "Linda", one of a family

of such compilers presently available in order to achieve parallel implementa

tions of fractal plot t ing and hquid crystal dynamics simulation. Research has

also focussed on the merits of one such compiler w i th respect to another, and on

techniques for getting the best performance. However, our view is that any tech

nique which takes away f rom the implementor control over the exact nature of the

parallel implementation can only yield solutions which are sub-optimal when com

pared w i t h those custom-designed wi th a particular appUcation in mind. There

is naturally also interest in techniques for designing such compilers. King in [47

goes one stage further and proposes various operating system design techniques

8.1. INTRODUCTION 156

for a multiprocessor architecture. He makes an interesting distinction between
"lightweight", that is, low-overhead multi-processing, and more "heavyweight"
systems such as a Unix scheduler. Clearly these are relative terms, in the con
text of more loosely-coupled multiprocessor systems both of the arrangements
described by King would be considered "Hghtweight". King emphasises the im
portance of conformance w i t h A P P standards to encourage the uptake of such
systems; those mentioned include IEEE Posix P1003.1, which provides a defi
n i t ion of operating system services and C language binding, P1003.4, realtime
extensions and P1003.8, networking interfaces.

The choice between realtime and non-realtime operating systems is significant

for implementors of distributed applications, and Williams [48] gives a useful

consideration of the relevant issues.

A t the time of wr i t ing , most Unix kernels in popular use such as SunOs 4.2

are non-realtime. This means that executing processes are not pre-emptable by

realtime interrupts, in other words, once a particular process starts to execute, i t

cannot be stopped in favour of another irrespective of priori ty unt i l an interrupt

associated with that process occurs, typically a memory page wait or end of time

slice.

Realtime kernels, on the other hand, generally have areas where a higher-

pr ior i ty process can pre-empt a running process without endangering data struc

tures. I n the most modern kernels, there are few areas which cannot be pre

empted.

The disadvantage of non-realtime Unix systems is that non-pre-emptability

makes i t impossible to calculate worst-case completion times for any task. I n other

words, the system is non-deterministic. The nature of Ethernet CSMA/CD^ com

munications makes the situation more chaotic since this system cannot guarantee

a maximum transmission time for any message.

I t would seem that the use of realtime kernels together w i th a deterministic

^Application Programming Interface
^Collision-sensing multiple access/carrier detect

8.1. INTRODUCTION 157

networking protocol such as token ring is required for a performance-critical dis
t r ibuted application which requires guaranteed worst-case completion times for
certain tasks.

The use of workstation clusters for the implementation of distributed paral

lel applications is not in itself a new idea. Magee et al. in [18] report on their

work using the travelling salesman problem wi th a simple "supervisor/worker"

paradigm on such a cluster. Here loads are balanced in the sense that a "worker"

received a new task as soon as i t has finished the old one, thus all nodes are in

theory permanently occupied. Magee et al. do give a cursory consideration of

parallel speed-up efficiency, although this is not held to be of particular impor

tance since the resource being used is effectively "free". Data transmission times

are held to be negligible in this consideration, however, which is in our view rather

unrealistic.

Griebel et al. in [21] make use of a workstation cluster in order to speed

up the sparse-grid preconditioning or colution of partial differential equations.

Again a simple "supervisor/worker" arrangement is used, w i th one node con

trol l ing the allocation of tasks and collation of all results. The simple structure

is deemed suitable because the computational task is large compared wi th the

amount of communication required for this application. Communications are

therefore achieved very straightforwardly using shared NFS files although this

technique is rather inefficient, as we have discussed in chapter 3. The authors

suggest that a "sub-mastering" system might be of use for finer-grained tasks.

Cap et al. in [19] give the most detailed consideration we have found of

the use of workstation clusters for parallel distributed applications. The authors

suggest that in general, the programming of parallel architectures is diff icult , but

the use of parallel workstations introduces the extra difficulties of heterogeneity

and a constantly-changing load situation. Much of their report concentrates on

load-balancing - the authors note that there is no obvious way of determining the

extent to which a CPU wi l l be "slowed" by a subtask of a particular size, since

this is a funct ion of the capabihty of the CPU itself. Therefore the ini t ia l loading

8.1. INTRODUCTION 158

strategy is likely to be sub-optimal - subsequent balancing strategies may help.

The authors implement a heat conduction application and conclude that for

workstations numbering up to 20, the speed-up is "near linear". However, in

our view this is due to a combination of subUnear effects, caused by the over

head of the parallehsation process such as communication time, for example,

and superlinear effects, for example due to the greater total quantity of memory

available in the system as the number of nodes is increased. For a greater num

ber than 30 workstations, speed-up is severely degraded due to "saturation" of

the communications bandwidth - C S M A / C D networks are highly inefficient for

close-to-capacity loads. However, the exact number of workstations at which this

happens is clearly dependent on the volume of communication involved.

8.1.3 Motivation for This Work

The work which we w i l l now describe focusses on the speed-up of the backpropaga

t ion training algorithm, which, as we have already concluded, is computationally-

intensive to the point of hindering further developments in the understanding of

practical neural network systems. Since there is no single algorithm which is i t

erated independently on many data objects, we have of necessity introduced an

"indirect" means of parallelisation, which is the introduction of multiple search

"workers". Al though a considerable speed-up is achieved i t is clear that even

w i t h a completely efficient implementation, two search workers wi l l not double

the search speed. Therefore i t is meaningless to discuss the time to solution as

being a metric of implementation efficiency; for this reason we present our results

in terms of "normalised iterations".

Our implementation uses a heterogenous workstation cluster. We have made

our implementation as efficient as possible in terms of communications according

to our findings i n chapter 3. We have designed our application using the low

est practicable level of network programming since we believe that efficiency is

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 159

lost through the use of the network "compilers" adopted by many of our con
temporaries. The system produced through a hybrid of ideas in neural network
applications, algorithms and implementation is novel and has highly-desirable
properties.

8.2 Distributed Processing - Backpropagation

Training

8.2.1 Basis for Parallelisation

I n section 7.1.2 we detail the training of a multi-layer perceptron network by

means of backpropagation such that "voids" in an image taken f rom sheet alu

min ium can be identified f rom horizontal slices through the pixel data which are

then preprocessed using a histogram operator.

This training process can be regarded as being essentially a search problem,

that is, a search through the neural weight space, which consists of a continuum

of positions, the co-ordinates of each being given by the corresponding complete

set of network weights. I t is helpful to envisage this space as a multi-dimensional

surface, each point thereon having an associated /lei^/ii representing the network's

performance at that point, this being expressed in terms of mean error, that

is, the mean difference between desired and observed behaviour at the output

node when the training input vectors are applied. The search goal is therefore

the surface position corresponding to a weight vector yielding a minimum mean

error, this minimum ideally being zero. I t can be shown [26] that training by basic

backpropagation is analogous to a deterministic gradient descent search strategy.

Note that section 7.1.1 describes training sessions which evolve differently for

each t r ia l , even when the search problem and parameters are the same. However,

this is due to the fact that network weights are initialised to small random values

each time, and thus in each case searching begins f rom a different position in the

weight space.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 160

The basic backpropagation training procedure is highly processor-intensive,
and our original single-node implementation took of the order of tens of hours
to arrive at a weight vector w i t h an acceptably low mean error performance, as
described in section 7.1.1. I n order for the technique to be a useful tool in deahng
w i t h the types of vision problems there outlined, i t therefore appeared that the
enormous and lengthy nature of the processing task required for retraining would
present just as great an obstacle to exploitation in practical systems, as would
the difficulties in formulating schemes for preprocessing the data and determining
the network topology.

We therefore sought to speed-up the training process, and i t is evident that

the possible approaches are twofold:-

• The search algorithm itself can be made more efficient. For example, the ad

di t ion of a momentum term can give a substantial upgrade in performance,

since the search w i l l traverse more quickly through regions of the weight

space which have a relatively steep gradient, yet sufficiently slowly through

shallow regions so as not to "overshoot" minima. Simulated annealing is

another example of this type of approach, although here the emphasis is on

preventing the search f rom being trapped in local minima.

• Mult ip le searches can be performed in parallel. In other words, many work

ers would "wander" through the same weight space in search of the prob

lem's solution, that is, the global optimum.

Progress in speeding up neural network training algorithms is regularly re

ported in the literature, and i t is certainly the case that a great deal of sophisti

cation can be added to single-search algorithms when compared wi th those used

in chapter 7. However, frequently such improvements make use of particular fea

tures of the problem in view, and there is thus a price to be paid in loss of general

applicability. The driving force behind this thesis, however, has been to develop

views of the best direction for the solution of future vision problems in general.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 161

whilst maintaining an awareness of the constraints imposed by the equipment
which can realistically be expected to be available. We have therefore chosen to
focus on the latter of the two, that is, the multiple-search approach.

I t appeared that an efficient speed-up might well be obtained through use of

mult iple search workers, providing that the overhead of coordinating the actions

of each d id not outweigh the benefit thereby accruing, and that a parallel scheme

could make use of a greater total computing resource than the single method. One

should of course bear in mind that in many cases problems yield faster results

when a parallel search is applied, even for single-processor implementations - this

is the basis for the family of search strategies known as genetic algorithms.

8.2.2 Specification

We sought to investigate the practical speed-up possibilities by repeating the

single "void" training procedure described in section 7.1.2, this time making use

of "spare" CPU time on many remote workstations.

A t the outset of this stage of practical work i t appeared that the following

features would be required f rom the software implementation:-

• The entire system should be controllable f rom a single workstation node,

that is, wi thout any requirement for the user to communicate manually wi th

worker nodes, since the process of starting individual slave apphcations wi l l

be very laborious and time-consuming i f there are many such nodes.

• Tasks running on slave nodes should have a low scheduling priority assigned

so as to minimise performance impact on other users. In other words,

only CPU time which would otherwise be wasted should be used by the

application.

• Inter-node communication should use a relatively low-level*, low-overhead

protocol such as TCP, so as to minimise the application's effect on network

* Low-level in comparison with remote procedure calls, for example

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 162

load.

• Memory allocation should be dynamic, that is, memory will only be re

quested from the system when required and released as soon as it is no

longer needed, in order to minimise memory contention with other users'

applications.

• Overall design of software should be as robust and fault-tolerant as possible.

This is of particular importance, for example, since many ^instantiations of

the slave program will run in parallel, thereby multiplying the chances of a

single failure.

8.2.3 Implementation Details

Hardware Description

The distributed application was intended to make use of workstations adminis

tered by the University of Durham Computing Service and geographically dis

tributed around the University of Durham Science Site. Physical interconnection

was by lOMB/s Ethernet throughout, although in some places this protocol is

operated over a fibre-optic backbone rather than the more usual 50 ohm coaxial

cable. The network connecting the workstations in question is however nonlinear

in that there are various intervening bridge/routers which are designed to isolate

intra-departmental traffic. Although this project uses exclusively the TCP/IP

suite of protocols for inter-node communication, the physical network layer is in

fact shared between this and several other protocols such as Novell Netware and

Applet alk.

The workstations as a group are heterogenous in architecture, consisting

mostly of model 730/750 Hewlett-Packard and Sun Microsystems IPC machines,

although there are a variety of other, more powerful HP and Sun systems which

are used for filesystem service and time-shared processing.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 163

Automatic Start-up

The automatic start-up facility was coded as a separate, virtually stand-alone

piece of software. The design object of this program was to relieve the user of the

need to manually log-in to remote workstations and start the slave appHcation

on each.

The start-up application makes use of the Unix rsh^ protocol, as this is sup

ported by all of the slave nodes in question. This consists of rshd, the remote shell

daemon or server process which runs on each machine as part of the operating

system. Rshd is invoked indirectly by inet(f when a network message is received

from the calling or client application rsh. This message gives details of the calling

UID^, calling hostname and of the command or program that is being requested

to run on the remote machine. On this basis rshd performs authentication, and

if this is successful invokes a new process as required.

Authentication provided the first practical obstacle to coding. The main pur

pose of the remote shell protocol is to allow users to remotely run programs on

machines on which they also have accounts - the authentication mechanism al

lows the user to specify which foreign host/UID combinations he/she owns and

which should therefore be "trusted", that is, allowed to run tasks on the local

host with that user's normal access rights and privileges. There is no facility for

password transmission under rsh and thus it is essential that the authentication

mechanism be made to work.

The problem lies in the nature of the files which specify trusted host/UID

combinations. For both Hewlett-Packard and Sun hosts these are two-fold:-

• A file with system-wide applicability /etc/hosts. This lists remote hosts on

which all matching UIDs should be trusted. Typically all such hosts are

under a single administrative control.

• A file specific to a single user .rhosts. This resides in that user's home

^Remote shell
"internet services daemon
^User identifier

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 164

directory and may specify any trusted host/UID combination for that user,
even where the host is not under the same administrative control.

Originally it was envisaged that a Sun workstation capella situated physically

and administratively in our Engineering department laboratory would be used to

automatically start slave processes on a variety of remote workstations which are

in several different physical locations as described, but all under the administra

tive control of the University Computer Centre. Since our own workstation is not

implicitly trusted by any of these machines it was necessary to make use of the

.rhosts mechanism to allow remote shell calls to them. This caused difficulties

since the authentication implementation details for Sun and HP machines differ

shghtly in that there are slightly different expected formats for .rhosts. Unfortu

nately, all the slave workstations share a single network filesystem and thus it is

not possible to have a separate file for each architecture.

In practice it was found that the easiest solution was simply to use a Computer

Centre workstation to run the automatic start-up, since each of these imphcitly

trusts all others and there is thus no need for any .rhosts entries.

Rsh is a public protocol, and it would therefore in theory be quite straight

forward to design the auto-start application such that it would interact directly

with the remote rshd. However, software re-use.is a key method of saving design

effort and so it was considered that a faster time to solution would be obtained

through use of the rsh client, which is normally invoked on the command line.

In general a remote shell command will have a latency of several seconds, this

being the time required for the remote inetd to service the request, invoke rshd

which performs authentication and starts the process appropriately, redirecting

output back to the originating command. When used as intended this is seldom

an inconvenience, however, since the program in view is required to perform many

such calls, one per slave host, the latency for each when summed over all hosts

would be quite significant. Another consideration is that the most convenient

method for a C program to interface with a command-hne apphcation is by

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 165

means of one of the execnn() family of calls which transform the calling core
image to that of the desired application. However, there can be no return from a
successful execnn() call since the calling core image is lost, and it would therefore
be impossible to call rsh serially as described.

Both of these difficulties, these being the set-up latency and core image de

struction mean that the extra complication involved in designing the automatic

start facility as a multi-threaded implementation is warranted in this case. The

coded application starts as a single thread which reads a configuration file giving

details of hostnames and corresponding executable pathnames. For each such

host/executable combination a child process is spawned, that is, the current core

image is completely rephcated as a separate thread. Each child then performs

an execnn() to call rsh with the appropriate parameters and terminates after

successful completion.

A specific executable pathname is specified host-by-host in the configuration

file since varying executable formats are required by the different host architec

tures. Also, the child process' realtime interval timer is set to interrupt after 60

seconds as a safety device - if for some reason the rsh call hangs then the child

will in any event terminate after this time, thus ensuring that the system process

table is not littered with defunct entries.

Slave Processing

The slave processing application is a second, distinct piece of software. The same

slave source code is compiled for both Sun and HP architectures, the correspond

ing executable being stored in a separate file for each - each host being directed

to run the appropriate binary by the automatic start system as described.

Each instantiation of the slave program communicates with the master appU-

cation only - as implemented there is no inter-slave consultation, and a functional

diagram of the whole system might therefore resemble a "star-shape". As is sug

gested by the master/slave analogy, each slave instantiation's activities are com

manded by the master - the default slave status is idle and awaiting instructions.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 166

A command from the master application will typically consist of information
which is processed by the slave, the results are then communicated back to the
master before the slave returns to its idle state.

Master/slave communication takes place by means of a TCP® socket hnk

which is connection-oriented, that is, the link must be explicitly established at

the start of processing. TCP performs error-checking, and there is therefore no

need for the application to handle this since the link is rehable and sequenced.

After being initiated by the automatic start-up system, each slave applica

tion opens a fixed-address socket and listens for a connection from the master.

Thereafter each application can treat the connection much like an ordinary file

descriptor. In order to ensure maximum reliability, a new process is spawned by

the slave to deal with each connection request, and thus each slave could in theory

communicate with and perform processing requests for many masters simultane

ously, although in practice there is only ever one such. However, this system is

preferable in order to ensure that the slave is always ready to reset and restart

when requested to do so by the master - there can be no question of the slave

refusing to connect in the event that it is "busy" - for example if the master with

which it is communicating fails and does not terminate cleanly for some reason.

The slave application's first process resets a realtime interval timer to in

terrupt after ten minutes, each time a connection is received from a potential

master. When this interrupt is received, the original process will immediately

terminate, but leaving intact any children that have been spawned and which

are still communicating with a master. The rationale behind this is to allow a

certain amount of time in which "teething problems" in starting the distributed

processing system can be dealt with, for example, machines which start their

slave application unexpectedly slowly such that connection is refused when the

master is first invoked - in this case the user can choose to abort the master

application and attempt to re-issue connection requests when all of the slaves

are ready. Slave child processes, which do the actual application processing, will

'Transport control protocol

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 167

terminate automatically as soon as the hnk to the master is lost, and there is
therefore no desirability in setting an interval timer. By these means, the slave
applications will always terminate cleanly after use without the need for a user
to log in to each individual machine and manually kill them.

Each slave has a complete representation of the neural network, that is, neu

rons, training set with expected output values and weight values. Each has an

implementation of the backpropagation training algorithm and is therefore capa

ble, given a starting weight vector' of finding a new weight vector which is closer

to the solution, that is, a vector for which the mean error is reduced.

The cycle of master/slave interaction is as follows:-

1. The master downloads a copy of the training set and a weight vector to the

slave.

2. The slave performs backpropagation training for a predetermined period,

after which it calculates the mean error for the new weight vector which

has been determined as a result, and this error value is then communicated

back to the master.

3. The slave then idles, awaiting instruction from the master. Before resum

ing gradient descent the slave may be told either to upload its current

vector/position to the master, to scrap the current vector and download

new data from the master, or to proceed directly without further commu

nication. The cycle then repeats from (2).

Master Processing

The master application is a further, distinct piece of software. It is designed to be

the centre of communication and control, and is in contact simultaneously with

all of the slave processors, to each of which the master opens a separate TCP

communications channel.

'A vector comprising all the weights which specify the network

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 168

Initially the master reads hostnames from the configuration file originally used
by the automatic start-up application to start the slave servers and attempts
to establish communication with each. Should connection be refused, typically
because there is no slave program ready and waiting to receive it , operation will
continue with that host omitted from further consideration, providing of course
that there is at least one slave node with which a link can be established. The
system as a whole is therefore tolerant of nodes which are temporarily unavailable
for some reason.

Next an initial weight vector with small, random values is determined and

downloaded to each slave along with the training set data. All connected slaves

then begin processing, meanwhile the master idles and awaits results. Each slave

goes through an identical number of iterations of the backpropagation algorithm

and reports back as soon as these are complete, however, the results will arrive

in no particular order from the point of view of the master, since the execution

speed of a particular slave will depend on the processing capabihty of the host

concerned as well as its current load from other applications.

The master is therefore designed to process results asynchronously - after

dispatching work it makes a selectQ call which blocks until data from one of the

slaves is received over the network. Whilst blocked the application is essentially

idling pending a network interrupt, consuming no CPU resources and potentially

swapped out to disk. Results are processed in the order they are received, and

in our initial implementation no more work is dispatched until a full set of mean

error values has been acquired. Consequently the slave workers which finish their

batch of work most quickly will idle until the slowest workers are also ready for

more.

When results from all the slave workers are available, the master ranks the

performance of each node according to the value of the mean error which cor

responds to the position, or weight vector, at which that processor has arrived.

Those with lowest mean error have achieved solutions which are closer to the

global optimum and are therefore ranked more highly.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 169

The command next sent to each slave worker can be either to proceed with
training using its own current position, or to reload a new weight vector from
the master, thus abandoning its previous work. The decision over which to do is
made probabilistically on the basis of assigned ranking - those nodes which have
achieved a better mean error will have a greater chance of being instructed to
continue, whereas those with a poorer mean error will be more likely to be directed
to obtain a new weight vector from the master. In our initial implementation the
probability of reload Pr is determined from the rank r thus:-

P. = ^ x (r - l) , r e { l , 2 , 3 . . . n } (12)

Here n is the number of slave nodes. It can be seen that the most successful

slave worker will therefore always be directed to proceed from its current posi

tion, since the probability of reload will be zero. This is important, since our

implementation relies on there always being at least one worker continuing at

every iteration, since one continuing position is used by the master to derive

weight vectors with which to reload the nodes that do not continue. In general

this "source" position is chosen at random with an even probability distribution

from all those hosts which are directed to resume, although this can in some

circumstances amount to a choice of one.

Al l of the weight vectors for downloading to slaves are obtained from a single

weight vector uploaded from a continuing slave, derived by means of a mutation

operator. In our initial implementation, mutations are applied on a weight-by-

weight basis to obtain new weights W„ from original weights Wo with individual

probabilities P as follows :-

• P = 0.5 : Weight remains unchanged.

• P = 0.4 : Weight is subject to a slight modification thus:-

W^ = Wo + x (13)

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 170

Here a; is a random variable linearly distributed over the range {-0.05,0.05}.
• P = 0.1 : Weight is completely changed:-

Wr, = y (14)

Here y is a random variable linearly distributed over the range {-1,1}.

8.2.4 Initial Implementation - Results and Discussion

First Evaluation

1.0-1

0.0-

Multiple Workers

Single Worker

10
1 I

20 30

Normalised Iterations

40 50

Figure 49: Comparison of training performance between single-node implemen
tation and that with 19 hosts or slave workers.

Figure 49 shows the improved convergence efficiency of the multi-worker scheme

described when compared with the previous, single-node implementation. Both

applications start from the same initial weight vector which has small, pseudo-

randomly generated values for each weight. Identical random number generator

algorithms are used together with a predefined "seed" in order to achieve this.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 171

We can therefore deem the comparison to be realistic in the sense that the two
competitors are not starting from wildly different parts of the search space. The
abscissa of figure 49 represents "normalised iterations", which further helps to
allow the two to be fairly compared - it should be noted that in the parallel case
these are the number of iterations executed by each slave. In fact, a single unit
on this axis represents 20 passes through the training set.

I t is clear that the initial implementation of this multiple search scheme is

therefore a good deal less efficient in terms of total CPU resource consumed,

since it consumes in this case 19 times the processor time, plus a small extra

quantity due to the overhead involved in network communication, ranking of slave

performance etc., without giving a 19 times upgrade in the rate of convergence.

In other words, one might say that a law of diminishing returns is in effect - a

small performance benefit is available, but at the expense of a disproportionately

large extra outlay of resources.

However, this initial experiment does show well that the parallelisation scheme,

that is, the very idea of having multiple workers "wandering" around the search

space simultaneously is indeed a vaUd approach to speeding up the training pro

cess, and although it does at first sight appear costly in terms of total processor

time, i t should be borne in mind that this time would otherwise be wasted through

underutilisation and in a sense can therefore be considered a "free" resource. The

mutation operator, although its initial form was devised on a rather ad-hoc basis,

is clearly shown to have at least some beneficial effect on the overall solution

speed and consequently it seems that the idea is worth optimising and persuing

further.

Mutation and Genetic Search Aspects

The fact that new weight vectors are obtained by mutating copies of existing vec

tors selected on a probabilistic basis according to their relative success or fitness

means that there are clear genetic algorithm overtones in our initial parallel-search

implementation.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 172

A pure genetic algorithm uses exclusively mutation and recombination of the
existing populus of potential solutions to produce the next generation - the only
processing additionally required is to evaluate each new individual's fitness to
enable selection for the next generation to be made. If constructed carefully the
genetic search should be more efficient than a purely random system, and yet
will have a reduced tendency to become stuck in local minima when compared
with a deterministic search strategy such as gradient descent. This is so because
the genetic method combines elements of both random and deterministic tech
niques, although the success with which it does so depends rather critically on the
nature of the selection and mutation operators. Specifically, the selection mecha
nism must ensure that the aspects of a current individual solution's make-up can
in general be transferred intact to the next generation - this is the algorithm's
"gradient descent" aspect. The mutation operator must allow random variations
to be occasionally introduced in order that it may be possible to explore beyond
local minima, yet this must not be so violent that existing individuals with a high
degree of fitness are not destroyed.

The usefulness of the recombination aspect of genetic solution generation relies

on the principle that it is possible somehow to combine two successful individuals

to form a third, higher "fitness" solution in the next generation. Again, the

suitability of this approach to finding the global optimum is sensitively dependent

on the recombination mechanism or choice thereof available.

The setting of suitable parameters for a successful genetic search algorithm

is therefore rather heuristic in nature, and indeed our approach to developing an

initial mutation operator reflects this, in that it is based on intuition rather than

a solid theoretical basis.

Our search algorithm might, therefore, be regarded as a hybrid between a

genetic algorithm and a gradient descent strategy. We have taken from the for

mer the idea of a mutation operator, but in effect replaced the genetic random

recombination idea with a more deterministic technique.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 173

Conclusions

Although the distributed search technique does indeed bring a clear improvement

to the rate of convergence of the backpropagation training algorithm, the pro

cessing required for our initial implementation is at least 19 times that of the

single-worker version. The speed-up, however, as can be seen from figure 49, is a

factor considerably less than this, and is therefore quite substantially subhnear.

Furthermore, figure 49 gives no information about the sensitivity of the speed-up

to the quantity of resources employed. We therefore sought to investigate this by

repeating the experiment with a larger number of hosts.

8.2.5 Initial Scheme Extended to 44 Workers

1.0-1

0.8H

0.6H

LU
c
CO
0)

0.4-

0.2H

0.0-

Single Worker

44 Workers

10 20 30 40 50

Normalised Iterations

Figure 50: Comparison of training performance between single-node implemen
tation and that with 44 hosts or slave workers.

Figure 50 shows results gathered in an identical manner when the experiment is

repeated using 44 rather than 19 hosts. Comparison with figure 49 shows that the

beneficial effect from the additional 25 hosts whilst maintaining other algorithm

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 174

parameters as before is rather marginal. Our hypothesis at this stage was that the
speed-up accruing to the use of parallelisation through mutation is most marked
during the early stages of the training process. We attributed this to the fact that
the mutation operator, which remains constant throughout, is likely to corrupt a
search worker's weight vector to such an extent that the newly-formed vector is
unlikely to fare well in the ranking process described in section 8.2.3. Since those
weight vectors which are ranked in this way less highly are more likely to have
their search vector reloaded once again, that is, with a new, mutated version of
a more successful vector, which is itself likely to give a poor mean error after a
short period of evolution by backpropagation, then a repetitive cycle of reloads
occurs.

Correspondingly, according to our suggestion, there should be other workers

that undergo repetitive cycles of continue instructions. In the later stages of the

training algorithm these are searching with weight vectors which give mean er

rors close to the best which has yet been found, are therefore ranked highly, are

unlikely to be subject to the mutation operator which is at this stage allegedly

damaging and are therefore likely to continue to be ranked highly in future iter

ations.

In order to test the veracity of this idea we next analysed the average num

ber of "consecutive reloads" experienced by workers at each stage in the training

operation, and figure 51 shows this for the 44-worker experiment just described.

These results were obtained by averaging at each iteration the number of consec

utive reloads which had just been experienced by hosts ending the cycle at that

iteration with a continue instruction, a re/oao? instruction having been received at

the iteration immediately previous.

Although the data are somewhat noisy due to averaging over a small sample,

it can be seen that there is a clear upward trend between the start of the training

process and the point approximately 10 normalised iterations into it . This would

appear to confirm our outlined hypothesis, namely that the mutation operator is

only of real benefit up to this point.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 175

Normalised Iterations

Figure 51: Number of consecutive reloads for 44-worker scheme, averaged over
all hosts and plotted against iterations.

8.2.6 Processor Utilisation

8.2.7 Scheduling and Load-balancing

In order to achieve a good degree of a parallel speed-up, the problem of how

exactly to partition the work among the CPU resources available needs to be

addressed. The optimum size of work "packet" needs to be determined - too

small, and network protocol overhead will become excessive. Too large, and the

degree of parallelisation achieved will be sub-optimal. Also a strategy must be

established for allocating these packets efficiently to remote hosts, which may vary

widely in their processing capacity, load from other users and their network data

propagation delay. Our application uses the "fixed" allocation scheme below, but

there are alternatives:-

1. Fixed allocation. This has the advantage of being easy to arrange, here,

the same work distribution is used irrespective of the load on the hosts

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 176

deneb

vega

CPU

_ A ' ^

CPU

cpu

Scorp io

^ > A _

Virgo

190

100
or ion

100

pkts
c a p s l la

Figure 52: Processor utilisation for 6 of the 44 slave hosts during background
application activity. CPU load and Ethernet traffic are shown for capella, the
controUing node.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 177

deneb

i
vega

CPU

.1

L A J
CPU

J • ft L.
cpu

CPU

pkts

1 1 ilU (
s c o r p i o

Virgo

geirn n i

cape!1 a

108

lee

lee

lee

64

Figure 53: As figure 52, these results taken whilst distributed application is
running.

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 178

concerned. This might be satisfactory for an environment in which the

application user is prepared to allow the slave processes to compete for

run-time on the remote hosts on an even basis with other users. How

ever, in a University system such as our own, i t is in general necessary to

lower the scheduling priority ("niceness") of the slave tasks such that they

consume only spare CPU time, that is, time in which the processor would

otherwise idle, in order that other users do not experience adverse effects.

The disadvantage of this method is that the operation may be held up by a

single heavily-loaded host, while other hosts finish their portion of the task

and stand inactive.

2. Benchmark allocation. Here, the task scheduler dispatches small test pack

ets of work to all available servers. The order in which the results arrive

is logged by the scheduler, allowing the real job to be apportioned between

the hosts which were quickest to respond. The advantage here is that the

response order is likely to give an accurate indication of which machines

will give the best performance at the time the task is issued, taking account

automatically of variables such as machine capacity, load and so on. The

disadvantage is that unnecessary work is generated for the system. This

can be off"set, for example, by using a portion of the real task to test the

remote hosts' response, in order that the test results can be usefully re

tained. However, the possibihty that some hosts may be very slow indeed

to finish the test activity should be considered, requiring their job portion

to be reallocated.

3. Algorithmic allocation. With this scheme operational variables are gathered

from each potential slave host. An appropriate algorithm is then used to

derive the likely performance for each, and the task is then partitioned and

allocated on this basis. Information fed to the algorithm could include -

machine type, number of runnable processes, number of context switches

8.2. DISTRIBUTED PROCESSING - BACKPROPAGATION TRAINING 179

and swaps per second, and so on. The advantage is that adaptive load-

balancing behaviour is achieved without creating extra load for the system.

The disadvantage is that an algorithm which reflects observed performances

well is hard to determine, since the systems involved are quite complex.

Figures 53 and 52 give representations of CPU utilisation for some of the

workstation nodes involved in the distributed application when respectively it is

and is not running. In addition, an indication of the volume of network traffic

being processed by the controlling node, capella, is also given. The "pulse" effect

of the application can be clearly seen; this is due to the fact that all machines wait

for the slowest node to finish at each iteration. I t is also evident that machines

such as vega are more powerful than those such as gemini, since the CPU peaks

are narrower for the former, indicating that the same task is taking less time.

Machines such as deneb are saturated with work from other applications, and

peaks are therefore not visible.

Chapter 9

Conclusions

9.1 Chapter 1 - Introduction

In chapter 1 we decide that the field of image processing as a whole is evolving

very quickly, since it comprises aspects of so many different scientific disciplines.

Unfortunately, image processing applications are still not as widespread as might

be anticipated given their potential, and we conclude that this is partly because

both academic researchers and industrialists in the field have hitherto been largely

constrained in the scope of their work, the former to theoretical development of

algorithms, the latter to practical solutions to highly-specific problems.

Of the three main subdivisions of image processing, namely synthesis, en

hancement and recognition, we suggest that image recognition is the least the

oretically well-established, and that there are few analytical tools available to

guide the designers of recognition systems. However, this area is also the most

potentially rewarding in terms of possible applications.

We suggest that the essential elements of an arbitrary image-processing system

are the acquisition, storage and processing subsystems. The volume of the process

ing problem is such that on-line processing can typically only be achieved using

specialised hardware and fairly straightforward algorithms in terms of computa

tional expense. However, off-line processing is frequently used on general-purpose

digital processors. A "middle route" also exists, in the form of microprocessors

which are optimised for signal-processing, but which are not algorithm-specific.

180

9.2. CHAPTER 2 - INDUSTRIAL QUALITY CONTROL USING AUTOMATED INSPEC

9.2 Chapter 2 - Industrial Quality Control us

ing Automated Inspection

In chapter 2 we conclude that vision inspection is a particularly useful element of

a manufacturing quality control process, since it does not, like manual inspection,

lead to eventual loss of inspection performance through operator boredom and

fatigue. Of the various types of acquisition transducer available, it appears that

charge-coupled detector systems are becoming increasingly popular due to their

falling cost and attractive technical specification when compared with alternative

systems such as those based on lasers and infra-red diodes.

There is great enthusiasm among the authors of the papers reviewed in this

section as to the potential applications of CCD-based vision inspection systems,

however, it is felt that this potential is as yet not fully exploited in industry, due

to high development costs.

In reviewing a cross-section of contemporary inspection applications, we find

that there is in general a need to "parameterise" image features before any recog

nition or classification can take place. However, before this can be done the

features must themselves be isolated from the image background. There is a dif

ficulty here in developing reliable techniques - boundary following can be used,

although the boundaries thus produced are Hkely to be incomplete, and some

sort of higher-level algorithm, for example maximum-Ukehhood parametric curve

fitting, or the Hough transform, needs to be used in order to fill in the gaps. This

is a good example of a more general finding which other authors have observed,

which is that, whilst it is straightforward to develop algorithms and techniques

which work well for carefully-conditioned and well-behaved data, it is still a large

step from here to a fully-functional and robust inspection system which works

well on real data. Alternatively, filtering operators can be used on the data in or

der to segment background from features, although broken boundaries are again

a likely problem.

9.2. CHAPTER 2 - IND USTRIAL Q UALITY CONTROL USING AUTOMATED INSPEC

Many different metrics have been used to produce feature vectors for classifica

tion, including feature area, perimeter, entropy and mean-squared distance from

centroid. Although few formal analytical tools are at present available to guide

the formulation of preprocessing algorithms, the key appears to be to ensure that

sufficient information is present in the feature vectors so as to enable different

features to be differentiated, whilst not overloading the feature vector with redun

dant information, thereby impeding the classification process. For this reason,

orthogonality of the individual metrics is important. Transforms may be of use

at the parameterisation stage if the defect signal can be more easily detected in

the transform domain.

There are three types of classifier presently in popular use, these are the rule-

based, statistical and neural network varieties. Of these the rule-based classifier is

the most straightforward - the classification rules are pre-set manually and may,

for example, be based on rules originally specified to guide manual inspectors.

Statistical and neural network classifiers derive a rule-set based on analysis of a

training set, and consequently rule-based classifiers may be of particular use where

no training set is available. Of the statistical classifiers, many make assumptions

about the distribution of the underlying data, and the choice between them may

therefore be made on the basis of the appropriateness of these assumptions. K' th

Nearest Neighbour is a particularly significant technique, since it makes no such

assumptions and therefore tends to outperform techniques which involve assump

tions that are invalid. Neural classifiers, based on the multi-layer perceptron

trained by backpropagation, are also known to give good results. However, these

are not in general easily amenable to analysis which would enable the rule-set

derived by the network to be extracted from it, whereas this is straightforward

for classifiers of the statistical type. It is difficult to compare the performance of

neural versus statistical classifiers as types, since well-designed implementations

of one will tend to outperform bad implementations of the other.

Particular problems relating to automatic web process inspection, a sub-set

of the general inspection problem have been found to include the fact that the

9.3. CHAPTER 3 - INTRODUCTION TO NETWORKING 183

material flow is generally continuous, leading to a requirement for inspection in

realtime. Also, the defects are small, and make up a small proportion of the total

surface area. This means that a high spatial resolution is generally required to

detect them.

9.3 Chapter 3 - Introduction to Networking

In chapter 3 we suggest that the recent explosion of computing and information

technology is due for the most part to developments in materials technology rather

than in philosophy or logic. We discuss the relevance of networking technology

to three important classes of general-purpose computer, the PC, the workstation

and the mainframe and find that, whereas networking began with mainframes as

a simple extension of the usual I /O facilities to enable remote use from termi

nals situated elsewhere in the building, the high-bandwidth peer-to-peer networks

which are now used to connect PCs and workstations open up a very much wider

range of possibilities, including distributed application processing. Although we

mention that the cost-effectiveness of the computing made available by the work

station class is such as to seriously encroach into the mainframe sector of the

market, centralised computing continues to have some attraction partly because

of the availability of cheap high-bandwidth telecommunications, since there are

cost benefits to be gained through maintaining only one air-conditioned room,

team of technicians and so forth for some kinds of organisation.

In our consideration of protocols from the TCP/IP family we suggest that the

possible methods of achieving communication between different processing nodes

in a parallel distributed application include, from lightest-weight to heaviest-

weight of protocol, socket-based connections using UDP or TCP, remote pro

cedure calls or use of shared files in a network file system. We examine the

implementation difficulties which are likely to be encountered when making use

of these techniques, and conclude that these become progressively more serious

for the lighter-weight techniques. However, these, more problematic protocols

9.4. CHAPTER 4 - OPERATING SYSTEMS 184

are also more efficient in terms of communications throughput. Given that com

munications protocol efficiency is a key variable in determining the optimum size

for a distributed application cluster, we conclude that a trade-off" needs to be

made when designing such an application, based on the compute/communicate

ratio demanded by that application. Where the volume of inter-node communica

tion is small, for example, the application may be quickly implemented by using

the more straightforward, higher-level although less efficient protocols, without

adversely alTecting performance to a great extent.

9.4 Chapter 4 - Operating Systems

In chapter 4 we examine the evolution of operating systems and the consider

ations which arise when choosing among those available in the design stage of

a machine vision application. We suggest that the operating system has grown

in importance as the complexity of the computer hardware has increased, and

that the most important function of the operating system is to increase ease

of use of the hardware by providing a simpler interface to it , thereby reducing

application development time. This is done by re-using the low-level routines

which perform commonly-required tasks. Although applications are sometimes

still written using the lowest-level machine language, we suggest that this is done

only for performance-critical components, or in an educational context.

From our considerations of Microsoft's DOS as a potential candidate operat

ing system on which to base a machine vision application, we conclude that this

system's design for backward compatibility with the original IBM PC gives rise

to a segmented memory architecture which causes serious problems for memory-

intensive applications, since no standard interface is available for accessing mem

ory above the 1 MB boundary. Although support for access to the extra memory

was available through the use of specialised compilers, use of these would have

been mutually exclusive of use of the compiled libraries supplied by the hardware

manufacturer. Our experimental work on network programming under MS-DOS

9.4. CHAPTER 4 - OPERATING SYSTEMS 185

demonstrated that it was possible to achieve asynchronous networking with the

use of "terminate and stay resident" application code. However, the lack of op

erating system support in terms of memory reservation makes such development

very troublesome and time-consuming, particularly since the use of TSRs requires

manipulation of chains of software interrupts. In addition, the described memory

segmentation problem is compounded since the use of a TSR reduces the amount

of memory available for the conventional part of the application.

Our considerations of Unix as a candidate operating system led us to revise

our original estimation that a Unix system would be best employed as the process

ing "workhorse" of a machine vision distributed application, since the provision

of freely-available libraries makes the development of a powerful windows-based

graphical front-end very straightforward. Unix provides the features whose ab

sence in MS-DOS causes such difficulty - a memory model which is linear, as far

as the application is concerned, as well as reservation protection which speeds

the debugging phase of development. Therefore complex applications are ideally

suited to a Unix machine. However, peripheral hardware which is compatible

with typical workstation architectures is in general considerably more expensive

than the PC-bus equivalents. Therefore our optimal solution in a value-for-money

sense involves a PC which interfaces to a Unix workstation hosting the main ap

plication via TCP/IP over Ethernet. We found Linux, a freeware implementation

of Unix, to be the best operating system for use on this PC, since the "open"

nature of this package makes it straightforward to design Unix internals such as

device drivers. Of the two methods of device-driver writing considered, we found

that the extra complexity of a system-mode driver was not warranted, although

this method might usefully be employed where DMA or hardware interrupts are

in use by the peripheral, or where contention between processes for access to the

peripheral needs to be mediated. A user-mode device-driver was found to be

adequate for the application in view.

9.5. CHAPTER 5 - NEURAL NETWORK OVERVIEW 186

9.5 Chapter 5 - Neural Network Overview

In chapter 5, we formalise the breakdown of a general automated inspection

application into the data acquisition, preprocessing, artificial intelligence and

output processing stages. In examining an inspection system designed to tackle

a problem closely-related to the one in view, we conclude that one of the most

serious limitations is that algorithm parameters and threshold values need to be

determined through experience and experimentation in using the system on real-

world data. We suggest that this is an important factor limiting the uptake of

industrial vision inspection systems, and that this might be encouraged if a more

generally-applicable system could be designed. With this in mind we examine

neural network approaches to classification, since the adaptive properties of these

are well-known.

In our review of neural network theory we explain that, whilst the idea of

a neural network is biologically inspired, the accuracy of the analogy between

biological and artificial neural systems is very Hmited. We also suggest that one

of the most significant drawbacks to the use of neural networks is the fact that

they construct a "write-only" knowledge base.

We describe the characteristics of the Hopfield network and suggest that this

is one of the most potentially versatile of all networks, since it possesses the

ability to adopt an arbitrary structure. Unfortunately, much theoretical devel

opment needs to be made before these properties can be exploited to their full

potential. Existing theory relating to the use of the Hopfield network as a dis

tributed memory store is based by analogy on that relating to magnetic materials

in Physics.

We explain the development of perceptron networks and the relevance of the

backpropagation algorithm to the training of multi-layer perceptron networks.

Although this has been shown to be a successful training technique, we point

out that there is no evidence of any backpropagation-like processes at work in

any known biological systems. We suggest that the large volume of computation

9.6. CHAPTER 6 - IMAGE PREPROCESSING CONSIDERATIONS 187

required for successful training is a serious barrier to neural application develop

ment. Other problems include the lack of analytical tools which would allow the

appropriate network structure for a given problem to be directly determined; a

trial and error procedure is usually adopted at present.

In reviewing contemporary neural applications, we find that there is a good

deal of variance of opinion relating to the use of neural networks, but there is

a concensus that data preprocessing is of crucial importance to network perfor

mance, also that neural classifiers show great potential which can be realised

through tuning of the preprocessing and training stages. There is also a general

view that a neural network solution is always "second best" to a custom-designed

, solution, however, the general apphcabihty and self-teaching of the neural ap

proach is what makes this worth following.

9.6 Chapter 6 - Image Preprocessing Consid

erations

In chapter 6 we explain that the essence of preprocessor design is to strike a

compromise between too little preprocessing, which leaves the following stage

with a classification problem which is too difficult to solve, and doing so much

preprocessing that the key features of data are removed.

Our investigations into the Iterated Function Series as a preprocessing oper

ator are partly biologically inspired, since the IPS will "build up" its attractor

over many iterations in the same way that humans are thought to "build up"

mental representations of real world objects.

Our experiments suggest that the IFS is a robust system in the sense that small

changes in defining parameters will not result in chaotic changes in the attractor.

However, we conclude that there is no evidence to suggest that a particular image

pattern has a single, unique mapping to one position in IFS coefficient space.

Consequently we suggest that recognition on the basis of IFS coefficients alone

9.7. CHAPTER 7 - NEURAL NETWORK EXPERIMENTAL 188

is unlikely to prove fruitful . We put forward the fractal dimension, a metric of

texture self-similarity theoretically-related to the IFS, as being a useful feature

parameter because of its likely orthogonality with conventional metrics.

Our experimentation with the Fast Fourier Transform as a preprocessing op

erator show that detection is effective in the transform domain. However, when

compared with a similar detection technique in the spatial domain, we find that

detection is not significantly aided by the use of the transform, and that its

computational expense is therefore not justified.

9.7 Chapter 7 - Neural Network Experimental

In chapter 7 we successfully test our implementation of a multi-layer perceptron

trained by backpropagation by showing the convergence properties for random

training data using networks with a varying number of hidden nodes. The network

cannot be successfully trained on random data where there are fewer hidden

than input and output nodes, a result consistent with information theory, and

this finding contributes to the validation of our implementation. The pattern of

weights evolves differently for each trial since each weight is initialised to a small,

random value.

The network configuration was altered, in order that real image data of plate

aluminium defects could be used for training and analysis. The network was

successfully trained on a set of horizontal image cross-sections, half containing

defects, half containing normal material. The use of the trained network on fresh

data meets with limited success, and our hypothesis that the network has learnt

to identify defects purely on the basis of position is consistent with the results of

further experiments.

In order to eliminate this "position-sensitive" effect we add a further prepro

cessing stage to the RMS operator and present to the network a distribution of

populations of RMS powers rather than the RMS powers themselves. The detec

tion results in this case are inconclusive, and we attribute this to the fact that the

9.8. CHAPTER 8 - ALGORITHMIC DEVELOPMENT 189

trained network attaches a greater significance to the general distribution shape
than to the high power bins which contain the defect information.

We further seek to eliminate the "position-sensitive" effect through the use of a

"synthetic" training set, which contains defects in a range of horizontal positions.

Although the effectiveness of the network in responding to the presence of defects

is now improved, spurious defect responses are now generated for normal material.

We attribute this to the fact that the training set exemplars of normal material

are insufficiently general, and the fact that the exemplars of defective material

have a higher average background RMS power level.

Our efforts to examine the knowledge induced by the training process are

quite successful, and we see that the network has become sensitised to high RMS

powers in positions coincident with the defects in the synthetic training set, and

desensitised to high RMS powers in positions where both halves of the training

set possess them.

Although some progress was made towards understanding the neural network

behaviour, the training time for each experiment proved to be, as predicted, a

serious inhibiting factor towards further progress. We therefore sought to speed

up the training procedure. This was the motivation for the work in chapter 8.

9.8 Chapter 8 - Algorithmic Development

In chapter 8 we suggest that parallel processing is an efficient way to tackle very

computationally-demanding applications providing that these are amenable to

parallel decomposition, since the cost per unit processing speed is lower for an

array of medium-power processors than for a single supercomputer.

Through reviewing contemporary parallel distributed applications we con

clude that there is a spectrum of such applications ranging from coarse-grained

to fine-grained in the nature of their parallelism. Coarse-grained appUcations

require only limited communication between nodes, whereas the functionaUty

of the nodes themselves is complex; for fine-grained applications the converse

9.8. CHAPTER 8 - ALGORITHMIC DEVELOPMENT 190

is true. Different architectures are appropriate for these diff'erent applications;
fine-grained applications for example are best-suited to tightly-coupled micropro
cessors sharing memory over a single bus.

We implement a parallelised backpropagation training algorithm using a clus

ter of Unix workstations interconnected by TCP/IP over a local area network.

The coupling between nodes here is relatively loose in bandwidth terms, whilst the

nodes are relatively powerful in processing and resource terms, and we therefore

design our application to be coarse-grained in nature.

The backpropagation algorithm is parallelised by expressing it as a seaxch

problem which has a search vector travelling over a surface in coefficient or weight

space in search of a global optimum. The parallel algorithm has many search

vectors, one per node, which independently traverse the surface. Periodically

the nodes communicate the "fitness" of the solution which each has found to a

controlling node which then ranks each node's results in terms of performance.

On a probabilistic basis the nodes which perform more poorly are instructed to

abandon their current search positions and resume searching from a new position

derived from that reached by a better-performing node. The derivation here

involves genetic-like mutation and thus enables the search to avoid local optima

without being subject to the inefficiency of a purely random search.

Our initial trial with 19 workstations, one slave search worker per workstation,

shows that a considerable speed-up is achieved and that the basis of the parallel

search algorithm is therefore sound. The speed-up is subHnear, however it is

clearly unreasonable to expect linear speed-ups from such an algorithm and this

does not reflect badly on the networking and processing configuration. Although

the mutation operator used was designed on a heuristic basis, in the absence

of appropriate analytical tools, it is shown to have a beneficial effect on search

performance.

In extending the scheme to 44 workstations we conclude that the extra benefit

achieved is marginal. We hypothesise that this is at least partly due to the fact

that the mutations introduced are sufficiently vigorous that, once the search is

9.9. FINAL CONCLUSION 191

quite well-advanced, mutation generally produces a worse-fitting search vector

than the one from which the vector is derived. This hypothesis is borne out

by investigation of the number of consecutive worker "reloads" plotted against

search iterations.

Examination of the CPU utihsation of a selection of hosts involved in the

distributed application shows that a good deal of inefficiency is present, since

all workers must wait for the slowest worker to complete at each iteration. A

useful direction for further work would therefore be to implement the mentioned

benchmark or algorithmic schemes in order to improve the networking/processing

efficiency, as well as to tune the mutation parameters so as to achieve better

algorithmic efficiency.

9.9 Final Conclusion

In this thesis we have identified the need for general-purpose image inspection so

lutions, and have made progress towards these along a number of avenues. Since

it appears that such a system is likely to take the form of a heterogenous mix

ture of architectures, our work on network analysis and hardware interfacing is

of value. The proper paradigm for a general-purpose image-processing system is

now well-established, and there is a clear need for efficient image preprocessing,

to which our considerations of the Iterated Function Series and the Fast Fourier

Transform are relevant. Although neural networks are not proven as the method

of choice for future classifier design, there appears to be considerable untapped

potential in this area, and this therefore seems to be a good direction for future

work. Finally, parallel algorithm design using local area networks is shown to

be a low-cost method of achieving the provision of supercomputer-like resources,

and the particular application in view, backpropagation training, is successfully

speeded up, thereby reducing the development time of future neural systems. Fur

thermore, if the highlighted implementation inefficiencies were tackled in future

work, it seems likely that even better performance would be yielded.

Bibliography

1] Kenneth Castleman. Digital Image Processing. Prentice-Hall, 1979.

2] Paul Wintz Rafael Gonzalez. Digital Image Processing. Addison Wesley,

1987.

[3] M. Kilger. Video-based traffic monitoring. In 4th International Conference

on Image-Processing and its Applications, Maastricht, Netherlands. Siemens

AG, Germany, 1992.

4] E. I . Dagless A. T. Al i . Automatic traffic monitoring using a transputer

image-processing system. In Second International Conference on the Appli

cation of Transputers. lOS Press, 1990.

5] B. J. Hosticka J. Moeschen. Programmable hardware architecture for

real-time pattern recognition systems. In 4ih International Conference on

Image-Processing and its Applications, Maastricht, Netherlands. Fraunhofer-

Institute of Microelectronic Circuits and Systems, Germany, 1992.

6] M. C. Liu C. N. Huang, C. C. Lim. Comparison of image-processing algo

rithms and neural networks in machine vision inspection. Computers and

Industrial Engineering, 23(1-4):105-108, 1992.

7] F. Martel P. I . Ivonen. Defect detection and online analysis of coated papers.

Appita, 44(5):305-306, 1991.

192

BIBLIOGRAPHY 193

8] J. L. C. Sanz. Machine vision algorithms for automated inspection of thin-

film disk heads. IEEE Transactions on Pattern Analysis and Machine Intel

ligence, 10(6):830-848, November 1988.

9] R. A. Schowengerdt R. G. White, D. A. Perednia. Automated feature

detection in digital images of skin. Computer Methods and Programs in

Biomedicine, 34(l):41-60, 1991.

10] F. Deravi A. K. Muhamad. Cooccurence-based features for automatic texture

classification. Neural and Stochastic Methods in Image and Signal Processing,

1766(74):489-496, 1992.

11] R. N. Bracewell D. Mihovilovic. Adaptive chirplet representation of signals

on time-frequency plane. Electronics Letters, 27(13):1159-1161, 1991.

12] J. Waite. A review of iterated function system theory for image compression.

lEE Colloquium, The Application of Fractal Techniques in Image-Processing,

December 1990.

13] A. E. Jacquin. A novel fractal block-coding technique for digital images.

IEEE ICASSP Proceedings, pages 2225-28, 1990.

14] P. A. Araman T. H. Cho, R. W. Conners. A comparison of rule-based,

k-nearest neighbour and neural net classifiers for automated industrial in

spection. In Proceedings of the IEEE/ACM International Conference on De

veloping and Managing Expert System Programs, pages 202-209. The Spatial

Data Analysis Laboratory, Virginia Polytechnic Institute and State Univer

sity, Blacksburg, Virginia, USA, 1991.

15] N. Sufi D. Brzakovic, H. Beck. An approach to defect detection in materi

als characterised by complex textures. Pattern Recognition, 23(l-2):99-107,

1990.

16] R. W. Conners T. H. Cho. A neural network approach to machine vision

systems for automated industrial inspection. In Proceedings of the Neural

BIBLIOGRAPHY 194

Networks International Joint Conference, volume 2, pages 205-210. Depart
ment of Electrical Engineering, Virginia Polytechnic Institute and State Uni
versity, Blacksburg, Virginia, USA, 1991.

17] S. Gruber J. Olsson. Web process inspection using neural classification of

scattering light. In Proceedings of the Industrial Electronics, Control, In

strumentation and Automation International Conference, pages 1443-1448.

Department of Electrical Engineering and AppHed Physics, Case Western

Reserve University, Cleveland, Ohio, USA, IEEE, 1992.

[18] S. C. Cheung J. N. Magee. Parallel algorithm design for workstation clusters.

Software: Practice and Experience, 21(3):235-250, 1991.

19] V. Strumpen C. H. Cap. Efficient parallel computing in distributed work

station environments. Parallel Computing, 19(ll):1221-1234, 1993.

20] F. Mueller-PIathe. Parallelising a molecular dynamics algorithm on a multi

processor workstation. Computer Physics Communications, 61(3):285-293,

1990.

21] W. Huber M. Griebel. The combination technique for parallel sparse-grid-

preconditioning or -solution of pde's on workstation networks. Lecture Notes

in Computer Science, 634:217-228, 1992.

[22] A. Gupta E. Rothberg. Techniques for improving the performance of sparse

matrix factorisation on multiprocessor workstations. In Supercomputing,

pages 232-241. Department of Computer Science, Stanford University, Cal

ifornia, USA, 1990.

23] G. Amdahl. Validity of the single-processor approach to achieving very large

scale computing capabilities. In Proceedings of the AFIPS Computing Con

ference, pages 483-485, 1967.

24] J. Postel. RFC 768: User Datagram Protocol. Network Information Center,

SRI International, Menlo Park, CA, USA, 1980.

BIBLIOGRAPHY 195

25] J. Postel. RFC 793: Transmission Control Protocol - DARPA Internet Pro
gram Protocol Specification. Network Information Center, SRI International,
Menlo Park, CA, USA, 1981.

26] Richard G. Palmer John Hertz, Anders Krogh. Introduction to the Theory

of Neural Computation. Addison Wesley, 1992.

27] Roy Rada Richard Forsyth. Machine Learning, Applications in Expert Sys

tems and Information Retrieval. Ellis Horwood, 1986.

28] Frank Rosenblatt. The perceptron: a probabiHsitc model for information

storage and organisation in the brain. Psychological Review, 65, 1958.

29] Seymour Papert Marvin Minsky. Perceptrons. MIT Press, 1969.

30] Casimir A. Kulikowski Sholom M. Weiss. Computer Systems That Learn.

Morgan Kaufmann, 1991.

31] C. C. Hand M. R. Evans, S. W. EUacott. A multi-resolution neural network

classifier for machine vision. In Proceedings of the Neural Networks Interna

tional Joint Conference, volume 3, pages 2295-2599. Information Technology

Research Institute, Brighton Polytechnic, UK, 1991.

[32] T. J. Hall G. D. Kendall. Performing fundamental image-processing op

erations using quantised neural networks. In International Conference

on Image-Processing and its Applications, Maastricht, Netherlands. King's

College London, UK, 1992.

33] P. A. Giles. Iterated Function Systems and Shape Representation. PhD

thesis. University of Durham, 1991.

34] M. A. Fischler. On the representation of natural scenes. Computer Vision

Systems, 1978.

[35] Michael F. Barnsley. Fractals Everywhere. Addison Wesley, 1988.

BIBLIOGRAPHY 196

[36] Kenneth Falconer. Fractal Geometry. Wiley, 1993.

37] A. D. Sloan M. F. Barnsley. A better way to compress images. Byte Maga

zine, January 1988.

[38] D. D. Giusto F. Arduini, S. Fioravanti. Multifractals and texture classifica

tion. In 4ih International Conference on Image-Processing and its Applica

tions, Maastricht, Netherlands. University of Genoa, Italy, 1992.

39] Z Houkes T. Feng. Internal measuring models in trained neural networks

for parameter estimation from images. In 4th International Conference on

Image-Processing and its Applications, Maastricht, Netherlands. Ocean Uni

versity of Qingdao, P R China, 1992.

40] M. K. MoUoy J. J. Devai, T. C. Kerrigan. Simulation of the Ian behaviour

in the distributed hp-ux environment. In Proceedings of the 1990 Winter

Simulation Conference, 1990.

[41] F. Deravi A. K. Muhamad. Neural networks for texture classification. In 4ih

International Conference on Image-Processing and its Applications, Maas

tricht, Netherlands. University of Wales, Swansea, UK, 1992.

[42] V. S. Sunderam G. A. Geist. Network Based Concurrent Computing Using

the PVM System. Oak Ridge National Laboratory, Oak Ridge TN, USA.

43] J. Postel. RFC 791: Internet Protocol - DARPA Internet Program Protocol

Specification. Network Information Center, SRI International, Menlo Park,

CA, USA, 1981.

44] E. M. Ormsby J. W. Hamilton. Simulating hypercubes in unix. Dr Dobb's

Journal, 17 (12)-.72-76, 1992.

45] M. Weber. Workstation clusters: One way to parallel computing. Inter

national Journal of Modern Physics C: Physics and Computers, 4(6):1307-

1314, 1993.

BIBLIOGRAPHY 197

46] T. Nakada S. Horiguchi, A. Katahira. Parallel processing of incremental
ray tracing on a multiprocessor workstation. In Proceedings of the Inter
national Conference on Parallel Processing, pages 192-196. Department of
Information Science, Tokohu University, Sendai, Japan, 1991.

47] P. J. King. Process-level parallelism in a unix environment. Transputer

Research and Applications, 3(33):189-195, 1990.

48] T. Williams. Realtime unix develops multiprocessing muscle. Computer

Design, 30(5):26-30, 1991.

49] E. B Fernandez R. Bealkowski. A heterogenous multiprocessor architecture

for workstations. In IEEE Proceedings of the Southeastcon, pages 258-262.

International Business Machines Corporation, Boca Raton, Florida, USA,

1991.

50] K. Blathras Y. Shi. ParalleHzing scatter and gather appHcations using het

erogenous networked workstations. In Proceedings of the 5th Siam Confer

ence on Parallel Processing for Scientific Computing, pages 588-595. Depart

ment of Computer and Information Sciences, Temple University, Philadel

phia, USA, 1991.

51] K. de Jong. Adaptive system design: a genetic approach. IEEE Transactions

on Systems, Man and Cybernetics, 10(9):566-574, September 1980.

52] C. L. Hendrick. An introduction to the internet protocols. Technical report,

Computer Science Facilities Group, State University of New Jersey, 1987.

